basic aberrometry

54
Aberrometry for the Common Joe Thomas O. Salmon, OD, PhD, FAAO 8/19/11 Revision

Upload: sightbd

Post on 09-Jul-2016

174 views

Category:

Documents


34 download

DESCRIPTION

Optics

TRANSCRIPT

Page 1: Basic Aberrometry

Aberrometry for the Common Joe

Thomas O. Salmon, OD, PhD, FAAO

8/19/11 Revision

Page 2: Basic Aberrometry

Basic teaching objectives1. What are aberrations?2. What are aberrometers?3. How do they work?4. How do we interpret the data?5. How can you diagnose abnormal values?

Page 3: Basic Aberrometry

1. What are aberrations?• Aberrations = refractive errors• Myopia, hyperopia, astigmatism =

LOA• But there are others …• Higher-order aberrations (HOA)

Coma Spherical aberration Trefoil Others

Page 4: Basic Aberrometry

Clarification … which aberrations?

• Monochromatic• Not chromatic• Not Seidel

Coma Spherical aberration Oblique astigmatism Petzval Curvature of field

Page 5: Basic Aberrometry

Pupil size, pupil size, pupil size, …

Courtesy of Dr. Donald Miller, Indiana UniversityRetinal Imaging and Vision at the Frontiers of Adaptive Optics, Physics Today (Jan 2000)

20/200sized letter

Page 6: Basic Aberrometry

Summary 1

Q. What are aberrations?A. Refractive errors

Q. What are higher-order aberrations?

A. Refractive errors beyond sphere and cyl.

Page 7: Basic Aberrometry

2. What are aberrometers?• Instruments that measure

…• Refractive errors• (super auto-refractors)• Sphere, cylinder + HOAs• (Higher-order aberrations)• ≠ corneal topography! COAS

Page 8: Basic Aberrometry

K topography vs aberrometry

High-resolutionkeratometry

High-resolutionauto-refraction

Page 9: Basic Aberrometry

• 1970s and 80s• Strategic defense• Refraction through the

atmosphere• Shack-Hartman wavefront sensor• Astronomy• Adaptive optics (AO)

History of HO aberrometry

Reagan

Shack

Page 10: Basic Aberrometry
Page 11: Basic Aberrometry

Ocular HO aberrometry research

• 1960 MS Smirnov• 1977 Howard Howland• 1990 Josef Bille and …• Junzhong Liang• J Opt Soc Am A, July 1994• Mid 1990s - other labs

Howland

Liang

Bille

Page 12: Basic Aberrometry

IU Shack-Harmann Wavefront Sensor (catch a wave!)

Page 13: Basic Aberrometry

Clinical HO aberrometry

• Laser refractive surgery

• Large HOAs• Clinical aberrometry• Wavefront-guided

LASIKCOAS

Page 14: Basic Aberrometry

3. How do they work?

• Light is projected in.• Reflect off the retina• Light passes through

the eye’s optics.• Catch the light.• Analyze it.• Reconstruct the

optical wavefront’s shape

Page 15: Basic Aberrometry

Courtesy of Alcon

Page 16: Basic Aberrometry

Shack-Hartmann aberrometry

+y}

}x

Light exiting the eye

Analyze each dot’s position

Reconstruct wavefront

shape

Page 17: Basic Aberrometry

What does the wavefront tell you?

-0.5

-0.5

-0.5

1.00.5

0.0

-2 -1 0 1 2

210

-1-2

pupil (mm)

pupil (mm)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0Wavefront error (um)

Topographic map Surface plot

• Flat wavefront = perfects optics (no aberrations)• Elevations = wavefront errors• Wavefront distortions reveal refractive errors.

Page 18: Basic Aberrometry

Higher-order wavefront maps

Normal eye Post LASIK

Page 19: Basic Aberrometry

Besides refractive errors …

• Optical quality metrics Modulation transfer function (MTF) Point spread function (PSF) Strehl ratio

• Visual performance metrics• Simulate the patient’s vision!• Design the ideal optical correction for

the eye W-guided RS, CL, spectacles, IOL, etc.

Page 20: Basic Aberrometry

Simulated retinal image emmetropia

Page 21: Basic Aberrometry

Simulated retinal image for AI

-1.00 -0.50 x 100 HO RMS 0.51 µm (6.0-mm pupil)

Page 22: Basic Aberrometry

Simulated retinal image emmetropia

Page 23: Basic Aberrometry

Simulated vision for TO

-3.00 -2.00 x 170 HO RMS 0.38 µm 6.0-mm pupil

Page 24: Basic Aberrometry

Summary 3Q. How do

aberrometers work?A. Measure light that

has passed through the eye's optics.

Q. Why? (Who cares?)A. The wavefront

provides a wealth of info about the eye's optics and vision.

Page 25: Basic Aberrometry

4. How do we interpret wavefront data?

• Does this eye have good or bad optics?

• How good or bad is the optical correction?

• Are HO aberrations the problem?• Specifically:1. Which aberrations does this eye

have?2. How bad are they?

Page 26: Basic Aberrometry

Which aberrations are present?

• Wavefront - distorted by all the aberrations combined

• Specifically, which ones are present?• Need Zernike analysis to break it

down.• Zernike system = hierarchy of

aberrations• Each aberration causes a particular

shape of wavefront distortion.

Page 27: Basic Aberrometry

sphere astigmatism trefoil 7Z-3

Some example wavefronts

Page 28: Basic Aberrometry

Zernike analysis breaks it down

+ + + . . .

sphere astigmatism trefoil

coma sphericalaberration

+ + +=

+

Z44 Z42

Page 29: Basic Aberrometry

Zernike modes

0

1

2

3

4

5

0

0

0

1

1

1

-1

-1

-1

-2

-2

2

2

-3

-3 3

3

4-4

5-5

order (n)

Znm

HOA

or Z(n,m)

Page 30: Basic Aberrometry
Page 31: Basic Aberrometry

CombinedZernike modes1

2

3

order (n)

Z1-1 Z1

1

Z11Z2

-2 Z22Z2

0

Z22

Z3-3

Z3-1 Z3

1

Z33

Z31

Z33

Page 32: Basic Aberrometry

Magnitude

& axis form

0

1

2

3

4

order (n)

Z0

Z40

Z31

Z20

Z11

Z22

Z33

Z44Z42

prism

sphere astigmatism

coma trefoil

sphericalaberration quadrafoil

piston

secondary astigmatism

Page 33: Basic Aberrometry

Zernike analysis tells us …• Which aberrations are present.• Breaks the wavefront down into the

Standard Zernike modes or … Magnitude & axis form

• Each Zernike mode = one aberration• But, … how bad are the aberrations?• Z analysis also provides a value for

each.

Page 34: Basic Aberrometry

Zernike coefficients• One for each Zernike mode• Units in microns• ± sign• Must specify pupil size• Absolute Zernike coefficient =

magnitude

Page 35: Basic Aberrometry

Conventional Rx:

Mode: Z2-2 Z2

0 Z22 Z3

-3 Z3-1 Z3

1 Z33 Z4

-4 Z4-2 Z4

0 Z44Z4

2

Coefficient (µm):

.56 .27 .64 -.03 .07 -.05 .06 .03 .04 .11 0 -.08

2nd order

3rd order 4th order

Zernike coefficients

Rx: +0.19 - 0.67 x 111 Pupil diameter: 5.6 mm Total RMS: 0.76 µm Higher-order RMS: 0.51 µm

+0.25 -0.75 x 111

Unit =µm + or -values

Page 36: Basic Aberrometry

RMS wavefront error• The basic data - individual Zernike

coefficients• How bad are combined aberrations?• Total aberrations (LOAs + HOAs)• Just higher-orders (HOA RMS)• Or, just third-order aberrations, etc.

RMS = Znm( )

2+ ...+ Zn

m( )2

Page 37: Basic Aberrometry
Page 38: Basic Aberrometry

Summary 4. Interpreting the data

• Aberrometers measure wavefronts• Wavefront - distorted by aberrations• Zernike analysis - which aberrations are

present• Zernike coefficients - how bad they are• Data in microns, with ± signs• RMS - magnitude of grouped aberrations• Pupil size, pupil size, pupil size !

Page 39: Basic Aberrometry

5. Diagnosis - what’s normal?• Aberrometry - diagnoses abnormal

optics• Ideal eye = zero aberrations, but

…• every eye has some aberrations.• So, are those Zernike or RMS

values good or bad?• Need reference norms

Page 40: Basic Aberrometry

OCO Norms

• JCRS Dec 2006• 2,560 normal eyes• 9 sites• Zernike & RMS

norms• Data on www• Google “Dr. Salmon”

Page 41: Basic Aberrometry

Downloadable info• Full article in PDF• Norms table - PDF & Excel• Signed Zernike coefficients• Absolute values• Combined (polar) Zernike modes• RMS for HOA and orders 3, 4, 5, 6• http://arapaho.nsuok.edu/~salmonto

Page 42: Basic Aberrometry

HOA results

• Prominent individual HOAs (6.0-mm pupil)

• Z3-1 (vertical coma) = 0.14

• Z40 (spherical aberration) = 0.13

• Z3-3 (oblique trefoil) = 0.11

Pupil diameter Mean (µm) 2x mean

6.0 0.33 0.665.0 0.19 0.384.0 0.10 0.20

Page 43: Basic Aberrometry

Summary 5

Q. How can you know what’s normal?

A. Compare the data to norms

If more than double the norms … (for that pupil size) suspect

abnormal optics.

Page 44: Basic Aberrometry

Summary – the basics• Aberrations = refractive errors• Aberrometers measure wavefronts.• Zernike analysis tells which

aberrations• Zernike coefficients & RMS tell how

bad the aberrations are.• Compare values to norms• Mean HO RMS (6 mm) = 0.33 µm

Page 45: Basic Aberrometry

And ...

Dont’ forget pupil diameter!

Page 46: Basic Aberrometry

Case example• 34 yof, complained of shadows,

diplopia, glare, eye strain, especially at night

• RK OU at age 21• Spec Rx = plano, 20/20- OU• Aberrometry confirmed large

HOAs

Page 47: Basic Aberrometry

HOA wavefront maps (5.0 mm)

-2 -1 0 1 2

2

1

0

-1

-2

mm

mm

-2.50 -1.25 0.00 1.25 2.50Wavefront error (um)

OD

-2 -1 0 1 2

2

1

0

-1

-2

mm

mm

-2.50 -1.25 0.00 1.25 2.50Wavefront error (um)

OS

RMS=0.89 µm RMS=0.92 µm

Page 48: Basic Aberrometry

Zernike coefficients

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Z(3,-3)Z(3,-1)Z(3,1)Z(3,3)Z(4,-4)Z(4,-2)Z(4,0)Z(4,2)Z(4,4)Z(5,-5)Z(5,-3)Z(5,-1)Z(5,1)Z(5,3)Z(5,5)

5.0-mm pupil

OD

OS

Normal

Abs Zernike coefficient (um)

Zernike mode

Page 49: Basic Aberrometry

HO RMS & pupil size

0

0.2

0.4

0.6

0.8

1

2.02.53.03.54.04.55.05.5

Pupil & RMS dataOD

OS

Normal

HO RMS (um)

Pupil diameter (mm)

5.0 mm3.0 mm

Page 50: Basic Aberrometry

Aberrometry & refractive surgery

• Replace conventional auto-refractor• Verify pre-op refraction• Guide choice of laser procedure• Data sent to laser for custom

correction• Evaluate quality of the correction

Page 51: Basic Aberrometry

Eye research

• Optics of the eye• Optical

corrections• Visual perception• Optics-related

phenomena-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 10 20 30 40 50 60

Time (seconds)

1- Day Acuvue MoistProclear 1 DayEye without SCL

Change in HO RMS (um)

Page 52: Basic Aberrometry
Page 53: Basic Aberrometry
Page 54: Basic Aberrometry

Northeastern State University

ご清聴ありがとうございました