basebandcom11-3

Upload: pootommy

Post on 06-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 basebandcom11-3

    1/56

    Dr. Uri Mahlab 1

  • 8/3/2019 basebandcom11-3

    2/56

    Dr. Uri Mahlab 2

    Informationsource

    Transmitter Channel Receiver Decision

    Communication system

  • 8/3/2019 basebandcom11-3

    3/56

    Dr. Uri Mahlab 3

    Information

    source

    Pulse

    generator

    Trans

    filter

    channel

    (X(t (XT(t

    Timing

    Receiver

    filter

    Clock

    recovery

    network

    A/D

    +

    Channel noise

    n(t)

    Output

    Block diagram of an Binary/M-ary signalingscheme

    +

    HT(f)

    HR(f)

    Y(t)

    Hc(f)

  • 8/3/2019 basebandcom11-3

    4/56

    Dr. Uri Mahlab 4

    Information

    source

    Pulse

    generator

    Trans

    filter

    (X(t (XT(t

    Timing

    Block diagram Description

    HT

    (f)

    {dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1}

    Tb

    Tb

    )t(pg

    Tb

    )t(pg

    Tb

    For bk=1

    For bk=0

    ;"0"a

    ;"1"aa

    k

    k

    k

    dif

    dif

  • 8/3/2019 basebandcom11-3

    5/56

    Dr. Uri Mahlab 5

    Information

    source

    Pulse

    generator

    Trans

    filter

    (X(t (XT(t

    Timing

    Block diagram Description (Continue - 1)

    HT

    (f)

    {dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1}

    Tb

    Tb

    )t(pg

    Tb

    For bk=1

    For bk=0

    Transmitter

    filter

    Tb

    )t(pg

    Tb

  • 8/3/2019 basebandcom11-3

    6/56

    Dr. Uri Mahlab 6

    Information

    source

    Pulse

    generator

    Trans

    filter

    (X(t (XT(t

    Timing

    Block diagram Description (Continue - 2)

    HT

    (f)

    {dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1}

    Tb

    k

    bgk kTtpatX )()(

    Tb

    100110

    2Tb

    3Tb 4Tb

    5Tb

    t6Tb

  • 8/3/2019 basebandcom11-3

    7/56

    Dr. Uri Mahlab 7

    Information

    source Pulsegenerator Transfilter

    (X(t (XT(t

    Timing

    Block diagram Description (Continue - 3)

    HT(f)

    {dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1}

    Tb

    kbgk kTtpatX )()(

    Tb

    100110

    2Tb

    3Tb 4Tb

    5Tb

    t6Tb

    Tb 2Tb

    3Tb 4Tb

    5Tb

    t6Tb

  • 8/3/2019 basebandcom11-3

    8/56

    Dr. Uri Mahlab 8

    Informationsource

    Pulsegenerator Transfilter

    (X(t

    Timing

    Block diagram Description (Continue - 4)

    HT(f)

    Tb 2Tb

    3Tb 4Tb

    5Tb

    t6Tb

    Tb 2Tb

    3Tb 4Tb

    5Tb

    t6Tb

    Channel noise n(t)

    +

    t

    Receiverfilter

    HR(f)

  • 8/3/2019 basebandcom11-3

    9/56

  • 8/3/2019 basebandcom11-3

    10/56

    Dr. Uri Mahlab 10

    Information

    sourcePulse

    generator

    Transfilter

    channel

    (X(T (Xt(T

    Timing

    Receiverfilter

    Clockrecoverynetwork

    A/D

    +

    Channel noisen(t)

    Output

    Block diagram of an Binary/M-ary signalingscheme

    +

    HT(f)

    HR(f)

    Y(t)

    Hc(f)

    kbdrk tnkTttpAtY )()()( 0

  • 8/3/2019 basebandcom11-3

    11/56

    Dr. Uri Mahlab 11

    Block diagram Description

    Tb 2Tb

    3Tb 4Tb

    5Tb

    t

    6Tb

    Tb 2Tb

    3Tb 4Tb

    5Tb

    t6Tb

    t

    1 0 0 0 1 0

    1 0 0 1 1 0

    t

  • 8/3/2019 basebandcom11-3

    12/56

    Dr. Uri Mahlab 12

    Information

    sourcePulse

    generator

    Transfilter

    channel

    (X(t (XT(t

    Timing

    Receiverfilter

    Clockrecoverynetwork

    A/D

    +

    Channel noisen(t)

    Output

    Block diagram of an Binary/M-ary signalingscheme

    +

    HT(f)

    HR(f)

    Y(t)

    Hc(f)

  • 8/3/2019 basebandcom11-3

    13/56

    Dr. Uri Mahlab 13

    Transfilter

    channel

    Pg(t)Receiver

    filter

    Explanation of Pr(t)

    HT(f) HR(f)Hc(f)

    k

    bdrk tnkTttpAtY )()()( 0

    Pr(t)

    HT(f) Hc(f) HR(f)Pg(f) Pr(f)

    1)0(pr

  • 8/3/2019 basebandcom11-3

    14/56

    Dr. Uri Mahlab 14

    The output of the pulse generator X(t),is given by

    Tpa bgk

    kkttX

    Pg(t) is the basic pulse whose amplitude ak depends on.the kth input bit

  • 8/3/2019 basebandcom11-3

    15/56

    Dr. Uri Mahlab 15

    For tm =mTb+td and td is the total time delay in thesystem, we get.

    t

    t

    t

    tmY

    t1

    t2 t3tm

    The input to the A/D converter is

    kbdrk tnkTttpAtY )()()( 0

  • 8/3/2019 basebandcom11-3

    16/56

    Dr. Uri Mahlab 16

    tnTpAAt m0brmK

    kmmkmY

    t

    tmY

    t1

    t2 t3tm

    The output of the A/D converter at the sampling time

    tm

    =mTb

    +td

    k

    bdrk tnkTttpAtY )()()( 0

    Tb 2Tb

    3Tb 4Tb

    5Tb

    t6Tb

  • 8/3/2019 basebandcom11-3

    17/56

    Dr. Uri Mahlab 17

    tnTpAAt m0brmK

    kmmkmY

    t

    tmY

    t1

    t2 t3tm

    ISI - Inter SymbolInterference

  • 8/3/2019 basebandcom11-3

    18/56

    Dr. Uri Mahlab 18

    Transfilter channel

    Pg(t)Receiver

    filter

    Explanation of ISI

    HT(f) HR(f)Hc(f)Pr(t)

    Pg(f) Pr(f)Transfilter

    channelReceiver

    filter

    HT(f) HR(f)Hc(f)

    t

    f

    FourierTransform

    BandPassFilter

    f

    FourierTransform

    t

  • 8/3/2019 basebandcom11-3

    19/56

  • 8/3/2019 basebandcom11-3

    20/56

    Dr. Uri Mahlab 20

    -The pulse generator output is a pulse waveform

    k

    bgk kTtpatX )()(

    a

    aa

    p

    k

    g 1)0(

    If kth input bit is 1

    if kth input bit is 0

    k

    bdrk tnkTttpAtY )()()( 0

    -The A/D converter input Y(t)

  • 8/3/2019 basebandcom11-3

    21/56

    Dr. Uri Mahlab 21

    Datarate

    Errorrate

    Transmittedpower

    Noisepower

    NoiseSpectraldensity

    Systemcomplexity

    Type of Important Parameters Involved In The DesignOf a PAM System

  • 8/3/2019 basebandcom11-3

    22/56

    Dr. Uri Mahlab 22

    5.2 BASEBAND BINARY PAM SYSTEMS

    Pulse shapespg(t)

    pr(t) HR(f) HT(t)

    Design of a basebandbinary PAM system

    - minimize the combined effects of inter symbolinterference and noise in order to achieve minimumprobability of error for given data rate.

  • 8/3/2019 basebandcom11-3

    23/56

    Dr. Uri Mahlab 23

    0nfor00nfor1)nT(p br

    5.2.1 Baseband pulse shaping

    The ISI can be eliminated by proper choiceof received pulse shape pr (t).

    Does not Uniquely Specify Pr(t) for all

    values of t.

  • 8/3/2019 basebandcom11-3

    24/56

    Dr. Uri Mahlab 24

    0nfor0

    0nfor1)nT(pThen

    T2/1fforT)T

    kf(Pif

    br

    k

    bb

    b

    r

    k

    T2/)1k2(

    T2/)1k2(

    rr

    rr

    b

    b

    df)ft2jexp()f(p)t(p

    df)ft2jexp()f(p)t(p

    Theorem

    Proof

    To meet the constraint, Fourier Transform Pr(f) of Pr(t), shouldsatisfy a simple condition given by the following theorem

  • 8/3/2019 basebandcom11-3

    25/56

    Dr. Uri Mahlab 25

    b

    b

    b

    b

    T2/1

    T2/1k b

    brbr

    k

    T2/1

    T2/1

    b

    b

    rbr

    df)fnT2jexp())T

    k

    f(p()nT(p

    'df)nT'f2jexp()T

    k'f(p)nT(p

    k

    Tk

    Tk

    brbr

    b

    b

    dftfnTjfpnTp

    2/)12(

    2/)12(

    )2exp()()(

    b

    b

    T2/1

    T2/1

    bbbrn

    )nsin(df)fnT2jexp(T)nT(p

    Which verify that the Pr(t) with a transform Pr(f)Satisfy ZERO ISI

  • 8/3/2019 basebandcom11-3

    26/56

    Dr. Uri Mahlab 26

    The condition for removal of ISI given in the theorem is calledNyquist (Pulse Shaping) Criterion

    mk

    m0brkmm )t(n)T)km((PAA)t(Y

    0nfor0

    0nfor1)nT(p br

    Tb 2Tb-Tb-2Tb

    1

    n

    )nsin()nT(p br

  • 8/3/2019 basebandcom11-3

    27/56

    Dr. Uri Mahlab 27

    The Theorem gives a condition for the removal of ISI using a Pr(f) witha bandwidth larger then rb/2/.

    ISI cant be removed if the bandwidth of Pr(f) is less then rb/2.

    HT(f) Hc(f) HR(f)Pg(f) Pr(f)

    Tb 2Tb

    3Tb 4Tb

    5Tb

    t6Tb

  • 8/3/2019 basebandcom11-3

    28/56

    Dr. Uri Mahlab 28

    Rate of decayof pr(t)

    Shaping filters

    pr(t)

    Particular choice of Pr(t) for a

    given application

    The smallest values near Tb, 2Tb, In such that timing error (Jitter)

    will not Cause large ISI

    Shape of Pr(f) determines the easewith which shaping filters can be

    realized.

  • 8/3/2019 basebandcom11-3

    29/56

    Dr. Uri Mahlab 29

    A Pr(f) with a smooth roll - off characteristics is preferableover one with arbitrarily sharp cut off characteristics.

    Pr(f) Pr(f)

  • 8/3/2019 basebandcom11-3

    30/56

    Dr. Uri Mahlab 30

    In practical systems where the bandwidth available fortransmitting data at a rate of rb bits\sec is between rb\2 to rbHz, a class of pr(t) with a raised cosine frequency

    characteristicis most commonly used.A raise Cosine Frequency spectrum consist of a flat amplitude portion and a roll offportion that has a sinusoidal form.

    tr

    trsin

    )t4(1

    t2cos)t(P

    )f(PFT

    2

    rf

    2

    r

    2/rf,0

    ),2

    rf(

    4cosT

    2/rf,T

    )f(P

    b

    b

    2r

    r1

    bb

    b

    b2

    b

    bb

    r

  • 8/3/2019 basebandcom11-3

    31/56

    Dr. Uri Mahlab 31

    raised cosine frequency characteristic

  • 8/3/2019 basebandcom11-3

    32/56

    Dr. Uri Mahlab 32

    The BW occupied by the pulse spectrum is B=rb/2+.The minimum value of B is rb/2 and the maximum value is rb.

    Larger values ofimply that morebandwidth is required for agiven bit rate, however it lead for faster decaying pulses, whichmeans that synchronization will be less critical and will notcauselarge ISI.

    =rb/2 leads to a pulse shape with two convenient properties.The half amplitude pulse width is equal to Tb, and there are zerocrossings at t=3/2Tb, 5/2Tb. In addition to the zero crossing

    at Tb, 2Tb, 3Tb,...

    Summary

  • 8/3/2019 basebandcom11-3

    33/56

    Dr. Uri Mahlab 33

    5.2.2

    Optimum transmitting and receiving

    filters

    pulse shaping noise immunity

    HT ,HR

    The transmitting and receiving filters are chosen to providea proper

  • 8/3/2019 basebandcom11-3

    34/56

    Dr. Uri Mahlab 34

    )22exp()()()()( drcRTg ftjfPKfHfHfp

    -One of design constraints that we have for selecting the filtersis the relationship between the Fourier transform of pr(t) andpg(t).

    In order to design optimum filter Ht(f) & Hr(f), we will assume that Pr(f),Hc(f) and Pg(f) are known.

    Where td, is the time delay Kc normalizing constant.

    Portion of a baseband PAM system

  • 8/3/2019 basebandcom11-3

    35/56

    Dr. Uri Mahlab 35

    If we choose Pr(t) {Pr(f)} to produce Zero ISI we are leftonly to be concerned with noise immunity, that is will choose

    HT(f) Hc(f) HR(f)

    Pg(f) Pr(f)

    effectsnoiseofminimum )f(Hand)f(H RT

  • 8/3/2019 basebandcom11-3

    36/56

    Dr. Uri Mahlab 36

    Noise Immunity

    Problem definition:

    For a given :Data Rate - rb

    Transmission power - STNoise power Spectral Density - Gn(f)Channel transfer function - Hc(f)Raised cosine pulse - Pr(f)

    Choose

    effectsnoiseofminimum )f(Hand)f(H RT

  • 8/3/2019 basebandcom11-3

    37/56

    Dr. Uri Mahlab 37

    Error probability Calculations

    At the m-th sampling time the input to the A/D is:

    mk

    m0brkmm )t(n)T)km((PAA)t(Y

    We decide:

    0)t(Y"0"0)t(Y"1"

    m

    m

    ifif

    "1"sentTosentwas"1"

    "0"sentTosentwas"0"

    obPr0)t(YobPr

    obPr0)t(YobPrP

    m

    merror

  • 8/3/2019 basebandcom11-3

    38/56

    Dr. Uri Mahlab 38

    "0")t(A)t(Y

    "1")t(A)t(Y

    mm

    mm

    ifn

    ifn

    0

    0

    A=aKc

    5.0obProbPr "1"sentTo"0"sentTo

    A)t(nobPrA)t(nobPr2

    1P m0m0error

    The noise is assumed to be zero mean Gaussian at the receiver inputthen the output should also be Zero mean Gaussian with variance No

    given by:

    df)f(H)f(GN2

    Rn0

  • 8/3/2019 basebandcom11-3

    39/56

    Dr. Uri Mahlab 39

    0202 N2/)An

    0

    N2/n

    0

    eN2

    1e

    N2

    1

    0 A

    b

    N2/)z

    0

    error dzeN2

    1bnobPrP 0

    2

    y(tm)

    b

  • 8/3/2019 basebandcom11-3

    40/56

    Dr. Uri Mahlab 40

    02m02m N2/)A)t(y

    0

    N2/)A)t(y

    0

    eN2

    1e

    N2

    1

    -A A 0)t(YobPrP merror 0)t(YobPr m

    y(tm)

    0y(tm)

  • 8/3/2019 basebandcom11-3

    41/56

    Dr. Uri Mahlab 41

    02m02m N2/)A)t(y

    0

    N2/)A)t(y

    0

    eN2

    1e

    N2

    1

    -A A

    y(tm)

    VreceivedVTransmit

  • 8/3/2019 basebandcom11-3

    42/56

    Dr. Uri Mahlab 42

    u

    2

    0N/A

    2

    e

    A

    N/xz0

    2

    0

    Ax

    0

    2

    0

    e

    dz2/zexp2

    1uQ

    N

    AQdz2/zexp

    2

    1P

    dxN2/xexpN2

    1

    dxN2/xexp

    N2

    12/1P

    0

    0

    Q(u)

  • 8/3/2019 basebandcom11-3

    43/56

    Dr. Uri Mahlab 43

    u

    2

    0N/A

    2

    e

    dz2/zexp2

    1uQ

    N

    AQdz2/zexp

    2

    1P

    0

    U

    Q(u)

    u

    u

    2dz2/zexp

    2

    1uQ

    dz=

  • 8/3/2019 basebandcom11-3

    44/56

    Dr. Uri Mahlab 44

    RatioNoisetoSignalN

    A

    0

    Perror decreases as0N/A increase

    Hence we need to maximize the signalto noise Ratio

    Thus for maximum noise immunity the filter transfer functions HT(f)

    and HR(f) must be xhosen to maximize the SNR

    O ti filt d i l l ti

  • 8/3/2019 basebandcom11-3

    45/56

    Dr. Uri Mahlab 45

    Optimum filters design calculations

    We will express the SNR in terms of HT(f) and HR(f)

    We will start with the signal:

    k

    bgk kTtpatX )()(

    b

    2

    g

    2

    2

    k

    b

    g

    XT

    )f(paaE

    T

    )f(p)f(G

    The psd of the transmitted signal is given by::

    )f(G)f(H)f(G X2

    TX

    And the average transmitted power ST is

  • 8/3/2019 basebandcom11-3

    46/56

    Dr. Uri Mahlab 46

    df)f(H)f(PTK

    AS

    df)f(H)f(PT

    aS

    2

    T

    2

    g

    b

    2

    c

    2

    T

    aKAaKA

    2

    T

    2

    g

    b

    2

    T

    c

    kck

    df)f(H)f(P

    TKSA2

    T

    2

    g

    b

    2

    cT2

    The average output noise power of n0(t) is given by:

    df)f(H)f(GN2

    Rno

  • 8/3/2019 basebandcom11-3

    47/56

    Dr. Uri Mahlab 47

    The SNR we need to maximize is

    )f(H)f(H)f(H)f(Pwhere

    df)f(H)f(H

    )f(Pdf)f(H)f(G

    TSNA

    TRcr

    2

    Rc

    2

    r2

    Rn

    bT

    o

    2

    Or we need to minimize

    22

    Rc

    2

    r2

    Rn mindf)f(H)f(H

    )f(Pdf)f(H)f(Gmin

  • 8/3/2019 basebandcom11-3

    48/56

    Dr. Uri Mahlab 48

    Using Schwartzs inequality

    2

    22

    df)f(W)f(Vdf)f(Wdf)f(V

    The minimum of the left side equaity is reached when

    V(f)=const*W(f)If we choose :

    )f(H)f(H

    )f(P)f(W

    )f(G)f(H)f(V

    cR

    r

    2/1

    nR

  • 8/3/2019 basebandcom11-3

    49/56

    Dr. Uri Mahlab 49

    whenminimizedis2

    constantpositivearbitraryanK

    )f(P)f(HK

    )f(G)f(PK

    )f(H

    )f(G)f(H)f(PK)f(H

    2

    gc

    2/1

    nr

    2

    c2

    T

    2/1

    nc

    r2R

    The filter should have alinear phase response in a total time delay of td

  • 8/3/2019 basebandcom11-3

    50/56

    Dr. Uri Mahlab 50

    Finally we obtain the maximum value of the SNR to be:

    maxo

    2

    error

    2

    c

    2/1

    nr

    bT

    maxo

    2

    N

    AQP

    df

    )f(H

    )f(G)f(P

    TS

    N

    A

  • 8/3/2019 basebandcom11-3

    51/56

    Dr. Uri Mahlab 51

    For AWGN with

    and

    pg(f) is chosen such that it does not change much over thebandwidth of interest we get.

    )f(H

    )f(pK)f(H

    )f(H

    )f(pK)f(H

    c

    r

    2

    2

    T

    c

    r

    1

    2

    R

    Rectangular pulse can be used at the input of HT(f).

    elsewhere0

    T;2/tfor1)t(p

    b

    g

    2/)f(Gn

  • 8/3/2019 basebandcom11-3

    52/56

    Dr. Uri Mahlab 52

    5.2.3 Design procedure and Example

    The steps involved in the design procedure.

    Example:Design a binary baseband PAM system totransmit data at a a bit rate of 3600 bits/sec with a biterrorprobability less than .10 4

    The channel response is given by:

    elewhere

    fforfHc

    _0

    240010)(

    2

    The noise spectral density is HzwattfGn /10)(14

  • 8/3/2019 basebandcom11-3

    53/56

    Dr. Uri Mahlab 53

    Solution:

    HzwattfG

    HzB

    p

    bitsr

    n

    e

    b

    /10)(

    2400

    10

    sec/3600

    4

    4

    If we choose a braised cosine pulse spectrum with6006/ br

    24001200),1200(

    2400cos

    2400,0

    3600

    1

    1200,

    3600

    1

    )( 2

    ff

    f

    f

    fpr

    W h ( )

  • 8/3/2019 basebandcom11-3

    54/56

    Dr. Uri Mahlab 54

    We choose a pg(t)

    973.0)2400(,)0(

    )sin()(

    )10)(28.0(10/;,0

    1200,1)(

    4

    gg

    g

    b

    g

    pp

    f

    ffp

    Telsewhere

    ttp

    2/1

    2/1

    1

    )()(

    )()(

    fPfH

    fpKfH

    rR

    rT

    We choose

    )()()()()(

    )10)(3600( 31

    fpfHfHfHfp

    K

    rRcTg

    Pl f P (f) H (f) H (f) H (f) d P (f)

  • 8/3/2019 basebandcom11-3

    55/56

    Dr. Uri Mahlab 55

    Plots of Pg(f),Hc(f),HT(f),HR(f),and Pr(f).

    To maintain a4

    10P

  • 8/3/2019 basebandcom11-3

    56/56

    D U i M hl b 56

    To maintain a 10eP

    2

    4

    142

    2/1

    max

    0

    2

    max0

    2

    max0

    2

    4

    max0

    2

    max0

    2

    )(10

    10)06.14)(3600(

    )(

    )()()(

    1

    06.14)/(

    75.3)/(

    10)/((

    )/(

    dffPdffH

    fGfP

    N

    A

    TS

    NA

    NA

    NAQ

    NA

    r

    c

    nr

    b

    T

    For Pr

    (f) with raised cosine shape

    1)( dffPr

    And hence dBmST 23)10)(3600)(06.14(10