bachelor thesis · 2018. 6. 8. · degree project in geology 15 hp bachelor thesis stockholm 2016...

35
Degree Project in Geology 15 hp Bachelor Thesis Stockholm 2016 Department of Geological Sciences Stockholm University SE-106 91 Stockholm Sweden Mineralogical characterisation of REE-bearing mineralisations in Knutsbo, Bergslagen Karolina Mattsson

Upload: others

Post on 02-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Degree Project in Geology 15 hp

    Bachelor Thesis

    Stockholm 2016

    Department of Geological SciencesStockholm UniversitySE-106 91 Stockholm

    Sweden

    Mineralogical characterisation of REE-bearing mineralisations in Knutsbo, Bergslagen

    Karolina Mattsson

  • 1

    Mineralogical characterisation of REE-bearing mineralisations in

    Knutsbo, Bergslagen.

    Karolina Mattsson

    Abstract With a growing interest for rare earth elements (REE) and its industry, the EU has financed a project

    called EUrare, regarding REE deposits in Europe with aim to safeguard and create a sustainable REE

    industry. The Geological Survey of Sweden (SGU) has in relation to this project studied the so called

    REE-line, located in west-central Bergslagen, along with other locations. Knutsbo lies at the northern

    end of this extensive lens of 80 km of supracrustal rocks, with a bedrock of mainly granitoid-dioritoid-

    gabbroid (GDG) mafic intrusive rocks. Previous studies and excursions have proved possibilities for

    REE-bearing mineralisations in the area, which led to an undergraduate thesis with aim to further

    investigate this cause. Through mineral observations in thin section collected from the area and SEM

    analyses, the area proved to have mineralisations of mainly allanite, tremolite, quartz and actinolite.

    A reoccurring mineral observed with pale brown-coloured pleochroism and high relief was of special

    interest for analysis and proved to be REE-bearing. The REEs encountered in the samples were mainly

    lanthanum (La) and cerium (Ce), with some traces of for instance yttrium (Y) which are more

    uncertain. REE-bearing mineralisations are believed to be allanite, dollaseite törnebohmite and

    västmanlandite. The analyses proves presence of REEs in the area and the results in this report will

    hopefully encourage further studies regarding the subject.

    Keywords: geology, rare earth elements, REE, mineralisations, ore deposits, volcanite, granites,

    Fennoscandian Shield, Bergslagen, Knutsbo.

    Supervisors: Joakim Mansfeld (Institution of Geology, Stockholm) and Magnus Ripa (SGU)

  • 0

    Mineralogisk karaktärisering av sällsynta jordartsmetaller i

    mineraliseringar i Knutsbo, Bergslagen.

    Karolina Mattsson

    AbstraktI samband med ett ökat intresse för sällsynta jordartsmetaller (REE) och dess industri har EU

    finansierat ett projekt kallat EUrare, med syfte att skapa en säker och hållbar industri för sällsynta

    jordartsmetaller i Europa. Sveriges Geologiska Undersökning (SGU) har i samband med detta projekt

    studerat den så kallade REE-linjen i västcentrala Bergslagen, tillsammans med andra platser. Knutsbo

    ligger på den norra änden av denna omfattande lins av 80 km ytbergarter, med en berggrund

    bestående av huvudsakligen granitoid-dioritoid-gabbroid (GDG) mafisk, intrusiv berggrund. Tidigare

    studier och exkursioner har bevisat möjliga REE-bärande mineraliseringar i området, vilket har lett till

    möjligheten för ett examensarbete med syfte att studera detta område mer i detalj. Genom att

    observera mineral i tunnslip från området och genomföra SEM-analys har området visat sig

    framförallt innehålla mineral av allanit, tremolit, kvarts och aktinolit. Ett återkommande mineral med

    svag brun pleochroism och hög relief observerades i proverna och var av speciellt intresse för analys,

    som senare visade sig vara REE-bärande. De sällsynta jordartsmetallerna som upptäcktes i proverna

    var framförallt lantan (La) och cerium (Ce), men även spår av yttrium (Y) som är mer osäkra. REE-

    bärande mineraliseringar tros vara allanit, dollaseit, törnebohmit och västmanlandit. Analyserna

    bevisar fyndigheter av sällsynta jordartsmetaller i området och resultaten i denna rapport

    uppmuntrar förhoppningsvis vidare studier inom ämnet.

    Nyckelord: geologi, sällsynta jordartsmetaller, REE, mineralisering, malmfyndigheter, vulkanit, granit,

    Fennoskandiska skölden, Bergslagen, Knutsbo.

    Handledare: Joakim Mansfeld (Geologiska institutionen, Stockholm) och Magnus Ripa (SGU).

  • 1

    Table of Contents 1. Introduction ......................................................................................................................................... 2

    1.1 Aims ............................................................................................................................................... 2

    2. Background .......................................................................................................................................... 2

    2.1 Regional geology ........................................................................................................................... 2

    2.1.1 Fennoscandian Shield ............................................................................................................. 2

    2.1.2 Bergslagen .............................................................................................................................. 4

    2.2 Local geology ................................................................................................................................. 5

    2.2.1 Knutsbo ................................................................................................................................... 5

    3. Methods .............................................................................................................................................. 6

    3.1 Field trip ......................................................................................................................................... 6

    3.2 Rock samples ................................................................................................................................. 6

    3.3 Thin sections studies ..................................................................................................................... 7

    3.4 SEM analysis .................................................................................................................................. 7

    3.5 Calculations of data ....................................................................................................................... 7

    4. Results ................................................................................................................................................. 7

    4.1 Mineralogy..................................................................................................................................... 7

    4.1.1 Gruvhagen .............................................................................................................................. 7

    4.1.2 Mörkens .................................................................................................................................. 8

    4.1.3 Knutsbo ................................................................................................................................... 9

    4.2 SEM analysis .................................................................................................................................. 9

    5. Discussion .......................................................................................................................................... 10

    5.1 Mineralogy................................................................................................................................... 10

    5.2 SEM results .................................................................................................................................. 18

    5.3 Local geology ............................................................................................................................... 19

    6. Conclusions ........................................................................................................................................ 19

    7. Acknowledgements ........................................................................................................................... 19

    References ............................................................................................................................................. 20

    Appendix ................................................................................................................................................ 21

  • 2

    1. Introduction The bedrock of Sweden has gone through

    several processes to eventually form the

    geology present today. The composition and

    age of the rocks differ from north to south but

    are all part of the Fennoscandian Shield that

    started to form around three billion years ago

    (Andersson, 2004). As a result of the

    geological processes that have occurred

    during the formation of the Fennoscandian

    shield in parts of Sweden, different rock types

    have locally developed along with ore deposits

    of various kinds. These deposits have been

    explored and mined over a long period of time

    and include important ore deposits like base

    metal sulphide and iron oxide (e.g., SGA

    Excursion Guidebook, 2013)

    The area of Bergslagen in central Sweden has

    been one of the regions where mining and

    exploitation of mineral deposits have been of

    great importance. The area is mainly rich in

    iron oxides and base metals but also include

    deposits of rare earth elements (REE) in west-

    central Bergslagen (fig. 1). Because of this,

    Sweden is included in the EURare project,

    financed by the EU to set a basis for the

    development of a European rare earth

    element industry. The sectors of EU economy

    deem it important to safeguard the supply of

    REE materials and products to create a

    sustainable, economically viable and

    environmentally friendly industry of REEs in

    Europe.

    The exploration of REEs is done through

    mapping in regions of interest, where the

    Geological Survey of Sweden (SGU) has further

    studied, among other areas, the REE-line in

    Bergslagen (fig. 1). Through these previous

    studies and collected samples, the Knutsbo

    area have come of interest for REE deposits

    that are to be further examined. In this report

    its potential is reviewed in terms of samples

    collected by the SGU.

    1.1 Aims This report is an undergraduate (15 hp) thesis

    in collaboration with the SGU and a part of the

    EU-financed EURare project regarding REE

    deposits in Sweden. The thesis aims to

    investigate possible REE occurrences in the

    Knutsbo area through already collected

    samples (by SGU). Along with rock samples,

    and analyses of thin sections and previously

    gathered information from the SGU during

    excursions and studies, the area of Knutsbo

    have been described geologically and possible

    REE-bearing mineralisations have been

    identified. The framing of questions that are

    examined and discussed in this report can be

    summarised to the following bullet points:

    Geologically describe the region of

    Knutsbo.

    Determine possible REE occurrences

    in collected samples.

    If present, what are the hosting

    mineral(s) of the REEs?

    2. Background

    2.1 Regional geology 2.1.1 Fennoscandian Shield The following description is largely based on

    the SGA Excursion Guidebook (2013). The

    Fennoscandian Shield is one of planet Earth’s

    ancient continental nuclei. It consists of a

    collage of an Archean craton in the north-east

    and towards the present day south-west

    accreted magmatic domains. The major part is

    composed of the Palaeoproterozoic

    Svecokarelian orogeny (Stephens et al. 2009).

    Large parts of the Shield are overlain by

    platformal rocks which formed as sedimentary

    basinal material in the south-east. The

    magmatic domains amalgamated

    progressively over time for more than one

    billion years.

    Juvenile crust was formed at 2.1-1.9 Ga in

    numerous arc systems around the Archean

    craton in the south-west which lead to

    ‘microcontinents’ in some regions, such as the

    Bergslagen area (Andersson, 2004). The early

    Svecokarelian rock-forming phase at 1.9-1.86

    Ga resulted in thorough reworking, partly

    including rift-related volcanism, of the earlier

  • 3

    Fig. 1. Geological map of the Bergslagen area (modified from Kampmann, 2015). The approximate extent of the REE line and position of Knutsbo are indicated.

  • 4

    arc systems in addition to the major formation

    of newly formed juvenile crust between

    microcontinents. Once accretion was

    completed, subsequent east- and northward

    subduction lead to reworking of the newly

    formed crust during the late Svecokarelian

    orogeny (1.85-1.75 Ga). In Bergslagen, this

    resulted in granitoid magmatism and regional

    metamorphism in the area (Andersson, 2004).

    The Svecokarelian orogen hosts the largest

    orogenic system. The bedrock was affected by

    ductile deformation, metamorphism and

    associated magmatic activity around 2.0-1.8

    Ga, and started to react to crustal

    deformation in a brittle manner around 1.8-

    1.7 Ga. In addition to the Svecokarelian

    orogeny, the part of the Fennoscandian Shield

    located in Sweden is mainly composed of two

    younger and spatially distinct orogens; the

    Blekinge-Bornholm and Sveconorwegian

    orogenies.

    The orogenic processes locally lead to the

    formation of an abundance of mineral

    resources, and several ore districts in the

    Fennoscandian Shield, where in particular the

    Palaeoproterozoic assemblages are hosts to

    many major mineral deposits of various types

    (SGA Excursion Guidebook, 2013). All currently

    active operating mines in Sweden are located

    within the 2.0-1.8 Ga accretionary

    Svecokarelian orogen (SGA Excursion

    Guidebook, 2013).

    Sweden has had an extensive mining and

    mineral prospecting industry for centuries

    where the most important types of ore

    deposits include: volcanogenic massive

    sulphide deposits; volcanic- and carbonate- or

    skarn-hosted, replacement-type Zn-Pb-Ag-(Cu-

    Au) sulphide and Fe oxide deposits, Cu-Au

    deposits hosted by intrusive rock; and

    orogenic gold deposits (SGA Excursion

    Guidebook, 2013). Along with these well-

    documented deposits, new types of deposits

    are being explored, including Fe oxide-Cu-Au

    deposits and REE, Li, Te deposits (SGA

    Excursion Guidebook, 2013). No major or

    economic mineral deposit has been found in

    the Archean rocks in Sweden.

    There are occurrences of other metals within

    the borders of Sweden, including REE, Li, Mo,

    Sn, W and U. In later years, a global interest

    for rare earth element (REE) mineralisations

    has surfaced which has ensued in rather

    intense exploration for these metals also in

    Sweden (SGA Excursion Guidebook, 2013).

    Evidence of REE-bearing minerals have for

    instance been found at numerous places in

    Bergslagen, forming a line following an ore

    belt hereby known as the “REE-line” (fig. 1).

    2.1.2 Bergslagen The region of Bergslagen is located in the

    south-western part of the Svecokarelian

    orogen in the Fennoscandian Shield (fig. 1).

    The rocks are of Palaeoproterozoic origin and

    were formed and metamorphosed between

    1.9 and 1.8 Ga. The rocks of the westernmost

    part of the area were also affected by

    deformation and metamorphism by a

    Sveconorwegian tectonic overprint between

    1.0 and 0.9 Ga (Stephens et al. 2009).The

    region is rich in metallic mineral deposits with

    three currently operating mines at base metal

    sulphide deposits. These metallic mineral

    deposits of Bergslagen can be found in the

    hosting metamorphosed and hydrothermally

    altered felsic volcanic rock and associated

    skarn or crystalline carbonate rock (Stephens

    et al. 2009).

    Geijer & Magnusson (1944) mentioned two

    types of rock that make up the bedrock of

    Bergslagen; the supra-crustal so-called leptite

    formation and contemporaneous and younger

    granites. Mafic rocks and amphibolites occur

    subordinately. In modern descriptions of

    Bergslagen geology, the leptite formation

    corresponds to Svecofennian felsic

    metavolcanic rocks and the younger granite

    correspond to granite-dioritoid-gabbroid

    (GDG), granite-pegmatite (GP) and granite-

    syenitoid-dioritoid-gabbroid (GSDG) intrusive

    rock suites (Stephens et al. 2009). The volcanic

    rocks were in places transformed into gneisses

  • 5

    due to Svecokarelian metamorphism, but in

    general they were only affected by

    amphibolite, locally even greenschist, facies

    conditions. The similarity in chemical

    character between the older granites and

    volcanic rocks indicates some sort of common

    lineage according to Geijer & Magnusson

    (1944).

    Virtually all iron and sulphide ore deposits in

    the Bergslagen region are found in, and were

    largely formed at the same time or slightly

    later than the supracrustal rocks (Geijer &

    Magnusson 1944; Stephens et al. 2009). Iron

    dominates the oxide deposits in the

    Bergslagen region. They contain various

    amounts of manganese in associated skarn

    and crystalline carbonate rocks. There is also a

    presence of iron sulphides and base metal

    sulphides as well as rarities like uranium,

    tungsten and rare earth elements (REE).

    Manganese-poor skarn or crystalline

    carbonate rock hosting iron oxide deposits are

    the most common type of iron oxide

    mineralisation in the region (Stephens et al.

    2009).

    The iron deposits in Bergslagen can be divided

    into the following types: quartz-banded (BIF)

    ores, skarn and lime ores and apatite-bearing

    ores. Geijer & Magnusson (1944) interpreted

    the banded iron formation as a product of

    chemical sedimentation, where the material

    probably surfaced onto the palaeoseafloor

    through hot springs or similar forms of

    emanations from the same magma masses

    that fed surface eruptions. The skarn and lime

    ores are formed from variably altered and

    metamorphosed limestone.

    The Bergslagen ore district contains several

    thousands of Fe oxides and polymetallic base

    metal sulphide deposits. There are three

    deposits that are currently being mined in this

    district: a Zn-Pb-Ag-(Cu-Au) sulphide deposits

    at Garpenberg, a Zn-Pb-Ag sulphide deposit in

    Zinkgruvan with subordinate Cu, and a Zn-Pb-

    Ag sulphide at Lovisagruvan (SGA Excursion

    Guidebook, 2013).

    Bastnäs, located in the central of the REE-line

    in Bergslagen, is one of best known REE-

    bearing occurrences in Bergslagen. The

    dominant country rock is an altered and

    metamorphosed volcanic rock. The

    surrounding area hosts numerous iron oxide

    and base metal sulphide deposits (Andersson,

    2004). The REE occurrences can be divided

    into two subtypes according to Holtstam et al.

    (2014): those enriched in light REEs (LREEs)

    and Fe, and those enriched in heavy REEs

    (HREEs), Y, Mg, Ca and F. The deposits in

    Bastnäs are considered rich in LREE while the

    district of Norberg further north is richer in

    HREEs. Ferriallanite-(Ce), also known as

    “cerine” or iron-rich “allanite”, and cerite-(Ce)

    are the most common lanthanide mineral in

    Bastnäs (Holtstam et al. 2003).

    2.2 Local geology

    2.2.1 Knutsbo Knutsbo is located just at the northern end of

    the extensive lens of 80 km of supracrustal

    rocks, known as the Nora-Riddarhyttan-

    Norberg area, together forming the “REE-line”

    (fig. 1). Intrusive rocks surround this region to

    the east and intrusive and supracrustal rocks

    in the west (Andersson, 2004).

    As shown in figure 2, the bedrock at Knutsbo

    consists of granitoid-dioritoid-gabbroid (GDG)

    mafic intrusive rocks with GDG-type granite

    and granodiorite to the south and GDG-type

    granodiorite in the west. The mineralisations

    at Knutsbo which host the REE-bearing

    minerals, in turn, presumably occur as

    supracrustal xenoliths in the GDG-rocks

    (Persson, 1997)

    Just like in the majority of Bergslagen rocks,

    have the rocks around Knutsbo been affected

    by amphibolite facies metamorphism.

    Geophysical and topographic data indicate

    several lineaments in the area, which could be

    possible faults. The mineral lineations plunge

    around 40 degrees north-east while tectonic

    foliation strike around 290 degrees and dips

    40 to 70 degrees north to north-northwest.

  • 6

    There are occurrences of quartz rich iron oxide

    deposits in the area, including banded iron

    formation (BIF).

    3. Methods

    3.1 Field trip

    A fieldtrip guided by Per Nysten and Magnus

    Ripa from SGU to the area of Knutsbo was

    conducted during the 14th of April, where the

    aim was to get a further understanding for the

    region regarding rock types and other

    geological features of importance for the

    project. Four pits in the Knutsbo area were

    visited where the samples previously collected

    by the SGU had been taken. Strike and dip

    were measured in areas displaying foliation

    patterns (fig. 3) and a few new rock samples

    were collected for further studies.

    During the 21st and 22nd of April, a second

    fieldtrip guided by Magnus Ripa (SGU) and

    accompanied by Joakim Mansfeld (Stockholm

    University) to the REE-line was conducted. The

    aim was to get an overlook of the so called

    REE-line in perspective of geology and

    mineralogy. Previously mapped areas by the

    SGU were visited. The outcrops displayed

    certain foliations or other geological features

    of interest. Places like Bastnäs were visited,

    where evidence of mining is clearly shown. In

    addition, Stora Malmkärra, Plåtängsgruvan,

    Bojmossfältet and Östanmossa were visited.

    3.2 Rock samples As mentioned in the introduction, a number of

    rock samples collected by the SGU during a

    national inventory of possible REE occurrences

    in Sweden (the EU-financed EURare project).

    Some of these samples were taken at Knutsbo

    since this deposit was mentioned as

    Fig. 2. Extract from the bedrock map of the Geological Survey of Sweden (Persson 1997). Green colour denotes GDG-type mafic intrusive rocks, brown colour denotes GDG-type granite to granodiorite, brown colour with green dots denotes GDG-type granodiorite. Brown colour with red dots denotes porphyritic textures. The view is c. 3.2 km wide, north is up.

    Figure 3. Foliation patterns in the Knutsbo area.

  • 7

    potentially REE-bearing already by Geijer &

    Magnusson (1944). Chemical analyses of the

    samples revealed enrichment in particularly

    light REEs (LREEs).

    3.3 Thin sections studies A total of nine thin sections were produced

    from samples collected by the SGU in the

    Knutsbo region. These samples have been

    studied in microscope, where they have been

    viewed in magnifications from 2.5 to 40x. The

    mineral assemblages in each sample have

    been examined through parallel and crossed

    polars to determine their characteristics, and

    have been classified accordingly. Opaque

    phases like ore minerals have been studied in

    reflected light.

    The nine thin sections derive from three

    different areas within the Knutsbo region. Two

    samples have been taken at Gruvhagen, three

    samples at Mörkens and four samples at

    Knutsbo. Out of these samples, four were

    selected for further analysis with SEM to

    detect the plausible site(s) of REEs.

    3.4 SEM analysis A scanning electron microscope (SEM) was

    used to determine the chemical composition

    of selected minerals in the thin section

    samples. A SEM is a type of electron

    microscope that produces images of a sample

    by scanning it with a focused beam of

    electrons. The electrons interact with atoms in

    the sample, producing various signals that

    contain information about the surface

    topography and composition of the sample.

    The model used for SEM analysis was a FEI

    Quanta FEG 650, where the samples were

    scanned in low vacuum with a backscatter

    detector. The additional software used for EDS

    analysis was AZtec.

    3.5 Calculations of data The results from the SEM analyses gave data

    in form of weight percent (wt %). In order to

    present this in an easily understandable way,

    the data from each analysis were recalculated

    to mineral compositions. The mole ratio was

    calculated from the weight percent and

    afterwards normalised according to the

    amount of cations in the different minerals to

    produce a more accurate result. There was

    also a correction made for the sulphide, where

    0.5 mole ratio of iron was removed for every

    mole ratio of sulphide, giving a better end

    result.

    4. Results

    4.1 Mineralogy

    4.1.1 Gruvhagen The two thin sections from Gruvhagen are

    both fibrous actinolite skarn, containing a

    mineral assemblage of allanite, quartz,

    actinolite and calcite. Both samples show

    mainly a matrix of actinolite and quartz

    crystals in ranging size (fig. 4) with some

    elongated allanite crystals appearing

    throughout. The remaining minerals are less

    abundant and appear as minor crystals.

    Both samples contain ore minerals which

    show as opaque phases. Through studies in

    reflected light, the samples demonstrate

    presence of magnetite and hematite

    throughout the thin section in minor amounts.

    No sulphides are present.

    No minerals in the samples from Gruvhagen

    showed any significant potential for being

    REE-bearing and have therefore been

    excluded from SEM analysis.

    Figure 4. Matrix of colourful actinolite in XPL (right) meeting with darker allanite and ore minerals (left).

  • 8

    4.1.2 Mörkens The three thin sections from Mörkens

    differentiate from each other in terms of

    mineral assemblages and compositions. All of

    the samples show interesting characteristics

    for potential REEs.

    One sample from Mörkens is defined as

    tremolite skarn, and contains allanite,

    tremolite and quartz. Tremolite is the

    abundant mineral with long and fairly large

    crystals with varying sizes, while smaller

    crystals of allanite and quartz occurs in a

    lesser amounts. The opaque phases are ore

    minerals like pyrite and some chalcopyrite.

    A mineral we were unable to identify through

    sheer observation occurs frequently, often

    close to allanite crystals (fig. 5). It shows

    similar characteristics as allanite but has

    weakly brown-coloured pleochroism,

    compared to allanite which has strong colours

    of brown or red. Due to these observations it

    is believed to have possible relations to REEs.

    Another thin section sample from Mörkens is

    defined as a copper-bearing quartz skarn. It

    has a mineral assemblage of muscovite, quartz

    and allanite. The sample consists of a mass of

    quartz crystals in similar size, with muscovite

    appearing throughout the sample as long

    crystals in different sizes. The opaque phases

    are ore minerals of chalcopyrite and possibly

    iron, the latter which might occasionally

    reacting to form magnetite.

    The mineral allanite show similar

    characteristics as in the other sample with

    some weaker brown to grey pleochroistic

    crystals (fig. 6). It appears abundantly in the

    sample and is believed to have a relation with

    REEs.

    The last thin section from Mörkens in defined

    as a copper-bearing amphibole skarn. It

    contains minerals of amphiboles, tremolite

    and quartz, along with an unknown mineral

    showing the same characteristics of pale

    brown pleochroism as in the previous samples

    from the area. The mineral also appears as

    pale brown in crossed polar, similar to the

    mineral titanite and is believed to be REE-

    bearing (fig. 7). The tremolite crystals are large

    and abundant in the sample, their colours and

    shape appearing somewhat distorted. Quartz

    appear as small crystals within the matrix.

    The opaque phases are mainly ore minerals of

    converted pyrrhotite, shown by bird eye

    Figure 7. Crystal with light to darker brown pleochroism and strong relief.

    Figure 5. Mineral of pale brown pleochroism, occurring as small crystals throughout the sample.

    Figure 6. Mineral appearing grey to colourless in PPL, with possible relation to REEs.

  • 9

    texture in reflected light. The sample also

    contains some chalcopyrite, possibly related

    to REEs.

    4.1.3 Knutsbo Each of the four samples from Knutsbo differ

    in mineralogy and opaque phases. One of the

    samples has a matrix of quartz and biotite, the

    latter often containing abundant haloes (fig.

    8). Calcite is a less abundant component and

    there are small occurrences of a mineral with

    pale brown pleochroism, believed to be

    related to REEs. The sample contains no

    observed opaque phases.

    Another sample from Knutsbo is defined as

    quartz-banded hematite ore, seen clearly

    across the thin section (fig. 9). It is abundant in

    quartz along with some smaller crystals of

    amphiboles like actinolite. Some possible

    crystals of calcite were also observed but to a

    smaller amount. The opaque phases are ore

    minerals of mainly hematite, revealing some

    twinning textures, along with some signs of

    magnetite present in the sample.

    One of the thin section samples from Knutsbo

    is defined as actinolite-magnetite skarn with

    pyrite. The sample has a mineral assemblage

    of allanite and actinolite with large crystals of

    allanite in the sample compared to the

    surrounding matrix, some showing twinning

    textures (fig. 10). The opaque phases are ore

    minerals of pyrite along with magnetite.

    Also in this sample the pale brown-coloured

    pleochroistic mineral occurs, similar to that of

    allanite but weaker in colour. This mineral or

    the allanite itself is believed to be REE-

    bearing.

    The final sample from Knutsbo is defined as

    quartz- and amphibole-mixed magnetite rock.

    It contains minerals of quartz, amphiboles and

    biotite as well as the unknown mineral

    believed to be REE-bearing, appearing as pale

    brown in parallel polars, much like in previous

    samples. The opaque phases are ore minerals

    of magnetite and hematite. No sulphides are

    observed.

    4.2 SEM analysis

    Four thin section samples were selected for

    SEM analysis, including one sample from

    Knutsbo and three from Mörkens. The

    minerals chosen for analysis were mainly the

    crystals of lighter brown pleochroism seen in

    several of the samples, as well as their closest

    surroundings.

    Figure 8. Biotite viewed in XPL, displaying haloes across the crystal.

    Figure 10. Large crystals of what is believed to be allanite related, with brown to yellow pleochroism.

    Figure 9. Quartz bands with hematite ore (opaque).

  • 10

    Through review and calculations of the SEM

    results, several REEs were encountered in the

    mineral assemblages in the analysed samples.

    With the majority of the analyses done of the

    samples from Mörkens, they reveal a variety

    in REEs and their hosting mineral assemblages.

    However, the mineral classifications are very

    uncertain as the SEM data have been difficult

    to interpret.

    The samples from Mörkens revealed higher

    amounts of REEs than that of Knutsbo. The

    sample from Knutsbo mainly contains

    tremolite-actinolite but also contains large

    allanite crystals, generally poor in REEs, with

    traces of for instance lanthanum (La), cerium

    (Ce) and neodymium (Nd) in the allanite

    crystals (tables 1 and 2).

    As seen in tables 2 and 3, all three samples

    from Mörkens contain dollaseite with REEs

    like cerium (Ce), neodymium (Nd) and even

    minor traces of praseodymium (Pr). One of

    the samples from the Mörkens area contained

    the mineral törnebohmite (table 4), slightly

    richer in cerium (Ce) and lanthanum (La) while

    another contain minerals of västmanlandite,

    some being Fe-analogue and slightly richer in

    iron (table 5).

    Some of the more questionable results are the

    presence of britholite-Y, rich in yttrium (Y) and

    cerite, rich in cerium (Ce), both appearing in

    the same sample (table 6). Talc was possibly

    also encountered in one of the sample from

    Mörkens. In addition, other possible REE-

    minerals encountered in the samples could be

    flourcerite, monazite, magnesiorowlandite,

    and gadolinite but are all very uncertain

    results and estimates (table 7).

    Some of the opaque phases were also

    analysed in the SEM, a majority being ore

    minerals of pyrite. However, the results also

    revealed presence of chalcopyrite and

    pyrrhotite. The amount of REEs present in the

    sulphides are low, only with some traces of

    cerium (Ce) and lanthanum (La).

    5. Discussion

    5.1 Mineralogy The nine thin section samples previously

    collected from the Knutsbo area show both

    differences and similarities. They differ in their

    overall appearance, the sizes of crystals, the

    amount of minerals and their composition.

    However, they share common mineralogy as

    most of the samples contain allanite,

    tremolite, quartz and actinolite. The opaque

    phases in the samples are generally pyrite or

    magnetite and hematite.

    More importantly, almost all the samples

    share an unidentifiable mineral with pale

    brown pleochroism that appear as smaller

    crystals in the samples. Both the samples from

    Knutsbo and Mörkens show several examples

    of this unknown mineral, however it seems to

    be in insignificant amount or even be lacking

    completely in the samples from Gruvhagen as

    none more than allanite (REE-bearing) were

    observed during microscopy.

    As to why Gruvhagen is low on this mineral,

    while Knutsbo and Mörkens have several

    crystals of, is most likely a result of location as

    to where the samples were collected.

    Although in largely the same area, their

    mineralogy and composition is slightly

    different and the Gruvhagen samples may

    have been collected from a generally REE-poor

    location.

    Since the unidentifiable mineral share

    common characteristics with that of allanite,

    like high relief and fairly strong, brown

    pleochroism, it is believed to be related to

    allanite in most of the thin sections. Although

    still uncertain to say this is crystals of allanite,

    since it contains a significant amount of REEs,

    it can be considered to be one of REE-bearing

    minerals in the samples.

    As for the mineralogy itself, the observations

    made are suggest metamorphism of

    amphibolite facies, and possibly even

    greenschist facies. With conditions of medium

  • 11

    Table 1. Recalculated data from SEM analyses of Knutsbo sample.

    Weight%

    Sample knut 3 knut 3 knut 3 knut 3 knut 3 knut 3

    Mineral REE-poor allanite

    REE-poor allanite

    REE-poor allanite

    REE-poor allanite

    REE-poor allanite

    REE-poor allanite

    Analysis Spectrum 3

    Spectrum 6 Spectrum 8 Spectrum 9 Spectrum 10

    Spectrum 11

    C 2,6 2,5 2,9 2,9 3,1 2,4

    O 39,7 39,3 40,9 41,6 39,7 39,3

    S 0,2

    Si 16,5 17,4 17,7 17,8 17,2 17,3

    Al 8,6 9,3 9,2 9,4 8,5 8,6

    Fe 8,2 8 7,8 7,3 7,3 7,1

    Mg 2,8 2,6 3 2,9 3,4 3,5

    Ca 10 11,2 11,7 11,8 10,4 10,3

    Na

    K

    Ti

    Mn

    P

    Y

    La 3,2 1,8 2,1 1,5 2,7 2,5

    Ce 5,7 4,2 3,4 3,4 5,3 5,4

    Pr 0,8 0,6

    Nd 2,6 2,2 1,4 1,4 2,5 2,3

    Sm 0,7 0,6

    Eu

    Gd

    Tb

    Co

    Cu

    Br

    F

    Mo

    Ni

    Total 100,1 100 100,1 100 100,1 99,9

  • 12

    Table 2. Recalculated data from SEM analyses of Knutsbo and Mörkens samples.

    Weight%

    Sample knut 3 knut 3 knut 3 knut 3 mork 3 mork 3

    Mineral Allanite Allanite Allanite Allanite Dollaseite Dollaseite

    Analysis Spectrum 19

    Spectrum 20

    Spectrum 25

    Spectrum 26

    Spectrum 51

    Spectrum 53

    C 3 1,8 3,4 3 3,1 3,2

    O 36,5 37,2 37,6 36,4 36,5 35,5

    S 0,3 0,2 0,6 0,5

    Si 14,6 15,9 14,9 14,6 15,8 15,7

    Al 7,7 9,5 9,7 8 5,6 5,6

    Fe 7,3 9,1 8,6 7,6 8,4 8,3

    Mg 2,5 1,3 1,5 2,2 4,8 4,9

    Ca 7,4 10,4 10 7,8 5,9 5,7

    Na

    K

    Ti

    Mn

    P

    Y

    La 4,8 3,1 2,9 4,2 3,2 3,4

    Ce 10,6 6,6 6,3 9,8 9,5 9,3

    Pr 1,1 0,9 0,9 1,3 1,1 1,4

    Nd 4,5 3,4 3,1 4,2 5,5 5,6

    Sm 0,7 0,8 0,8 0,9

    Eu

    Gd

    Tb

    Co

    Cu

    Br

    F

    Mo

    Ni

    Total 100 99,9 100 100,1 100 100

  • 13

    Table 3. Recalculated data from SEM analyses of Mörkens samples.

    Weight%

    Sample mork 3 mork1 mork1 mork 2 mork3

    Mineral Dollaseite Dollaseite Dollaseite Dollaseite Dollaseite

    Analysis Spectrum 50 Spectrum 71 Spectrum 76 Spectrum 83 Spectrum 36

    C 3,3 5,1 5 4,6 6,2

    O 34,3 34,1 34,4 33,9 32,8

    S 1,1 3,8

    Si 14,8 15,4 15,7 16,4 13,2

    Al 5,8 3,9 3,6 3,1 5

    Fe 9,5 12,8 12,4 14,7 10,5

    Mg 3,8 3,5 4 1,7 3,2

    Ca 5,9 6,7 6,6 5,4 5,9

    Na

    K

    Ti

    Mn

    P

    Y

    La 3,4 3,6 3,7 4,8 3,3

    Ce 9,8 10 9,6 11,2 8,9

    Pr 1,5 0,9 0,9 0,9 1,2

    Nd 5,9 4 4,2 3 5,1

    Sm 0,8 0,8

    Eu

    Gd

    Tb

    Co

    Cu

    Br

    F

    Mo

    Ni 0,1

    Total 99,9 100 100,1 99,8 99,9

  • 14

    Table 4. Recalculated data from SEM analyses of Mörkens samples.

    Weight%

    Sample mork2 mork2 mork2 mork2

    Mineral Törnebohmite Törnebohmite Törnebohmite Törnebohmite

    Analysis Spectrum 63 Spectrum 68 Spectrum 78 Spectrum 84

    C 5 6,6 3,5 4

    O 27,8 28,5 29,6 29,3

    S 2,1 0,7 0,3

    Si 11,9 12,4 13,6 12,7

    Al 3,9 4,2 4,4 4,6

    Fe 2,5 0,8

    Mg 0,6 0,5 0,5 0,8

    Ca

    Na

    K

    Ti

    Mn

    P

    Y 1,1

    La 8,9 9 7,2 6,5

    Ce 21,8 22,4 23,4 20,7

    Pr 2,4 2,7 2,9 2,7

    Nd 10,5 11 13,1 12,6

    Sm 1,5 1,3 1,6 3,1

    Eu

    Gd 0,9 1,9

    Tb

    Co

    Cu

    Br

    F

    Mo

    Ni

    Total 99,8 100,1 100,1 100

  • 15

    Table 5. Recalculated data from SEM analyses of Mörkens samples.

    Weight%

    Sample mork 3 mork 2 mork3 mork3 mork2 mork2 mork2

    Mineral

    Västmanlandite

    Västmanlandite

    Västmanlandite

    Västmanlandite

    Västmanlandite

    Västmanlandite

    Västmanlandite

    Analysis

    Spectrum 52

    Spectrum 80

    Spectrum 28

    Spectrum 43

    Spectrum 64

    Spectrum 65

    Spectrum 81

    C 3,6 3,6 2,7 4,2 5,5 6,4 3,2

    O 32,1 32,7 32,2 31,6 30,5 31,4 30,8

    S 1,1 0,2 1,4 2,4 3,5 1,1 0,5

    Si 13,2 14,3 13,8 13,2 12,8 14,3 13,9

    Al 5,1 5,5 4,9 4,7 4,4 4,5 5,2

    Fe 4,6 8,6 4,7 5,1 6,8 3,8 2,2

    Mg 3,3 0,9 3,3 3,1 1,8 1,9 1,8

    Ca 3,6 4,9 3,8 3,7 2,6 2,7 2

    Na

    K

    Ti

    Mn

    P

    Y

    La 5,2 5,4 5,3 4,4 6 6,2 5,8

    Ce 15,2 14,1 15 14,2 15,3 16,3 18,2

    Pr 2 1,6 1,9 2 1,9 2 2,8

    Nd 9,2 6,9 9,4 9,2 7,9 8,2 10,3

    Sm 1,1 1,1 1,4 1,6 1,2 1 2

    Eu

    Gd 1,3

    Tb

    Co

    Cu 0,7 0,5

    Br

    F

    Mo

    Ni

    Total 100 99,8 99,8 99,9 100,2 99,8 100

  • 16

    Table 5. Recalculated data from SEM analyses of Mörkens samples.

    Weight%

    Sample mork1 mork1 mork1 mork1 mork1

    Mineral Britholite-Y? Britholite-Y? Britholite-Y? Cerite? Cerite?

    Analysis Spectrum 60 Spectrum 61 Spectrum 59 Spectrum 72 Spectrum 74

    C 4,1 5,2 4,2 6,9 8

    O 37 38,7 43,2 28,6 28,4

    S

    Si 16,9 16 16,3 13,5 11,5

    Al 0,8

    Fe 0,4 0,6 3,6 1,1

    Mg 1,2 1,3 4,8 4,1 5,3

    Ca 11,1 10,7 9,4 3,8 3,3

    Na

    K

    Ti

    Mn

    P

    Y 18,8 18,3 15,2 2,5

    La 1 3,2 9

    Ce 1,9 1,6 0,5 12,4 18

    Pr 2 1,6

    Nd 1,6 1,5 1 11,9 9,8

    Sm 0,8 3,8 1,6

    Eu

    Gd 2,1 2,6 1,7 2,8

    Tb

    Co

    Cu

    Br

    F 2,4

    Mo

    Ni

    Total 100,1 100 99,9 99,9 100

  • 17

    Table 7. Recalculated data from SEM analyses of Knutsbo and Mörkens samples.

    Weight%

    Sample mork3

    mork3

    mork1

    knut 3 mork1 mork1 mork3

    mork3

    Mineral Fluorcerite?

    Monazite?

    Fluorcerite?

    Altered allanite?

    Magnesiorowlandite?

    Dollaseite+tremolite?

    Gadolinite?

    Dollaseite+quartz?

    Analysis Spectrum 42

    Spectrum 44

    Spectrum 57

    Spectrum 24

    Spectrum 62

    Spectrum 73

    Spectrum 27

    Spectrum 40

    C 10,7 3,6 8,1 6,4 2,3 8,2 6,6 12,6

    O 21,2 27,8 26,2 42,8 26 38,3 29,8 37,3

    S 5 1,4 0,3 4,2 1,3

    Si 2,8 5,9 5,8 13,2 11,4 17,6 10,1 20,3

    Al 0,8 7,3 2,9 2,7

    Fe 3,9 2,3 14,2 0,5 8,6 8,6 6,8

    Mg 1,3 2,4 2,3 5,3 2,3 5,6 1,1 2,3

    Ca 0,6 1,5 1,1 4,8 2,4 7,3 0,4 4,5

    Na

    K

    Ti

    Mn

    P 8,3

    Y 2,3 1,3 3

    La 9,5 5,7 15,8 1,3 9,7 2,1 1,8 1,9

    Ce 20,4 20,6 24,4 3,2 23,6 6,1 9,6 6,5

    Pr 2,9 3 2,8 0,8 2,1 0,8

    Nd 12,3 14,4 8 1,3 13 2,5 14 2,9

    Sm 2,4 2,3 2,6 4,9

    Eu

    Gd 0,8 1,3 3,8

    Tb

    Co

    Cu

    Br

    F 6,1 5,5 0,8

    Mo 0,5

    Ni

    Total 99,9 100 100 100,1 100 100 100 99,9

  • 18

    temperature and pressure, mafic and calc-

    silicate mineral assemblages are common,

    which is evident in the samples with minerals

    like biotite, calcite, quartz and tremolite. The

    high amount of allanite in the samples can be

    considered an indication of REE presence in

    the samples.

    With most of the mineralogy in the samples

    determined by observations through

    microscopy, there is an uncertainty to be

    considered. Although most mineral

    assemblages can be determined through their

    characteristics in parallel and crossed polars of

    the microscope, some are harder to classify

    only from this method. Some minerals might

    have gone through reactions or contain more

    information that requires further studies,

    which therefore have not been detected

    through the observations made of these

    samples.

    Also the classification of opaque phases

    should be considered slightly uncertain as

    they were only determined from observations

    in reflected light in microscope. Even here,

    some characteristics could have been missed

    or even disregarded if irrelevant to the

    project.

    5.2 SEM results The SEM results are based on a backscatter

    detector with low vacuum, which was chosen

    due to absence of coal coating on the

    samples. The four samples chosen for analyses

    showed most potential for REE-bearing

    mineralisations in microscopy and the

    unidentifiable mineral were the main aim for

    analysis, along with its surroundings.

    As rather expected, REE mineralisations were

    detected in several of the samples at variable

    amounts, and most of them related to

    minerals of the epidote family. The minerals

    with pale brown pleochroism revealed REEs

    like lanthanum (La) and cerium (Ce), and REE

    mineralisations like törnebohmite and

    västmanlandite were discovered in two of the

    samples. Dollaseite was also detected in

    several of the samples.

    There are some rare mineralisations that have

    possibly occurred in the samples but they are

    very uncertain. These include britholite-Y,

    yttrium, flourcerite, monazite,

    magnesiorowlandite, and gadolinite. Many of

    these mineralisations are very unusual and the

    calculations of their chemical formulae are

    very uncertain and can therefore be

    considered more as guesses than actual

    classifications.

    As shown in the original data from the SEM

    results, the samples contain coal. Since the

    samples were not coal-coated, it could be a

    result of inclusions of carbonate rocks or some

    carbonates in the samples.

    There are quite a few uncertainties regarding

    the SEM analyses and their results. The

    analyses of the different samples in general

    suggest plenty of impurities and therefore

    made it hard to calculate and determine the

    compositions of the REE minerals. This issue

    could be a result of the instrument itself, not

    working correctly or having the wrong settings

    adapted, the thin sections themselves could

    have been soiled or simply the mineralisations

    in the samples themselves have gone through

    alteration.

    It is not possible to determine where the error

    lies for these impurities only from the data

    collected, and the results should therefore be

    reviewed with this in mind as they are rather

    uncertain. SEM analyses are not the best

    method of measuring REE in general, because

    of their overall low contents close to detection

    limits and their energy lines partially overlap.

    The presented compositions of the REE-

    bearing minerals are based of recalculations of

    the values from the SEM analyses, normalised

    to the mole ratio of the number of cations for

    the different minerals. Quite a few

    assumptions have been made during these

    calculations, e.g. minor elements have been

    excluded and all sulphide have been assumed

    to be chalcopyrite or pyrite. This did not

    change the results drastically but gave a better

    end result for the somewhat inferior analyses.

  • 19

    5.3 Local geology As seen in figure 1, Knutsbo is not located

    directly in the extensive lens of the REE-line,

    but just at the northern end of it. Due to this,

    it might not show all the same geological

    features as that of the rest of the REE-line.

    This can be considered by overviewing a

    magnetic anomaly map of the region, where

    Knutsbo might as well be a continuation of the

    REE-line, only dislocated.

    Although not a part of this work, figure 1 as

    well as 2 show a possible fault stretching

    between Knutsbo and the REE-line, which

    could have displaced the bedrock of Knutsbo.

    If that is the case, there should be similarities

    between geology and mineralogy of that of

    the REE-line, which is evident in some of the

    result from this report.

    The general mineral assemblages in the REE-

    line resembles much of those in the Knutsbo

    samples. The REE mineralisations are also

    similar to those of the REE-line and a

    connection between them seem apparent. It is

    therefore reasonable to assume Knutsbo is

    related to the REE-line, based on mineralogy

    and REEs.

    6. Conclusions The bedrock of Knutsbo consists of granitoid-

    dioritoid-gabbroid (GDG) mafic intrusive rocks,

    surrounded by GDG-type granite and

    granodiorite to the south and GDG-type

    granodiorite in the west. The rocks have been

    affected by amphibolite facies metamorphism,

    and there are occurrences, probably as

    xenoliths, of iron oxide deposits in the area,

    including banded iron formations (BIF).

    The samples collected from the Knutsbo area

    have a mineralogy mainly consisting of

    allanite, tremolite, quartz and actinolite. There

    is a presence of a pale brown-coloured

    pleochroistic mineral that has proven to be

    REE-bearing. The samples contain REEs like

    lanthanum, cerium and neodymium, and

    appear in mineralisations like dollaseite,

    törnebohmite and västmanlandite. There is

    traces of yttrium, monazite, gadolinite and

    other rare mineralisations but their

    classifications are very uncertain. Allanite is

    abundant in the samples and also one of the

    REE-bearing minerals.

    Out of the nine thin sections that were

    studied, the samples from Mörkens proved to

    be richest in REEs, while REEs were generally

    low in Gruvhagen. Results of the SEM analyses

    can be found in appendix.

    7. Acknowledgements First and foremost, I send my greatest

    gratitude to my two supervisors during this

    project. Joakim Mansfeld at Stockholm

    University (SU) for good guidance and great

    assistance in calculations and interpretation of

    the results, and to Magnus Ripa at the

    Geological Survey of Sweden (SGU) for good

    supervision and very helpful guidance

    throughout the project. Without their advice

    and constructive feedback, this report would

    not have been possible.

    I would also like to thank the people at the

    SGU for providing me with this project and the

    material necessary in form of thin sections,

    maps and literature. I thank the people

    involved from that department, including Per

    Nysten with his help with mineral

    interpretations.

    Lastly, I want to thank Marianne Ahlbom at SU

    for assistance during the SEM analyses, as well

    as Stockholm University and the Swedish

    Museum of National History in Stockholm for

    allowing me to use the SEM.

  • 20

    References Andersson, U. (2004). The Bastnäs-type REE-

    mineralisations in north-western

    Bergslagen, Sweden. The Geological

    Survey of Sweden (SGU). Östervåla:

    Elanders Tofters.

    Geijer, P., & Magnusson, N. (1944). De

    mellansvenska järnmalmernas

    geologi. Stockholm: Kungl.

    Boktryckeriet.

    Holtstam, D., Andersson, U., & Mansfeld, J.

    (2003). Ferriallanite-(Ce) from the

    Bastnäs deposit, Västmanland,

    Sweden. The Canadian Mineralogist,

    41, 1233-1240.

    Holtstam, D., Andersson, U., Broman, C., &

    Mansfeld, J. (2014). Origin of REE

    mineralisation in the Bastnäs-type Fe-

    REE-(Cu-Mo-Bi-Au) deposits,

    Bergslagen, Sweden. Mineralium

    Deposita, 933-966.

    Kampmann, T. (2015). structural framework

    and constraints on the timing of

    hydrothermal alteration and ore

    formation at the Falun Zn.Pb-Cu-(Au-

    Ag) sulphide deposit, Bergslagen,

    Sweden. Licentiate thesis, Luleå

    Technical University.

    Persson, L. (1997). Berggrundskarta 12G

    Avesta SO. Sveriges geologiska

    undersökning Af 189.

    SGA Excursion Guidebook. (2013). Bergslagen:

    Geology of the volcanic- and

    limestone-hosted base metal and iron

    oxide deposits. Uppsala: 12th Biennial

    SGA Meeting, Excursion Guidebook

    SWE4.

    Stephens, M., Ripa, M., Lundström, I., Persson,

    L., Bergman, T., Ahl, M., Wahlgren,

    C.H., Persson, P.O. & Wickström.

    (2009). Synthesis of the bedrock

    geology in the Bergslagen region,

    Fennoscandian Shield, south-central

    Sweden. The Geological Survey of

    Sweden (SGU). Ba 58, 259 p.

  • 21

    Appendix

    in Wt% Spectrum 2 Spectrum 3 Spectrum 4 Spectrum 5 Spectrum 6 Spectrum 7 Spectrum 8

    S 41,3 0,2 38,7 24,8 0,1

    Fe 36,6 8,2 35,1 23,8 8,0 11,9 7,8

    C 8,7 2,6 9,2 11,9 2,5 4,4 2,9

    O 7,9 39,7 10,5 8,8 39,3 42,7 40,9

    Si 2,0 16,5 3,1 3,5 17,4 23,1 17,7

    Ca 1,1 10,0 1,3 1,2 11,2 7,9 11,7

    Al 0,9 8,6 0,6 9,3 0,9 9,2

    Co 0,8

    Mg 0,7 2,8 1,5 2,6 9,0 3,0

    Ce 5,7 4,2 3,4

    La 3,2 1,8 2,1

    Nd 2,6 2,2 1,4

    Cu 24,4

    Br 1,5

    Tb 0,1

    Pr 0,8

    Sm 0,7

    Mn

    Table 8. Result from SEM analysis of Knutsbo sample in wt%.

  • 22

    in Wt% Spectrum 9 Spectrum 10 Spectrum 11 Spectrum 12 Spectrum 19 Spectrum 20 Spectrum 21

    S 26,2

    Fe 7,3 7,3 7,1 6,2 7,3 9,1 24,6

    C 2,9 3,1 2,4 2,4 3,0 1,8 6,7

    O 41,6 39,7 39,3 43,7 36,5 37,2 8,4

    Si 17,8 17,2 17,3 25,3 14,6 15,9 2,9

    Ca 11,8 10,4 10,3 9,4 7,4 10,4 1,7

    Al 9,4 8,5 8,6 1,4 7,7 9,5 1,7

    Co

    Mg 2,9 3,4 3,5 11,4 2,5 1,3 0,8

    Ce 3,4 5,3 5,4 10,6 6,6 1,0

    La 1,5 2,7 2,5 4,8 3,1

    Nd 1,4 2,5 2,3 4,5 3,4

    Cu 26

    Br

    Tb

    Pr 0,6 1,1 0,9

    Sm 0,6 0,7

    Mn 0,2

    Table 9. Result from SEM analysis of Knutsbo sample in wt%.

  • 23

    in Wt%

    Spectrum 57

    Spectrum 58

    Spectrum 59

    Spectrum 60

    Spectrum 61

    Spectrum 62

    Spectrum 71

    Spectrum 72

    Spectrum 73

    Spectrum 74

    Spectrum 75

    Spectrum 76

    S 41,5

    Fe 34,3 0,6 0,4 0,5 12,8 3,6 8,6 1,1 3,1 12,4

    C 8,1 6,7 4,2 4,1 5,2 2,3 5,1 6,9 8,2 8,0 8,5 5,0

    O 26,2 8,8 43,2 37,0 38,7 26,0 34,1 28,6 38,3 28,4 42,3 34,4

    Si 5,8 3,4 16,3 16,9 16,0 11,4 15,4 13,5 17,6 11,5 24,8 15,7

    Ca 1,1 1,2 9,4 11,1 10,7 2,4 6,7 3,8 7,3 3,3 8,9 6,6

    Al 3,9 0,8 2,9 3,6

    Co 2,1

    Mg 2,3 1,9 4,8 1,2 1,3 2,3 3,5 4,1 5,6 5,3 12,4 4,0

    Ce 24,4 0,5 1,9 1,6 23,6 10,0 12,4 6,1 18,0 9,6

    La 15,8 1,0 9,7 3,6 3,2 2,1 9,0 3,7

    Nd 8,0 1,0 1,6 1,5 13,0 4,0 11,9 2,5 9,8 4,2

    Pr 2,8 0,9 2,0 0,8 1,6 0,9

    Sm 0,8 2,6 3,8 1,6

    Y 2,3 15,2 18,8 18,3 1,3 2,5

    F 5,5 0,8 2,4

    Mo 0,5

    Dy 2,2 2,6 2,7

    Gd 1,7 2,1 2,6 1,3 2,8

    Er 1,4 1,4

    Table 10. Result from SEM analysis of Mörkens sample in wt%.

  • 24

    in Wt% Spectrum 77 Spectrum 78 Spectrum 79 Spectrum 80 Spectrum 81 Spectrum 82 Spectrum 83 Spectrum 84

    S 24,1 0,3 33,5 0,2 0,5 31,3

    Fe 21,4 27,1 8,6 2,2 24,4 14,7

    C 6,3 3,5 7,8 3,6 3,2 22,6 4,6 4,0

    O 11,4 29,6 13,7 32,7 30,8 14,4 33,9 29,3

    Si 4,7 13,6 4,0 14,3 13,9 3,9 16,4 12,7

    Ca 0,1 0,1 4,9 2,0 5,4

    Al 0,8 4,4 0,6 5,5 5,2 0,3 3,1 4,6

    Mg 0,6 0,5 0,5 0,9 1,8 0,5 1,7 0,8

    Ce 4,2 23,4 3,8 14,1 18,2 1,3 11,2 20,7

    La 1,6 7,2 1,7 5,4 5,8 0,5 4,8 6,5

    Nd 2,0 13,1 1,8 6,9 10,3 0,8 3,0 12,6

    Pr 2,9 1,6 0,9 2,7

    Sm 1,6 1,1 2,0 3,1

    Cu 22,8 5,2

    Gd 1,3 1,9

    Ni 0,1

    Y 1,1

    Table 12. Result from SEM analysis of Mörkens sample in wt%.

  • 25

    in Wt%

    Spectrum 27

    Spectrum 28

    Spectrum 29

    Spectrum 30

    Spectrum 31

    Spectrum 32

    Spectrum 33

    Spectrum 34

    Spectrum 35

    Spectrum 36

    Spectrum 37

    Spectrum 38

    S 4,2 1,4 39,2 20,8 37,7 3,6 30,5 17,9 27,4 3,8 1,4 0,9

    Fe 8,6 4,7 34,1 21,0 32,0 2,9 26,8 20,0 24,9 10,5 4,1 10,8

    C 6,6 2,7 14,2 34,4 19,0 20,9 24,9 31,8 27,8 6,2 4,0 2,3

    O 29,8 32,2 9,6 17,1 8,4 38,5 13,6 25,2 14,2 32,8 42,1 42,5

    Si 10,1 13,8 1,5 2,7 1,3 21,2 1,5 2,2 2,2 13,2 25,1 25,3

    Ca 0,4 3,8 0,8 1,1 0,5 3,7 0,7 0,8 1,0 5,9 8,8 8,7

    Al 4,9 0,5 0,6 0,2 0,3 0,3 5,0 0,4

    Mg 1,1 3,3 0,7 1,3 0,5 2,0 0,7 1,0 1,1 3,2 12,6 9,6

    Ce 9,6 15,0 0,5 0,6 8,9

    La 1,8 5,3 3,3

    Nd 14,0 9,4 5,1

    Pr 2,1 1,9 1,2

    Sm 4,9 1,4 0,8

    Gd 3,8

    K 0,1 0,1 0,2 0,2 0,2

    Y 3,0

    Na 0,1 0,2

    F 1,4

    Co 0,4 0,6 0,4 0,6 1,0

    Table 13. Result from SEM analysis of Mörkens sample in wt%.

  • 26

    in Wt% Spectrum 39 Spectrum 40 Spectrum 41 Spectrum 42 Spectrum 43 Spectrum 44 Spectrum 45 Spectrum 46 Spectrum 47

    S 0,6 1,3 2,7 5,0 2,4 1,4 41,2 5,2 4,6

    Fe 2,8 6,8 3,1 3,9 5,1 2,3 34,7 6,6 6,3

    C 2,6 12,6 15,5 10,7 4,2 3,6 15,5 7,4 8,2

    O 45,5 37,3 44,7 21,2 31,6 27,8 6,1 39,4 39,1

    Si 28,1 20,3 29,5 2,8 13,2 5,9 1,3 21,5 21,2

    Ca 0,8 4,5 0,2 0,6 3,7 1,5 0,3 7,7 7,4

    Al 2,7 0,3 4,7 0,8 0,6

    Mg 17,2 2,3 0,7 1,3 3,1 2,4 0,4 11,1 11,1

    Ce 6,5 0,9 20,4 14,2 20,6

    La 1,9 9,5 4,4 5,7

    Nd 2,9 1,4 12,3 9,2 14,4

    Pr 0,8 2,9 2,0 3,0

    Sm 0,5 2,4 1,6 2,3

    Gd 0,5 0,5

    K 0,8

    Y 0,1

    Na 0,3

    F 2,4 6,1 1,1 1,2

    Co 8,3

    Table 14. Result from SEM analysis of Mörkens sample in wt%.

  • 27

    in Wt% Spectrum 48 Spectrum 49 Spectrum 50 Spectrum 51 Spectrum 52 Spectrum 53 Spectrum 54 Spectrum 55 Spectrum 56

    S 3,4 2,3 1,1 0,6 1,1 0,5 1,3 30,7 1,2

    Fe 5,6 10,1 9,5 8,4 4,6 8,3 3,3 29,1 4,5

    C 10,0 5,9 3,3 3,1 3,6 3,2 3,6 8,8 3,3

    O 40,2 40,7 34,3 36,5 32,1 35,5 45,2 20,6 41,6

    Si 21,5 23,4 14,8 15,8 13,2 15,7 26,9 4,6 24,6

    Ca 7,7 8,6 5,9 5,9 3,6 5,7 0,7 2,4 8,2

    Al 0,5 5,8 5,6 5,1 5,6 0,3 0,7 0,7

    Mg 11,0 9,1 3,8 4,8 3,3 4,9 16,6 2,8 12,5

    Ce 9,8 9,5 15,2 9,3 8,2

    La 3,4 3,2 5,2 3,4

    Nd 5,9 5,5 9,2 5,6

    Pr 1,5 1,1 2,0 1,4

    Sm 0,8 1,1 0,9

    Gd 0,7 0,6

    K 0,3

    Y 0,2

    Na 2,2 1,6

    F

    Co

    Table 15. Result from SEM analysis of Mörkens sample in wt%.

  • 28

    Weight% oxides

    Sample knut 3 knut 3 knut 3 knut 3 knut 3 knut 3 knut 3 knut 3 knut 3 knut 3

    Mineral REE-poor allanite REE-poor allanite REE-poor allanite REE-poor allanite REE-poor allanite REE-poor allanite Allanite Allanite Allanite Allanite

    SiO2 35,29903818 37,22444026 37,86624096 38,08017452 36,79657313 37,0105067 31,2343005 34,0154368 31,8761011 31,2343005

    TiO2

    Al2O3 16,24939046 17,57201527 17,38306887 17,76096167 16,06044406 16,24939046 14,5488729 17,9499081 18,3278009 15,1157121

    FeO** 10,54926638 10,2919672 10,03466802 9,391420071 9,391420071 9,134120891 9,39142007 11,7071127 11,0638647 9,77736884

    MnO

    MgO 4,643169662 4,311514686 4,974824638 4,80899715 5,63813459 5,803962078 4,1456872 2,15575734 2,48741232 3,64820473

    CaO 13,99206446 15,67111219 16,37071542 16,51063606 14,55174704 14,41182639 10,3541277 14,551747 13,9920645 10,9138103

    Na2O

    K2O

    P2O5

    NiO

    Y2O3

    La2O3 3,2 1,8 2,1 1,5 2,7 2,5 4,8 3,1 2,9 4,2

    Ce2O3 6,676299459 4,919378549 3,982354063 3,982354063 6,207787216 6,324915277 12,4155744 7,73045201 7,37906782 11,4785499

    Pr2O3 0,936254383 0,702190787 1,28734978 1,05328618 1,05328618 1,52141337

    Nd2O3 3,032591436 2,566038908 1,63293385 1,63293385 2,915953304 2,68267704 5,24871595 3,96569649 3,6157821 4,89880155

    Sm2O3 0,811722965 0,695762542 0,81172297 0,92768339 0,92768339

    Eu2O3

    Gd2O3

    Tb2O3

    CoO

    CuO

    MoO2

    F

    Table 16. Calculated oxide values for Knutsbo sample, in wt%

  • 29

    Weight% oxides

    Sample mork 3 mork 3 mork 3 mork1 mork1 mork 2 mork3

    Mineral Dollaseite Dollaseite Dollaseite Dollaseite Dollaseite Dollaseite Dollaseite

    SiO2 33,8015032 33,5875697 31,6621676 32,94577 33,58757 35,0851 28,23923

    TiO2

    Al2O3 10,5809984 10,5809984 10,9588912 7,36891 6,80207 5,857338 9,44732

    FeO** 10,8065656 10,677916 12,2217111 16,46715 15,95255 18,91149 13,50821

    MnO

    MgO 7,95971942 8,12554691 6,30144454 5,803962 6,6331 2,819067 5,30648

    CaO 8,25531803 7,97547674 8,25531803 9,374683 9,234763 7,555715 8,255318

    Na2O

    K2O

    P2O5

    NiO 0,127259

    Y2O3

    La2O3 3,2 3,4 3,4 3,6 3,7 4,8 3,3

    Ce2O3 11,1271658 10,8929096 11,4785499 11,71281 11,24429 13,11834 10,4244

    Pr2O3 1,28734978 1,63844517 1,75547697 1,053286 1,053286 1,053286 1,404382

    Nd2O3 6,41509727 6,5317354 6,8816498 4,665525 4,898802 3,499144 5,948545

    Sm2O3 1,04364381 0,92768339 0,927683

    Eu2O3

    Gd2O3

    Tb2O3

    CoO

    CuO

    MoO2

    F

    Table 17. Calculated oxide values for Mörkens samples, in wt%

  • 30

    Weight% oxides

    Sample mork 3 mork 2 mork3 mork3 mork2 mork2 mork2 mork2 mork2 mork2 mork2

    Mineral Västmanlandite

    Västmanlandite

    Västmanlandite

    Västmanlandite

    Törnebohmite

    Törnebohmite

    Törnebohmite

    Törnebohmite

    Västmanlandite

    Västmanlandite

    Västmanlandite

    SiO2 28,23923 30,5925 29,52283 28,23923 25,45809 26,52776 29,09496 27,16956 27,3835 30,5925 29,73677

    TiO2

    Al2O3 9,636266 10,39205 9,258374 8,880481 7,36891 7,935749 8,313642 8,691534 8,313642 8,502588 9,825213

    FeO** 5,917881 11,06386 6,046531 6,561129 3,21624 1,029197 8,748172 4,888684 2,830291

    MnO

    MgO 5,472307 1,492447 5,472307 5,140652 0,994965 0,829137 0,829137 1,32662 2,984895 3,150722 2,984895

    CaO 5,037143 6,856112 5,316984 5,177064 3,637937 3,777857 2,798413

    Na2O

    K2O

    P2O5

    NiO

    Y2O3 1,396932

    La2O3 5,2 5,4 5,3 4,4 8,9 9 7,2 6,5 6 6,2 5,8

    Ce2O3 17,80347 16,51506 17,56921 16,63218 25,53392 26,23669 27,40797 24,24551 17,92059 19,09187 21,31731

    Pr2O3 2,340636 1,872509 2,223604 2,340636 2,808763 3,159859 3,393922 3,159859 2,223604 2,340636 3,27689

    Nd2O3 10,73071 8,048031 10,96398 10,73071 12,247 12,83019 15,2796 14,6964 9,214412 9,564327 12,01373

    Sm2O3 1,275565 1,275565 1,623446 1,855367 1,739406 1,507486 1,855367 3,594773 1,391525 1,159604 2,319208

    Eu2O3

    Gd2O3 1,037354 2,189969 1,4984

    Tb2O3

    CoO

    CuO 0,876244 0,625888

    MoO2

    F

    Table 18. Calculated oxide values for Mörkens samples, in wt%

  • 31

    Weight% oxides

    Sample mork1 mork1 mork1 mork1 mork1

    Mineral Britholite-Y? Britholite-Y? Britholite-Y? Cerite? Cerite?

    SiO2 36,15477244 34,22937036 34,87117105 28,88103124 24,60235994

    TiO2

    Al2O3 1,511571206

    FeO** 0,51459836 0,77189754 4,631385241 1,41514549

    MnO

    MgO 1,989929855 2,155757343 7,959719421 6,798927006 8,788856861

    CaO 15,53119155 14,97150897 13,15254059 5,316984494 4,617381271

    Na2O

    K2O

    P2O5

    NiO

    Y2O3 23,87484342 23,23987418 19,30306489 3,1748462

    La2O3 1 3,2 9

    Ce2O3 2,225433153 1,874048971 0,585640303 14,52387952 21,08305092

    Pr2O3 2,340635957 1,872508765

    Nd2O3 1,866210115 1,749571982 1,166381322 13,87993773 11,43053695

    Sm2O3 0,927683389 4,406496098 1,855366778

    Eu2O3

    Gd2O3 2,420492481 2,996800215 1,959446294 3,227323308

    Tb2O3

    CoO

    CuO

    MoO2

    F 2,4

    Table 19. Calculated oxide values for Mörkens samples, in wt%

  • 32

    Weight% oxides

    Sample mork3 mork3 mork1 knut 3 mork1 mork1 mork3 mork3

    Mineral Fluorcerite? Monazite? Fluorcerite? Altered allanite? Maggnesiorowlandite? Dollaseite+tremolite? Gadolinite? Dollaseite+quartz?

    SiO2 5,99013981 12,6220803 12,4081468 28,23923 24,38843 37,6523074 21,60729 43,4285136

    TiO2

    Al2O3 1,51157121 13,79309 5,47944562 5,10155282

    FeO** 5,01733401 2,95894057 18,26824 0,643248 11,0638647 11,0638647 8,74817212

    MnO

    MgO 2,15575734 3,97985971 3,81403222 8,788857 3,814032 9,28633932 1,82410237 3,81403222

    CaO 0,83952387 2,09880967 1,53912709 6,716191 3,358095 10,2142071 0,55968258 6,29642901

    Na2O

    K2O

    P2O5 19,018351

    NiO

    Y2O3 2,9208585 1,65092 3,80981544

    La2O3 9,5 5,7 15,8 1,3 9,7 2,1 1,8 1,9

    Ce2O3 23,8941244 24,1283805 28,5792468 3,748098 27,64222 7,1448117 11,2442938 7,61332394

    Pr2O3 3,39392214 3,51095394 3,27689 0,93625438 2,45766775 0,93625438

    Nd2O3 14,3464903 16,795891 9,33105057 1,516296 15,16296 2,9159533 16,3293385 3,38250583

    Sm2O3 2,78305017 2,66708974 3,014971 5,68206076

    Eu2O3

    Gd2O3 0,92209237 1,4984 4,37993878

    Tb2O3

    CoO

    CuO

    MoO2 0,66673031

    F 6,1 5,5 0,8

    Table 20. Calculated oxide values for Mörkens samples, in wt%

    2016 - Karolina Mattsson - BSc - Geology 15hpKarolina Report