babies with tracheostomies: considerations for speech & language development presented by nicole...

25
Babies with Tracheostomies: Considerations for Speech & Language Development Presented by Nicole Heavilin

Upload: corey-day

Post on 22-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Babies with Tracheostomies:Considerations for Speech & Language

Development

Presented by Nicole Heavilin

Incidence/Prevalence Within the 1st year of life, we can expect

3,000 babies to undergo a tracheostomy 85% of children requiring tracheostomies

are < 1 year old

Common Indications for Tracheostomy in Babies

Most frequently to provide artificial airway for mechanical ventilation

To bypass obstruction within upper airway To protect airway due to reduced/absent protective responses

e.g. coughing, swallowing Poor pulmonary hygiene due to inability to clear secretions

from trachea Examples of such medical conditions include:

– Glottal stenosis– Vocal fold paralysis– Congenital centro hypoventricular syndrome– Tracheoesophageal fistula

Clinical Management Considerations

RLN damage due to surgical procedure Infection or inflammation of trachea Chronic congestion, upper respiratory

infections, pneumonia– Tracheostomy bypasses normal warming,

filtering, & humidifying functions of upper airway!

Therefore…

Speech-language pathologists must have knowledge of:– babies’ medical condition, respiratory

involvement & reason for tracheostomy– severity of underlying disease– status of upper airway & respiration

How will the status and severity change over the time of cannulation?

Current Knowledge:Associated risks on Communication

Prematurity linked to respiratory difficulties – Decreased lung support for speaking valve!

Tracheostomy may be accompanied by mechanical ventilator– Possible periods of oxygen deprivation

Long-term or recurrent hospitalizations can disrupt socioemotional & environmental supports for speech-language development

Current Knowledge:Associated risks on Communication

(cont’d) Tracheostomy severely restricts opportunities for normal

vocalizations– Manual occlusion of stoma or use of speaking valve help to make

this more “normal”

Cannula tube may limit tongue mobility/muscle strength for articulatory development specifically for infants because of closer approximation of glossal muscles to laryngeal framework.

Child misses out on critical periods of vocal play (1st 12 months) and building of 1 & 2 utterances (12-24 months)

Other Associated Developmental Risks

Tracheostomy and related medical conditions my impede motor development due to the need for advanced life support systems

– Ventilator machine, feeding tube, trach tube/valves Communication barrier my lead to behavior issues Less oral exploration e.g. tongue clicks, raspberries, lip

smacking, and inhalation phonation – May affect prelinguistic development

Greater effort in coordinating breathing, speaking, sucking, swallowing, etc.

Role of the SLP Evaluate feeding/nutritional needs Work with respiratory therapist on breath support for

speech, Provide speech-language intervention (& counsel

caregivers)– 2 most efficient modes for communicating

• Sing language• One way speaking valve (more about this to come!)

Advocate for an environment that facilitates communication development, – Especially in the hospital/NICU unit & home

Special therapy materials on the market– www.passy-muir.com/pediatrictoy.htm

History of Investigations on Tracheostomy-Speech Development

Developmental risks incl. Speech delay Hill & Singer (1990): 61% (19/31) of children ages 2;1-8;6

had articulation difficulties based on standardized tests Bliele (1993): 13-17% of children under long-term

tracheostomy have delayed speech in relation to other areas of development at age 5

Singer et. al.(1989): tracheostomy lasting >3months produced low average language skills & high incidence articulation & phonological difficulties

History of Investigations on Tracheostomy-Speech Development

Locke & Pearson (1990): case study of child from age 1;5-1;9 during final months of cannulation & 1 month post– Severely restricted speech typical to that of a 6-

month old– By age 4;4 speech & language was age-

appropriate as measured by types of sounds, syllable shapes, # spontaneous utterances & syllables per utterance

History of Investigations on Tracheostomy-Speech Development

Kamen & Watson (1991) case study: 8 children (3;3-5;0 years old) with history of tracheostomy– Front stops or fricatives for velars

– Glottal fricative /h/ for stops & fricatives• This generally occurs in children under age 3

– Significant vowel differences between gender/age-matched peers without history of tracheostomy

• Lower F1 formants for /a/

• Lower F1 & F2 formants for /i/

• No differences in F1 or F2 values for /u/ (a back vowel…)

Kertoy et.al. on Speech & Phonological Characteristics

Kertoy et.al. (1999): 6 children ages 2;8-6;8 tracheostomized at or before 8 months of age– Hospitalization ranged from 1 month-1year– Cannulation ranged from 15-72 months– Normal hearing– 3 with tubes for otitis media with effusion– 2 receiving speech services at time of study

Kertoy Study (cont’d)

3/6 children had expressive/receptive language WNL based on PLS-3

All had cognitive skills WNL based on Goodenough Draw a Person Test or informal Piagetian drawing task

Kertoy Study (cont’d) Phonological deviancy ranged from mild to profound

compared to norms of children ages 2;2-2;5– Processes reflected those common in children with phonological

delays without tracheostomy: • Stridency deletion, Liquid deviation for /l/ and /r/, Cluster

reduction Inconsistent consonant use may reflect normal

inconsistencies due to developing sound classes (fricatives, affricates, liquids)

Voiced-voiceless stop errors; not yet realized the distinction of such consonant cognates

Likelihood of maintaining high, retracted tongue position makes high,front vowels more difficult

Kertoy Study (cont’d)

Adjustments in speech production after 3 months– Some children advanced whereas others

regressed– Most likely reflects individual differences

[vocal paralysis, ventilator dependency, (de)cannulation] and dynamic process of language learning

Implications of Kertoy Study Some children may continue to experience subtle

expressive language difficulties after decannulation

Prevalence of phonological processes should be part of a standard assessment for children with history of tracheostomy

Need for further research on individual expectations of speech characteristics and resolution over time– Help families establish realistic expectations– Help professionals take appropriate steps to promote development

Types of Speaking Valves

Olympic Trach Talk Montgomery Speaking Valve Hood Speaking Valve Kistner 1-way Valve Passy-Muir Speaking Valve

Use of Speaking Valves: the Passy-Muir

Developed in early-1980’s by Patricia Passy and David Muir who at 5 was diagnosed with muscular dystrophy and at 23 went under respiratory arrest.

passy-muir airflow

Purpose of the Passy-Muir Speaking Valve (PMSV)

Permits inspiration via stoma and expiration via glottis to produce phonation– Adult ability to speak without compromising

respiration– How about in infants?

Eligibility of the PMSV

Audible air leak around tracheostomy tube 7 days post-operative of tracheostomy Sustained awake, alert state Medical stability

Tolerance of the Passy-Muir Speaking Valve (PMSV)

Tolerance refers to – Oxygen saturation of 88% or more– No change in color, heart or respiratory rates,

or in respiratory effort– Minimal to no agitation

Study on Children Under 2 Years of Age

64 children: 29 were eligible for PMSV 24 of the 29 (83%) tolerated the PMSV 75% of those 24 vocalized on the 1st trial 21% vocalized on the 2nd trial Tolerance ranged from 5-10 seconds to 35

minutes Youngest participant was 13 days old The PMSV may offer more normalized

development of vocal play to actual speech

Study on Children Under 2 Years of Age

Participants demonstrated increased voice clarity and intensity with the PMSV

Ventilator dependency may require close monitoring to remove valve after period of time (15 minutes in study) due to “breath stacking” & “positive end expiratory pressure”

Need for further research on benefits of PMSV on children’s overall speech development (unknown if benefits mirror those seen in adults)

References: Abraham, S.S. (2003, March 18). Babies with tracheostomies: The challenge

of providing specialized clinical care. The ASHA Leader, 8 (5), 4 & 26.

Engleman, S.G. & Turnage-Carrier, C. (1997). Tolerance of the passy-muir speaking valve in infants and children less than 2 years of

age. Pediatric Nursing, 23(6), 571-575. Kertoy, M.K., Guest, C.M., Quart, E. & Lieh-Lai, M. (1999, June). Speech

and phonological characteristics of individual children with a history of tracheostomy. Journal of Speech, Language, and Hearing Research, 42, 621-635.

Mason, M.F. (1993) Speech pathology for tracheostomized and ventilator dependent patients. Newport Beach, CA: Voicing, inc.

Passy-Muir, Inc. (N.D.) Retrieved on April 6, 2003 from,

http://www.passy-muir.com