b2-14 propulsion sr

114
7/25/2019 B2-14 Propulsion SR http://slidepdf.com/reader/full/b2-14-propulsion-sr 1/114 StudentResource SubjectB2-14 Propulsion   Copyright © 2008 Aviation Australia  Allrightsreserved.Nopartofthisdocumentmaybereproduced,transferred,sold,or otherwisedisposedof,withoutthewrittenpermissionofAviationAustralia.

Upload: alexander-mcfarlane

Post on 28-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 1/114

StudentResource

SubjectB2-14

Propulsion

 

Copyright © 2008 Aviation Australia

 Allrightsreserved.Nopartofthisdocumentmaybereproduced,transferred,sold,orotherwisedisposedof,withoutthewrittenpermissionofAviationAustralia.

Page 2: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 2/114

Thispageintentionallyleftblank

Page 3: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 3/114

 

Part 66 Subject

  AA Form TO-19

IssueB–January2008 Revision2 B2-14-i

B2-14 Propulsion

CONTENTS

Definitions iii 

Study Resources iv 

Introduction v 

TurbineEngineFundamentals 14.1.1-1

EngineFuelSystems 14.1.2-1

EngineIndicationSystems 14.2-1

EngineStarting&IgnitionSystems 15.13-1

Page 4: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 4/114

 

Part 66 Subject

  AA Form TO-19

IssueB–January2008 Revision2 B2-14-ii

B2-14 Propulsion

Thispageintentionallyleftblank

Page 5: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 5/114

 

Part 66 Subject

  AA Form TO-19

IssueB–January2008 Revision2 B2-14-iii

B2-14 Propulsion

DEFINITIONS

Define

  Todescribethenatureorbasicqualitiesof.

  Tostatetheprecisemeaningof(awordorsenseofaword).

State

  Specifyinwordsorwriting.

  Tosetforthinwords;declare.

Identify

  Toestablishtheidentityof.

List

  Itemise.

Describe

  Representinwordsenablinghearerorreadertoformanideaofanobjectorprocess.

  Totellthefacts,details,orparticularsofsomethingverballyorinwriting.

Explain

  Makeknownindetail.

  Offerreasonforcauseandeffect.

Page 6: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 6/114

 

Part 66 Subject

  AA Form TO-19

IssueB–January2008 Revision2 B2-14-iv

B2-14 Propulsion

STUDYRESOURCES

JeppesenSandersonTrainingProducts:

   A&PTechnicianPowerplantTextbook.

   AircraftGasTurbinePowerplantsTextbook.

   AircraftTechnicalDictionaryThirdEdition

   AircraftInstrumentsandIntergratedSystems.

FADECforPart-662ndEdition(www.totaltrainingsupport.com)

B2-14StudentHandout

Page 7: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 7/114

 

Part 66 Subject

  AA Form TO-19

IssueB–January2008 Revision2 B2-14-v

B2-14 Propulsion

INTRODUCTION

Thepurposeofthissubjectistofamiliariseyouwithconstruction,components,operationandmaintenanceofgasturbineenginesandassociatedinstrumentandelectronoicfuelcontrol

systemsusedinaircraft.

Oncompletionofthefollowingtopicsyouwillbeableto:

Topic 14 1 1 Turbine Engine Fundamentals

StateNewton’slawsofmotion.

Definepotentialenergy,kineticenergyandBraytoncycle.

Definetherelationshipbetweenthefollowing:

  Force

  Work

  Power

  Energy

  Velocity

   Acceleration.

Definetheconstructionalarrangementandoperationofthefollowingenginetypes:

  Turbojet

  Turbofan

Identify thecomponentsofanddefine theoperationof the following turbopropandturbo-shaftenginesystems:

  Gascoupled/freeturbineand

  Gearcoupledturbine(Reductiongearbox).

Topic 14 1 2 Engine Fuel Systems

Identifyenginefuelsystemcomponentsanddescribesystemlay-outsandoperations.

Describetheoperationofenginefuelmeteringsystems.

Describetheoperationofelectronicenginecontrol(FADEC).

Topic 14 2 Engine Indication Systems

Identifycomponentsofthe followingengine indicationsystemsanddescribesystemoperation:

  ExhaustGasTemperature(EGT);

  TurbineTemperature(Interstage(ITT),Inlet(TIT/TGT));

  EngineThrust;

  EnginePressureRatio(EPR);

  TurbineDischarge/JetPipePressure;

  OilpressureandTemperature;

  FuelpressureandFlow;

  EngineSpeed;

  VibrationMeasurement;

  EngineTorque;

  Power;  ManifoldPressureand

  PropellerSpeed.

Page 8: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 8/114

 

Part 66 Subject  AA Form TO-19

IssueB– on B2-14-vi

B2-14 Propulsion

January2008 Revisi 2

Topic 15 13 Engine Starting and Ignition Systems

Describecomponentsofenginestartsystemsandtheiroperation.

Describecomponentsofengineignitionsystemsandtheiroperation.

Interpretthesafetyprecautionstobeobservedwhenperformingmaintenanceonengineignitionsystems.

Page 9: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 9/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page1of28

B2-14 Propulsion

TOPIC 14.1.1 TURBINE ENGINE FUNDAMENTALS

NEWTON’S FIRST LAW OF MOTION

Newton’sFirstLawmaybestatedas:“Abodywillremainatrestorcontinueitsuniformmotioninastraightlineuntilacteduponbyanexternalnetforce.”  

Newton'sfirstlawofmotionisalsooftenreferredtoasthelawofinertia.

Thelargerthemass,thegreatertheinertia.

NEWTON’S SECOND LAW OF MOTION

Newton’sSecondLawofmotionstates:“Theaccelerationofabodyisdirectlyproportionaltotheforceappliedtoitandisinverselyproportionaltothemassofthebody.”

When a force acts on an object, giving it motion, it gains momentum. Once an object has

momentum,ittakesforcetohaltthemotion.

Force=MassxAcceleration,orF=MxA,where:F=Forceinpounds,M=Massinlbs./ft/sec.², A=Accelerationinft/sec.²

So,theforcedevelopedbyagasturbineengineisproportionalto:

  themassofairflowingthroughtheengine;

  theaccelerationgiventothatmassofair.

NEWTON’S THIRD LAW OF MOTION

Newton’sThirdLawofmotionstates:“Foreveryaction,thereisanequalandoppositereaction.”

“Equal”meansequalinsizeand“opposite”meansoppositeindirection.

Rocketsandreaction-jetthrustersrelyonNewton’sThirdLawofMotionfortheireffect

Theactionofexhaustgases leavingaturbojetengineproducea reactioncalledthrust.ThisisNewton’sthirdlawofmotioninrespectofgasturbines.

Page 10: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 10/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page2of28

B2-14 Propulsion

FORCE

Forceisdefinedasthecapacitytodowork,orthetendencytoproducework.

Itis alsoa vectorquantity thattends to produceaccelerationof abodyin the direction ofitsapplication.Itcanbemeasuredinunitsofpounds.

Turbojetandturbofanenginesareratedinpoundsofthrust.

Theformulaforforceis:Force=PressurexArea,orF=PxA

Where:F=Forceinpounds

P=Pressureinpoundspersquareinch(psi)A=Areainsquareinches.

EXAMPLE:The pressureacross theopeningofa jet tailpipe (exhaustnozzle) is6psiaboveambientandtheopeningis300squareinches.Whatistheforcepresentinpounds?

F=PxA

F=6x300

F=1,800pounds

Theforcementionedhere ispresent inaddition to reactive thrust inmost gas turbineenginedesigns.This“pressurethrust”willbediscussedlaterinotherchapter.

WORK

Mechanicalworkispresentwhenaforceactingonabodycausesittomovethroughadistance.Workisdescribedasusefulmotion.Aforcecanactonanobjectvertically(oppositetheeffectofgravity),horizontally(90degreestotheeffectofgravity),orsomewhereinbetween.Aforcecanalsoactonanobjectinadownwarddirection,inwhichcaseitwouldbeassistedbygravity.Thetypicalunitsforworkare“inchpounds”and“footpounds”.

Theformulaforworkis:Work=ForcexDistance,orW=FxD

Where:W=Workinfootpounds;F=Forceinpounds;D=Distanceinfeet.

Page 11: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 11/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page3of28

B2-14 Propulsion

Forinstance,liftingthesameobjectthesameverticalheightrequiresthesamework,nomatterthepath.

 

POWER

The definition ofworkmakes nomention of time.Whether it takes five seconds tomoveanobjectorfivehours,thesameamountofworkwouldbeaccomplished.Power,bycomparison,doestakethetimeintoaccount.Toliftatenpoundobject15feetoffthefloorinfivesecondsrequiressignificantlymorepowerthanto lift itin fivehours.Workperformedperunitof time ispower.Power ismeasuredinunitsoffootpoundspersecond,footpoundsperminute,ormilepoundsperhour.

Theformulaforpoweris:Power=ForcexDistanceFxD

Where:P=Powerinfootpoundsperminute;D=Distanceinfeet;t=Timeinminutes.

EXAMPLE:A2,500poundengineistobehoistedaheightof9feetintwominutes.Howmuchpowerisrequired?

P=(FxD)/t

P=(2,500x9)/2=11,250ft.lbs/mm.

Page 12: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 12/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page4of28

B2-14 Propulsion

Inphysics, acceleration isdefined asa change invelocity with respect to time.Observe thatdistancetraveledisnotconsidered,onlylossorgainofvelocitywithtime.Thetypical(Imperial)units foracceleration are feet per second/second (fps/s) and miles per hour/second (mph/s).Feetpersecond/secondaresometimesreferredtoasfeetpersecondsquared(fps2).

HORSEPOWER

Horsepower isamore commonand usefulmeasure ofelectricalpower.Yearsago using the

multiplierof1.5timesastronghorse’sability todousefulwork,itwasdeterminedthat33,000poundsofweightliftedonefootinoneminutewouldbethestandardintheEnglishsystem.Ifpower is in foot pounds/minute, it can be divided by 33,000 to convert to horsepower.Mathematically,theunitsoffootpoundsperminutewillcanceleachotherout,leavingonlythenumber.Horsepowerdoesnothaveunits,sincehorsepoweristheunit.Ifpowerisbeingdealtwithinunitsoffootpoundspersecond,550istheconversionnumber.Ifpowerisinmilepoundsperhour,375istheconversionnumber.

Theformulaforconvertingtohorsepoweris:Hp=Power(inft.lbs/mm.)/33,000.

EXAMPLE:Howmuchhorsepowerisrequiredtohoista2,500poundengineaheightof9feetintwominutes(thepreviousexamplewhichrequired11,250ft.lbs./minofpower)?

Hp=Power/33,000=11,250/33000=0.34orapproximately1/3Hp

 

SPEED and VELOCITY

Velocitydealswithhowfaranobjectmoves,whatdirection itmoves,andhowlongittookittomovethatfar.

Velocity isexpressed inthesameunitsasspeed,typically feetper second(fps)ormilesperhour(mph).Thedifferenceisthatspeeddoesnothaveaparticulardirectionassociatedwithit.Velocityisidentifiedasbeingavectorquantity,whilespeedisascalarquantity.

Theformulaforvelocityis:

Velocity=Distance÷time,orV=D÷t

ACCELERATION

TheSIunit–metre/second2.

Theformulaforcalculatingaccelerationis:

Page 13: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 13/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page5of28

B2-14 Propulsion

Theaccelerationrateduetogravity,whenanobjectisin freefallwithnodrag,is32.2feetpersecond/second.Whenanobjectacceleratesatthisrate,it isexperiencingwhat isknownasaforceof1“g”.

Ifwedivided theaccelerationrate for theexamplefighterairplaneby32.2,wewoulddiscoverhowmany“g”forcesitisexperiencing(132÷32.2=4.1g’s).

Negativeaccelerationiscalleddeceleration.

ENERGYEnergyisusedtoperformusefulwork. Inthegasturbineenginethismeansproducingmotionandheat.Thetwoformsofenergywhichbestdescribethepropulsivepowerofthejetenginearepotentialandkineticenergy.

 

Potential Energy

Energystoredbyanobjectbyvirtueof itsposition.Forexample, anobject raisedabove thegroundacquirespotentialenergyequaltotheworkdoneagainsttheforceofgravity;theenergyisreleasedaskineticenergywhenitfallsbacktotheground.Similarly,astretchedspringhas

stored potential energy that is releasedwhen the spring is returned to its unstretched state.Otherformsofpotentialenergyincludeelectricalpotentialenergy.

Chemicalenergyisausefulbutobsolescenttermfortheenergyavailablefromelementsandcompoundswhen they react,as ina combustionreaction. Inpreciseterminology, there isnosuchthingaschemicalenergy,sinceallenergyisstoredinmatteraseitherkineticenergyorpotentialenergy.

Page 14: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 14/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page6of28

B2-14 Propulsion

 

Kinetic Energy

Theenergypossessedbyabodybecauseofitsmotion,equaltoonehalfthemassofthebodytimesthesquare of its speed,equal toonehalf themassof the bodytimes thesquareof itsspeed.

Formofenergythatanobjecthasbyreasonofitsmotion.Thekindofmotionmaybetranslation(motion along a path from one place to another), rotation about an axis, vibration, or anycombinationofmotions.Thetotalkineticenergyofabodyorsystemisequaltothesumofthekineticenergiesresultingfromeachtypeofmotion.

Thekineticenergyofanobjectdependson itsmassandvelocity.Forinstance, theamountofkineticenergyKEofanobjectintranslationalmotionisequaltoone-halftheproductofitsmass

mandthesquareofitsvelocityv,orKE=1/2mv².

Forexample,a500,000kgmassA380aircraftisflyingoverSydneyat250meterspersecond,whatisitskineticenergy?

KineticEnergy=½·500000·250²=15,625,000,000joules.

Page 15: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 15/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page7of28

B2-14 Propulsion

BERNOULLI’S THEOREM

Bernoulli’sprincipledealswithpressureofgases.Pressurecanbechangedinthegasturbineenginebyaddingorremovingheat,changingthenumberofmoleculespresent,orchangingthevolumeinwhichthegasiscontained.

Bernoullidiscoveredthatairactsasanincompressiblefluidwouldactwhenflowingatsubsonicflowrates.

Theprincipleisstatedasfollows:“Whenafluidorgasissuppliedataconstantflowratethroughaduct,thesumofpressure(potential)energyandvelocity(kinetic)energyisconstant.”Inotherwords,whenstaticpressureincreases,velocity(ram)pressuredecreases.Orifstaticpressuredecreases, velocity (ram) pressure increases, meaning that velocity pressure will change inrelationtoanychangeinstaticpressure.

Ifairisflowingthroughastraightsectionofductingwhichthenchangestoadivergentshape,itskineticenergyintheaxialdirectionwilldecreaseastheairspreadsoutradially,and,asthetotal

energy at constant flow rate of the air is unchanged, the potential energy must increase inrelationtothekineticenergydecrease.

TherearemanyexampleswithinagasturbineengineoftheapplicationofBernoulli’sTheorem:

  theairpassagesbetweenindividualbladesofacompressororturbine;

  thediffusersectionofacentrifugalcompressor;

  thecross-sectionalshapeofengineinletandexhaustducts;

  theentiregasflowpaththroughtheengine.

Page 16: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 16/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page8of28

B2-14 Propulsion

BERNOULLI’S HEOREM PRESSURE VELOCITY TEMP GRAPH

TheapplicationofBernoulli’sTheoreminatypicalsingle-spoolaxialflowturbo-jetengine.

Theanimationshows thechanges ofpressure,velocity, temperature (turbojet) duringgroundrun-up.

BRAYTON CYCLE

TheBraytoncycleisalsowidelyknownasa“constantpressurecycle”.Thereasonforthisisthatinthegas turbineengine,pressureis fairlyconstantacross thecombustionsectionasvolumeincreasesandgasvelocitiesincrease.

Combustiontakesplaceatconstantpressureingasturbineengines.

Page 17: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 17/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page9of28

B2-14 Propulsion

The four continuousevents shown on thepressure- volumegraphare: Intake, compression,expansion(power),andexhaust.

Referringtothegraph,

 AtoBindicatesairenteringtheengineatbelowambientpressureduetosuctionandincreasingvolumeduetothedivergentshapeoftheductinthedirectionofflow.

BtoCshowsairpressurereturningtoambientandvolumedecreasing.

CtoDshowscompressionoccurringasvolumeisdecreasing.

DtoEindicatesaslightdropinpressure,approximately3%,throughthecombustionsectionandanincreasingvolume.Thispressuredropoccursasa resultofcombustionheataddedandiscontrolled by the carefully sizedexhaust nozzleopening.Recall that there isabasicgaslawwhichstatesthatgaswill tendtoflowfromapointofhighpressuretoapointoflowpressure.Thepressuredropinthecombustorensuresthecorrectdirectionofgasflowthroughtheenginefromcompressortocombustor.Theairrushinginalsocoolsandprotectsthemetalbycentering

theflame.

EtoFshowsapressuredropresultingfromincreasingvelocityasthegasisacceleratedthroughtheturbinesection.

FtoGshowsthevolume(expansion)increasewhichcausesthisacceleration.Gcompletesthecycleasgaspressurereturnstoambient,orhigherthanambientatthenozzleifitischoked.

ENGINE STATIONS

 Asystemofstandardstationnumberingmakes iteasier to findvarious locationsonandwithintheengine.

Numbers from 1 to 9 designate certain locations. For example, station 2 is always thecompressorinlet.

Inaddition tothestation numbers,prefixesareused toshowvariousparameters occurringatthesestationswithintheengine.

Page 18: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 18/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page10of28

B2-14 Propulsion

Forexample,

  TemperaturehastheprefixT.

Thetemperatureoccurringatstation5iscalledT5.

  PressurehasaprefixPandcanbefurtherdividedinto:

o  Pt–totalpressure;

o  Ps–staticpressure.

  Thestaticpressureatstation3isknownasPs3.

Engine Directional References

Forpurposesofidentifyingengineconstructionpoints,orcomponentandaccessoryplacement,

directionalreferencesareusedalongwithstationnumbers.Thesereferencesaredescribedasforwardattheengineinletandaftattheenginetailpipe,withastandard12hourclockorientation.Thetermsright-andleft-hand,clockwiseandcounterclockwise,applyasviewedfromtherearoftheenginelookingforwardtowardtheinlet.

Page 19: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 19/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page11of28

B2-14 Propulsion

GAS TURBINE ENGINE TYPES

Gasturbineenginesareconsideredtobeoftwotypes:

a. 

ThrustProducingEngines;

b.  TorqueProducingEngines.

Thetwoclassificationsofthrustproducingturbineenginesare:a.Turbojet;b.Turbofan.

Thetwoclassificationsoftorqueproducingturbineenginesare:a.Turboprop;b.Turboshaft.

Page 20: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 20/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page12of28

B2-14 Propulsion

TURBOJET ENGINE

The turbojet, as first patented by Sir Frank Whittle, had an impeller compressor, annularcombustor, and a single stage turbine. Today it ispossible tosee manyvarieties of turbojetenginedesigns,butthebasiccomponentsarestillthecompressor,combustor,andturbine.

Theturbojetgetsitspropulsivepowerfromreactiontotheflowofhotgases.Airenterstheinletand its pressure is increased by the compressor. Fuel is added in the combustor and theexpansioncreatedbyheatforcestheturbinewheeltorotate.Theturbinesectioniscoupledtothecompressorsectionanddirectlydrivesit.Theenergyremainingdownstreamoftheturbineinthetailpipeacceleratesintotheatmosphereandcreatesthereactionwerefertoasthrust.

Theyhaverelativelyfewmovingpartsandcreatethrustbyacceleratingarelativelysmallmassofairwithalargeamountofacceleration.

Theyarelessefficientduetolossesfromnoiseandincompletecombustion.

Page 21: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 21/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page13of28

B2-14 Propulsion

Engine Pressure Ratio

Whendiscussingaturbojetengineyoumustbefamiliarwiththetermenginepressureratio,or

EPR. An engine’s EPR is the ratio of the turbine discharge pressure to the engine inlet airpressure.EPRgaugereadingsareanindicationoftheamountofthrustbeingproducedforagivenpowerleversetting.Totalpressurepickups,orEPRprobes,measuretheairpressureattwopointsintheengine;oneEPRprobeislocatedat thecompressorinletandasecondEPRprobeislocatedjustaftofthelaststageturbineintheexhaustsection.EPRreadingsareoftenusedasverificationofpowersettingsfortake-off,climb,andcruise.EPRreadingsareaffectedbyandaredependentonpressurealtitudeandoutsideairtemperature(OAT).

TURBOFAN

Theturbofan,ineffect,isa ducted,multi-bladedpropellerdrivenbyagas turbineengine.Thisfanproducesapressureratioontheorderof2:1,ortwoatmospheresofcompression.Generally,

turbofanscontain20to40fixedpitchblades.

Page 22: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 22/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page14of28

B2-14 Propulsion

Bycomparison,thefandiameterofaturbofanengineismuchlessthanthatofthepropelleronaturbopropengine,butitcontainsmanymorebladesandmovestheairwithagreatervelocityfromitsconvergentexhaustnozzle.

Turbofanhasmoreturbinestagesthanaturbojetinordertodrivethefanatthefrontorback.

Thereare:

  Forwardfanengines

   Aft-fanengines:doesn’tcontributetocompression.

Fan Bypass Ratio

ThepropulsiveefficiencyofaTurbofanengineismeasuredbyFanBypassRatio.

Fanbypassratioistheratioofthemassairflowwhichflowsthroughthefanduct,dividedbythemass airflowwhich flows through thecoreportion of theengine. Fan airflowpassesover theouterpartofthefanbladeandthenoutofthefanexhaustandbacktotheatmosphere.Coreengineairflowpassesovertheinnerpartofthefanbladesandisthencompressed,combusted,andexhaustedfromthehotexhaustduct.

Thefanorbypassairisnotusedforcombustionbutproducesthemajorityofthrust.

Page 23: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 23/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page15of28

B2-14 Propulsion

Turbofanenginescanbe

  Highbypass(4:1ormore)

 

Mediumbypass(2or3:1)

  Lowbypass(1:1)

Mostturbofanengineshaveseparatelowpressureandhighpressurecompressorandturbinespools.

Generaloverviewofatypicalhighbypass-ratioturbofanengine(AdaptedfromPratt&Whitney).

Page 24: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 24/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page16of28

B2-14 Propulsion

TURBOPROP

Betterpropulsiveefficiencyatlowspeedcomparedtoaturbojet,theextraturbinestagesareusedtodriveashaft.

Connectedtotheshaftisareductiongearboxandapropeller.

Thepropellermovesalargemassofairwitharelativelysmallamountofacceleration.

Turbopropenginesareveryfuelefficientatlowerairspeeds.

Thepropellerstartstobecomeaerodynamicallyinefficientathigherairspeeds.

TwomaintypesofTurbopropengines:

  Fixedshaft(AlsocalledGearCoupledturbine);

 

Freeturbine.Thefixedturbineisconnecteddirectlytothecompressor,reductiongearbox,andpropellershaft,in another words, themain power shaft of a fixed shaft engine goes directly to a reductiongearboxwhichcandriveapropeller,forexample,GarrettTPE331fixedshaftturbopropengine.

Page 25: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 25/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page17of28

B2-14 Propulsion

Free turbine turboprop engine

 Alsocalledgascoupled.

Forexample,Pratt&WhitneyPT6freeturbineturbopropengine(Reverseflowcombustor).

Thefreeturbineisconnectedonlytothegearboxandpropellershaft.Thisisanindependentturbine that isnot connected to themain turbine.This arrangementallows thefree turbine toseek itsoptimumdesignspeedwhilecompressorspeedissetatitsdesignpoint(pointofbestcompression).

Someoftheadvantagesofthefreeturbineare:

1.Thepropellercanbeheldatverylowrpmduringtaxiing,withlownoiseandlowbladeerosion.

2.Theengineiseasiertostart,especiallyincoldweather.

3.Thepropelleranditsgearboxdonotdirectlytransmitvibrationsintothegasgenerator.

4.Arotorbrakecanbeusedtostoppropellermovementduringaircraftloadingwhenengineshutdownisnotdesired.

Disadvantage:Theenginedoesnothavetheinstantaneouspowerofreciprocatingengines.

TURBOSHAFT

Turboshaftengines are gasturbine engines that operate somethingother than apropeller bydeliveringpowerto ashaft.Turboshaftenginesaresimilar toturbopropengines,and insomeinstances,both use the same design. Like turboprops, turboshaftengines usealmost all theenergyintheexhaustgasestodriveanoutputshaft.Thepowermaybetakendirectlyfromtheengineturbine,ortheshaftmaybedrivenbyitsownfreeturbine.Likefreeturbinesinturbopropengines,afreeturbineinaturboshaftengineisnotmechanicallycoupledtotheengine’smainrotor shaft, soitmay operate at its ownspeed.Freeturbinedesigns areused extensively incurrentproductionmodelengines.

Page 26: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 26/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page18of28

Thepi

yused topowerhelicoptersandauxiliarypowerunitsaboard

B2-14 Propulsion

ctureshowingisaGeneralElectricT-64Turboshaftengine.

Turboshaftenginesarefrequentllargecommercialaircraft.

Page 27: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 27/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page19of28

B2-14 Propulsion

ENGINE COMPONENTS

Therearesevenbasicsectionswithineverygasturbineengine.Theyarethe

 

airinlet.

  compressorsection.

  combustionsection.

  turbinesection.

  exhaustsection.

  accessorysection.

  systemsnecessaryforstarting,lubrication,fuelsupply,andauxiliarypurposes,suchasanti-icing,cooling,andpressurization.

 Additional terms you often hear include hot section and cold section. A turbine engine’s hotsection includesthecombustion,turbine,andexhaustsections.Thecoldsection,ontheotherhand,includestheairinletductandthecompressorsection.

Air Inlet Duct

Theairinlettoaturbineenginehasseveralfunctions,oneofwhichistorecoverasmuchofthetotalpressureofthefreeairstreamaspossibleanddeliverthispressuretothecompressor.Thisisknownasram recoveryorpressurerecovery. Inaddition torecoveringandmaintainingthepressure of the free airstream, many inlets are shaped to raise the air pressure aboveatmosphericpressure.

 Another function of the air inlet is to provide auniform supply ofair to the compressor so thecompressor can operate efficiently. Furthermore, the inlet duct must cause as little drag aspossible.It takesonlyasmallobstructionto theairflowinsideaducttocauseaseverelossofefficiency.Ifaninletductistodeliveritsfullvolumeofairwithaminimumofturbulence,itmustbemaintainedasclosetoitsoriginalconditionaspossible.Therefore,anyrepairstoaninletduct

Page 28: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 28/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page20of28

B2-14 Propulsion

mustretaintheduct’ssmoothaerodynamicshape.Tohelppreventdamageorcorrosiontoaninletduct,aninletcovershouldbeinstalledanytimetheengineisnotoperating.

FOREIGN OBJECT DAMAGE

Toensure the operatingefficiencyofan air inlet duct, periodic inspection for ForeignObjectDamage(FOD)andcorrosionisrequired.

Preventionofforeignobjectdamage(FOD)isatoppriorityamongturbineengineoperatorsandmanufacturers.

COMPRESSOR SECTION

Theprimaryfunctionofa compressoris toforceairintotheengineforsupportingcombustionandprovidingtheairnecessarytoproducethrust.

Onewayofmeasuringa compressor’s effectiveness is tocompare thestaticpressureof thecompressordischargewiththestaticairpressureattheinlet.Ifthedischargeairpressureis30

Page 29: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 29/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page21of28

B2-14 Propulsion

timesgreater than theinletair pressure, that compressorhas acompressorpressure ratioof30:1.

The compressor section has also several secondary functions. For example, a compressorsuppliesbleedair tocoolthehotsectionandheatedair foranti-icing.In addition,compressorbleedair isusedforcabinpressurization,airconditioning,fuelsystemdeicing,andpneumaticenginestarting.

Therearetwobasictypesofcompressorsusedtoday:

  thecentrifugalflowcompressor,and

  theaxialflowcompressor.

Eachisnamedaccordingtothedirectiontheairflowsthroughthecompressor,andoneorbothmaybeusedinthesameengine.

 

CENTRIFUGAL FLOW COMPRESSORS

Thecentrifugalcompressor,sometimescalledaradialoutflowcompressor,isoneoftheearliestcompressordesignsand isstillused today insomesmallerenginesandauxiliarypowerunits(APU’s).

Centrifugalcompressorsconsistofanimpeller,adiffuser,andamanifold.

Page 30: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 30/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page22of28

B2-14 Propulsion

AXIAL FLOW COMPRESSORS

 Anaxialflowcompressorhastwomainelements,arotorandastator.Therotorconsistsofrowsof blades fixed on a rotating spindle. The angle and airfoil contour of the blades forces airrearwardinthesamemannerasapropeller.Thestatorvanes,ontheotherhand,arearrangedinfixedrowsbetweentherowsofrotorbladesandactasdiffusersateachstage,decreasingairvelocityandraisingpressure.

Eachconsecutiverowofrotorbladesandstatorvanesconstitutesapressurestage.Thenumberofstagesisdeterminedbytheamountofairandtotalpressureriserequired.

Page 31: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 31/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page23of28

B2-14 Propulsion

DIFFUSER

 Asairleavesanaxialflowcompressorandmovestowardthecombustionsection, itistravelingatspeedsupto500feetpersecond.Thisisfartoofasttosupportcombustion,thereforetheairvelocitymust be slowed significantly before it enters the combustion section. The divergentshapeofadiffuserslowscompressordischargewhile,atthesametime,increasingairpressuretoitshighestvalueintheengine.Thediffuserisusuallyaseparatesectionboltedtotherearofthecompressorcaseandaheadofthecombustionsection.

Page 32: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 32/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page24of28

B2-14 Propulsion

COMBUSTION SECTION

 A combustion section is typically located directly between the compressor diffuser and turbinesection.All combustion sections contain the samebasic elements: one or more combustionchambers(combustors),afuelinjectionsystem,anignitionsource,andafueldrainagesystem.

Thecombustionchamberorcombustorina turbineengine iswherethefuelandairaremixedandburned.Atypicalcombustorconsistsofanoutercasingwitha perforatedinnerliner.Theperforationsarevarioussizesandshapes,allhavingaspecificeffectontheflamepropagationwithintheliner.

Thefuelinjectionsystemmeterstheappropriateamountoffuelthroughthefuelnozzlesintothecombustors. Fuel nozzlesare located in the combustionchamber case or in thecompressoroutletelbows.Fuelisdeliveredthroughthenozzlesintothelinersinafinelyatomizedspraytoensurethoroughmixingwiththeincomingair.Thefinerthespray, themorerapidandefficientthecombustionprocessshouldbe.

 Atypical ignitionsourceforgasturbineengines isthehigh-energycapacitordischargesystem,consistingofanexciterunit,twohigh-tensioncables,andtwosparkigniters.Thisignitionsystemproduces60to100sparksperminute,resultinginaballoffireattheigniterelectrodes.Someofthesesystemsproduceenoughenergytoshootsparksseveralinches,socaremustbetakentoavoidalethalshockduringmaintenancetests.

 A fuel drainage system accomplishes the important task of draining the unburned fuel afterengine shutdown. Draining accumulated fuel reduces the possibility of exceeding tailpipe orturbine inlet temperature limitsdue toanengine fire after shutdown. Inaddition,draining theunburned fuel helps to prevent gum deposits in the fuel manifold, nozzles, and combustionchamberswhicharecausedbyfuelresidue.

Inordertoallowthecombustionsectiontomixtheincomingfuelandair,ignitethemixture,and

coolthecombustiongases,airflowthroughacombustorisdividedintoprimaryandsecondarypaths.Approximately25to35percentoftheincomingairisdesignatedasprimarywhile65to75percentbecomessecondary.Primary,orcombustionair,isdirectedinsidethelinerinthefrontendofacombustor.

Thesecondaryairflowinthecombustionsectionflowsatavelocityofseveralhundredfeetpersecondaroundthecombustor’speriphery.Thisflowofairformsacoolingairblanketonbothsides of the liner and centers the combustion flames so theydo not contact the liner.Somesecondary air is slowedandmetered into the combustor through the perforations in the linerwhereitensurescombustionofanyremainingunburnedfuel.Finally,secondaryairmixeswith

Page 33: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 33/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page25of28

B2-14 Propulsion

theburnedgasesandcoolairtoprovideanevendistributionofenergytotheturbinenozzleatatemperaturethattheturbinesectioncanwithstand.

TURBINE SECTION

 After the fuel/air mixture is burned in the combustor, its energymust be extracted. A turbinetransformsaportionofthekineticenergyinthehotexhaustgasesintomechanicalenergytodrivethecompressorandaccessories.

ThepictureshowingisaPW400094-InchFanEngine.

Page 34: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 34/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page26of28

B2-14 Propulsion

Ina turbojetengine,the turbineabsorbsapproximately60 to80%of the totalpressureenergyfromtheexhaustgases.Theturbinesectionofaturbojetengine islocateddownstreamof thecombustionsectionandconsistsoffourbasicelements;acase,astator,ashroud,andarotor.

EXHAUST SECTION

Thedesignofaturbojetengineexhaustsectionexertstremendousinfluenceontheperformanceofanengine.Forexample,theshapeandsizeofanexhaustsectionanditscomponentsaffectthe temperature of theairentering the turbine, or turbine inlet temperature, themass airflowthrough the engine, and the velocity and pressure of the exhaust jet.Therefore,an exhaustsectiondeterminestosomeextenttheamountofthrustdeveloped.

 A typical exhaust section extends from the rear of the turbine section to the point where theexhaust gases leave the engine. An exhaust section is comprised of several componentsincludingtheexhaustcone,exhaustductortailpipe,andexhaustnozzle.

Page 35: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 35/114

 

Part 66 Subject

 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

IssueB:January2008 Revision2 Page27of28

B2-14 Propulsion

ACCESSORY SECTION

Theaccessorysection,oraccessorydrive,ofagasturbineengineisusedtopowerbothengineand aircraft accessories such as electric generators, hydraulic pumps, fuel pumps, and oilpumps. Secondary functions include acting as an oil reservoir, or sump, and housing theaccessorydrivegearsandreductiongears.

Theaccessorydrivelocationisselectedtokeeptheengineprofiletoaminimumforstreamlining.

Typicalplaceswhereanaccessorydriveislocatedincludetheengine’smidsection,orthefrontorrearoftheengine.

Page 36: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 36/114

 

Part 66 Subject 

 AA Fo rm TO-19

B2-14.1.1TurbineEngineFundamentals

Issue Revision Page28of28

B2-14 Propulsion

B:January2008 2

ENGINE MOUNTS

Enginemount designand construction for gas turbine engines is relativelysimple.Sincegasturbineenginesproducelittletorque,theydonotneedheavilyconstructedmounts.Themountsdo,however,supporttheengineweightandallowfortransferofstressescreatedbytheenginetotheaircraftstructure.

Onatypicalwingmountedturbofanengine,theengineisattachedtotheaircraftbytwotofourmountingbrackets.However,becauseofinducedpropellerloads,aturbopropdevelopshighertorque loads, so engine mounts are proportionally heavier. By the same token, turboshaftenginesusedinhelicoptersareequippedwithstrongerandmorenumerousmountlocations.

-EndofthisTopic-

Page 37: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 37/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page1of34

TOPIC14.1.2:ENGINEFUELSYSTEMS

Fuel Control and Metering Systems

Gasturbineenginesconvertthelatentenergyof fuel intoheattoprovidetheenergyfortheoperationoftheengineandthrustfortheaircraft.

The function of the fuel system is to provide the engine with fuel, in a form suitable forcombustion and to control its flow to the required rates necessary for easy starting,accelerationandstablerunning,inallengineoperatingconditions.

Fuel System Layout

Foragasturbineenginetodeliverthepowerrequired,itneedsasystemthatsuppliesfuelinsufficientquantitiestoallowforvaryingconditions,altitudesandpowersettings.

Layoutofaircraftandenginefuelsystemsvarywiththetypeandsizeofaircraft,however,mostsystemsincludethefollowingcomponents:

 

Fueltank.

 

Boostpump.

  Fuelflowtransmitter.

  Lowpressureshutoffvalve.

  Lowpressuretransmitter.

  Fuelheater.

  Fuelfilter.

  Highpressurefuelpump.

  Fuelcontrolunit.

  Highpressureshutoffvalve.

  Pressurisinganddumpvalve.

  Fuelburners.

 

Fuelpressuredifferentialswitch.

The block diagram in Figure 1.2-1 shows the fuel system layout of a typical gas turbineengine. At the lowest point of the fuel tank (1), an electrically driven boost pump (2)incorporatingameshfilterdeliverslowpressurefuelthroughfuelflowtransmitter(3)tothe

lowpressureshutoffcock(4)locatedontheenginefirewall.Fromtherefuelflowsthroughthelowpressuretransmitter(5)tothefuelheater(6)andontothefilter(7).Fuelisthendeliveredtothehighpressurepump(8)throughtheFCU(9)totheandhighpressureshutoffcock(10). Itthenflowstothepressurisinganddumpvalve(1.2)andontofuelmanifoldsandburners(12).

 A fuel pressure differential switch (13) takes a pressure reading from near the fuel flowtransmitter(3) and frombetweenthe fuel filter (7) and highpressurepump(8) togiveanindicationthat the fuel filter isbecomingblockedbyiceorforeignmaterial inthefuel thusenablingthepilottoselectfuelheatingtoremoveicefromthefilter.

Page 38: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 38/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page2of34

Figure1.2-1

Fuel System Components

Fuel Flow Transmitter

Fuelflowmetersareusedinfuelsystemstoshowtheamountoffuelconsumedperhourbytheengine,thusallowingthepilottoaccuratelycalculatetheavailableflighttimeremaining. Asfuelflows throughthemeter,it spinsasmallturbinewheelandadigitalcircuit readsthenumberofrevolutionsinaspecifiedperiodandconvertsthistoafuelflowrate.

Low Pressure Shut Off Valve

Low pressure shut off valves on modern aircraft, normally mounted behind the enginefirewall,areusedtoisolatetheenginefuelsystemfromtheairframeincaseoffireorsystemmaintenance.Thetwocommontypesofshutoffvalvesare:

  Motordrivengatevalve.

 

Solenoidoperatedvalve.

Motor Driven Gate Valve

Thisvalveshown inFigure1.2-2usesa reversibleelectricmotor linked toaslidingvalveassembly.Themotormovesthevalvegateinandoutofthepassagethroughwhichthefuelflows,thusshuttingofforturningonthefuelflow.

Figure1.2-2  

Page 39: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 39/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page3of34

 

Solenoid Operated Valve

 Asolenoidvalvehasanadvantageoveramotordrivenvalve,beingmuchquickertoopenorclose.ThevalveinFigure1.2-3isasolenoidoperated,poppettypevalve.Whenelectricalcurrentmomentarilyflowsthroughtheopeningsolenoidcoil,amagneticpullisexertedonthe

valvestemthatopensthevalve.Whenthestemriseshighenough,thespringloadedlockingplungerisforcedintothenotchinthevalvestem.Thisholdsthevalveopenuntilcurrentismomentarilydirected to the closing solenoid coil. Themagneticpull of this coil pulls thelockingplungeroutofthenotchinthevalvestem,thespringclosesthevalveandshutsofftheflowoffuel.

Figure1.2-3  

High Pressure Shut Off Valve

Thehighpressure(HP)shutoffcockisavalvemountedinthefuelcontrolunit(FCU)andisusedtogiveadefiniteshutoffofthefuellinefromtheFCUtothefuelburnernozzles.

The HP cock may be connected directly to the engine power lever and operates frommaximumthrottle(HPcockopen)toidlethrottle(HPcockopen)thenthroughagatetocutoff(HPcockclosed).

However,onturbopropelleraircraftitisnormallyconnectedinconjunctionwiththepropeller

feather control lever to give amovement through gatesofengine run (HP cock open) toenginestop(HPcockclosed)thenpropellerfeather(HPcockclosed).

Page 40: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 40/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page4of34

Pressurising and dump valve

 A fuelpressurisingand dumpvalve isnormallyrequiredonenginesusingduplextype fuelnozzles,todividethefuelflowintoprimaryandmainmanifolds,andtodrainfuelfromthese

manifoldsonshutdown.Pressurising Valve

Thefuelpressurisingvalvecontrolsthefuelflowsrequiredforstartingandaltitudeidling,allfuelpassesthroughtheprimarymanifold.Asfuelflowincreases,thevalvebeginstoopenthemainmanifolduntilatmaximumflowthemainmanifoldispassingapproximately90%ofthefuel.

Dump Valve

Thedumpvalvegivesthecapabilityto“dump”ordrainfuelfromthefuelmanifoldsaftershutdown.Manifolddumpingisaprocedurewhichsharplycutsoffcombustionandalsopreventsfuelboiling,orafterburning,asaresultofresidualengineheat.Thisboilingtendstoleave

soliddepositswhichcouldclogfinelycalibratedpassageways.Operation

The construction and operation of pressurisation and dump valves varies with differentmanufacturers, however, the following is a description of the operation of a typicalpressurisationanddumpvalve,showninFigure.1.2-4.

Whenthepowerleverisopened,apressuresignalfromthefuelcontrolunitmovesthedumpvalveagainstthespringpressureclosingthedumpportandopeningthepassagewaytothemanifolds.Ataspeedslightlyaboveidle,thefuelpressurewillbesufficienttoovercomethepressurisingvalvespringforce,andfuelwillalsoflowtothemainmanifold.

Onshutdownwhenthefuellever ismovedtoOFF,thepressuresignalholding thedump

portclosedandthefuelpassageopen,islost.Springpressureclosesthefuelpassageandopensthemanifoldstothefueldump,orreturnline.

Figure1.2-4  

Page 41: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 41/114

 

Part 66 Subject

 

B2-14 Propulsion

Fuel Heater

 AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page5of34

 

Drain Valves

Thedrainvalvesareused for drainingfuel fromvariouscomponentsof the enginewhereaccumulated fuel is most likely to present operating problems. This valve is normallyoperatedbypressuredifferential.

Fuelaccumulatesinthebottomofthelowercombustionchamberfollowingshutdownorafalsestart.Whentheairpressureinthecombustionchamberreducestonearatmospheric,the valveopens and allows the accumulatedfuel todrainaway. It is imperative that thisvalveisingoodworkingorder,otherwiseahotstartduringthenextstartattempt,oranafterfireonshutdownislikelytooccur.

Low Pressure Transmitter

Foraircraftfittedwithmorethanonefueltank,itisdesirabletohaveameansofwarningthepilotthatfuelinthesupplyingtankisexhausted(ortheboostpumpisnotoperating)andthatthefuelselectormustbesettodrawfuelfromanothertank.Thelowfuelpressureswitchisheldopenbynormalfuelpressures,buttheswitchcloseswhenthepressurefalls.Thisturns

onthewarninglightinthecockpit.

Turbinepoweredaircraft thatoperateathigh altitudesandlowtemperatures forextendedperiodsoftimehavetheproblemofwatercondensingoutofthefuelandfreezingonthefuelfilters.Topreventthis,theseaircrafthaveafueltemperaturegaugeandorafilterdifferentialpressurewarninglightthatilluminateswheniceobstructsthefilter.

Thepurposeofthefuelheateristoprotectthefuelsystemfromiceformationandtothawicethatformsonthefuelfilterscreen.Thisisachievedbyusinghotairthathasbeenheatedbythecompressorsectionoftheengine.AfuelheaterisdepictedinFigure1.2-5.

Figure1.2-5  

Fuel / Oil Cooler

Thefuel/oilcoolerisdesignedtocoolthehotenginelubricatingoilbyusingthefuelflowingtothe engine passing through a heat exchanger. A thermostatic valve controls the oil flowwhichmaybypasstheheatexchangerifnocoolingisrequired.

Page 42: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 42/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page6of34

Fuel Filter

Becausethehighpressurefuelpump,fuelcontrolunit,pressurisationvalve,dumpvalveandtheburnersaremanufacturedtoveryfinetolerancesandfittedwithmanysmallorifices,a

filterisinstalledtoprotectthefuelcontrolcomponentsfromcontaminates.Thefiltermustbecapableofremovingparticlesmeasuringassmallas10microns.

High Pressure Fuel Pump

Enginemountedfuelpumpsarerequiredtodeliveracontinuoussupplyoffuelattheproperpressureatalltimesduringoperationoftheaircraftengine.Thefuelpumpsmustbecapableofdeliveringmaximumneededflowathighpressuretoobtainsatisfactorynozzleatomisationandaccuratefuelregulation.Thetwocommontypesofenginedrivenfuelpumpsnormallyusedare:

  Spurgear.

  Pistontype.

Spur Gear

Gear type pumps have approximately straight line flow characteristics, whereas fuelrequirements fluctuate with flight or ambient air conditions. Hence a pump of adequatecapacityatallengineoperatingconditionswillhaveexcesscapacityovermostoftherangeofoperation. This isacharacteristicwhichrequiresthe use ofapressurerelief valve fordisposingofexcessfuel.AtypicalconstantdisplacementgearpumpisillustratedinFigure1.2-6.Thefuelentersthepumpattheimpellerwhichgivesaninitialpressureincreaseanddischargesfueltothetwohighpressuregearelements.Eachoftheseelementsdischargesfuelthroughacheckvalvetoacommondischargeport.Shearsectionsareincorporatedinthedrivesystemofeachelement.Thus,ifoneelementfails,theothercontinuestooperate.Thecheckvalvespreventcirculationthroughtheinoperativeunit.Oneelementiscapableof

supplyingsufficientfuelformoderateaircraftspeeds. Areliefvalveisincorporatedinthedischargeportofthepumptoallowfuelinexcessofthatrequiredbytheenginetoberecirculatedtoininletsideofthehighpressureelements.

Figure1.2-6  

Page 43: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 43/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page7of34

 

Piston

The variable displacement pump (Figure 1.2-7) system differs from the constantdisplacementpumpsystem. Pumpdisplacement ischangedtomeet thevaryingfuelflowrequirements,thatis,theamountoffueldischargedfromthepumpcanbemadetovaryat

anyonespeed.Thisisduetotheinclinationofthecamplate,movementoftherotorimpartsareciprocatingmotiontotheplungers,thusproducingapumpingaction.Thestrokeoftheplungersisdeterminedbytheangleofinclinationonthecamplate.Thedegreeofinclinationisvariedbythemovementofaservopistonthatismechanicallylinkedtothecamplateandisbiasedbyspringstogivethefullstrokepositionoftheplungers.Thepistonissubjecttoservopressureon the spring sideand onthe otherside topumpdeliverypressure, thus,variations in the pressure difference across the servo piston cause it to move withcorrespondingvariationsofthecamplateangleandthereforepumpstroke.

Withavariableflowpump,thefuelcontrolunitcanautomaticallyandaccuratelyregulatethepumppressureanddeliverytotheengine.

Figure1.2-7   

Fuel pressure differential switch

Thedifferentialpressureswitchisusedinthefuelsystemtodetectthepresenceoficingonthefuelfilterandilluminatesacockpitwarninglightwhenthepressuredifferentialreachesasetamount.

 Afuelpressuredifferentialswitchtakesapressurereadingfromnearthefuelflowtransmitterandfrombetweenthefuelfilterandhighpressurepumptogiveanindicationthatthefuelfilterisbecomingblockedbyiceorforeignmaterialinthefuelthusenablingthepilottoselectfuelheatingtoremoveicefromthefilter.

Page 44: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 44/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page8of34

Fuel Control Units

Thecontrolofpower(orthrust)inagasturbineengineisaffectedbyregulatingthequantityoffuelinjectedintothecombustionchamber.If toomuchfuelissuppliedtothecombustion

chamber,theturbinesectionmaybedamagedbyexcessheat,thecompressormaystallorsurgebecauseofbackpressurefromthecombustionchambersorarichblowoutmayoccur. A rich blowout occurs when the mixture is to rich too burn. If too little fuel enters thecombustionchambersaleandieoutoccurs. Aleandieoutoccurswhen themixtureis toleantoburn.

Theusualmethodofvaryingthefuelflowtothecombustionchamberisviaafuelcontrolunit.Fuel control units operate using either, hydropneumatic, hydromechanical,electro-hydromechanicalorelectroniccontrolprinciples.

Hydromechanical.

Formanyyears themajorityof fuel controlunits havebeenhydromechanicalinoperation.Thismeans theiroperation iscontrolledboth byhydraulic (fuel)andmechanicalmeans to

controlthefuelflowtotheengine.

Hydropneumatic.

Thesefuelcontrolunitsuseengineairpressuresandmechanicalforcestooperateitsfuelschedulingmechanisms.

Electro-hydromechanical.

Latermodelgasturbineenginesarecontrolledbyelectronicfuelcontrolsystems.Theseareknown as electro-hydromechanical fuel control units. These systems use computers thatsenseinputstosetthehydromechanicalsectionofthefuelcontrolunitthatlimitsthefuelflowtotheengine.

Electronic.

Many modern engines, now use a computer or electronic device that controls the fuelmanagementsystem.Withthesecontrolsit ispossibletopressthestartbutton,thenmovethe throttle to maximum power, the engine control then regulates the engine to achievemaximumpowerwithoutexceedingRPM,acceleration,temperatureandpressure limitsofthatengine.

Page 45: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 45/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page9of34

Hydropneumatic Fuel Control

 AsimpleRPMcontrolsystem,showninFigure1.2-8,provides:

  RPMcontrol.

 

 Accelerationanddecelerationcontrol.

  Minimumandmaximumflowcontrol.

Ithasinputsof:

  RPMcommand.

   ActualRPM.

  Inlettemperature.

  Compressoroutletpressure.

InregardtoFigure1.2-8,thefuelpumpsuppliesmorefuelthanisrequiredandthebypassvalve returns excess back to the pump inlet. The bypass valve incorporates a pressureregulator to ensure the pressure differential across the metering valve is unaffected bymovementof themeteringvalve. Therefore, fuel flowiscontrolledonlybymetering valveposition.

RPM is the primary control parameter, and compressor discharge pressure and inlet airtemperaturearesecondaryparameters.Togethertheycontrolthemeteringvalveviaaservobellowsassembly.

“On speed” RPM ismaintained by the governor in conjunction with the governor bellowspressurePy. The flyweightsof thegovernorrespond toanRPMchangebyincreasingordecreasingtheopeningofthegovernorvalve,whichinturnaltersPyandthustheextensionofthegovernorbellows.ThebellowsassemblyopensthemeteringvalveslightlywhenthereisafallinRPMandclosesitslightlywhenthereisariseinRPM.

POWERLEVER

IDLE MAX

INLET AIR TEMPERATURESENSOR

DECELERATION BELLOWS GOVERNOR BELLOWS

MAXIMUM FLOW STOP

METERING VALVE

 OP E N

 C L   O S E D

FUEL TO ATOMISERS

BYPASS ANDPRESSUREREGULATINGVALVE

MINIMUM FLOWSTOP ACCELERATION BELLOWS

PUMP

FUEL IN

COMPRESSOR OUTLET PRESSURE Pc

 AIRFLOW

BI METALLIC

DISCS

RPM GOVERNOR

FLYWEIGHTS

SPEEDER SPRING

GOVERNOR VALVE

Py

Px

Figure1.2-8

Page 46: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 46/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page10of34

 

Figure1.2-9  

Page 47: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 47/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page11of34

 

Foracceleration,aninputforcefromthepowerleverincreasescompressiononthespeederspring.Thismovestheflyweightsofthegovernorinwardsandclosesthegovernorvalve.Withthegovernorvalveclosed,accelerationcontrolpressure(Px)andgovernorpressure(Py)bothincreasewithcompressorpressure(Pc),causingthebellowsassemblytogradually

open the metering valve. System design ensures that increasing fuel flow matchesincreasingairflowthroughtheengineandthataccelerationtakesplacewithoutriskofstallorsurge.WhenthedesiredRPMisreached,thegovernoragainmaintains“onspeed”RPM.

Duringdeceleration,thereversesequenceoccurs.Therateofdecelerationiscontrolledbythedecelerationbellows,whichensuressmoothdecelerationwithouttheriskofflameout.

The bi-metaldiscsare a typicalmeans ofsensing inletduct temperature. TheycontrolameteringdevicewhichaffectspressuresPxandPy.Thisreducestheaccelerationrateunderhotconditions,preventingexcessiveturbinetemperatureandtheriskofcompressorstallorsurge.

Hydro-mechanical Fuel Control System

Hydro-mechanicalFCU’sunitusefloworpressurecontroltoregulatetheflowoffuel.Flow Control

Flowcontrolunitsregulatethefuelsystembybypassingexcessunwantedfuelbacktotheinletsideofthefuelpump.

PriortothestartbeingactivatedtheFCUisinthefollowingconditions:

  Fuelshutoffvalveclosed.

  Powerleveratidle.

  Governorspeederspringisinanexpandedcondition.

  Governorflyweightsinanunderspeedcondition.

  Burnerandinletpressurebellowsaresensingbarometricpressureandthemultiplyinglinkageisinthedecreaseposition.

  Differentialpressureregulatingvalvewillbeclosed.

  Meteringvalveisheldofftheminimumflowstopbythebalancedspringpressuresofthegovernorandmainmeteringvalve.

ReferFigure1.2-9:

Page 48: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 48/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page12of34

Figure1.2-10   

Page 49: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 49/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page13of34

Starting

 After thestartbutton ispressedtheenginebeginsto rotate, the flyweightsin thegovernorbegintoopen,overcominginitialspeederspringtensionmovingtherollercageupwardsthus

reducingthemeteringvalveopening.The fuel pump pressurises the fuel system until the relief valve pressure in the pump isreached.

WhentheenginehasacceleratedbythestartertoasetRPM,orafteracertainperiod,thefuelshutoffvalveisopenedcausing:

  Fueltoflowtotheburnerscausingadifferentialpressureacrossthemeteringvalve,thereforethedifferentialpressureregulatorsensesthedifferenceandbeginstoregulatethefuelpressure.

  Oncecombustioncommences,theenginebeginstoaccelerate,theburnerpressureincreasescausingtheburnerpressurebellowstomovethemultiplyinglinkageto

beginopeningthemainmeteringvalvethroughtherollercage.   AstheengineacceleratestowardsidleRPM,thespeedgovernorandpressurebellowsbegintoregulatemeteringvalveopeningcommencinggovernedoperationatidlespeed.

ReferFigure1.2-10:

Page 50: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 50/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page14of34

Figure1.2-1.2  

Page 51: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 51/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page15of34

 

Governed or Steady Operation

Duringgovernedorsteadyoperation,considerthatthepowerleverissetatacertainpositionandnotchanged.Aftertheenginespeedisset,theengineissubjecttocertainoperatingvariablessuchasaircraftspeedandaltitudetowhichitmustreact.

Ifanaircraft isincreasingspeedordescending itwill increases inletramair pressureandmassairflow.Alternativelyanaircraftthatisinaclimbandorslowingwilldecreaseinletairpressureandmassairflow.

Theinletandburnerpressurebellowssensethesechangesandmovesthemultiplyingleverinanappropriatedirectiontomaintainthefuelmixtureratio.Atthesametime,theenginespeedgovernorreactstoanyspeedvariations,movingthepilotservorodvalvetoreturntheenginetoasteadygovernedstate.

ReferFigure1.2-1.2:

Page 52: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 52/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page16of34

Figure1.2-12

Page 53: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 53/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page17of34

 

Acceleration

Movementofthepowerleverinanincreasedirection,causesthespringcaptoslidedownthepilotservovalverodandcompresstheflyweightspeederspring.

In doing so, the spring base pushes down and forces the flyweights in at the top to anunderspeedcondition,movingthepilotvalverodinadownwardsdirection.

Thepilotservovalvefunctionstoslowthemovementofthepilotservocontrolrodpreventingsuddenfuelratiochangesbyusingitsfluiddisplacedtoptobottomasarestrictor.

Whenthepilotvalverodmovesdown,therollerwillmovedowntheinclineplaneandtotheleft. As itmoves left, the roller will force themeteringvalve to the left against its spring,allowingincreasedfuelflowtotheengine.

 Asfuelflowincreasesthedifferentialpressurevalvewill senseadecreaseddifferentialandclosetomaintainthedifferential.Withincreasedfuelflow,theenginewillspeedupanddrivethefuelcontrolshaft faster,as theenginespeed increases theburnerpressure increaseswhich expands the burner pressurebellows thatmoves the multiplying linkage to the left

furtherincreasingthefuelflow.

The new flyweight force will come to equilibrium with the speeder spring force as theflyweightsreturntowardanuprightposition.

Theyarenowinpositiontoactatthenextspeedchange.

ReferFigure1.2-12:

Page 54: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 54/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page18of34

Figure1.2-13  

Page 55: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 55/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page19of34

 

Deceleration

Movementofthepowerleverinadecreasedirection,causesthespringcaptoslideupthepilotservovalverodandreleasepressureontheflyweightspeederspring. Indoingso,thespringbasemovesupandtheflyweightsmovetoanoverspeedcondition,movingthepilot

valverodinaupwardsdirection.

Thepilotservovalvefunctionstoslowthemovementofthepilotservocontrolrodpreventingsuddenfuelratiochangesbyusingitsfluiddisplacedtoptobottomasarestrictor.

Whenthepilotvalverodmovesup,themeteringvalvespringwillforcethemeteringvalveand the roller to the right as it moves up the inclineplane, allowing less fuel flow to theengine.

With decreased fuel flow, the differential pressure valve senses the increased differentialacross themeteringvalveandopens tomaintain the differential and the enginewill slowdownanddrivethefuelcontrolshaftslower,thisslowingoftheenginedecreasestheburnerpressure which through the bellows moves the multiplying linkage to the right further

decreasingthefuelflow. As the new flyweight force comes into equilibrium with the speeder spring force, theflyweightsreturntowardanuprightposition.

Theyarenowinpositiontoactatthenextspeedchange.

ReferFigure1.2-13:

Page 56: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 56/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page20of34

Figure1.2-14  

Page 57: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 57/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page21of34

 

Shut Down

Priorto shutdowntheenginemustbeallowedtostabiliseatidleforaperiodtoensureagradual cooling of the turbine and scavenging of propeller control oil in turbo propellerengines.Onasimplifiedfuelcontrolunit,shutdowntakesthefollowingprocedure(Figure

1.2-14):

  Withtheengineatidlegovernedspeed,thefuelshutoffvalveisclosed.

  Whentheshutoffvalveisclosed,therewillbenofuelflowtogiveadifferentialfuelpressure,thusclosingthedifferentialpressureregulatingvalvecausingthefuelpumppressurereliefvalvetocontrolmaximumfuelpressure.

Oncecombustionceases,theenginespeedwillbegintodecreasesendingthegovernorintoanunderspeedcondition,atthesametimetheburnerpressurewilldecreasemovingthemultiplyinglinkagetoclosethemeteringvalve.

ReferFigure1.2-14:

Page 58: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 58/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page22of34

Figure1.2-15  

Page 59: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 59/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page23of34

Hydropneumatic Fuel Control

Hydro-pneumatic fuel control units rely heavily on compressor discharge pressures tomaintainthecorrectairfuelratio.AcommonsystemisshownatFigure1.2-15.

Fuelissuppliedtothefuelcontrolunitatpumppressure(P1)whichisappliedtotheentrancetothemeteringvalve.Themeteringvalve,inconjunctionwiththemeteringheadregulatorvalvesystem,servestoestablishfuelflow.

Thefuelpressureimmediatelydownstreamofthemeteringheadbecomes(P2).Thebypassvalve maintains a constant fuel pressure differential (P1-P2) across the metering valveassuringthatfuelflowisafunctionofthemeteringheadorificeonly.

Operation of Control

  Unmeteredfuelpressure(P1)issuppliedtotheFCUbythefuelpump

  Thedifferentialmeteringheadregulatormaintainsaconstantpressuredropacrossthemeteringhead(P2).Ensuringconstantflow.

  Fuelbypassedbacktopumpinletbecomes(Po)

 

Theairsectionisoperatedbycompressordischargeair(Pc).

  Whenmodifiedthisairbecomes(Px&Py)whichacttopositionthemeteringvalve.

Tt2 Sensor

TheTt2 sensor acts tovaryPxbleed inlinewithvaryingair densityatidlepositionsthuspreventingidlestallproblemsthroughoverorunderfuelling. Thiscircuitlosesit’sauthorityabovetheidleposition.

When the Power Lever is Advanced

 

Theflyweightsdroopin,thespeederspringforcebeinggreaterthantheflyweightforce.

 

ThegovernorvalveclosesoffthePybleed.

  Theenrichmentvalvemovestowardsclosed,reducingPcairflow(notasmuchairpressureisrequiredwhenPybleedsareclosed).

  Px&Pypressuresequaliseonthesurfaceofthegovernor.

  Pxaircontractstheaccelerationbellowsandthegovernorbellowsrodisforceddownward.Thediaphragmallowsthismovement.

  Thetorquetuberotatescounterclockwiseandthemainmeteringvalvemovesto

open.  TheflyweightsmoveoutwardsasenginespeedincreasesandthegovernorvalveopenstobleedPyair.

The enrichment valve re-opens and Px air increases over the Py value

  ReducedPyvalueallowsthegovernorbellowsandrodtomoveuptoanewstabilisedposition.

  Themeteringvalveresumesanewpositionthroughtheactionofthetorquerodassembly.

Page 60: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 60/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page24of34

When the Power Lever is Retarded

  Theflyweightsmoveoutwards-speederspringforcebeinglessthanflyweightforceduetohighengineRPM

 

ThegovernorvalveopensdumpingPyair.Thebackupvalveisalsodepressed,dumpingadditionalPyair

  Theenrichmentvalveopens,allowingincreasedPxairflow

  Pxairexpandsthegovernoranddecelerationbellowstoit’sstop

  Thegovernorrodalsomovesupandthemainmeteringvalvemovestowardsclose.

 

Pxairdecreaseswithenginespeeddecreasebuttheaccelerationbellowsholdsthegovernorrodup.

 

 Asenginespeedslows,theflyweightsmovebackin,closingthePybleedatthegovernorvalveandthebackupvalve

 

TheenrichmentvalvemovestowardsclosedandPyairincreasesinrelationtothePxvalue

  Thedecelerationbellowsmovesdownward.Themeteringvalvemovesslightlyopentoproduceastabilisedfuelflow

Page 61: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 61/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page25of34

Electro-hydromechanical Control System Operation

Electro-hydromechanical fuelcontrol systemsaresometimes referred to aselectronic fuelcontrolsbecausethemajorityofthesystemismadeupofelectroniccircuits.Becauseofthe

needtopreciselycontrolmanyfunctionsintheoperationofmodernhighbypassturbofanengines, electronicenginecontrolsystemshavebeendeveloped. Thesesystemsprolongengine life, save fuel, improve reliability, reduce crew workload and reduce maintenancecosts.Twotypesofelectronicenginecontrol(EEC)systemsinuseare:

  SupervisoryElectronicEngineControl.

  FullAuthorityElectronicEngineControl.

Supervisory Electronic Engine Control System

Essentially the supervisory electronic engine control system is a electronic device whichreceives information from various engine parameters and then limits the fuel flow to thehydromechanicalfuelcontrolandengine.

 As can be seen in Figure 1.2-16 the control amplifier receives a signal from turbine gastemperature(TGT)andtwocompressorspeedsignals(N1andN2).

Thiscontrol,worksasahydromechanicalunituntilnearfullpower,whentheelectroniccircuitstarts to function as a fuel limiting device to control maximum TGT and, N1 and N2compressorspeeds.

Thepressureregulatorinthisinstallation,regulatesthefuelpressureatthefuelpumpratherthanthefuelcontrolunit.Nearfullpower,whenpredeterminedTGTandcompressorspeedvaluesarereached,thepressureregulatorreducesfuelflowtothespraynozzlesbyreturningincreasingamountsoffueltothefuelpumpinlet.

Thefuelflowregulator in thiscontrolactsasahydromechanical control, receiving signals

from high speed compressor (N3), gas path pressure (P1, P2 and P4) and power leverpositiontoregulatefuelflowtotheengine.

Figure1.2-16  

Page 62: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 62/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page26of34

 

Full Authority Electronic Engine Control System

Fullauthorityelectronicfuelcontrolunitsuseanelectronicdevicethatsensesvariousinputsfromtheengineandpilottodeterminehowmuchfuelshouldbedeliveredtothefuelnozzles.

The full authority electronic engine control system performs all functions necessary tooperateaturbofanengineefficientlyandsafelyduringalloperatingconditionsfromstartuptoshutdown.

Benefitsofusingelectronicenginecontrolarereducedcrewworkload, increasedreliability,improvedreliability,andreducedfuelconsumption.

Flight crewworkloadis decreasedbecause thepilotutilisestheEPRgaugeto set enginethrustcorrectly.TheEECwillautomaticallyaccelerateordeceleratetheengineto theEPRlevelwithout thepilothaving tomonitor theenginegauges. Reducedfuel consumption isattainedbecausetheEECcontrolstheengineoperatingparameterssothatmaximumthrustisobtainedfortheamountoffuelconsumed.

Engine trimming iseliminatedby the use of full authorityEEC, as the engine fuel control

systemhasfaultsensing,selftestingandcorrectingfeaturesdesignedintotheEECgreatlyincrease the reliability and maintainability of the system. The only adjustments that arecarriedoutbythemaintainerisspecificgravityandidleRPM.

TheEECisprovidedwithfeedbackviavalvesandactuatorsfittedwithdualsensors.

Theelectroniccomputermayhavemanyinputsandoutputsincluding:

  N1 Fanspeed.

  N2 Intermediatepressurecompressorspeed.

  N3 Highpressurecompressorspeed.

  Tt2 Inlettotaltemperature.

  Tt8 Highpressureturbineinlettemperature.

  Pt2 Inlettotalpressure.

  28V DC Inletpower.

  PMG PermanentmagnetACpower.

  PLA Powerleverangle.

  IGV AInletguidevaneangle.

  Ps6 Highpressurecompressordischargestaticpressure.

 

Wf Fuelflow.   ACC Activeclearancecontrol(compressorandturbineblade.Coolingair suppliedbyfanair).

  EPR Enginepressureratio.

Page 63: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 63/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page27of34

Toprovideahighdegreeofreliability,FADECsystemsaredesignedwithseveralredundantanddedicatedsubsystems.AnEECconsistsoftworedundantchannels(AandBchannels)that send and receive data. Each channel consists of its own processor, power supply,memory,sensors,andactuators.Inaddition,anyonechannelcantakeinformationfromthe

otherchannel.Thisway,theEECcanstilloperateevenifseveralfaultsexist.Asasecondbackupshouldbothchannelsfail,theactuatorsarespringloadedtoafailsafepositionsothefuel flow will go to minimum. If both channels are serviceable, the Active channel willalternatewitheachenginestart.TheotherchannelisinStandbymode.Powermanagementcontrolstheenginethrustlevelsbymeansof throttleleverinputs.Itusesfanspeed(N1)asthethrustsettingparameter.

 As shown in Figure 1.2-17, the full authority electronic engine control receives data fromvarious areas, then analyses the data and sends commands to position the Inlet GuideVanesandschedulefuelflowthroughthehydro-mechanicalsectionofthefuelcontrolunit.

Figure1.2-17   

Page 64: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 64/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page28of34

 

Fuel System Maintenance

Properandregularinspectionofaircraftfuelsystemsiscriticaltothesafeoperationoftheaircraft. The failure ofa componentmay result inanengine failure due to insufficient orexcessfuelbeingthedeliveredtotheengineorcouldresultinafireinoraroundtheengine.

While the following text providesgeneral informationconcerning engine fuel systems, themanufacturers specific guidelinesmust be followed when performingmaintenanceof gasturbineenginefuelsystems.

Routine maintenance of gas turbine engine fuel systems include the following genericinspectionsandoperations:

   Allfuellinesforleaks,chafedorfrayedwallsandcontactwithothercomponents.

  Cleaningandinspectingfuelfilters.

  FCUcontrolsforserviceabilityandrigging.

  Lowandhighpressureshutoffvalvesforoperationandsealing.

 

Drainvalvesforoperationandsealing.

  Pressurisinganddumpvalvesforoperationandsealing.

  Fuelheatersforleaksandoperation.

  Oilcoolersforleaksandoperation.

  Pressuresensinglinesforrestrictions.

  OnenginesfittedwithEEC,performselftestandanalysisofthecomputersystem

  Bleedingofanytrappedairinsystemsthatarenotselfbleedingafterdisturbinganyfuelsystemcomponent.

 

Regularengineperformancechecks.

   Anymaintenancethatmaybedeemednecessaryfollowinginspectionoftheenginefuelorrelatedsystems.

Fuel System Faults Table 1)

Fuel systems, Fuel Pumps and Fuel Control Units can cause a wide variety of enginemalfunctions someofwhichmay be difficult toanalyse. A thorough understandingof thesystemanditscomponentsisessentialif thetechnicianhopestoresolvetheproblemsofaparticularsystemeffectively.

The following chart lists some common problems encountered with fuel systems andsuggestsgenericremedies.

Technicians should analyse the type of system on which they are working and becomefamiliarwiththeoperationofthefuelcontrolandothercomponentsusedinthatsystem.

Page 65: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 65/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page29of34

 

INDICATION POSSIBLE CAUSE REMEDY

Enginemotorsoverbut

doesnotstart.

Improper rigging of shut off

valve.

Checkandre-rigairframeand

enginelinkages. Cloggedoricedfuelfilters. Clean.

Malfunctioningfuelpump. Checkandorreplace.

Malfunctioningfuelcontrol. Replacecontrol.

Pressurising and dump valvestuckopen.

Replacevalve.

Enginestarts,butwillnotacceleratetocorrect

speed.

Insufficientfuelsupplytocontrolunit.

Check fuel system to ensureall valves are open andpumpsareoperative.

Fuel control main meteringvalvesticking.

Flush system. Replacecontrol.

Fuel control bypass valvestickingopen.

Flush system. Replacecontrol.

Drainvalvestuckopen. Replacedrainvalve.

Starting fuel enrichmentpressure switch setting toohigh.

Replacepressureswitch.

Control has entrapped airpreventingproperoperation.

Bleed control as permaintenancemanual.

EGTtoolowduringstart.

 Accelerationcam in fuelcontrolincorrectlyadjusted.

Re-trimasrequired.

EGTtoohighduringstart.

Fuel control bypass valvestickingclosed.

Flush system. Replacecontrol.

Fuel control acceleration camincorrectlyadjusted.

Replacecontrol.

Defectivefuelnozzle. Replacenozzlewith a knownserviceableitem.

Fuelcontrolthermostatfailure. Replacecontrol.

Pressurisation and dump valvewitheithervalvepartiallyopen.

Replace pressurisation anddumpvalve.

EnginehashighEGTattargetenginepressureratiofortakeoff.

Engineoutoftrim. Re-trimasrequired.

Enginerumblesduringstartandatlowpowercruiseconditions.

Pressurising and drain valvemalfunction.

Replace pressurising anddrainvalve.

Fuelcontrolmalfunction. Replacefuelcontrol.

Page 66: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 66/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page30of34

 

INDICATION POSSIBLE CAUSE REMEDY

EngineRPM“hangs-up”

duringstart.

Lowambienttemperatures. If hang-up is due to low

ambient temperature, engineusually can be started byturning on fuel boosterpumporbypositioningstartlevertorun earlier in the startingcycle.

Engineunabletoobtaintakeoffpower.

Incorrectcontrolrigging. Check or re-rig engine andairframe.

Partiallycloggedfuelfilters. Cleanfilters.

Incorrectfuelpumppressure. adjust pressure or replacepump.

Incorrect control outputpressure.

Re-rigorreplacecontrol.

Highfueltemperature. Valvestuckopeninfuelheater. Replacefuelheater.

Highfuelconsumption. Fuelsystemleak. Repairasrequired.

Dump valve stuck partiallyopen.

Replace pressurisation anddumpvalve.

Lackofthrottleresponsefrommaximumcontinuous.

Fuelcontrolunitinternalfailure. Replacecontrolunit.

Page 67: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 67/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page31of34

Factors Controlling FCU Performance

TheFCUmust sense the variousoperating and environmental parameters toenable it tosupplytheenginefuelinthecorrectquantities.ParametersthatdirectlyeffecttheFCUare:

 

Powerleverangle.

  RPM.

   Airtemperature.

   Airpressure.

  Burnerpressure.

  Fueldensity.

Power Lever Angle

The power leverangle is the pilotsmain controlover the engine. The power leverangle

schedules the fuel required to the enginewithout taking into account the otheroperatingparameters.

RPM

Tobeabletoproducethevaryingpowersrequired,theenginemustbeabletooperateatdifferentspeeds.RPMissensedsothattheFCUcanprovidetheappropriatefuelflowfortheRPMatwhichtheengineisoperating.

Air Pressure

 Asexplainedin Fundamentals,air pressurehasadirectrelationshipwith theairdensityormassie.ifweweretotakeasealedballoonofairfromsealevel,toabout16500,feettheballoonwouldhaveexpandedtotwiceitssize,wewouldthenhavehalveditspressure.

For a turbineengine, an increase inaltitude / a decrease inair pressure, will reduce theweightofthetotalairmassthatwillflowthroughtheengineatagivenRPM.

Air Temperature

 As explained in Trade Fundamentals, air temperature has a direct relationship with airdensity, ie. an increase in temperaturewill give an increase in volume. Therefore for aturbineengine,anincreaseinairtemperaturewillreducetheweightofthetotalairmassthatwill flow throughthe engineatagivenRPM, requiring the FCU toreduce the fuel flow tomaintainthecombustionprocess.AscanbeseeninFigure1.2-18,temperaturehasaneffectontheengineperformance.

Figure1.2-18  

Page 68: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 68/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page32of34

 

Burner Pressure

Staticpressureinthecombustionchamberisausefulmeasureofmassairflow.Ifthemassairflowisknown,theair/fuelratiocanbemorecarefullycontrolled.Asaircraftusebleedairfrom the engine compressor to provide various services, it is imperative that the burner

pressureisknowntoprovideanaccuratefuelregulationwhentheseservicesarebeingused.

Combustion chamber pressure and inlet pressure acting through bellows and leverassembliescangiveaccuratecontrolofthefuelbeingintroducedintotheenginetocontroltheair/fuelmixture.

Fuel Density

 As the different types of fuels that may be used in gas turbine engines have differentdensitiesorspecificgravities,thefuelcontrolunitneedsamethodofbeingabletoadjustforthevariousflowsthatoccurifdifferentfuelsareused.

Variationofthefueldifferentialpressurevalvespringtensioncanbeusedtochangethefuelflowtoaccommodatefordifferentfuel’sspecificgravity.

Specificgravityadjustment,shownatFigure1.2-19,isameansofresettingthetensiononthedifferentialpressureregulatorvalvespringwithinthefuelcontrolwhenanalternatefuelisused.

Figure1.2-19  

Fuel control unit components

Toadjusttovaryingconditionsandthrustrequirements,anFCUhasdifferentcomponents

fittedthatreacttoensurecombustioniskeptwithinallowablelimits.Thesecomponentsare:

  Speedgovernors.

  Differentialpressureregulator.

   Accelerationgovernors.

  Pressuresensors.

Page 69: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 69/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.1.2EngineFuelSystemsIssueB:January2008 Revision1 Page33of34

Speed governors

The FCU’sspeedgovernor(s) senseengine speedand act tomaintain the desiredRPM.Whendifferentloadsareapplied,flyweightsandaspeederspringoperate leversorbleed

controlstoadjustthemeteringvalveopeningallowingtheenginetomaintainthesetRPM.Differential Pressure Regulator

Thepressure regulatingvalvediaphragm isexposedononeside topumpoutlet pressureandontheothersidetothecombinedeffectofthrottlevalvedischargepressureandaspringforcepresettomaintainthedesiredpressuredropacrossthethrottlevalve.Withaconstantpressuredropacrossthethrottlevalve,flowthroughthethrottlevalvewillbeproportionaltoitsorificearea.Onflowcontrolsystems,anyexcessfuelabovethatrequiredtomaintaintheset pressuredifferential isbypassedback tothe inletsideofthe fuelpump. Onpressurecontrol systems, the pressure differential regulator controls the piston pump swash plateangle,thereforecontrollingpressureandflow.

Acceleration limiters

Precisecontroloffuelflowisnecessaryforgoodaccelerationresponsewithoutriskofturbineovertemperatureandcompressorstallorsurge.

Thefuelcontrolunitmustalsopreventoverrichmixturesduringacceleration,andoverleanmixturesduringdeceleration,asbothcancauseflameout.Theformerisrarelyaproblembecausethemaximumturbinetemperatureoccursbeforetherichlimitisreached.

Largeengineswiththeirhighinertiarotatingpartsaremoredifficulttoaccelerateandcontrolthansmallerengines.Theyusuallyhavecomplexaccelerationcontrolsystemswhichreactto RPM, inlet temperature, inlet pressure and compressor discharge pressure. Theseparameterscontrolthepositionoftheaccelerationcam,whichinturncontrolsthefuelflowtoallow the maximum acceleration rate (the rate varies with temperature, RPM, and

compressorpressureratio).Simpler acceleration control systems can be used on smaller engines, because theseengines have low inertia rotating parts, which naturally gives them a good accelerationresponse.

Pressure Sensors

ThepressuresensorsofanFCUaresubjecttoinletandcompressoroutletairpressuresandacttoeffectthemeteringvalveopeningthereforecontrollingfuelflow.

Page 70: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 70/114

 

Part 66 Subject  B2-14 Propulsion

B:January2008 Revisi 1

 AA Form TO-19

B2-14.1.2EngineFuelSystemsIssue on Page34of34

Thispageintentionallyleftblank

Page 71: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 71/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page1of26

TOPIC14.2:ENGINEINDICATIONSYSTEMS

 Althoughengine installationsmaydiffer,dependingonthetypeofbothaircraftandengine,gasturbineengineoperationisusuallycontrolledbyobservingsomeoralloftheinstruments.

Engineindicationsaredividedintothreegroups.Theseare:

  Performanceinstruments.

  Conditioninstruments.

  Warningsystems.

Performance Instruments

Performance instruments allow the operator, at a glance, to monitor the output orperformanceoftheengine.Thisisdonebycheckingthethrustonturbojetenginesorthe

horsepowerforturboprops.Thetwomainperformanceinstrumentsare:

  EnginePressureRatio(EPR).

 

Torque.

Engine Pressure Ratio EPR)

Enginepressureratioisameasureofthethrustbeingdevelopedbytheengine.WhenEPRis measured the ratio is usually that of turbine discharge pressure to compressor inletpressure,however,onafanenginetheratiomaybethatofturbinedischargepressureandfanoutletpressuretocompressorinletpressure.

Suitablypositionedpitottubessensethepressuresappropriatetothetypeofindicationbeingtakenfromtheengine.ThesepitottubesareeitherdirectlyconnectedtotheindicatorortoapressuretransmitterwhichsendsanelectricalsignaltotheindicatorasshowninFigure2.1.

Figure2-1.

Page 72: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 72/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page2of26

 

EPR reflects the difference between the compressor inletpressureand turbine dischargepressure ie. the amount of work the engine is doing on the air. For example, an EPRindication of 2.4 means that the turbine discharge pressure is 2.4 times greater thancompressorinletpressure.

 An example of how, when planning a flight, pilots use ambient temperature and apredetermined “Takeoff Thrust SettingCurve” tocalculate the EPR required for takeoff isillustratedinFigure2.2.

Figure2-2.

Withtheambientairtemperatureoftheairfield20°CandusingthegraphabovethepilotwillcalculatetheE.P.R.requiredfortakeofftobe2.6.

Thisfigureiswhattheengineshoulddevelopwhenoperatingat,ornear,fullthrottle.

Page 73: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 73/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page3of26

Torque

Enginetorqueisusedto indicatethepowerdevelopedbyaturbo-propellerengine,andthe

indicatorisknownasatorquemeterasdepictedinFigure2.3.

Figure2-3.

Theenginetorque,orturningmoment,istransmittedthroughthereductiongearboxtothepropeller.Thetorquemetersystemistheprimaryperformanceinstrumentforturbo-propellerengines.

 An explanation of two different types of torquemeter systems is covered in the followingparagraphs.Theseare:

  Hydraulictorqueindicatorsystem.

  Torqueshaftindicationsystem.

Hydraulic Torque Indicator System

TheHydraulic Torque Indication system indicates torquebymeasuring hydraulic pressurecreatedbyatorquemetersystem.Thetorquemetersystemformspartofareductiongearassembly between theenginedriveshaftand thepropellershaft. The construction ofthesystemdependsonthetypeofengine,butallarebasedonthesameprincipleofoperation.

Thedriveshaftfromtheenginesuppliesatorquetothereductiongearassembly.Thisdrivestheplanetgearsaroundinthesamedirectionbutatafractionoftheenginespeed.Astheplanetgearsrotate,thepropellerrotatesaswell.

Thepropellerconvertsthisrotationforceintothrust.Todothistherotationofthepropellerisresistedduetoaerodynamicforces.Thisresistancecausestheplanetgearstotransferaportionofthetorquetothestationaryringgear.Figure2.4showshowthisoccurs.

Page 74: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 74/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page4of26

Figure2-4.

 AsshowninFigure2.5theringgearmovementis resistedbypistonsworkinginhydrauliccylinderssecuredtothegearboxcasing.Oilissuppliedtothecylindersfromaspecialpumpandisallowedtodrainviaacalibratedbleedline.

Theoilissubjectedtoapressurewhichisproportionaltothetorqueorloadwhichisappliedtothepropellershaft.Thisoilpressureissensedbyabourdontubewhichiscoupledtoasynchrotransmitter.

 Asimplesynchroindicatorinthecockpitdisplaysthetorqueinformation.

Figure2-5.

Page 75: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 75/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page5of26

 

Torque Shaft Indication System

 Anothermethodofobtaininganindicationof torqueisbymeasuringtheamountoftwistinashaftcalledatorqueshaft.

The torque shaftconnects the engine to the propeller reduction gearbox. Ahollow shaft,called a reference shaft, ismounted so that it formsa sleeve around the torque shaftasshowninthecutawaydiagraminFigure2.6.

Figure2-6.

Figure6.6showsthatthetorqueshaftisconnectedtoboththeengineandthegearbox.Theenginerotatesandthepropellerisdraggedthroughtheair.Thepropellerwilllagslightly,thiscausesthetorqueshafttotwistslightly.

Thereferenceshaftisnotsubjectedtoanytorqueasitisonlyconnectedtotheengine.

Ontheendofbothshaftsisagear,calledanexciterwheel.Amagneticpick-upassemblyismounteddirectlyaboveeachexciterwheelasshowninFigure2.7.

Figure2-7.

Page 76: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 76/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page6of26

 

 Astheshaftsrotate,theteethoftheexciterwheelspassbythemagneticpick-upassemblies.Eachtoothcausesapulsetobegeneratedbyitspick-upassembly.

When the engine isnot delivering anypowerto the gearbox, the teethonthe torque andreferenceshaftswillbealignedasshowninFigure2.8.

Figure2-8.

Whentheengineisdeliveringpowertothegearbox,thetorqueshaftwillbesubjectedtoatorquethatwillcauseittotwistslightly.Thisresultsintheteethonthetorqueshaftbecomingmisaligned with the teeth on the reference shaft (remember the reference shaft is notconnectedtoanythingandthereforewillnottwist)asshowninFigure2.9.

Figure2-9.

Page 77: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 77/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page7of26

 

Thissystemhas two othercomponents,aphase detector, anda torque indicator. Figure2.10showsacompletesystem.

Figure2-10.

Thesignalsfrombothpick-upassembliesarefedtothephasedetector.

The phase detector calculates the difference between the two signals and generates anoutputthatrepresentsthetorquethatisbeingmeasured.

Theoutputfromthephasedetectorisusedtodriveapointerinthetorqueindicator.

Condition Instruments

Condition instruments show the operator how hard the engine isworking to produce the

powerseenontheperformanceindicators.

Engineconditioninstrumentsinclude:

  Gastemperature.

  Fuelflow.

  Compressorspeed.

  Oiltemperature.

  Oilpressure.

  Inletairtemperature.

 

Enginevibration.

For free turbine engines, engine rpm is broken down into free turbine rpm (Nf) and gasgeneratorrpm(Ng).Forturbojetengines,enginerpmisbrokendownintolowpressurespoolrpm(N1),andhighpressurespoolrpm(N2).

Therelationshipbetweeninstrumentindicationsisaveryimportantguidetoenginecondition,efficiencyandperformance.Forinstance,iftorqueoilpressureorenginepressureratioislower than normal for a particular combination of turbine temperature, fuel flow, rpm, airtemperature, aircraft altitude and airspeed, then a loss of engine performance can besuspected.

Byanalysing instrument indications, flight crews andmaintenancepersonnel can forecast

troubleandtakepreventativeactionbeforeamajormalfunctiondevelops.Thisisknownas"trendmonitoring".

Page 78: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 78/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page8of26

Pressure Sensors

Figure2.11showsthecommonbasicdevicesusedforsensingpressure.Theyareusedtoactuatefluidicvalves,indicatorpointers,switchesandelectricalsignaltransmittersincontrol

andinstrumentapplications.

Theymaybedesigned,calibratedandconnectedtosense

   Absolutepressure-thepressureabovethezeroofacompletevacuum.

  Gaugepressure-thepressureaboveorbelowthe'ambient'(surrounding.atmosphereor,

  Differentialpressure-thedifferencebetweentwopressures.

 A flexible 'diaphragm'separating two chambers,as in (a), is sensitive to the difference inpressureeachsideofit.Thediaphragmdeflectsintothechamberwiththelowerpressure.Itisusually corrugated to increase its movement. If the chamber onone side isvented to

atmosphere,diaphragmdeflectiondependsonthegaugepressureintheotherchamber.Insomeapplicationsthepressuresinbothchambersmaydifferfromatmosphericpressureandfromeachother.

The'capsules'in(b)and(c)aremadefrompairsofdiaphragmsjoinedattheiredges.Apairofdiaphragmsformedintoacapsuleismoresensitivethanasinglediaphragmofthesamearea,thicknessandmaterial.

Sensitivitycanbefurtherincreasedbystackingcapsulesasin(c).Theamountacapsuleexpandsorcontractsdependsonthedifferenceinpressurebetweentheinsideandoutsidesurfaces. In(b) and (c) the capsulescouldbe 'plumbed' todifferential pressureor gaugepressure. Evacuating the capsules and then sealing them makes them sensitive to theabsolute pressure on their outside surfaces. They are then called 'aneroid' (without air)

capsules.'Bellows'liketheonein(d)arecylinderswithcorrugatedsidesthatallowthemtobereadilylengthenedwheninsidepressureishigherthanoutsidepressure,ortoshortenwhenoutsidepressureishigherthaninsidepressure.Theymaybeplumbedtosensegaugeordifferentialpressuresortheycanbeevacuatedandsealedtomakethemsensitivetoabsolutepressureontheirexternalsurface.

'Bourdontubes'arecurvedandhaveanovalcross-sectionasshownin(e).Pressureappliedtotheinsideofthetubetendstochangethecross-sectionfromovaltoround.Thiscausesthe tube tostraighten resulting inanoutwardsmovementof its freeend. Thereare also'helical'and'spiraltubes'asin(f)and(g)thatgivegreateroutputmovement.

Page 79: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 79/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page9of26

Thepressuresensorsillustratedandvariantsofthemareusedinmanyaircraftsystemsandcomponentsincluding

  Enginefuelmeteringsystems.

 

Engineairsystems.

  Indicatinginstrumentsthatmeasurealtitude,airspeed,MachNo.,verticalspeed;oilfuelandgaspressures;andtemperature.

Figure2-11.

Page 80: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 80/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page10of26

 

Pressure Indicator

 A pressure capsule similar to (B) at Figure 2.11 is shown at Figure 2.12 installed in aninstrumentcase.Throughport"B"pressureissuppliedtotheinsideofthecapsule.Throughport "A" the case of' the indicator is vented to atmosphere or "ambient" pressure. Aspressure increasesaboveambient,thecapsuleexpandsandthroughtheleverandrockingshaft,thesectorgearismoved.Thepiniongearnowrotatesthepointeragainstthetensionofahairspring.Theindicatorwillreadinpoundstothesquareinchorthemetricequivalent.Thisreadingwillbe"gaugepressure”andwillvaryduetopressurechangesinsideoroutsidethecapsule.

Considerhowthisindicatorcouldbeadaptedtoread(a)airspeed,(b)altitude.

Figure2-12.

Page 81: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 81/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page11of26

 

Oil Pressure Warning

General

Theoilpressurewarningsystemprovidesindication inthe flightcompartmentwhenengine

oilpressureisbelowapredeterminedsetting,orscavengefilterdifferentialpressureisaboveapredeterminedsettingasshownatFigure2.13.

Oil Pressure Light

Theoilpressurewarninglightprovidesanindicationwhenengineoilpressuredropsbelowspecifiedlimits,orscavengefilterdifferentialishigh.Fourlights,oneforeachengine,arelocatedonthePilot'sCentreInstrumentPanel.

Low Oil Pressure Warning Switch

Thelowoilpressurewarningswitchismountedonanadapterassemblyontherearfaceofthehighspeedexternalgearbox.Theswitchconsistsbasicallyofametalbodythathousesanelectricalswitchandconnector,andapressuresensingbellowstowhichoilissupplied

throughtwoholesinthemountingbase.Feedoilissuppliedtotheinsideofthebellowsandreturnoilissuppliedtothechambersurroundingthebellows.Expansionofthebellowsisopposedbyasnapactionspring,whichpreventsthebellowsfromactuatingtheswitchuntilapredeterminedoilpressuredifferentialisreached.

 Adecreaseinfeedoilpressureoranincreaseinreturnoilpressurewillcontractthebellowsand,atthepredetermineddifferentialpressure,actuatetheswitchtocompletethecircuit tothewarninglight.Thisdifferentialpressureissetat19-23PSIDforincreasingpressuresand20-16P510fordecreasingpressures.

Filter Pressure Differential Switch

The Filter Switch is mounted on the same assembly as the low oil pressure switch, itspurposeistoprovideawarninglightearthifthefilterisblockedbeyondacceptablelimits.Its

twopipelinesareconnectedonetothefilterinletandonetothefilteroutlet.If thepressuredifferencebetweenthesetwopointsexceedsnormalvaluestheswitchclosesandcompletesthecircuitforthewarninglight.

Page 82: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 82/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page12of26

Figure2-13.

Oil Pressure Indicating System

General

Theoilpressure indicatingsystemprovidesvisual indicationon the flight engineer's lowerinstrument panel of oil supply pressure and main filter differential pressure. Systemcomponents for each engine consist of a supply pressure transmitter, a main oil filterpressuredifferentialtransmitter,andadualindicatingoilpressure/differentialindicator.

Oil Pressure Transmitter

The oil supply pressure transmitter basically consists of a cylindrical case, housing, twoidenticalstatorwindingssurroundanarmaturecarried-onacentralspindle,whichlocatestoacapsulestack.Twoholesinabaseplatealignwithholesinthemountingfacesothatone

connectstomain feedoilpressure,which is routed toachambersurroundingthe capsulestack,andonetoreturnoilpressure,whichisroutedtotheinsideofthecapsulestack.

Variation in the differential oil pressure causes the capsule stack to expand or contract,impartinglinearmovementtothespindleandarmature.Theresultantchangeininductanceofthestatorwindingsandthereforetheratioofcurrenttotheindicatorcircuitisshownasanincreasedordecreasedindicatorreading.

Oil Filter Pressure Differential Transmitter

Theoilpressurefilterinlettransmitterismountedontheoilpressurefilteratthefrontfaceofthehigh-speedexternalgearbox. Itissimilartotheoilpressuretransmitter,butitscapsulestacksensesoilpressureintotheoilfilterandoutoftheoilfilter.

Page 83: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 83/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page13of26

Temperature Indicating Capillary

 

Temperature Sensors

Thisbasictypeof"temperaturesensor"reliesontheexpansionandcontractionofliquidsandgases.

 A 'Capillary' (small bore tube) type consisting of a temperature sensing bulb, a movingelement suchasa bourdon tube,andaconnectingcapillary tubeall completely filledwithmercury or alcohol. Changes of temperature vary the volume of the liquid. This in turncauses the bourdon tube to straighten with increasing temperature, or to curl more withdecreasingtemperature.

Thiscouldalsobea 'vapourpressuretemperaturesensor'. It issimilar to the expandingliquidtypedescribedaboveexceptthatatnormaldaytemperaturethebulbispartlyfilledwithavolatileliquid,andtherestofthesystemisfilledwithvapourfromthatliquid.Theamountof vaporisation and hence the pressure and bourdon tube movement varies with the

temperatureatthebulb.Thistypeoftemperaturesensorissuitedtoaircraftapplicationsbecausethesensingbulbcanberemotelylocatedfromtheindicator.It isusedasanengineoiltemperatureindicatoronmanylightaircraft.

Figure2-14.

Page 84: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 84/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page14of26

 

BI-Metal Temperature Sensor

Figure2.15illustratestheactionof'stripand'disc'typesof'bimetallictemperaturesensor'.Twometalsofhigh(brass)andlow(invar)temperaturecoefficientsarebondedtogether.Atsomedatumtemperaturethestripat (a)isstraight. Ifthestripisheatedthebrassexpands

morethantheinvartocauseittocurlasat(b).Ifthestripiscooledthebrasscontractsmorethantheinvartocauseittocurltheoppositewayasat(c).

Discshapedbimetallicsensorsarecommoninapplicationsrequiringasnapaction.Whenheated,aslightly domedbimetallicdiscwillsuddenlysnapacross tobeingdomedon theoppositeside.See(d)and(c).

Bimetallictemperaturesensorsareused:

  Intemperatureindicators.

   Astemperaturecompensatorsandcorrectorsinvariousinstrumentsandmechanisms.

 

Tooperateswitchcontactsincircuitbreakers,firedetectors,thermostatsandtimers.

Figure2-15.

Resistance Bulb Temperature Sensors

Theresistancewire,whichistheessentialfeatureoftheresistancebulb,restsinthespiralgroovesofaninsulatingmaterialandiscoveredwithametalshield,whichconductsheattoand from it very quickly. (See below) This metal shield must be able to withstand thecorroding influenceofengineoilsathigh temperatures, thehigh flash temperatures in thecarburettorofabackfiringengine,andthedeterioratinginfluenceoftheatmosphere.Eventhough the resistance bulb is covered with a metal shell and substantial insulation, itrespondstochangesintemperatureveryrapidly.Thissensitivityisimportantbecausethemembersof the flight crewarenot interestedinpasttemperatures; theywant toknowthesituationattheexactsecondthattheinstrumentisread.

Theactionofaresistancebulbmaybeunderstoodbystudyingthegraphbelow.Itwillbe

notedthattheincreaseinresistanceofatemperaturebulbisalmostlinearwithrespecttotemperaturechanges.

Page 85: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 85/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page15of26

 

 A typical application of the resistance bulb temperature sensor is the engine oil tempindicatingsystem.Whenthebulbisconnectedtoasuitablecircuit,suchasaratiometerorwheatstonebridge,itwillindicateariseinmeterreadinginalinearfashionasitheatsup.The bulbis immersed intheengineoil and anelectricalconnectorplugconnects it tothe

indicator,whichissuppliedwith28vd.c.Becauseofthepositivetemperatureco-efficientofresistance,anopencircuitwillcauseafullscalehighreadingandashortedbulbwillreadfullscalelow.

Ratiometer Temperature Indicator

 Aschematiccircuit illustratinghowa resistancebulb is connectedina ratiometercircuit isshownbelowatFigure2.16.Notethatthevoltagefurnishedbyabatteryisdividedbetweenthecircuitsofthetwocoilsby the fixedresistor inonesideandtheresistancebulb intheother. The series and shunt resistancesshown are for the purposeofcompensationandadjustment. Itisobviousfromthecircuitthatthecurrentthroughthetwosidesofthecircuitwillbeequalonlywhentheresistanceofthetemperaturebulbisequaltotheresistanceofthe fixed resistor. At this point themoving coils assume positions in fields of equal flux

density,asshown.Anychangeintheresistanceoftheresistancebulbwillcausetheratioofthecurrentstochangeandthecoilstoshifttoanotherposition.

Ratiometerthermometersmaybeusedforavarietyoftemperatureindications,amongwhicharethoseofinletairinajetengine,freeair,andengineoil.

Becausethepointerismovedbytheratioofcurrentinthetwocoilsthesystemdoesnothaveerrorsduetovariationsinsupplyvoltage.

Figure2-16.

Page 86: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 86/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page16of26

 

Thermocouple Instrument Systems

Oeofthemaincharacteristicsandadvantagesofthermocouple-typetemperaturemeasuringinstruments is their complete independence of the electrical system of the aircraft.Thermocouple-type instruments are used to measure cylinder head temperature (CHT),

turbineinlettemperature(TIT),andexhaustgastemperature(EGT)onreciprocatingengine-poweredaircraft.Onturbineengine-poweredaircrafttheyareusedtomeasuretheexhaustgastemperature(EGT),turbineinlettemperature(TIT),orintermediateturbinetemperature(ITT). Regardlessof the parameter theymeasure, these instruments work on the sameprinciple.

 AsshownatFigure2.17,whenthejunctionofwiresmadeoftwodissimilarmetalsisheated,currentwillflowfromthejunctionthroughoneofthewires,throughthecoilofthemeasuringinstrument,andbacktothejunction.Theamountofthiscurrentisdeterminedbytwofactors:by the resistance of the circuit and by the temperature difference between the hot, ormeasuringjunction,andthecold,orreferencejunction.

Figure2-17.

Page 87: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 87/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page17of26

 

Exhaust Gas Temperature

The complete EGT system for a turbine engine consists of: the probes that sense thetemperatureof theexhaustgas,theharnessthatsurroundstheenginetailpipeandservesasconnectionforalloftheprobes,extensionwiresthatcarrythecurrentfromtheprobesinto

thecockpit,resistorstoadjusttheresistanceof thethermocouplestothevaluerequiredforthesystem,andthe indicating instrument in theaircraft instrumentpanel. Theprobesaremounted in the tail pipeandare connected inparallelso that theiroutput isaveragedasshownatFigure2.18.

Some EGT systems use as their indicator a special form of direct current measuringD’Arsonvalmetermovement very similar to theonesued inreciprocatingenginesystems.ButsomeoftheothersystemsfeedtheoutputofthethermocouplesintoanelectroniccircuitwheretheDCvoltagefromthethermocouplesisconvertedintopulsatingDCwhichisfedintoaservo-typeinstrument.Thistypeofindicatorcangivethepiloteitherananalogoradigitalreadoutand,inmanyinstances,bothtypes.

Figure2-18.

EGT Thermocouple Probes and Harness

 

Probes

Eachoftheeightprobescontainstwochromel-alumelthermocouplejunctionsencasedinaswaged stainless steel housing insulated with magnesium oxide. The junctions are atdifferentimmersiondepthswithaprotectivesleevedrilledtoprovidepositivegascirculation.

Theprobesareinstalledusingatwo-boltmountingflangeattachedtoamountingbossontheengine. The probes are permanently connected into pairs using a steel tube that alsoencasestheelectricalleads.

TheeightthermocoupleprobesareconnectedinparallelandtheindicatorreadstheaverageoftheE.M.F.generatedineach.

Page 88: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 88/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page18of26

Tachometers RPM)

Non-electrical tachometers

 Almostallofthesmallgeneralaviationaircraftusenon-electricalmagnetic-dragtachometers.ThemechanismintheseinstrumentsisthesameasthatusedinanautomobilespeedometerandisshownatFigure2.19.

 Analuminiumcupfitscloseoverthespinningmagnetbutitdoesnottouchit.Asthemagnetspins,itslinesoffluxcutacrossthealuminiumcupandinducesavoltageinit.Thisvoltagecauses current (eddycurrent) toflow inthealuminium,and thiseddycurrentproducesitsownmagneticfieldthatopposesthefieldthatcausedit.Thetwofieldsproduceatorquethatrotatesthedragcupagainsttherestraintofacalibratedhairspring.Thefasterthemagnetspins,thegreatertheeddycurrentandthegreateritsmagneticfield,andthemoredragcupwillberotated.Thedragcupissupported,inabrassbushingbyasteelshaftWhentheengine is not running, the restraining hairspring holds the drag cup over so the pointerindicateszeroRPMonthedial

Figure2-19.

Page 89: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 89/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page19of26

 

Electrical RPM Indication

 Adirect-drivea.c.generatorisatFigure2.20,therotorbeingeithertwo-poleortwelve-pole,anddrivenviaasquare-endedshaft.Thetwopolegeneratorisutilisedinconjunctionwithathree-phase synchronous motor type of indicator, while the twelve-pole generator, which

produces a single-phase output at a high frequency is utilised in conjunction withcounter/pointerindicators,andalsoforsupplyingsignalstoenginecontrolunits.

 Atypicalindicator,shown in(B)consistsof twointerconnectedelements:a drivingelementandaneddy-current-dragspeed-indicatingelement.

Letusconsiderfirstthedrivingelement.Thisis,infact,asynchronousmotorhavingastar-connectedthree-phasestatorwindingandarotorrevolvingontwoballbearings.Therotorisofcompositeconstruction,embodyinginonepartsoft-ironlaminations,andintheotherpartalaminatedtwo-polepermanentmagnet.

 Analuminiumdiscseparates the twoparts,anda seriesof longitudinalcopperbarspassthrough the rotor forming a squirrel-cage. The purpose of constructing the rotor in this

manner is tocombine' theself-startingandhigh torquepropertiesofasquirrel-cagemotorwiththeself-synchronouspropertiesassociatedwithapermanent-magnettypeofmotor.

Thespeed-indicatingelementconsistsofacylindricalpermanent-magnetrotorinsertedintoadrumsothatasmallairgapisleftbetweentheperipheryofthemagnetanddrum.Ametalcup,calledadragcup,ismountedonashaftandissupportedinjewelledbearingssoastoreducefrictionalforcesinsuchawaythatitfitsoverthemagnetrotortoreducetheairgaptoaminimum.

 Acalibratedhairspringisattachedatoneendofthedrag-cupshaft,andat theotherendtothemechanismframe.Atthefrontendofthedrag-cupshaftageartrainiscoupledtotwoconcentricallymountedpointers;asmalloneindicatinghundredsandalargeoneindicatingthousandsofrev./min.

Figure2-20.a

Page 90: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 90/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page20of26

 

Sectionalview(Figure2.20b)ofatypicalsynchronousmotortypetachometerindicator:

Figure2-20b 

1. 

CantileverShaft

2. 

TerminalBlockAssembly3.  RearballBearing

4.  MagneticCupAssembly

5.  DragElementAssembly

6.  SmallPointSpindleandGear

7. 

OuterSpindlebearing

8. 

BearingLockingTag

9. 

IntermediateGear

10. 

bearingplate11.  HairspringAnchorTag

12.  InnerSpindleBearing

13.  Frontballbearing

14.  Rotorand

15. 

Stator

Page 91: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 91/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page21of26

System Operation

 As the generator rotor is driven round inside its stator, the poles sweeppast each statorwindinginsuccessionsothatthreewavesorphasesofalternatinge.m.f.aregenerated,the

wavesbeing120ºCapart(seebelow).Themagnitudeofthee.m.f.inducedbythemagnetdependsonthestrengthofthemagnetandthenumberofturnsonthephasecoilsasshownatFigure2.21.

Furthermore,aseachcoilispassedbyapairofrotorpoles,theinducede.m.f.completesonecycleatafrequencydeterminedbytherotationalspeedoftherotor.'Therefore,rotorspeedandfrequencyaredirectlyproportional,andsincetherotorisdrivenbytheengineatsomefixedratiothenthefrequencyofinducede.m.f.isameasureoftheenginespeed.

Thegeneratore.m.f'saresuppliedtothecorrespondingphasecoilsoftheindicatorstatortoproducecurrentsofamagnitudeanddirectiondependentonthee.m.f.'s.Thedistributionofstatorcurrentsproducesaresultantmagneticfieldwhichrotatesataspeeddependentonthegeneratorfrequency.

 As the field rotates it cuts through the copper bars of the squirrel-cage rotor, inducing acurrent inthemwhich, inturnsetsup amagnetic fieldaroundeachbar. The reaction ofthesefieldswiththemainrotatingfieldproducesa torqueontherotorcausingit torotateinthesamedirectionasthemainfieldandatthesamespeed.

 Astherotorrotatesitdrivesthepermanentmagnetofthespeed-indicatingunit,andbecauseofrelativemotionbetweenthemagnet and thedrag-cupeddycurrents are induced inthelatter. Thesecurrentscreate amagnetic fieldwhich reacts with the permanentmagneticfield,andsincethereisalwaysatendencytoopposethecreationofinducedcurrents(Lenz'slaw),thetorquereactionofthefieldscausesthedrag-cuptobecontinuouslyrotatedinthesamedirectionasthemagnet.

However, this rotationof the drag-cup is restricted by the calibrated hairspring in such a

mannerthatthecupwillmovetoapositionatwhichtheeddy-current-dragtorqueisbalancedbythetensionofthespring.Theresultingmovementofthedrag-cupshaftandgeartrainthuspositionsthepointersoverthedialtoindicatetheenginespeedprevailingatthatinstant.

Figure2-21.

Page 92: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 92/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page22of26

 

Autosyn Instruments

 An Autosyn system activates indicators in the cockpit without using excessively longmechanicallinkagesortubing.Theindicationispickedupbythetransmitterneartheengine,oratsomeotherremotepoint,andissentbyelectricalmeanstotheindicatorinthecockpit.

 AnAutosynsynchrohastheappearanceofasmallsynchronousmotor.Forthisreason,theword"synchro"hasbecomesynonymouswiththisandothersimilarsystems.IntheAutosynsystem,onesynchroisemployedasatransmitterandanotherasanindicator.

 A schematic diagramof an Autosyn system is shownbelow. The system is basicallyanadaptationof theself-synchronousmotor principle,whereby twowidely, separatedmotorsoperateinexactsynchronism;thatis,therotorofonemotorspinsatthesamespeedastherotorof theother.WhenthisprincipleisappliedtotheAutosynsystem,however,therotorsneitherspinnorproducepower.InsteadtherotorsofthetwoconnectedAutosynunitscomeinto coincidencewhen theyareenergisedbyanalternatingelectriccurrent,andthereaftertherotorofthefirstAutosynmovesonlythedistancenecessarytomatchanymovementoftherotorofasecondautosyn,nomatterhowslightthatmovementmaybe.

ItmustbeunderstoodthatthetransmitterandindicatorofAutosynunitsareessentiallyalike,bothinelectricalcharacteristicsandinconstruction.Eachhasarotorandastator.Whena-cpowerisappliedandarotorisenergised,thetransformeractionbetweentherotorandstatorcausesthreedistinctvoltagestobeinducedintherotorrelativetothestator.Foreachtinychange in the position of the rotor, a new and completely different combination of threevoltagesininduced.

When two Autosynsare connected asshown atFigure 2.22,and the rotors ofboth unitsoccupyexactlythesamepositions relativeto their respectivestators,bothsetsof inducedvoltagesare equaland opposite. For this reason, nocurrent flows in the interconnectedleads,withthe result thatbothrotorsremainstationary. Ontheotherhand,whenthetworotorsdonotcoincideinposition,thecombinationofvoltagesofonestatorisnotlikethatof

theother,androtationtakesplace,continuinguntiltherotorsareinidenticalpositions.Theinducedvoltagesarethenequalandopposite,andsothereisnocurrentflowinanyofthethreeconductors;hencetherotorswillbeinstationaryandidenticalpositions.

 AnAutosynsystemmaybeused forawidevarietyof indicationsonanairplane. Amongthesearemanifoldpressure,oilpressure,rpm(tachometer),remotecompassindication,percentofpower,andfuelpressure.

Figure2

Figure2-22.

Page 93: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 93/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page23of26

 

Flow Sensors and Indicators

Themain application on aircraft is to sense the rate of fuel flow to the engines. ThoseillustratedatFigure2.23(a)to(e)andvariationsofthemareusedforthispurpose.

Withthe'taperedtube'typeat(a)thefloatiscarriedtoaheightintheverticaltubewhereitsweight equals the upward forceon it caused by the flowing fluid. Because the float isarestrictioninthetubeadifferentialpressureiscreatedacrossit.Foranygivenrateofflowthedifferentialpressure,andthereforetheupwardsforceonthefloat,willvarywiththecross-sectionalareaoftherestrictedpatharoundthefloat.

Therestrictionisgreatestatthebottomwherethetubeisnarrowest.Asthefloatisforcedupthewidening tubethereis lessrestriction, sotheupwardforceon the floatreducesuntilitequalstheweightofthefloat.Thisequalityoccurshigherorlowerinthetubedependingonwhetherthe{lowisincreasedordecreased.

Figure2-23.

Page 94: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 94/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page24of26

 

Vibration Analysis

Intheearlyseventies,aLockheedTri-StarwithRolls-RoyceRB211enginescrashedduetodisintegrationofoneoftheengines,killingmanypeople.Theaccidentinvestigationshowedthattheenginedisintegratedafteralubricationproblemwiththenumber1bearing,whichled

toseparation of the fan from the engine. Engine parts then flew away and damaged thefuselage.

Theinvestigationalsoshowedthattheaccidentcouldhavebeenavoidedifthepilothadhadanenginevibration indication.Thiswouldhaveshownthe vibration increasingdue to thelubrication problembuildingup. So the pilotcouldhave shut down the engine beforeanydamagecouldhappen.

Followingthis,theUSAFAAdeclaredenginevibrationmonitoringsystemsmandatoryfortheTristarandlaterforallaircraftwithenginesbiggerthanacertaindiameter.

 Asexplainedbefore, the first functionofanenginevibrationmonitoringsystem(EVM)istogivethepilotacontinuousindicationofthevibrationleveloftheenginestoallowhimtotake

appropriatemeasuresifthevibrationreachesadangerouslevel.Forthisreason,everyenginevibration-monitoringunitconditionssomecombinationofrotorout-of-balance vibrationdata forcockpitdisplay.According to theaircraftandengine type,thesedataareselectedandconditioneddifferently.Typicaldisplaysmayinclude:

  FanvibrationandLowPressureTurbine(LPT)vibration.

 

Fanvibration,LPTvibrationandoverallenginevibrationlevel(olderconcept)

  Onevibrationindicationonly,computedasthemaximumlevelmeasured,eitherFanorLPTvibrations.

Togiveanunmistakablewarningtothepilotincaseofproblems,theEVMusuallymonitorsthevibrationlevelsforexceedingacertainalertthresholdandactivatesacockpitwarningin

caseofexceedance.

 Apartfromcatastrophicevents,theout-of-balancevibrationlevelofanengineusuallyshowsamoreorlesssteadyincreaseovertimeduetomechanicalwear(birdstrikes,friction,etc...).Sincethetendencyofthevibrationevolutionovertimeissteady,itisquiteeasytopredictthetimewhenthevibrationwillreachacertainvibrationlevel,e.g.themaintenancealertlevel.This allowsmaintenancepersonnel toanticipatemaintenanceactionsandtoplan them inadvance.

For this reason, the vibrationdatafromtheEVMareusuallysent totheAircraftConditionMonitoringSystem(ACMS),orsimilarequipment,fromwheretheyareused,alongwithotherengineparameters,asinputtotheEngineConditionMonitoring(ECM)system.

Figure2-24.(Vibrationevolutionduetowearandcatastrophicevent.)

Page 95: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 95/114

 

Part 66 Subject

 

B2-14 Propulsion AA Form TO-19

B2-14.2IndicatingSystemsIssueB:January2008 Revision1 Page25of26

 

TheairborneEVMsystemutilizepiezo-electrictransducers(accelerometers)tosenseenginevibration.Thechargesignalgeneratedby theaccelerometersis thenwiredthroughspeciallow-noisecablingtotheEVMU.Thislow-noisecablingisindispensableduetotheextremelysmallamplitudeofthechargesignal,leadingtoahighsusceptibilitytonoise.

ThesignalprocessingisprovidedbytheEVMU,whichextractstherelevantinformationfromthetotalvibrationsignalprovidedbytheaccelerometers.

Piezoelectricaccelerometersaremountedatrightanglestotheturbineshaft.Thecrystalwilloscillatewithapredeterminedelectricalinput.Thisoscillationismonitored.

Whenenginevibrationoccurs,thisalterstheoscillationfrequencyproducedbythecrystal,astheincreaseinvibrationwillcompressthecrystal.Asthevibrationincreases,sodoesthecompressionofthecrystal.Thisproducesachangeinthesignaloutputfromthecrystalanditisthischangeinfrequencythatisdetectedbythesignalconditionerandsenttotheindicator.

Thepiezo-electricaccelerometersproduceachargeoutputofverysmallamplitudewhichisdirectlyproportionaltotheaccelerationofthevibration,appliedtothem.Theirsensitivityis

expressedthereforeintermsofpico-Coulombs.Thesesensitivitiesarelimitedbythepiezo-electricmaterialssuitableforuseinthehostileengineenvironment.

Themaincharacteristicsoftheaccelerometersare:

  Verylinearresponsebetweenapprox5Hzandatleast3kHz.

  Veryhighreliabilityduetonomovingparts.

  Resonanceandthereforehighamplificationofthevibrationat10to20kHz.

Page 96: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 96/114

 

Part 66 Subject  B2-14 Propulsion

B:January2008 Revisi 1

 AA Form TO-19

B2-14.2IndicatingSystemsIssue on Page26of26

Table2.1showstypicalareasmonitoredforvibration.

Component Frequency Area Description

StructuralVibration

1toabout15Hz Erraticvibrationorconstantcausedbytheaircraftstructure(wings,fuselage.)

 AerodynamicVibration

5toabout40Hz Erraticvibrationcausedbytransientaerodynamicphenomena(turbulences,shockwaves...)intheengineinlet,betweentheengineandfuselage,etc.

RotorImbalance 10to250Hz Vibrationcausedbytheimbalanceoftheenginerotors(highpressure,lowpressureshaft).Showsinthespectrumassteadyvibrationpeaks.

 AccessoryVibration

80to500Hz Vibrationcausedbyrotatingaccessories(pumps,etc...)drivenbyN2.Showsinthespectrumassteadyvibrationpeaks.

BladePassingVibration

300to10’000Hzandmore

Erraticvibrationcausedbytheperiodicmechanicalloadvariationsontherotorbladesinducedbytheir

passinginfrontofthestatorblades.

1/FNoise 0toabout20Hz Noisetypicalofwornelectricalcontacts(e.g.oxidized)leadingtoinstablecontactresistance.

BroadBandNoise Anyfrequency Noisetypicalofcontactproblems(e.g.looseconnections)leadingtobrutalinterruptionsofcontact.

Table2.1

Page 97: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 97/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page1of18

TOPIC15.13:ENGINESTARTINGANDIGNITIONSYSTEMS

Starting Systems

Electric Starters

Electricstartersarenotinverycommonuseonaircraftenginesbecauseoftheirexcessiveweight,althoughwhenusedasacombinationstarter-generator,theyprovideaweightsavingthat makes them feasible for use on small engines. Electric starters are, however, incommonuseonauxiliaryandgroundpowerunits.

Operation

 Atypicalstartermotor,showninFigure15.13-1,isa12or24voltseries-woundmotor,whichdevelopshighstartingtorque.Thetorqueofthemotoristransmittedthroughreductiongearstotheclutch.Thisactionactuatesahelicallysplinedshaft,movingthestarterjawoutwardtoengage the engine cranking jaw before the starter jaw begins to rotate. After the enginereachesapredeterminedspeed,thestartermotorwillautomaticallydisengage.

Figure15.13-1. 

Othertypesofelectricstartersnormallycontainanautomaticreleaseclutchmechanismtodisengage the starter drive from the engine drive when the engine has reached selfsustainingspeed,asdepictedinFigure15.13-2,adetailedbreakdownoftheclutchanditsoperationiscoveredintheensuingtextandFigure15.13-3.

Figure15.13-2.

Page 98: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 98/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page2of18

Theclutchmechanismalsoprovidesanover-torqueprotectiontoprotecttheenginedrive.Atapproximately130inlboftorque,smallclutchplatesinsidetheclutchslip

andactasafrictionclutch.Thissettingisadjustable.

Duringstarting,thefrictionclutchisdesignedtoslipuntilengineandstarterspeedincreasetodeveloplessthan the slip torque setting. It is important that the slip torque tensionbecorrectlysettoavoiddamagetotheenginedriveratchet,orslowandhot(hung)starts.

 Anotherfunctionoftheclutchassemblyistoprovidean“overrunning”clutch.Thisconsistsofa pawl and ratchet assembly that contains three pawls that are spring loaded into thedisengageposition.

When the starter isenergised, inertia causes the pawls tomove inwardsandengage theratchetgearonthestarterdriveshaftasillustratedinFigure15.13-3.

Theinertiausedispresentbecausethepawlcageassembly,whichfloatsintheoverrunningclutchhousing,triestoremainstationarywhenthestarterarmaturetriestodrivetheclutchhousingaround.

The overrunning clutch housing overcomes the disengage springs and forces the pawlsinward.

Whentheengineacceleratesuptoapproximatelyselfsustainingspeed,itisturningfasterthanthestartermotorandthepawlsslipoutofthetaperedslotsoftheenginedrivegear,anddisengageundertheinfluenceofthedisengagesprings.

Thisoverrunningfeaturepreventstheenginefromdrivingthestartertoselfdestructspeed.Typically,startercircuitsdonotcontainfusesorcircuitbreakers.Thereasonisthatinitialmotorcurrent(serieswoundDCmotor)canbeexcessive.

Figure15.13-3. 

Page 99: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 99/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page3of18

 

Starter-Generators

Starter-generators, illustrated in Figure 15.13-4, are most commonly found on private tomedium sized jets.Thesestartingsystemsuse astartermotor todrive the engine duringstarting. After the engine has reached a self-sustaining speed, it then operates as a

generatortosupplytheelectricalsystempower.Thestartergeneratorsimplyhasasheardrivesplinethatispermanentlyengagedintheengine.

Starter-generator units are desirable from an economical standpoint, because one unitperformsthefunctionsofbothstarterandgenerator.Alsothetotalweightofstartingsystemcomponentsisreducedandfewerpartsarerequired.

Figure15.13-4. 

Pneumatic Starters

Pneumaticstartingisthemethodmostcommonlyusedoncommercialandmilitaryjetenginepoweredaircraft.Ithasmanyadvantagesoverothersystemsinthatitislightweight,simple

andeconomicaltooperate.Apneumaticstartermaytransmititspowerthroughareductiongearandclutchtothestarteroutputshaftwhichisconnectedtotheengine.AtypicalairstarterisshowninFigure15.13-5.

Figure15.13-5. 

Page 100: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 100/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page4of18

 

Thestarterturbineisrotatedbyhighvolumelowpressureairtakenfromanexternalgroundsupply,anauxiliarypowerunit(APU)orbleedairfromarunningengine.Theairsupplytothestarteriscontrolledbyanelectricallyoperated,controlandpressureregulatingvalveasshowninFigure 15.13-6. This valve isoperatedwhenan engine start isselectedand is

automaticallyclosedatapredeterminedstarterspeed.

Figure15.13-6. 

Thestarterclutchalsoautomaticallydisengagesastheengineacceleratesuptoidlespeed,andtherotationofthestarterceases.AtypicalairstartingsystemisshowninFigure15.13-7.

C R O S S F E E D F R O MR U N N I N G E N G I N E

 A IR F R A M E P Y L O N

G R O U N DS T A R T S U P P L

 A U X IL IA R YP O W E R U N I T (A

 A IR C O N T R O L VA LV E

E N G I N E A I R S T A R T E R E X T E R N A L G E A R B O XE X H A U S T A IR

H I G H V O L U M EL O W P R E S S U R E

Figure15.13-7. 

Page 101: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 101/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page5of18

 

Operation

Thepressureregulating/shutoffvalve,showninFigure15.13-8,consistsoftwosub-assemblies:

 

Thepressure-regulatingvalve,whichcontainsabutterfly-typevalve.  Thepressure-regulatingvalvecontrol,whichcontainsasolenoidthatisusedtostoptheactionofthecontrolcrankinthe“off”position.

Theoperationoftheairstarter(Figure15.13-8)proceedsasfollows:

  Turnonthestarterswitch.Thisenergisestheregulatingvalvesolenoidwhichretractsandallowsthecontrolcranktorotatetothe“open”position.

  Thecontrolcrankisrotatedbythecontrolrodspringmovingthecontrolrodagainsttheclosedendofthebellows.

  Sincetheregulatingvalveisclosedanddownstreampressureisnegligible,thebellowscanbefullyextendedbythebellowsspring.

   Asthecrankrotatestotheopenposition,itcausesthepilotvalverodtoopenthepilotvalveallowingupstreamairtoflowintotheservopistonchamber.

  Thedrainsideofthepilotvalve,whichbleedstheservochambertoatmosphere,isnowclosedbythepilotvalverodandtheservopistonmovestowardspositionB.

  Thislinearmotionoftheservopistonittranslatedtorotarymotionofthevalveshaft.

  Thisinturnopenstheregulatingvalve.

   Astheregulatingvalveopens,downstreampressureincreasesandisbledbacktothebellowsthroughthepressure-sensingline.Thiscompressesthebellows.

 

Thecompressionofthebellowsmovesthecontrolrod.  Thisturnsthecontrolcrankandmovesthepilotrodgraduallyawayfromtheservochambertoventtheairtoatmosphere.

Figure15.13-8. 

Page 102: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 102/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page6of18

 

Whendownstreampressurereachesapresetvalue,theamountofairflowingintotheservochamberequalstheamountofairbeingbledtoatmosphereandthesystemisinastateofequilibrium.

Whentheregulatingvalveisopen,theregulatedairpassingthroughtheinlethousingofthe

starterimpingesontheturbineinthestartermotor,showninFigure15.13-5.

 Astheturbineturns,thegeartrainisactivatedandtheinboardclutchgear,whichisthreadedonto a helical screw, moves forward as it rotates and its jaw teeth engage those of theoutboardclutchgeartodrivetheoutputshaftofthestarter.

When engine startingspeed is reached, a set of flyweights ina centrifugal cutout switchactuatesaplungerwhichbreaks the ground circuit of the regulating valvesolenoid. Thiscutoutswitchislocatedintheexternalgearbox.

Whenthegroundcircuitisbrokenandthesolenoidisde-energised,thepilotvalveis forcedback tothe "off"positionopening the servochamber toatmosphere(seeFigure 15.13-9).Thisactionallowstheactuatorspringtomovetheregulatingvalvetothe"closed"position.

Tokeepleakagetoaminimuminthe"off"position,thepilotvalveincorporatesaninnercapwhichsealsofftheupstreampressuretotheservoandtheservochamberbleedpassage.

Figure15.13-9. 

Somegasturbineenginesarenotfittedwithstartermotors,butuseanairimpingementontotheturbinebladesasameansofrotatingtheengineasdepictedinFigure15.13-10.Theairforthissystemissuppliedfromanexternalsource,orfromanenginethatisoperating.Theairisdirectedthroughnon-returnvalvesandnozzlesontotheturbineblades.

Figure15.13-10. 

Page 103: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 103/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page7of18

 

Hydraulic Starters

Hydraulicstartersareusedforstartingsomesmalljetengines.Inmostapplications,oneoftheenginemountedhydraulicpumpsisutilisedandiscalledapump/starter,althoughotherapplications may use a separate hydraulic motor. Methods of transmitting the torque

producedtotheenginemayvary,butatypicalsystemwouldincludeareductiongearandclutchassembly.

Operation

Powertorotatethestarterisprovidedbyhydraulicpressurefromagroundsupplyunit,oranaircraftaccumulator,andistransmittedtotheenginethroughthereductiongearandclutch.Thestartingsystemiscontrolledbyanelectriccircuitthatalso,insomeinstances,operateshydraulicvalvessothatoncompletionofthestartingcyclethepumpfunctionsasanormalhydraulicpump.Ahydraulicstarterissimilartoahydraulicmotorwiththefluiddrivingthegearinthestarter.

Starting Sequence

Two separate systems are required to ensure that a gas turbine engine will startsatisfactorily:

  Rotationofthecompressor.

  Ignitionofthefuel/airmix.

Tohelpensurethattheenginecomesonspeedquicklyandwithoutdamage,itisnecessarytocontrolthesequenceofeventsduringagasturbineenginestartingcycle.

Theexactsequenceofthestartingprocedureisimportant,becausetheremustbesufficientairflowthroughtheenginetosupportcombustionatthetimethefuel/airmixtureisignited.The fuel ratewill not besufficient toaccelerateuntilafterself sustainingspeedhas beenattainedandafailuretocorrectlysequencethestartingeventswillpreventtheenginefrom

reachingthisspeed.

Theusualsequenceofeventsduringanenginestartare:

 

Selectstart(ignitionon).

  Highpressurefuelon.

  Lightup.

  SelfsustainingRPM.

  Startercircuitcancelled.

  IdleRPMstabilised.

Page 104: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 104/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page8of18

Illustrated in Figure 15.13-11 is a graphical representation of RPM and TGT during acorrectlysequencedstart.

Figure15.13-11. 

For easeofmaintenance itmustbepossible tomotorover theenginewithout the ignitionsequenceinitiating,andoperatetheignitionsystemwithoutrotatingthestartermotorforinflightrelightingoftheengineintheeventofaflameout.

Page 105: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 105/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page9of18

IGNITION SYSTEMS

System Types

Theretwocommonclassificationsofjetengineignitionsystems.Theseare:

  Lowtension(DCvoltage).

  Hightension(ACvoltage).

Both low and high tension systems are in general use on todays aircraft. Low tensionsystemsaredesignedtousedirectcurrent(DC)andhightensionsystemsaredesignedtousealternatingcurrent(AC)asinputpower.DCoperatedsystemsreceivetheirpowerfromthe battery bus, and AC systems are powered from the aircraft AC bus. Although theoperatingvoltagesofthesystemsaredifferent,bothsystemscontainsimilarcomponentsasillustratedbyFigure15.13-12.

Figure15.13-12. 

Page 106: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 106/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page10of18

 

 Allignitionsystemscanbegroupedintooneoftwotypesofsystems.Theseare:

  Intermittentdutycycle.

  Continuousdutycycle.

Thetermdutycyclereferstothetimelimitplacedontheoperationoftheignitionsystembythemanufacturertopreventdamagetoitscomponents.Intermittent duty cycletypesdrawsufficiently high amounts of current to causeoverheatingwithin their units if operated forextendedperiods.Forthisreasontheyhavearestricteddutycyclebasedonoperatingtime,followedbyacoolingoffperiod.Forexample,twominutes“on”,threeminutes“off”(cooling).

Continuous dutytypeshavelongdutycyclesorinsomecasesnolimitsatall.Thatistheycanbeincontinuousoperation.

Intermittent Duty Cycle

Intermittentdutycycleignitionsystemscanonlybeusedforshortperiodsandonlyusuallyduring ground starting. Once the engine has reached self sustaining RPM, the ignition

systemisturnedoff.Someaircraftprovideforadditionaluseoftheleftorrightplugfromthemainsystematfulltransformercapacity(fullpower)asrequiredbut forlimitedperiodsonly,eg. take off. These time periodsarescheduledby thepilots andcan select ignition onwhenevertheywish.

Onotherintermittentdutycycletypeignitionsystems,alowtension,continuousdutycircuitisincorporatedwithin one of the transformerunits. Thisallows low powerdischarge tooneigniterplug(whichagaincanbeselectedbythepilot).ThissystemcanbeoperatedforaslongasthereisaneedforselfrelightcapabilityinflightasshowninFigure15.13-13

Figure15.13-13. 

Page 107: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 107/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page11of18

 

Continuous Duty Cycle

Ifacontinuousdutycyclemainignition system is installed, full ignitioncanbeselected tobothoreitherplugatthepilotsdiscretion.Duringcriticalflightmanoeuvres(eg.takeoffandlanding),thepilotmayselectbothigniterplugstogiveinstantaneousrelight.Atnormalhigherlevel flight, one igniter plug is selected as a short delay in relighting the engine will notendangertheaircraftorcrew.

Ignition System Components

Gas turbineenginesare typically equippedwith adual highenergy ignitionsystem. TheprinciplecomponentsofadualsystemareshowninFigure15.13-14anddescribedonthefollowingpages.

Figure15.13-14. 

Ignition and Relight Switches

The ignition and relight switches are located in the aircraft cabin, usually close to thethrottles. They connect bus voltage to the ignition relayand HEIUs (highenergy ignitionunits).

Ignition Relay

Whenenergised,theignitionrelaysupplieselectricalpowertothehighenergyignitionunits.Itiscontainedinacontrolboxwhichisusuallylocatedinanequipmentcompartmentinthe

enginenacelle.

Page 108: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 108/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page12of18

 

High Tension Ignition Leads

Thehightension(HT)ignitionleadsarelocatedontheaircraftengine,connectedbetweentheHEIUsandtheigniterplugs.TheyconductthehighvoltagefromHEIUstotheigniters.

High Energy Ignition Units HEIUs)

TheHEIUsdevelopthehighvoltagenecessaryforengineignition.Inadualignitionsystemtherearealwaystwounitsfittedtoeachengine.AnigniterplugisconnectedtoeachHEIU.

Types

TheignitionsystemcanbesuppliedwitheitherACorDCvoltage,dependingonthetypeofHEIUsfitted.ADCtypeHEIUcontainsatremblermechanism(coveredlaterinthistopic)oratransistorcircuit,whileanACtypeHEIUcontainsa transformer. Inanycase, thebasicoperationissimilarforeachofthesetypes.

HEIUsareratedin ‘joules’(one jouleequalsonewattper second). Theyaredesigned toproduceoutputswhichmayvaryaccordingtorequirementsandaregenerallyclassifiedaseither:

  Highjoule(twelvejoule).

  Lowjoule(threetosixjoule.

 Althoughmany engines are fitted with high joule HEIUs, low joule units are sufficient fornormal starting requirements. The high joule units are requiredwhere it is necessary torelighttheengineathighaltitudes.

Undernormalflightconditions,theHEIUsareturnedOFFaftertheengineshavestarted.Butduring take-off where ice, heavy rain or snow exists, the HEIUs may be operatedcontinuouslytogiveanimmediaterelightshouldanengineflame-outoccur.Thiscontinuous

operationisusuallyperformedby lowjouleHEIUs,aspersistentoperationofthehighjouleunitsmayreducethelifeoftheigniterplugs.

Tosuitallengineoperatingconditions,acombinedsystemhasbeendevelopedwhereoneHEIUemitsahighoutputtooneigniterplug,andthesecondunitsuppliesalowvalueoutputtothesecondigniter.

Page 109: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 109/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page13of18

Construction

 Asmentionedearlier,thebasicoperationofthedifferenttypesofHEIUsissimilar,sowewilllimitourdiscussiontotheDCtrembleroperatedHEIUshowninFigure15.13-15.Itcontainsthefollowingcomponents:

Induction Coil: consists of primary and secondary windings.

Trembler Mechanism: consistsofa capacitor and a set of contactswhich vibrate rapidly,openingandclosingtheprimarycircuitoftheinductioncoil.

Reservoir Capacitor:chargesup,thendischarges,supplyingtheHEIU’shighvoltageoutput.

Glass Sealed Discharge Gap:comprisestwometalliccontacts,separatedbyanairgap,allencapsulatedwithinasealedglasstube.

High Voltage Rectifier: convertstheoutputoftheinductioncoiltoDCtochargethereservoircapacitor.

Choke: aninductorwhichextendsthetimetakenforthereservoircapacitortodischarge.

 

Figure15.13-15. 

Page 110: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 110/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page14of18

 

Operation

Figure15.13-16showsasimplifiedschematicdiagramofaDCtrembleroperatedHEIU.

Thisunitoperateswhen28VDCissuppliedtotheprimarywindingoftheinductioncoilandthetremblercontacts.Thetremblercontactsvibraterapidly,openingandclosingtheprimarycircuit,inducingavoltageintothesecondarywinding.Theresultinghighvoltageoutputisthenrectifiedbythehighvoltagerectifierandsuppliedtochargethereservoircapacitor.

Thereservoircapacitorisrepeatedlychargedinthiswayuntilitsstoredvoltageisequaltothe breakdown value of the sealed discharge gap. The reservoir capacitor will thendischargeacrossthegap,throughthechokeandsupplytheigniterplugwiththehightensionvoltagerequiredtoignitetheair/fuelmixtureintheenginecombustionchamber.Thechoke(inductor)extendsthedurationofthedischarge.

Thenormalsparkrateofatypicaljetengineignitionsystemisbetween60and100sparksperminute.

Figure15.13-16. 

Theenergystoredinthereservoircapacitorispotentiallylethal. Forthisreason,dischargeresistorsareconnectedacrossthecapacitortoensurethatanychargeonthecapacitorisdissipatedwithinapproximatelyoneminuteofthesystembeingswitchedoff.

Thesafetyresistorsenabletheunittooperatewithoutdamagetotheunitifthehightensionleadisdisconnectedandisolated.

Igniter Plugs

Duetothemuchhigherintensityspark,igniterplugsforjetenginesdifferconsiderablyfromspark plugs used in reciprocating engines. They are normally constructed fromnickel-chromiumalloywiththethreadsbeingsilverplatedtopreventseizing.Thehotendofthe igniter plug is generally air cooled to keep it between 500-600o F cooler than thesurroundinggastemperatures.Coolingairispulledinwardthroughthecoolingholesintheflametube,andovertheendoftheigniter,bythepressuredifferentialbetweentheprimaryandsecondarycombustorairflow.

Page 111: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 111/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page15of18

Low Tension Igniters

Igniterplugsforlowtensionsystemsarereferredtoastheselfionisingorshuntedgaptype.Thefiringendcontainsasemi-conductivematerialwhichinitiallyprovidesapathbetweenthecentreelectrodeandthegroundelectrode.Astheinitialcurrentflows,thesemi-conductorreachesanincandescentstate(glowswhitehot).Thisheatingissufficienttoionisetheairgapandthemaincurrentflowtakesthispathtothegroundelectrode.AtypicallowtensionigniterisillustratedinFigure15.13-17.

Figure15.13-17. 

High Tension Igniters

Hightensionigniterplugs(orannulargapplugs)operatewithasimilarprincipletoanormalsparkplug. Thehigh tensioncurrentpassingthroughtheplug initiallycauses theair gapbetweentheelectrodestobeionised.Thisionisationoftheairgapallowsthehighintensitysparktoflowbetweenthecentreandgroundelectrodes,(ReferFigure15.13-18).

Figure15.13-18. 

Page 112: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 112/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page16of18

 

Many types of igniter plugs are available, as shown in Figure 15.13-19. Only one willnormally suit the needs of a particular engine. Care must be taken to ensure themanufacturersrecommendedigniterplugisused.

Figure15.13-19. 

Ignition System Operation

 Aschematicdiagramofabasic jetengineignitionsystem is illustratedinFigure15.13-20.

Forsimplicity,onlyoneHEIUandoneigniterplugisshown.

Figure15.13-20. 

Page 113: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 113/114

 

Part 66 Subject

 

B2-14 Propulsion

B2-14.15.13StartingandIgnitionSystemsIssueB:January2008 Revision1 Page17of18

 

Whenstartingtheengine,oncethestartermotorhasbeenengagedandtheengine’srotatingassemblybeginstoincreaseinspeed,theaircrewwillclosetheignitionswitch.28VDCwillnowbesuppliedtotheignitionrelay.Onceenergised,theignitionrelaywillsupplyvoltagetothe‘ignitionon’lightandtotheinputoftheHEIU.Thehighlevel,pulsatingDCoutputvoltage

fromtheHEIUwillbeconducted,viathehightensionignitionlead,tosupplytheigniterplug. Atthisstage,ifthestartermotorhasincreasedtheengine’sspeedsufficientlytocorrectlymixtheairandfuelsuppliedtotheengine,ignitionwilloccur.Oncetheair/fuelmixturehasbeenignited, the flame spreads rapidly through the engine combustion chambers; thus thecombustionisselfsustaining,andtheignitionsystemcanbeswitchedoff.Onmanyaircraft,a timer relay is employed to automatically shut down the ignition system after apredeterminedtime.

Engine Relight

Ifaflameoutoccurswhilsttheaircraftisinflight,theenginewillcontinuetorotateduetotheflowofairthroughthecompressor.Tore-ignitetheair/fuelmixtureintheenginecombustionchamber,only asource of ignition isnecessary. This isachieved by the selection of the

‘relight’switch.Withthisswitchclosed,28VDCwillbesupplieddirectlytotheHEIU.

In some cases however, a low joule HEIU is fitted and operated continuously, providingautomaticrelight.

Testing, Inspection and Maintenance

Maintenanceof the turbineengine ignition systemconsistsprimarilyof inspection, testing,troubleshooting,removalandinstallation.Thefollowinginstructionsaretypicalexamplesofinspectionproceduresthatyoumayberequiredtoperform.

IMPORTANT 

Prior to performing maintenance on an ignition system, always consult the relevant technical

publication for all applicable safety precautions, maintenance procedures and specifications.

Igniter Plugs

The igniter plugsare inspected visually for burning and erosion of the electrode or shell,crackingoftheceramicinsulator,anddamagetothethreads,orflange.Ifdamageisvisible,theignitershouldbediscarded.

HT Ignition Leads

Theignitionleadsarecleanedwithanapprovedsolventandinspectedforwornorburned

areas,deepcuts,frayingandgeneraldeterioration.

Theignitionleadsconnectorsarevisuallyinspectedfordamagedthreads,corrosion,crackedinsulators,andbentorbrokenconnectorpins.

Thecontinuityoftheleadsischeckedwithamultimeterandinsulationpropertiescheckedwith a meggar in accordance with specifications laid down in the relevant technicalpublication.

Page 114: B2-14 Propulsion SR

7/25/2019 B2-14 Propulsion SR

http://slidepdf.com/reader/full/b2-14-propulsion-sr 114/114

 

Part 66 Subject  B2-14 Propulsion

 

Operational Test

SomeaircraftservicingmayrequireanoperationaltestoftheignitionsystemtochecktheserviceabilityoftheHEIUs,HTleadsandigniterplugs. Inthistest,theenginestarter-motorisdisabledsotheenginewillnotrotate,preventingenginestart.

Whenthe‘battery’andengine‘relight’switchesareclosed,sparkingfromtheigniterplugswill be clearly audible. This enables assessment of the ignition system’s serviceability. Anothermethodistosimplystarttheengine.

Safety Precautions

Theterm“HIGHENERGY”infersthatalethalchargeispresentandturbineengineignitionsystems require special maintenance and handling. The manufacturers instructions andenginemaintenancemanualsshouldbe fully understoodandfollowedwhen handlinganycomponentofajetengineignitionsystem.

Sometypicalprecautionsareasfollows:

WARNING

  Ensure that the ignition switch is turned off before performing any maintenance on the

system.

  To remove an igniter plug, disconnect the transformer input lead, wait the time

prescribe by the manufacturer usually 1-5 mins), then disconnect the igniter lead and

ground the centre electrode to the engine. The igniter plug is now safe to remove.

  Exercise great caution in handling damaged transformer units. Some contain

radioactive material, eg. cesium-barium 137).

 

Unserviceable igniter plugs containing aluminium oxide and beryllium oxide, a toxic

insulating material, should be disposed of properly.

  Before a firing test of igniters is performed, the fitter must ensure that the combustion

chamber is not fuel wetted, as a fire or explosion could occur.

  Do not energise the system for troubleshooting if the igniter plugs are removed.

Serious overheating of the transformers can result.