b drift diffusion hydrodynamic modeling

Upload: ajayakumarkavala

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    1/41

    Semi-Classical Transport

    Theory

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    2/41

    Outline:

    What is Computational Electronics?

    Semi-Classical Transport Theory

    Drift-Diffusion Simulations

    Hydrodynamic Simulations

    Particle-Based Device Simulations

    Inclusion of Tunneling and Size-Quantization Effects in Semi-Classical Simulators

    Tunneling Effect: WKB Approximation and Transfer Matrix Approach

    Quantum-Mechanical Size Quantization Effect

    Drift-Diffusion and Hydrodynamics: Quantum Correction and QuantumMoment Methods

    Particle-Based Device Simulations: Effective Potential Approach

    Quantum Transport

    Direct Solution of the Schrodinger Equation (Usuki Method) and TheoreticalBasis of the Greens Functions Approach (NEGF)

    NEGF: Recursive Greens Function Technique and CBR Approach

    Atomistic SimulationsThe Future

    Prologue

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    3/41

    Semi-Classical Transport Theory

    It is based on direct or approximate solution of theBoltzmann Transport Equation for the semi-classicaldistribution function f(r,k,t)

    which gives one the probability of finding a particle inregion (r,r+dr) and (k,k+dk) at time t

    Moments of the distribution function give us information

    about:Particle Density

    Current Density

    Energy Density

    3

    11 1

    8k k kk

    Fkk k r k k k k k k k

    f VE f f d f f f f

    t

    D. K. Ferry, Semiconductors, MacMillian, 1990.

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    4/41

    Semi-Classical Transport Approaches

    1. Drift-Diffusion Method

    2. Hydrodynamic Method

    3. Direct Solution of the Boltzmann TransportEquation via:Particle-Based ApproachesMonte Carlo

    method

    Spherical Harmonics

    Numerical Solution of the Boltzmann-PoissonProblem

    C. Jacoboni, P. Lugli: "The Monte Carlo Method for Semicond uctor Device Simulat ion,

    in series "Computational Microelectronics", series editor: S. Selberherr; Springer, 1989, ISBN: 3-211-82110-4.

    http://www.iue.tuwien.ac.at/books/mc_method_semihttp://www.iue.tuwien.ac.at/books/mc_method_semi
  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    5/41

    1. Drift-Diffusion Approach

    Constitutive Equations

    Poisson

    Continuity Equations

    Current Density Equations

    1

    1

    J

    J

    n n

    p p

    nU

    t q

    pU

    t q

    D AV p n N N

    ( ) ( )

    ( ) ( )

    n n n

    p p p

    dnJ qn x E x qD

    dx

    dnJ qp x E x qD

    dx

    S. Selberherr: "Analysis and Simulation ofSemiconductor Devices, Springer, 1984.

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    6/41

    Numerical Solution Details

    Linearization of the Poisson equation

    Scharfetter-Gummel Discretization of the

    Continuity equation

    De Mari scaling of variables

    Discretization of the equations

    Finite Differenceeasier to implement but requires

    more node points, difficult to deal with curved interfaces

    Finite Elementsstandard, smaller number of node

    points, resolves curved surfaces

    Finite Volume

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    7/41

    Linearized Poisson Equation

    + where = new- old

    Finite difference discretization:

    Potential varies linearly between mesh points

    Electric field is constant between mesh points

    Linearization Diagonally-dominant

    coefficient matrix A is obtained

    2/ / / /

    2

    2/ / / /

    2

    / /

    /

    /

    old old old old T T T T

    old old old old T T T T

    old old T T

    newV V V V V V V V i i

    i

    newV V V V V V V V newi i

    i

    T

    V V V V oldi

    T

    new old

    en end Ve e C n e e

    dxen end V

    e e V e e C ndx V

    ene e V

    V

    V V

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    8/41

    Scharfetter-Gummel Discretization of the

    Continuity Equation

    Electron and hole densities nandpvary exponentially

    between mesh points relaxes the requirement of

    using very small mesh sizes

    The exponential dependence of nandpupon the

    potential is buried in the Bernoulli functions

    1/ 2 1 1/ 2 1 1/2 1 1/ 2 1

    1 12 2 2 2

    1/ 2 1 1/ 2 1 1/ 2 1

    12 2 2

    n n n n

    i i i i i i i i i i i i

    i i i i

    T T T T

    n n ni i i i i i i i i

    i

    T T T

    D V V D V V D V V D V VB n B B n B n U

    V V V V

    D V V D V V D V VB p B B

    V V V

    1/ 2 1

    12

    ni i i

    i i i

    T

    D V Vp B p U

    V

    ( )

    1x

    xB x

    e

    Bernoulli function:

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    9/41

    Scaling due to de Mari

    Variable Scaling Variable Formula

    Space Intrinsic Debye length (N=ni)

    Extrinsic Debye length (N=Nmax)

    2

    Bk TLq N

    Potential Thermal voltage* B

    k TV

    q

    Carrier concentration Intrinsic concentration

    Maximum doping concentration

    N=ni

    N=Nmax

    Diffusion coefficient Practical unit

    Maximum diffusion coefficient

    2

    1cm

    Ds

    D = Dmax

    Mobility

    *

    DM

    V

    Generation-Recombination2

    DNR

    L

    Time 2LT

    D

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    10/41

    Numerical Solution Details

    Governing

    Equations

    ICS/BCS

    Discretization

    System of

    Algebraic

    Equations

    Equation

    (Matrix)

    Solver

    Approximate

    Solution

    Continuous

    Solutions

    Finite-Difference

    Finite-Volume

    Finite-Element

    Spectral

    Boundary Element

    Hybrid

    Discrete

    Nodal

    Values

    Tridiagonal

    SOR

    Gauss-Seidel

    Krylov

    Multigrid

    i (x,y,z,t)

    p (x,y,z,t)

    n (x,y,z,t)

    D. Vasileska, EEE533 Semiconductor Device and Process SimulationLecture Notes,Arizona State University, Tempe, AZ.

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    11/41

    Numerical Solution Details

    Poisson solvers:Direct

    Gaussian Eliminatioln

    LU decompositionIterative

    Mesh Relaxation Methods

    Jacobi, Gauss-Seidel, Successive over-Relaxation

    Advanced Iterative Solvers ILU, Stones strongly implicit method, Conjugate gradient

    methods and Multigrid methods

    G. Speyer, D. Vasileska and S. M. Goodnick, "Efficient Poisson solver for semiconductor

    device modeling using the multi-grid preconditioned BICGSTAB method", Journal ofComputational Electronics, Vol. 1, pp. 359-363 (2002).

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    12/41

    Complexity of linear solvers

    2D 3D

    Sparse Cholesky: O(n1.5 ) O(n2 )

    CG, exact

    arithmetic:

    O(n2 ) O(n2 )

    CG, no precond: O(n1.5 ) O(n1.33 )

    CG, modified IC: O(n1.25 ) O(n1.17 )

    CG, support trees: O(n1.20 ) -> O(n1+ ) O(n1.75 ) -> O(n1.31 )

    Multigrid: O(n) O(n)

    n1/2 n1/3

    Time to solvemodel problem

    (Poissons

    equation) on

    regular mesh

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    13/41

    LU Decomposition

    If LU decomposition exists, then for a tri-diagonal matrix A,resulting from the finite-difference discretization of the 1D

    Poisson equation, one can write

    where

    Then, the solution is found by forward and back substitution:

    n

    n

    nnn

    nnn c

    c

    c

    ab

    cab

    cab

    ca

    1

    22

    11

    3

    2

    111

    222

    11

    ...

    ......

    1

    .........

    1

    1

    .........

    nkcab

    a kkkkk

    kk ,...,3,2,,, 1

    111

    1,2,...,1,,

    ,,...,3,2,,

    1

    111

    ni

    xcg

    x

    g

    x

    nigfgfg

    i

    iiii

    n

    nn

    iiii

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    14/41

    Numerical Solution Details of the Coupled

    Equation Set

    Solution Procedures:

    Gummels Approachwhen the constitutive

    equations are weekly coupled

    Newtons Methodwhen the constitutiveequations are strongly coupled

    Gummel/Newtonmore efficient approach

    D. Vasileska and S. M. Goodnick,Computational Electronics, Morgan & Claypool,

    2006.

    D. Vasileska, S. M. Goodnick and G. Klimeck, Computational Electronics: From

    Semiclassical to Quantum Transport Modeling, Taylor & Francis, in press.

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    15/41

    Schematic Description of the Gummels

    Approach

    initial guess

    of the solution

    solve

    Poissons eq.

    Solve electron eq.

    Solve hole eq.

    nconverged?

    converged?n

    y

    y

    initial guess

    of the solution

    solve

    Poissons eq.

    Solve electron eq.

    Solve hole eq.

    nconverged?

    converged?n

    y

    y

    initial guess

    of the solution

    Solve Poissons eq.

    Electron eq.

    Hole eq.

    Update

    generation rate

    nconverged?

    converged?n

    y

    y

    initial guess

    of the solution

    Solve Poissons eq.

    Electron eq.

    Hole eq.

    Update

    generation rate

    nconverged?

    converged?n

    y

    y

    Original Gummels scheme Modified Gummels scheme

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    16/41

    Constraints on the MESH Size and TIME

    Step

    The time step and the mesh size may correlate

    to each other in connection with the numerical

    stability:

    The time step tmust be related to the plasmafrequency

    The Mesh size is related to the Debye length

    *

    2

    m

    ne

    sp

    max

    s TD

    VL

    qN

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    17/41

    When is the Drift-Diffusion Model Valid?

    Large devices where the velocity of the carriers issmaller than the saturation velocity

    The validity of the method can be extended for velocitysaturated devicesas well by introduction of electric fielddependent mobility and diffusion coefficient:

    Dn(E) and n(E)

    0 1 2 33x 10

    -7

    0

    0.5

    1

    1.5

    2

    2.5x 10

    5

    x (m)

    Tgate=300K

    Tgate=400K

    Tgate=600K

    0 1.4 2.8 4.4.

    x 10-7

    0

    0.5

    1

    1.5

    2

    2.5x 10

    5

    x (m)

    Tgate=300K

    Tgate=400K

    Tgate=600K

    0 2.5 5 7.5x 10

    -8

    0

    0.5

    1

    1.5

    2

    2.5x 10

    x (m)

    25 nm 140 nm100 nm

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    18/41

    What Contributes to The Mobility?

    Scattering Mechanisms

    Defect Scattering Carr ier-Carr ier Scattering Latt ice Scatter ing

    Crystal

    Defects Impurity Alloy

    Neutral Ionized

    Intravalley Intervalley

    Acoustic OpticalAcoustic Optical

    Nonpolar Polar Deformation

    potential

    Piezo-

    electric

    Scattering Mechanisms

    Defect Scattering Carr ier-Carr ier Scattering Latt ice Scatter ing

    Crystal

    Defects Impurity Alloy

    Neutral Ionized

    Intravalley Intervalley

    Acoustic OpticalAcoustic OpticalAcoustic Optical

    Nonpolar Polar Nonpolar Polar Deformation

    potential

    Piezo-

    electric

    D. Vasileska and S. M. Goodnick, "Computational Electronics", Materials Scienceand Engineering, Reports: A Review Journal, Vol. R38, No. 5, pp. 181-236 (2002)

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    19/41

    Mobility Modeling

    Mobility modeling can be separated in

    three parts:

    Low-field mobility characterizationfor bulk

    or inversion layers

    High-field mobility characterizationto

    account for velocity saturation effect

    Smooth interpolationbetween the low-fieldand high-field regions

    Silvaco ATLAS Manual.

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    20/41

    (A) Low-Field Models for Bulk Materials

    Phonon scattering:

    - Simple power-law dependence of the

    temperature

    - Sah et al. model:acoustic + optical and intervalley phonons

    combined via Mathiessens rule

    Ionized impurity scattering:

    - Conwell-Weiskopf model

    - Brooks-Herring model

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    21/41

    (A) Low-Field Models for Bulk

    Materials (contd)

    Combined phonon and ionized impurity scattering:

    - Dorkel and Leturg model:

    temperature-dependent phonon scattering +

    ionized impurity scattering + carrier-carrierinteractions

    - Caughey and Thomas model:

    temperature independent phonon scattering +ionized impurity scattering

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    22/41

    (A) Low-Field Models for Bulk

    Materials (contd)

    - Sharfetter-Gummel model:

    phonon scattering + ionized impurity scattering

    (parameterized expressiondoes not use the

    Mathiessens rule)- Arora model:

    similar to Caughey and Thomas, but with

    temperature dependent phonon scattering

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    23/41

    (A) Low-Field Models for Bulk

    Materials (contd)

    Carrier-carrier scattering

    - modified Dorkel and Leturg model

    Neutral impurity scattering:

    - Li and Thurber model:

    mobility component due to neutral impurity

    scattering is combined with the mobility due tolattice, ionized impurity and carrier-carrier

    scattering via the Mathiessens rule

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    24/41

    (B) Field-Dependent Mobility

    The field-dependent mobility model provides smooth transitionbetween low-field and high-field behavior

    vsat

    is modeled as a temperature-dependent quantity:

    /1

    0

    0

    1

    )(

    satvE

    E = 1 for electrons

    = 2 for holes

    cm/s

    600exp8.01

    104.2)(

    7

    Lsat T

    Tv

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    25/41

    (C) Inversion Layer Mobility Models

    CVT model:

    combines acoustic phonon, non-polar optical

    phonon and surface-roughness scattering (as

    an inverse square dependence of theperpendicular electric field) via Mathiessens

    rule

    Yamaguchi model:

    low-field part combines lattice, ionized impurity

    and surface-roughness scattering

    there is also a parametric dependence on the

    in-plane field (high-field component)

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    26/41

    (C) Inversion Layer Mobility Models

    (contd)

    Shirahata model:

    uses Klaassens low-field mobility model

    takes into account screening effects into the

    inversion layer

    has improved perpendicular field dependence

    for thin gate oxides

    Tasch model:the best model for modeling the mobility in

    MOS inversion layers; uses universal mobility

    behavior

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    27/41

    Generation-Recombination Mechanisms

    Classification

    Twoparticle

    One step

    (Direct)

    Two-step

    (indirect)

    Energy-level

    consideration

    Photogeneration Radiative recombination

    Direct thermal generation

    Direct thermal recomb.

    Shockley-Read-Hall(SRH) generation-

    recombination

    Surface generation-

    recombination

    Shockley-Read-Hall(SRH) generation-

    recombination

    Surface generation-

    recombination

    Threeparticle

    Impact

    ionization

    Auger

    Electron emission

    Hole emission

    Electron capture

    Hole capture

    Pure generation process

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    28/41

    Hydrodynamic Modeling

    In small devices there exists non-stationary transport and carriers aremoving through the device with velocity

    larger than the saturation velocityIn Si devices non-stationary transport occurs

    because of the different order of magnitude ofthe carrier momentum and energy relaxation

    timesIn GaAs devices velocity overshoot occurs due

    to intervalley transfer

    T. Grasser (ed.): "Ad vanced Device Model ing and Simulat ion, World Scientific

    Publishing Co., 2003, ISBN: 9-812-38607-6 M.M. Lundstrom, Fundamentals of Carrier Transport, 1990.

    http://www.iue.tuwien.ac.at/books/adv_dev_modhttp://www.iue.tuwien.ac.at/books/adv_dev_mod
  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    29/41

    Velocity Overshoot in Silicon

    -5x106

    0

    5x106

    1x107

    1.5x107

    2x107

    2.5x107

    0 0.5 1 1.5 2 2.5 3 3.5 4

    1 kV/cm5 kV/cm

    10 kV/cm50 kV/cm

    time [ps]

    Driftvelocity

    [cm/s

    ]

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 0.5 1 1.5 2 2.5 3 3.5 4

    1 kV/cm5 kV/cm10 kV/cm50 kV/cm

    Energy

    [e

    V]

    time [ps]

    Scattering mechanisms:

    Acoustic deformation potential scattering

    Zero-order intervalley scattering (fand g-

    phonons)

    First-order intervalley scattering (fand g-

    phonons)

    g

    f

    kz

    kx

    ky

    g

    f

    g

    ff

    kz

    kx

    ky

    X. He, MS Thesis, ASU, 2000.

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    30/41

    How is the Velocity Overshoot Accounted

    For?

    In Hydrodynamic/Energy balance

    modeling the velocity overshoot effect is

    accounted for through the addition of an

    energy conservation equation in additionto:

    Particle Conservation (Continuity Equation)

    Momentum (mass) Conservation Equation

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    31/41

    Hydrodynamic Model due to Blotakjer

    Constitutive Equations: Poisson +

    coll

    d

    d

    Bdd

    coll

    d

    dddd

    colld

    t

    we

    vmw

    kn

    nw

    t

    w

    tm

    e

    vnmnwnm

    mmt

    t

    nn

    t

    n

    )(

    2

    *

    3

    2

    )(

    *

    *2

    1

    *3

    2)*(

    *

    )(

    2

    2

    vE

    vv

    vE

    vvv

    v

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    32/41

    Closure

    To have a closed set of equations, one either:

    (a) ignores the heat flux altogether

    (b) uses a simple recipe for the calculation of the heat flux:

    )(*25,

    2

    wvmnTkTn B q

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    33/41

    Momentum Relaxation Rate

    The momentum rate is determined by a steady-state MCcalculation in a bulk semiconductor under a uniform bias

    electric field, for which:

    dp

    dp

    coll

    dd

    vm

    eEw

    w

    m

    e

    tm

    e

    t

    *)(

    0)(

    **

    v

    EvEv

    K. Tomizawa, Numerical Simulation Of

    Submicron Semiconductor Devices.

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    34/41

    Energy Relaxation Rate

    The emsemble energy relaxation rate is also determined by asteady-state MC calculation in a bulk semiconductor under a

    uniform bias electric field, for which:

    0

    0

    )(

    0)(

    ww

    ew

    wwe

    t

    we

    t

    w

    dw

    wd

    coll

    d

    vE

    vEvE

    K. Tomizawa, Numerical Simulation Of

    Submicron Semiconductor Devices.

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    35/41

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    36/41

    Validity of the Hydrodynamic Model

    Source Drain

    Gate oxide

    BOX

    tox

    tsi

    tBOX

    LS Lgate LD

    feature 14 nm 25 nm 90 nm

    Tox 1 nm 1.2 nm 1.5 nm

    VDD 1V 1.2 V 1.4 V

    Overshoot

    EB/HD

    233% / 224% 139% / 126% 31% /21%

    Overshoot EB/DD

    with series resistance

    153%/96% 108%/67% 39%/26%

    0 0.2 0.4 0.6 0.8 1 1.2 1.40

    0.5

    1

    1.5

    2

    2.5

    Drain Voltage [V]

    DrainCurrent[mA/um]

    DD

    EB

    HD

    DD SREB SR

    HD SR

    Silvaco ATLAS simulations performed by Prof. Vasileska.

    25 nm device

    0 0.2 0.4 0.6 0.8 1 1.20

    1

    2

    3

    4

    5

    6

    7

    Drain Voltage [V]

    DrainCurrent[m

    A/um]

    DD

    HD

    EB

    DD SR

    EB SR

    HD SR

    SR = series resistance

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    37/41

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    38/41

    Failure of the Hydrodynamic Model

    0 0.2 0.4 0.6 0.8 1

    0

    2

    4

    6

    8

    10

    12

    14

    Drain Voltage [V]

    DrainCurre

    nt[mA/um]

    1020cm-3

    1019cm-3

    0.1 ps

    0.3 ps

    0.2 ps

    Silvaco ATLAS simulations performed by Prof. Vasileska.

    90 nm

    25 nm

    14 nm

    0 0.2 0.4 0.6 0.8 1 1.20

    1

    2

    3

    4

    5

    6

    7

    8

    Drain Voltage [V]

    DrainCurrent[mA/u

    m]

    1020

    cm-3

    1019cm-3

    0.1 ps

    0.2 ps

    0.3 ps

    0 0.2 0.4 0.6 0.8 1 1.2 1.40

    0.5

    1

    1.5

    2

    Drain Voltage [V]

    DrainC

    urrent[mA/um]

    1019

    cm-3

    1020

    cm-3

    0.1 ps

    0.2 ps0.3 ps

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    39/41

    Failure of the Hydrodynamic Model

    0 0.2 0.4 0.6 0.8 1 1.2 1.40

    0.5

    1

    1.5

    2

    Drain Voltage [V]

    DrainC

    urrent[mA/um]

    1019

    cm-3

    1020

    cm-3

    0.1 ps

    0.2 ps0.3 ps

    Silvaco ATLAS simulations performed by Prof. Vasileska.

    90 nm

    25 nm

    14 nm

    0 0.2 0.4 0.6 0.8 1

    0

    2

    4

    6

    8

    10

    12

    14

    Drain Voltage [V]

    DrainCurre

    nt[mA/um]

    1020cm-3

    1019cm-3

    0.1 ps

    0.3 ps

    0.2 ps

    0 0.2 0.4 0.6 0.8 1 1.20

    1

    2

    3

    4

    5

    6

    7

    8

    Drain Voltage [V]

    DrainCurrent[mA/u

    m]

    1020

    cm-3

    1019cm-3

    0.1 ps

    0.2 ps

    0.3 ps

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    40/41

    Failure of the Hydrodynamic Model

    0 0.2 0.4 0.6 0.8 1 1.20

    1

    2

    3

    4

    5

    6

    7

    8

    Drain Voltage [V]

    DrainCurrent[mA/u

    m]

    1020

    cm-3

    1019cm-3

    0.1 ps

    0.2 ps

    0.3 ps

    0 0.2 0.4 0.6 0.8 1 1.2 1.40

    0.5

    1

    1.5

    2

    Drain Voltage [V]

    DrainC

    urrent[mA/um]

    1019

    cm-3

    1020

    cm-3

    0.1 ps

    0.2 ps0.3 ps

    Silvaco ATLAS simulations performed by Prof. Vasileska.

    90 nm

    25 nm

    14 nm

    0 0.2 0.4 0.6 0.8 1

    0

    2

    4

    6

    8

    10

    12

    14

    Drain Voltage [V]

    DrainCurre

    nt[mA/um]

    1020cm-3

    1019cm-3

    0.1 ps

    0.3 ps

    0.2 ps

  • 8/12/2019 B Drift Diffusion Hydrodynamic Modeling

    41/41

    Summary

    Drift-Diffusion model is good for large MOSFET devices,BJTs, Solar Cells and/or high frequency/high powerdevices that operate in the velocity saturation regime

    Hydrodynamic model must be used with caution when

    modeling devices in which velocity overshoot, which is asignature of non-stationary transport, exists in the device

    Proper choice of the energy relaxation times is aproblem in hydrodynamic modeling

    http://en.wikipedia.org/wiki/File:I-V_Curve_T.pnghttp://en.wikipedia.org/wiki/File:Solar_cell.png