b. c 1400sphysics.iitm.ac.in/~ph1010/mkj_lect_20.pdf · (in his book, siddhanta shiromani) ph6l20 2...

13
Indian time line of the study of solar orbits B. C 1400s ‐‐ The idea of a heliocentric solar system, with the Sun at the center is first suggested in the Vedic literature of ancient India, which often refers to the Sun as the "centre of spheres". Rishi Deerghatamas, in Rg Veda 10.6.56; “Solar attraction governs the planetary orbits” in Yajur Veda 36 The word “Bhoogolam” (Earth as a sphere) is used in Indian languages from the earliest (Vedic) period onwards. C. E. 499 – Indian mathematicianastronomer Aryabhata, in his Aryabhatiya, propounds a possibly heliocentric solar system where the planets follow elliptical orbits around the Sun, under gravitation C. E. 620s – Indian mathematician Brahmagupta recognizes gravity as a force of attraction, and briefly states the law of gravitation C. E. 1150 – Bhaskara calculates the planetary mean motion, seasons and the length of the Earth's orbit around the Sun to 9 decimal places. (in his book, Siddhanta Shiromani)

Upload: others

Post on 19-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 1

Indian time line of the study of solar orbits

1

B. C 1400s ‐‐The idea of a heliocentric solar system, with the Sun at the center  is first suggested in the Vedic literature of ancient India, which often refers to the Sun as the "centre of spheres".Rishi Deerghatamas, in Rg Veda 10.6.56;

“Solar attraction governs  the planetary orbits” in Yajur Veda 3‐6

The word  “Bhoogolam” (Earth as a sphere) is used in Indian languages from the earliest (Vedic) period onwards. 

C. E.  499  –Indian mathematician‐astronomer Aryabhata, in his Aryabhatiya, propounds a possibly heliocentric solar system where the planets follow elliptical orbits around the Sun, under gravitation C. E. 620s –Indian mathematician Brahmagupta recognizes gravity as a force  of attraction, and briefly states the law of gravitation 

C. E. 1150 –Bhaskara calculates the planetary mean motion, seasons and the length ofthe Earth's orbit around the Sun to  9 decimal places.  (in his book,   Siddhanta Shiromani) 

Page 2: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 2

International time line of the study of solar orbits

B.C. 350 – Aristotle argues for a spherical Earth using lunar eclipses and other observations 

B. C. 200 – Eratosthenes uses shadows to determine that the radius of the Earth is roughly 6,400 km 

C. E. 1536 ‐‐ Copernicus :  Sun is at the center of the solar  system

C. E. 1636 ‐‐ Galileo Galilei was imprisoned for stating that it isthe  Earth, and not the Sun that actually moves.

2

Page 3: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

Kepler’s laws

First law follows directly from Newton’s law of Universal Gravitation

Kepler’s laws

Based on detailed Astronomical data taken by Tycho Brahe

Law 1Planetary orbits are ellipses with the sun at one focus (The law of elliptical orbits)

Law 3The square  of a planets period is proportional to the cube of the  semimajor axis of its orbit (T2 ∝ a3)

Law 2Areas swept out by the radius vector from the sun to a planet in equal times are equal ( The law of equal areas)

Johannes Kepler1571‐1630

Tycho Brahe1564 ‐ 1601

PH6L20 33

Page 4: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 4A diagram showing the elliptical orbits of the inner, terrestrial planets,Icarus (an asteroid), and Halley's comet. 

Kepler’s laws

4

Page 5: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 55http://www.windows.ucar.edu/tour/link=/the_universe/uts/kepler2.html

Kepler’s laws

Plot of a3 versus T2

Actual experimental data

Page 6: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

Second lawDirect consequence of the angular momentum being a constant

o dθ dhr

r + dr

For a small change in angle dθ, the area swept out as a body moves fromr to r + dr is

rdhdA21

= θrddh = θθ drrdrdA 2

21)(

21

==

dtdr

dtdA θ2

21

=

Kepler’s laws

2mr Lθ =We know that 

22

21

mrLr=

mL

2= Kepler’s second law= a constant

PH6L20 66

Page 7: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

Kepler’s third law is a consequence of the inverse square lawof gravitational force

mLTA2

= or LmAT 2

= A is the area of the orbit and T is the period

Kepler’s laws

22 1 eaA −= πArea of an ellipse is 

A is the semimajor axis; half the maximum diameter

1 21 ( )2

a r r= +2

2

11

Lmk e

= −− L

mAT 2= 3/22

( )m a

m kπ

=−

22

3

2( )

T ma m k

π⎡ ⎤= =⎢ ⎥

−⎢ ⎥⎣ ⎦Kepler’s third law

constant

PH6L20 77

Page 8: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 8

(Bertrand’s theorem)Conditions for stable circular orbits

Closed Orbits Orbits in which the particle eventually retraces its own path

2

2

2)()(

mrLrVrVeff +=

For an extremum at r = r0

Effective or equivalent potential

0)( 0 =rfeff

2

0 30

( ) Lf rmr

= − Force must be attractive for a circular orbit

2

0 20

( )2

LE V rmr

= +8

Page 9: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 9

The character of circular orbit depends on whether the extremum of V/ or Veff is a minimum or a maximum

Stability can be found from the second derivative test

Stable if second derivative positive (concave up)

Unstable if second derivative negative (concave down)

9

For a stable orbit

00

2 2

2 40

3

r rr r

V f Lr r mr==

′∂ ∂= − +

∂ ∂0>

2

0 30

( ) Lf rmr

= −0

0 )(3

0r

rfrf

rr

−<∂∂

=

Page 10: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 10

0

0 )(3

0r

rfrf

rr

−<∂∂

=

or

3lnln

0

−<=rrrd

fd

If the force behaves like a power law of r in the vicinity of circular radius r0 nf kr= −

or 3n > −Condition for stability of orbits

1 00

0

3 nn krnkr

r−− <

10

Page 11: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 11

Closed Orbits

0r r=Perturbation of the orbit oscillation about

Small magnitude oscillations looks like simple harmonic oscillations with a spring constant

ψ0

2

2eff

eff

r r

Vk

r=

∂=

0

2

40

3

r r

f lr mr=

∂= − +

' 00

0

3 ( )( ) f rf rr

= − −

12 rT ϕ⎛ ⎞Ψ = ⎜ ⎟

⎝ ⎠the apsidal angle ψ can be given from11

Page 12: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 12

20

1 22 eff

m lk mr

π⎛ ⎞

⇒ Ψ = ⎜ ⎟⎜ ⎟⎝ ⎠

12 rT ϕ⎛ ⎞Ψ = ⎜ ⎟

⎝ ⎠

30 0

2' 0 0

00

( )3 ( )( )

f r mrmf r mrf rr

π−

⇒Ψ =− −

00

0

'( )3( )

f rrf r

π⇒Ψ =

+ 3 nπ

⇒Ψ =+

m πΨ =for closed orbits,  where m is an integer

3 (an integer)n m⇒ + =12

Page 13: B. C 1400sphysics.iitm.ac.in/~PH1010/mkj_Lect_20.pdf · (in his book, Siddhanta Shiromani) PH6L20 2 International time line of the study of solar orbits ¾B.C. 350

PH6L20 13

3for stabilityn > − 3 (an integer)

for closuren m+ =

n = −2  Inverse square law force For m = 1

`Spring force’‐ simple harmonic oscillatorn = 1 For m = 2

The ONLY two forces that can result in closed orbitsfor all bound particles are the inverse law force and the Hooke’s law force. ‐‐ Bertrand’s theorem

For a  more `complete’ proof and details, refer to the book‘Classical Mechanics’ by Goldstein

13