ayokunle$olanrewaju,andyng, and$david$juncker€¦ · 1. b.$weigl$etal.$lab$chip,$2008.$ 2....

1
1. B. Weigl et al. Lab Chip, 2008. 2. R. Safavieh and D. Juncker. Lab Chip, 2013. 3. K. E. Mach et al. Trends in Pharmacological Sciences, 2011. CAPILLARIC CIRCUITS FOR FAST AND SENSITIVE BACTERIA DETECTION Ayokunle Olanrewaju , Andy Ng, and David Juncker Micro and Nanobioengineering Lab, Biomedical Engineering Department, McGill University, Montreal, Canada, [email protected] INTRODUCTION There is a strong need for fast and sensiTve bacteria detecTon in rapid response seUngs. ConvenTonal bacteria detecTon methods are slow, require trained operators, and oWen need external equipment. Although microfluidic approaches to bacteria detecTon are acTvely explored, most cannot be readily applied in rapid response seAngs because they need large and expensive equipment for fluid manipulaJon [1] . Capillarydriven microfluidics enable liquid delivery using only surface tension forces and without external pumps and valves. Our lab recently developed “capillaric circuits” that deliver mulTple liquids at preprogrammed Tmes using only capillary forces [2]. Here we apply these capillaric circuits for fast and sensiJve detecJon of E.coli O157:H7. To do this, we incorporate a beadbased preconcentraTon step to isolate small bacteria concentraTons from large volumes and perform a preprogrammed sandwich immunoassay with fluorescent readout. ASSAY OVERVIEW PREPROGRAMMED LIQUID DELIVERY RESULTS CONCLUSIONS Taken together, our results demonstrate fast an sensiJve capture of E.coli O157:H7 using capillaric circuits. We implemented a 15min beadbased bacteria pre concentraTon followed by a 1min onchip sandwich immunoassay to detect E.coli O157:H7. A proof of principle assay with 10 7 cfu/mL of bacteria shows a clear difference between negaTve and posiTve controls. Furthermore, preliminary diluTon experiments suggest that we can detect concentraTons approaching 10 4 cfu/mL –– the clinical detecTon limit for E.coli O157:H7 in urinary tract infecTons [3]. Ongoing work in our lab is aimed at improving the assay sensiTvity with a chemical signal amplificaTon step. We are also invesTgaTng simpler and less expensive detecTon strategies. This work is a stepping stone towards fast and sensiTve in rapid response seUngs. 1. Add beads to bacteria suspension 2. Beads bind to bacteria and sediment 3. Add bead & bacteria suspension to microfluidic chip 24µm PMMA beads coated with anTE.coli O157:H7 anTbodies. 15min beadbased preconcentraTon followed by 1min onchip sandwich assay. DetecTon with fluorescently labeled anTE.coli O157:H7 anTbodies Timing of detecTon anTbody and wash buffer release is automated by capillaric circuit NegaTve control: 1x PBS PosiTve control: 10 7 cfu/mL E.coli O157:H7 Bacteria capture diluTon curve Close up of reacTon chamber BACTERIA CAPTURE ASSAY RESULTS CAPILLARIC CIRCUIT DESIGN Devices were fabricated by standard photolithography and replicated in polydimethylsiloxane (PDMS) by soW lithography. To operate the capillaric circuit, a user preloads wash buffer (0.25 µL) and detecTon anTbody (0.1 µL) in the appropriate channels. Trigger valves stop liquids for > 30 minutes due to an abrupt geometry and surface chemistry change so that the exact Jming of reagent loading is not crucial. When ready for the assay, the user adds 1 µL of sample to the sample channel. The capillary pump wicks the sample and traps beads in the reacTon chamber. When all the sample has been wicked, the retenJon burst valves autonomously deliver reagents in a preprogrammed manner according to capillary pressure differences encoded in their channel widths. The wider retenTon burst valve (containing anTbody) drains first followed by the narrower retenTon burst valve (containing wash buffer). AWerwards, assay results are visualized with a fluorescence microscope. Preprogrammed liquid delivery in capillaric circuit was validated with food dye soluTons DEVICE FABRICATION AND OPERATION

Upload: others

Post on 15-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ayokunle$Olanrewaju,AndyNg, and$David$Juncker€¦ · 1. B.$Weigl$etal.$Lab$Chip,$2008.$ 2. R.$Safavieh$and$D.$Juncker.$Lab$Chip,$2013.$ 3. K.$E.$Mach$etal.$Trends$in$Pharmacological$Sciences,$2011.$

1.  B.  Weigl  et  al.  Lab  Chip,  2008.  2.  R.  Safavieh  and  D.  Juncker.  Lab  Chip,  2013.  3.  K.  E.  Mach  et  al.  Trends  in  Pharmacological  Sciences,  2011.  

 CAPILLARIC  CIRCUITS  FOR  FAST  AND  SENSITIVE  BACTERIA  DETECTION  Ayokunle  Olanrewaju,  Andy  Ng,  and  David  Juncker

Micro-­‐  and  Nano-­‐bioengineering  Lab,  Biomedical  Engineering  Department,    McGill  University,  Montreal,  Canada,  [email protected]  

 

INTRODUCTION  

There   is   a   strong   need   for   fast   and   sensiTve   bacteria   detecTon   in   rapid   response  seUngs.  ConvenTonal  bacteria  detecTon  methods  are  slow,  require  trained  operators,  and   oWen   need   external   equipment.   Although   microfluidic   approaches   to   bacteria  detecTon   are   acTvely   explored,  most   cannot   be   readily   applied   in   rapid   response  seAngs  because  they  need  large  and  expensive  equipment  for  fluid  manipulaJon  [1].  Capillary-­‐driven  microfluidics   enable   liquid   delivery   using   only   surface   tension   forces  and  without  external  pumps  and  valves.  Our  lab  recently  developed  “capillaric  circuits”  that   deliver  mulTple   liquids   at   pre-­‐programmed  Tmes  using  only   capillary   forces   [2].  Here   we   apply   these   capillaric   circuits   for   fast   and   sensiJve   detecJon   of   E.coli  O157:H7.  To   do   this,  we   incorporate   a   bead-­‐based   pre-­‐concentraTon   step   to   isolate  small   bacteria   concentraTons   from   large   volumes   and   perform   a   pre-­‐programmed  sandwich  immunoassay  with  fluorescent  readout.  

ASSAY  OVERVIEW  

PRE-­‐PROGRAMMED  LIQUID  DELIVERY  RESULTS  

CONCLUSIONS  Taken   together,  our   results  demonstrate   fast  an   sensiJve   capture  of  E.coli  O157:H7  using   capillaric   circuits.   We   implemented   a   15-­‐min   bead-­‐based   bacteria   pre-­‐concentraTon   followed   by   a   1-­‐min   on-­‐chip   sandwich   immunoassay   to   detect   E.coli  O157:H7.  A  proof  of  principle  assay  with  107  cfu/mL  of  bacteria  shows  a  clear  difference  between  negaTve  and  posiTve  controls.  Furthermore,  preliminary  diluTon  experiments  suggest   that   we   can   detect   concentraTons   approaching   104   cfu/mL   ––   the   clinical  detecTon  limit  for  E.coli  O157:H7  in  urinary  tract  infecTons  [3].  Ongoing  work  in  our  lab  is  aimed  at  improving  the  assay  sensiTvity  with  a  chemical  signal  amplificaTon  step.  We  are   also   invesTgaTng   simpler   and   less   expensive   detecTon   strategies.   This   work   is   a  stepping  stone  towards  fast  and  sensiTve  in  rapid  response  seUngs.  

1.  Add  beads  to  bacteria  

suspension  

2.  Beads  bind  to  bacteria  and  sediment  

3.  Add  bead  &  bacteria  suspension  to  microfluidic  chip    

•  24-­‐µm  PMMA  beads  coated  with  anT-­‐E.coli  O157:H7  anTbodies.  •  15-­‐min  bead-­‐based  pre-­‐concentraTon  followed  by  1-­‐min  on-­‐chip  sandwich  assay.    •  DetecTon  with  fluorescently  labeled  anT-­‐E.coli  O157:H7  anTbodies  •  Timing  of  detecTon  anTbody  and  wash  buffer  release  is  automated  by  capillaric  circuit   NegaTve  control:  1x  PBS  

PosiTve  control:  107  cfu/mL  E.coli  O157:H7  

Bacteria  capture  diluTon  curve  Close  up  of  reacTon  chamber  

BACTERIA  CAPTURE  ASSAY  RESULTS  

CAPILLARIC  CIRCUIT  DESIGN  

Devices   were   fabricated   by   standard   photolithography   and   replicated   in  polydimethylsiloxane   (PDMS)   by   soW   lithography.   To   operate   the   capillaric   circuit,   a  user  pre-­‐loads  wash  buffer  (0.25  µL)  and  detecTon  anTbody  (0.1  µL)  in  the  appropriate  channels.  Trigger  valves  stop  liquids  for  >  30  minutes  due  to  an  abrupt  geometry  and  surface  chemistry  change  so   that   the  exact  Jming  of   reagent   loading   is  not   crucial.  When   ready   for   the  assay,   the  user  adds  1  µL  of   sample   to   the   sample   channel.   The  capillary  pump  wicks  the  sample  and  traps  beads  in  the  reacTon  chamber.  When  all  the  sample  has  been  wicked,  the  retenJon  burst  valves  autonomously  deliver  reagents  in  a   pre-­‐programmed   manner   according   to   capillary   pressure   differences   encoded   in  their  channel  widths.  The  wider  retenTon  burst  valve  (containing  anTbody)  drains  first  followed  by   the  narrower   retenTon  burst  valve   (containing  wash  buffer).  AWerwards,  assay  results  are  visualized  with  a  fluorescence  microscope.  

Pre-­‐programmed  liquid  delivery  in  capillaric  circuit  was  validated  with  food  dye  soluTons  

DEVICE  FABRICATION  AND  OPERATION