axel pelster 1. introduction 2. dipolar bose-einstein condensates...

41
On the Dipolar Dirty Boson Problem Axel Pelster 1. Introduction 2. Dipolar Bose-Einstein Condensates 3. Bose-Einstein Condensates with Weak Disorder 4. Dipolar Bose-Einstein Condensates with Weak Disorder 5. Summary and Outlook 1

Upload: others

Post on 26-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • On the Dipolar Dirty Boson ProblemAxel Pelster

    1. Introduction

    2. Dipolar Bose-Einstein Condensates

    3. Bose-Einstein Condensates with Weak Disorder

    4. Dipolar Bose-Einstein Condensates with Weak Disorder

    5. Summary and Outlook

    1

  • 1.1 Identical Quantum Particles

    Bosons:

    • integer spin

    • symmetric wave function

    Fermions:

    • half-integer spin

    • anti-symmetric wave function

    2

  • 1.2 Time-of-Flight Absorption Pictures

    JILA (1995): 8737Rb , N=20 000 , ω1 = ω2 = ω3/√8 = 2π× 120 Hz

    3

  • 1.3 Periodic Table of Elements

    4

  • On the Dipolar Dirty Boson ProblemAxel Pelster

    1. Introduction

    2. Dipolar Bose-Einstein Condensates

    3. Bose-Einstein Condensates with Weak Disorder

    4. Dipolar Bose-Einstein Condensates with Weak Disorder

    5. Summary and Outlook

    5

  • 2.1 Trapping and Interaction Potentials

    • Harmonic trap and aspect ratios:

    Utrap(x) =M

    2

    (ω2xx

    2 + ω2yy2 + ω2zz

    2), λx =

    ωzωx, λy =

    ωzωy

    • Interaction potential: Vint(x) = gδ(x) + Vdd(x)

    g =4π~2asM

    , Vdd(x) =Cdd

    4π|x|3[1− 3 cos2 θ

    ]

    -�

    Repulsion

    6

    ?

    Attraction�

    ��

    ��

    ��

    ��

    θ

    6

  • 2.2 Magnetic versus Electric Dipolar Systems

    • Magnetic systems:– Interaction strength: CBdd = µ0m

    2, with m ∼ 1 to 10 µB– Realized samples

    Boson: 52Cr Griesmaier et al., PRL 94, 160401 (2005)Boson: 87Rb Vengalattore et al., PRL 100, 170403 (2008)Fermion: 53Cr Chicireanu et al., PRA 73, 053406 (2006)Both: Dy Lu et al., PRL 104, 063001 (2010); PRL 107, 190401 (2011)

    – Observed effects: magnetostriction (Cr), Bose-nova explosion (Cr)

    • Electric systems:– Interaction strength: CEdd = 4πd

    2, with d ∼ 1 Debye– Realized samples

    Fermion: 40K87Rb Ospelkaus et al., Science 32, 231 (2008)Boson: 41K87Rb Aikawa et al., NJP 11, 055035 (2009)

    – Observed effects: thermalization (40K87Rb)

    • Ratio: CBdd/CEdd ≈ 10−47

  • 2.3 Field Theoretical Description

    • Hamilton operator: Ĥ = Ĥ0 + Ĥint

    • Free Hamiltonian:

    Ĥ0 =

    d3x Ψ̂†(x, t)

    [

    −~2∇22M

    + Utrap(x)

    ]

    Ψ̂(x, t)

    • Interaction Hamiltonian:

    Ĥint =1

    2

    d3x

    d3x′ Ψ̂†(x, t)Ψ̂†(x′, t)Vint (x− x′) Ψ̂(x′, t)Ψ̂(x, t)

    • Bosonic commutation relations:[

    Ψ̂(x, t), Ψ̂†(x′, t)]

    = δ(x−x′),[

    Ψ̂†(x, t), Ψ̂†(x′, t)]

    =[

    Ψ̂(x, t), Ψ̂(x′, t)]

    = 0

    • Bogoliubov prescription:

    Ψ̂(x, t) → Ψ(x, t) + δψ̂(x, t), Ψ̂†(x, t) → Ψ∗(x, t) + δψ̂†(x, t)

    8

  • 2.4 Gross-Pitaevskii Theory

    • Heisenberg equation:

    i~∂

    ∂tΨ̂(x, t) =

    [

    Ψ̂(x, t), Ĥ]

    • Zeroth order: Ψ̂(x, t) → Ψ(x, t), Ψ̂†(x, t) → Ψ∗(x, t)

    • Gross-Pitaevskii equation:

    i~∂Ψ(x, t)

    ∂t=

    [

    −~2∇22M

    +Utrap(x)+

    d3x′Ψ∗(x′, t)Vint(x−x′)Ψ(x′, t)]

    Ψ(x, t)

    • Action principle:

    δ

    d3x

    t2∫

    t1

    dtΨ∗(x, t)

    [

    i~∂

    ∂t−H(x, t)

    ]

    Ψ(x, t) = 0

    • Action extremalization through suitable ansatz for Ψ(x, t)

    9

  • 2.5 Bogoliubov-de Gennes Theory (Stationary)

    • Bogoliubov transformation:

    δψ̂(x) =∑

    ν

    ′ [Uν(x)α̂ν + V∗ν(x)α̂†ν

    ], δψ̂†(x) =

    ν

    ′ [U∗ν (x)α̂†ν + Vν(x)α̂ν

    ]

    • Diagonalized Hamiltonian:

    Ĥ ′ = E′G +∑

    ν

    ′ενα̂

    †να̂ν

    • Bogoliubov-de Gennes equations:

    [εν −HFl(x)]Uν(x) =∫

    d3x′Vint

    (

    x−x′)[

    Ψ(x′)Ψ(x)Vν(x

    ′)+Ψ

    ∗(x

    ′)Ψ(x)Uν(x

    ′)]

    − [εν +HFl(x)]Vν(x) =∫

    d3x′Vint

    (

    x−x′)[

    Ψ∗(x

    ′)Ψ

    ∗(x)Uν(x

    ′)+Ψ(x

    ′)Ψ

    ∗(x)Vν(x

    ′)]

    HFl(x) = −~2∇22M

    + Utrap(x)− µ+∫

    d3x′Ψ∗(x′)Vint (x− x′)Ψ(x′)

    10

  • 2.6 Trapped Dipolar Bose Gases: MF Theory

    • Action:

    A[n0, χ] = −∫

    dt

    d3xn0(x, t)

    {

    M

    [

    χ̇(x, t) +∇χ(x, t)2

    2

    ]

    + ETF(x, t)}

    ETF(x, t) = Utrap(x) +1

    2gn0(x, t) +

    1

    2

    d3x′ Vdd(x− x′)n0(x′, t)

    • Variational ansatz:

    n0(x, t) = n0(t)

    [

    1−∑

    i

    x2iR2i (t)

    ]

    , χ(x, t) =1

    2

    i

    αi(t)x2i

    • Equations of motion:MR̈i = −

    ∂RiEMF (Rx, Ry, Rz) , ǫdd =

    Cdd3g

    EMF (Rx, Ry, Rz) =M

    2

    j

    R2jω2j +

    15Ng/(4π)

    RxRyRz

    [

    1− ǫddf(RxRz,RyRz

    )]

    O’Dell et al., PRL 92, 250401 (2004) ; Eberlein et al., PRA 71, 033618 (2005)

    11

  • 2.7 Anisotropy Function

    0

    5

    10

    0

    5

    10

    -2

    -1

    0

    1

    f(x, y)

    x

    y

    0 2 4 6 8 10 12 14-2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    x

    fs(x)

    • Shift of critical temperature:Glaum, Pelster, Kleinert, and Pfau, PRL 98, 080407 (2007)

    Glaum and Pelster, PRA 76, 023604 (2007)

    • Dipolar Fermi Gas:Lima and Pelster, PRA 81, 021606(R) (2010); PRA 81, 063629 (2010)

    12

  • 2.8 Trapped Dipolar Bose Gases: MF Results• Stability diagram and aspect ratio:

    0 1 2 3 4 5 60

    2

    4

    6

    8

    10

    ǫdd

    Unstable

    Metastable

    Stable

    λx = λy0 5 10 15 20 25 30

    0

    1

    2

    3

    4

    5

    6R̃xλxR̃z

    ǫbdd

    λx = λy

    O’Dell et al., PRL 92, 250401 (2004) ; Eberlein et al., PRA 71, 033618 (2005)

    • Low-lying oscillations and time-of-flight:

    0 1 2 3 40

    2

    4

    6

    8

    rq

    Ωrq

    +

    Ω+

    Ω−

    ǫbdd

    λx = λy = 4

    0 2 4 6 8 10 12 140

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    time of flight [ms]

    aspect ra

    tio

    /RyRz

    z

    y

    m Bm, along :B y

    m, along :B zm B

    Bismut et al., PRL 105, 040404 (2010) Stuhler et al., PRL 95, 150406 (2005)

    13

  • 2.9 Trapped Dipolar Bose Gases: Beyond MF

    • Semiclassical approximation:

    εν → ε (x,k) , Uν → U (x,k) eik·x, Vν → V (x,k) eik·x

    • BdG equations:[

    ε (x, k) − ~2k2

    2M

    ]

    U (x, k) =√

    n0(x)

    d3x′ Vint(

    x−x′)

    n0(x′)

    [

    V(x′, k)+U (x′, k)]

    eik·

    (

    x′−x)

    −[

    ε (x, k) +~2k2

    2M

    ]

    V(x, k) =√

    n0(x)

    d3x′Vint

    (

    x−x′)√

    n0(x′)

    [

    V(x′, k)+U (x′, k)]

    eik·

    (

    x′−x)

    • Local density approximation for exchange term:√

    n0(x)

    d3x′[

    gδ(

    x−x′)

    +Vdd(

    x−x′)]

    n0(x′)q(

    x′, k

    )

    eik·(x′−x)

    ≈ ξ (x, k) q (x, k)

    with ξ (x,k) = gn0(x)[1 + ǫdd

    (3 cos2 θ − 1

    )]

    Timmermans, Tommasini, and Huang, PRA 55, 3645 (1997)

    14

  • 2.10 Trapped Dipolar Bose Gases: Beyond MF

    • Bogoliubov spectrum:

    ε2 (x,k) =

    [~2k2

    2M+ ξ (x,k)

    ]2

    − ξ2 (x,k)

    • Bogoliubov amplitudes:

    U (x,k)2 − 1 = V (x,k)2 = 12

    [~2k2

    2M + ξ (x,k)

    ε (x,k)− 1

    ]

    • Depletion: ∆NN

    =5√π

    8Q3(ǫdd)

    n(0)a3s

    • Energy: ∆E = 5√π

    8gn(0)Q5(ǫdd)

    n(0)a3s0.0 0.2 0.4 0.6 0.8 1.0

    1.0

    1.5

    2.0

    2.5

    Ql(x)

    x

    • Beyond mean-field equations of motion:

    MR̈i = −∂

    ∂Ri

    [

    EMF (Rx, Ry, Rz) +7

    N∆E (Rx, Ry, Rz)

    ]

    15

  • 2.11 Trapped Dipolar Bose Gases: Beyond MF Results

    • Aspect ratio in equilibrium:

    κ ≡ RxRz = κ0 (1 + δκ)

    δ̃κ = 105√π

    32

    a3sn(0) ≈ 0.06 0.0 0.5 1.0 1.5 2.0 2.5 3.005

    10

    15

    20δκ

    δ̃κ

    ǫb

    dd= 0.97

    ǫb

    dd= 0.95

    ǫb

    dd= 0.8

    λx = λy

    • Low-lying oscillations: typical for Cr

    Ω = Ω0 (1 + δΩ)

    δ̃Ω = 63√π

    128

    a3s n(0) ≈ 0.01 0 1 2 3 4 5-0.20.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2δΩδ̃Ω ǫbdd = 0

    ǫbdd = 0.16, as = 100a0

    MonopoleQuadrupole

    λx = λy

    • Time-of-flight: expected for Dy

    κ(t) =Rx(t)Rz(t)

    0 5 10 15 200.0

    0.2

    0.4

    0.6

    0.8

    1.0κ(t)

    λx = λy = 0.5

    ǫbdd

    = 0.9, as = 150a0

    Quantum CorrectedMean Field

    ωxt

    Lima and Pelster, PRA 84, 041604(R) (2011); arXiv:1111.0900

    16

  • On the Dipolar Dirty Boson ProblemAxel Pelster

    1. Introduction

    2. Dipolar Bose-Einstein Condensates

    3. Bose-Einstein Condensates with Weak Disorder

    4. Dipolar Bose-Einstein Condensates with Weak Disorder

    5. Summary and Outlook

    17

  • 3.1 Overview of Set-Ups

    • Superfluid Helium in Porous Media: persistence of superfluidityReppy et al., PRL 51, 666 (1983)

    • Laser Speckles: controlled randomnessBilly et al., Nature 453, 891 (2008)

    • Wire Traps: undesired randomnessKrüger et al., PRA 76, 063621 (2007)

    Fortàgh and Zimmermann, RMP 79, 235 (2007)

    • Localized Atomic Species: theoretical suggestionGavish and Castin, PRL 95, 020401 (2005)

    • Incommensurate Lattices: quasi-randomnessRoati et al., Nature 453, 895 (2008)

    18

  • 3.2 Laser Speckles

    global condensate vanishesLye et al., PRL 95, 070401 (2005)

    19

  • 3.3 Wire Trap

    0 100 200

    −5

    0

    +5

    Longitudinal Position (µm)

    ∆B/B

    (10

    −5 )

    −20 0 20∆B/B (10−6)

    arbi

    trar

    y un

    its

    Distance: d = 10 µm Wire Width: 100 µm

    Magnetic Field: 10 G, 20 G, 30 G Deviation: ∆B/B ≈ 10−4

    Krüger et al., PRA 76, 063621 (2007)

    Fortàgh and Zimmermann, RMP 79, 235 (2007)

    20

  • 3.4 Model System

    Action of a Bose Gas:

    A =∫ ~β

    0

    d3x

    {

    ψ∗[

    ~∂

    ∂τ− ~

    2

    2M∆+U (x) + V (x)− µ

    ]

    ψ +g

    2ψ∗2ψ2

    }

    Properties:

    • harmonic trap potential: U(x) = M2ω2x2

    • disorder potential: V (x)

    V (x1) = 0 , V (x1)V (x2) = R(x1 − x2) , . . .

    • chemical potential: µ

    • repulsive interaction: g = 4π~2a

    M

    • periodic Bose fields: ψ(x, τ + ~β) = ψ(x, τ)

    21

  • 3.5 Grand-Canonical Potential

    Aim:

    Ω = − 1βlnZ

    Z =∮

    DψDψ∗ e−A[ψ∗,ψ]/~

    Problem:

    lnZ 6= lnZ

    Solution: Replica Trick

    Ω = −1β

    limN→0

    ZN − 1N

    22

  • 3.6 Replica Trick

    Disorder Averaged Partition Function:

    ZN =∮

    {N∏

    α′=1

    D2ψα′

    }

    e−∑Nα=1 A([ψ∗α,ψα])/~ =

    ∮{

    N∏

    α=1

    D2ψα

    }

    e−A(N)/~

    Replicated Action:

    A(N) =∫

    0

    dDx

    N∑

    α=1

    {

    ψ∗α(x, τ)

    [

    ~∂

    ∂τ− ~

    2

    2M∆ + U(x) − µ

    ]

    ψα(x, τ)

    +g

    2|ψα(x, τ)|4

    }

    +∞∑

    n=2

    1

    n!

    (−1~

    )n−1 ∫ ~β

    0

    dτ1 · · ·∫ ~β

    0

    dτn

    dDx1 · · ·∫

    dDxn

    ×N∑

    α1=1

    · · ·N∑

    αn=1

    R(n)

    (x1, . . . , xn)∣

    ∣ψα1(x1, τ1)∣

    2 · · · |ψαn(xn, τn)|2

    =⇒ Disorder amounts to attractive interaction for n = 2=⇒ Higher-order disorder cumulants negligible in replica limit N → 0

    23

  • 3.7 Condensate Density

    Assumptions:

    homogeneous Bose gas: U(x) = 0

    δ-correlated disorder: R(x) = Rδ(x)

    Bogoliubov Theory:

    background method: ψα(x, τ) = Ψα + δψα(x, τ)

    replica symmetry: Ψα =√n0

    Result: n0 = n−8

    3√π

    √an0

    3 − M2R

    8π3/2~4

    √n0a

    Huang and Meng, PRL 69, 644 (1992)

    Falco, Pelster, and Graham, PRA 75, 063619 (2007)

    24

  • 3.8 Superfluid Density

    Galilei Boost:

    ∆A =∫ ~β

    0

    d3xψ∗(x, τ)u~

    i∇ψ(x, τ)

    dΩ = −S dT − p dV −N dµ− p du

    p = − ∂Ω(T, V, µ,u)∂u

    ∣∣∣∣T,V,µ

    =MV nn u+ . . .

    Result: ns = n− nn = n−4

    3

    M2R

    8π3/2~4

    √n0a

    Huang and Meng, PRL 69, 644 (1992)

    Falco, Pelster, and Graham, PRA 75, 063619 (2007)

    25

  • 3.9 Collective Excitations

    Typical Values:

    Inguscio et al., PRL 95, 070401 (2005)

    ξ = 10 µmRTF = 100 µmlHO = 10 µm

    }

    ξ̃ =ξRTF

    l2HO√2≈ 7

    ~�

    Æ! 0(�)=Æ!0(0)

    54321010:80:60:40:20

    n = 0, l = 1

    n = 0, l = 2

    =⇒ Disorder effect vanishes in laser speckle experiment

    Improvement:

    laser speckle setup with correlation length ξ = 1 µm

    Aspect et al., NJP 8, 165 (2006)

    =⇒ Disorder effect should be measurableFalco, Pelster, and Graham, PRA 76, 013624 (2007)

    26

  • On the Dipolar Dirty Boson ProblemAxel Pelster

    1. Introduction

    2. Dipolar Bose-Einstein Condensates

    3. Bose-Einstein Condensates with Weak Disorder

    4. Dipolar Bose-Einstein Condensates with Weak Disorder

    5. Summary and Outlook

    27

  • 4.1 Disorder Induced Depletions

    • Condensate:

    n− n0n

    =

    ∫d3k

    (2π)3R(k)

    [~2k2/2M + 2nVint(k)]2 + . . .

    • Superfluid:

    nδij − nS,ijn

    =

    ∫d3k

    (2π)34R(k)kikj

    k2 [~2k2/2M + 2nVint(k)]2 + . . .

    • Isotropy: Vint(k) = Vint(|k|) and R(k) = R(|k|) yield

    n− nS =4

    3(n− n0)

    28

  • 4.2 Specialization

    • Dipoles polarized along z-direction:

    Vint(k) = g[1 + ǫdd

    (3 cos2 θ − 1

    )]

    • Relative interaction strength:

    ǫdd =Cdd3g

    , Cdd =

    {µ0m

    2 magnetic dipoles4πd2 electric dipoles

    • Gaussian correlated disorder:

    R(k) = Re−σ2k2

    29

  • 4.3 Condensate Depletion

    n− n0 = nHM f(

    ǫdd,σ

    ξ

    )

    Coherence length: ξ =

    ~2

    4Mng

    Huang-Meng depletion: nHM =(M

    2π~2

    )32√

    π

    2gnR

    00.5

    11.5

    22.5

    3 00.2

    0.40.6

    0.810

    0.5

    1

    1.5

    2

    σξ

    ǫdd

    f(

    ǫdd,σξ

    )

    0

    0.4

    0.8

    1.2

    1.6

    2

    Krumnow and Pelster, PRA 84, 021608(R) (2011)

    30

  • 4.4 Superfluid Depletion

    n− nS = nHM

    f⊥(

    ǫdd,σξ

    )

    0 0

    0 f⊥(

    ǫdd,σξ

    )

    0

    0 0 f||(

    ǫdd,σξ

    )

    00.5

    11.5

    22.5

    3 00.2

    0.40.6

    0.810

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    σξ

    ǫdda)

    f||

    (

    ǫdd,σξ

    )

    00.20.40.60.811.21.4

    00.5

    11.5

    22.5

    3 00.2

    0.40.6

    0.810

    0.5

    1

    1.5

    2

    2.5

    3

    σξ

    ǫddb)

    f⊥

    (

    ǫdd,σξ

    )

    00.511.522.53

    Krumnow and Pelster, PRA 84, 021608(R) (2011)

    =⇒ Finite localization timeGraham and Pelster, IJBC 19, 2745 (2009)

    31

  • 4.5 Hydrodynamic Theory

    • Two-fluid model: n = nS + nN , j = nSvS + nN vN︸︷︷︸=0

    • Continuity equation: ∂∂tn+∇j = 0

    • Euler equation: M ∂∂t

    vS +∇(

    µ+1

    2Mv2S

    )

    = 0

    • Linearization around equilibrium:nS = nS,eq + δnS(x, t) , vS = δvS(x, t)

    n = neq + δn(x, t) , µ = µ (neq) +∂µ

    ∂n

    ∣∣∣∣eq

    δn(x, t)

    • Wave equation:

    ∂2

    ∂t2δn(x, t)− 1

    M

    ∂µ

    ∂n

    ∣∣∣∣eq

    ∇[

    nS,eq(x)∇δn(x, t)]

    = 0

    32

  • 4.6 Speed of Sound

    • Delta correlated disorder and dipole-dipole interaction:

    c2(ǫdd, ϑ) =ng

    M

    [3ǫdd cos

    2 (ϑ) + 1− ǫdd]+nHMg

    Ms(ǫdd, ϑ)

    • Special case of contact interaction: s(0, ϑ) = 53Giorgini, Pitaevskii, and Stringari, PRB 49, 12938 (1994)

    00.2

    0.40.6

    0.81

    −π −π/20

    π/2 π

    00.20.40.60.8

    11.21.41.61.8

    ǫdd

    a) ϑ

    c0(ǫdd,ϑ)√ng/m

    0

    0.4

    0.8

    1.2

    1.6

    00.2

    0.40.6

    0.81

    −π −π/20 π/2

    π

    -1

    0

    1

    2

    3

    ǫdd

    b) ϑ

    s (ǫdd, ϑ)

    -10123

    Krumnow and Pelster, PRA 84, 021608(R) (2011)

    =⇒ Measurable via Bragg spectroscopy

    33

  • On the Dipolar Dirty Boson ProblemAxel Pelster

    1. Introduction

    2. Dipolar Bose-Einstein Condensates

    3. Bose-Einstein Condensates with Weak Disorder

    4. Dipolar Bose-Einstein Condensates with Weak Disorder

    5. Summary and Outlook

    34

  • 5.1 Summary

    • Frozen Disorder Potential :arises both artificially (laser speckles) or naturally (wire trap)

    • Bosons:local condensates in minima + global condensate + thermally excited

    • Localization Versus Transport: disorder reduces superfluidity

    • Phase Diagram: yet unknown for strong disorderNavez, Pelster, and Graham, APB 86, 395 (2007)

    Graham and Pelster, IJBC 19, 2745 (2009)

    • Anisotropic superfluidity at zero temperature:delicate interplay between isotropic disorder and dipolar interaction−→ characteristic direction dependent sound velocity−→ possible experimental detection: Bragg spectroscopy

    • Quantum and thermal fluctuations necessitate 3-fluid model

    35

  • 5.2 Optical LatticesQuantum Phase Transition:

    Greiner, Mandel, Esslinger, Hänsch, and Bloch, Nature 415, 39 (2002)

    Theoretical Description:

    • Bose-Hubbard Hamiltonian:ĤBH = −t

    〈i,j〉â†i âj +

    i

    [U

    2n̂i(n̂i − 1)− µn̂i

    ]

    , n̂i = â†i âi

    • Landau Theory: dos Santos and Pelster, PRA 79, 013614 (2009)• Ginzburg-Landau Theory:

    Bradlyn, dos Santos, and Pelster, PRA 79, 013615 (2009)

    36

  • 5.3 Quantum Phase Diagram ( T = 0,D = 3)

    • Blue line: Strong-coupling, Freericks and Monien, PRB 53, 2691 (1996)• Error bar: Extrapolated strong-coupling series• Black line: Mean-field theory, Fisher et al., PRB 40, 546 (1989)• Red line: Landau theory, dos Santos and Pelster, PRA 79, 013614 (2009)• Blue dots: QMC data, Capogrosso-Sansone et al., PRB 75, 134302 (2007)

    Numerical extension of Landau theory to higher hopping orde rs:Teichmann et al., PRB 79, 224515 (2009)

    =⇒ Convergence of hopping expansion for Landau theory37

  • 5.4 Excitation Spectra near Phase Bouncary

    Grass, dos Santos, and Pelster, PRA 84, 013613 (2011)

    Bragg spectroscopy: Bissbort et al., PRL 106, 205303 (2011)

    38

  • 5.5 Disordered Bosons in LatticeBose-Hubbard Hamilton Operator:

    ĤBH = −t∑

    â†i âj +∑

    i

    [U

    2n̂i(n̂i − 1) + (ǫi − µ) n̂i

    ]

    • = ∏i∫ +∞−∞ • p(ǫi) dǫi , p(ǫi) =

    {1/∆ ; ǫi ∈ [−∆/2,+∆/2]0 ; otherwise

    Mean-Field Phase Diagram:

    0 1 2

    0.05

    0.1

    0.15

    0 1 2

    0.05

    0.1

    0.15

    µ/Uµ/U

    2dt/U2dt/U

    MIMI

    T = 0∆/U = 0.5

    SF

    0 1 2

    0.05

    0.1

    0.15

    0 1 2

    0.05

    0.1

    0.15

    SF

    MIMIµ/Uµ/U

    2dt/U2dt/U

    BGBG

    kT/U = 0.01∆/U = 0.5

    Krutitsky, Pelster, and Graham, NJP 8, 187 (2006)

    Stochastic Mean-Field Theory: Bissbort and Hofstetter, EPL 86, 50007 (2009)

    39

  • 5.6 Acknowledgement

    Postdocs:

    • Aristeu Lima (DFG)• Ednilson Santos (FAPESP)

    PhD students:

    • Javed Akram (DAAD)• Hamid Al-Jibbouri (DAAD)• Mahmoud Ghabour• Tama Khellil (DAAD)• Mohamed Mobarek (Egyp. Gov.)• Tao Wang (CSC)

    Diploma students:

    • Max Lewandowski (Potsdam)• Tobias Rexin (Potsdam)• Falk Wächtler (Potsdam)

    Bachelor students:

    • Tomasz Checinski (Bielefeld)• Christian Krumnow (FU Berlin)• Moritz von Hase (FU Berlin)• Carolin Wille (FU Berlin)• Nikolas Zöller (FU Berlin)

    Volkswagen: Bakhodir Abdullaev , Abdulla Rakhimov (Tashkent)DAAD: Antun Balaz, Vladimir Lukovic, Branko Nikolic (Belgrade)Mentors: Robert Graham (Duisburg-Essen), Hagen Kleinert (FU Berlin)

    40

  • 5.7 Announcement

    Wilhelm and Else Heraeus Seminar

    Quo Vadis BEC? IV

    organized by Carlos S á de Melo and Axel Pelster

    Physikzentrum, Bad Honnef

    August 21 – 25, 2012

    applications possible at the beginning of 2012:http://users.physik.fu-berlin.de/˜pelster

    41