automated spectral mueller matrix polarimeter

15
Automated Spectral Mueller Matrix Polarimeter Harsh Purwar 1 , Jalpa Soni 1 , Harshit Lakhotia 1 , Shubham Chandel 2 , Chitram Banerjee 1 & Nirmalya Ghosh 1 1 Department of Physical Sciences Indian Institute of Science Education and Research, Kolkata 2 Cochin University of Science and Technology

Upload: harsh-purwar

Post on 11-Mar-2015

138 views

Category:

Documents


1 download

DESCRIPTION

A small poster presentation made by Harsh Purwar, Student, Indian Institute of Science Education and Research, Kolkata with the contribution of others (names mentioned in the presentation) and presented in a workshop on "Trends in Optics" organized by Satendra Nath Bose National Center for Basic Sciences (SNBNCBS), Kolkata.

TRANSCRIPT

Page 1: Automated Spectral Mueller Matrix Polarimeter

Automated Spectral Mueller Matrix Polarimeter

Harsh Purwar1, Jalpa Soni1, Harshit Lakhotia1, Shubham Chandel2, Chitram Banerjee1 &

Nirmalya Ghosh1

1Department of Physical Sciences Indian Institute of Science Education and Research, Kolkata

2Cochin University of Science and Technology

Page 2: Automated Spectral Mueller Matrix Polarimeter

I n t r o d u c t i o n

Goals to achieve:

โ€“ Develop spectral Mueller Matrix Polarimeter

โ€“ Calibrate and automate the equipment for fast and precise measurements

โ€“ Apply this approach for early stage cancer detection

Polarization: A property of the EM radiations that describes the shape and orientation of the locus of the electric field vector extremity as a function of time, at a given point in space.

โ€ข If the ๐ธ extremity describes a stationary curve during observation, the wave is called polarized.

โ€ข It is called un-polarized if the extremity of vector exhibits random positions.

Stokes Vector: ๐‘†0๐‘†1๐‘†2๐‘†3

=

๐ผ๐ป + ๐ผ๐‘‰๐ผ๐ป โˆ’ ๐ผ๐‘‰๐ผ๐‘ƒ โˆ’ ๐ผ๐‘€๐ผ๐‘… โˆ’ ๐ผ๐ฟ

Page 3: Automated Spectral Mueller Matrix Polarimeter

S o m e B a s i c s

โ€ข Polarization State Generator ๐‘พ : A black box that can generate different polarization states.

๐‘Š =

1 0 0 00 ๐‘๐œƒ1

2 + ๐‘ ๐œƒ12 ๐‘๐›ฟ ๐‘ ๐œƒ1๐‘๐œƒ1 1 โˆ’ ๐‘๐›ฟ โˆ’๐‘ ๐œƒ1๐‘ ๐›ฟ

0 ๐‘ ๐œƒ1๐‘๐œƒ1 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œƒ12 + ๐‘๐œƒ12 ๐‘๐›ฟ ๐‘๐œƒ1๐‘ ๐›ฟ

0 ๐‘ ๐œƒ1๐‘ ๐›ฟ โˆ’๐‘๐œƒ1๐‘ ๐›ฟ ๐‘๐›ฟ

MM for QWP

ร—

1 1 0 01 1 0 00 0 0 00 0 0 0

MM for LP at H position

ร—

1000 Si

โ€ข Polarization State Analyzer ๐‘จ is dedicated to the measurement of an unknown Stokes vector. It can be described by a characteristic matrix A that links the measured intensities to the input Stokes vector.

๐ด =

1 โˆ’1 0 0โˆ’1 1 0 00 0 0 00 0 0 0MM for LP at V position

ร—

1 0 0 00 ๐‘๐œƒ1

2 + ๐‘ ๐œƒ12 ๐‘๐›ฟ ๐‘ ๐œƒ1๐‘๐œƒ1 1 โˆ’ ๐‘๐›ฟ โˆ’๐‘ ๐œƒ1๐‘ ๐›ฟ

0 ๐‘ ๐œƒ1๐‘๐œƒ1 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œƒ12 + ๐‘๐œƒ12 ๐‘๐›ฟ ๐‘๐œƒ1๐‘ ๐›ฟ

0 ๐‘ ๐œƒ1๐‘ ๐›ฟ โˆ’๐‘๐œƒ1๐‘ ๐›ฟ ๐‘๐›ฟ

MM for QWP

โ€ข Measured MM vector, ๐‘€๐‘– = ๐ด๐‘€๐‘ ๐‘Š

Page 4: Automated Spectral Mueller Matrix Polarimeter

โ€ข For four chosen angles of generator QWP โ€“ ๐œฝ๐Ÿ, ๐œฝ๐Ÿ, ๐œฝ๐Ÿ‘ and ๐œฝ๐Ÿ’,

๐‘ƒ๐‘†๐บ =

1 1 1 1๐‘๐œƒ12 + ๐‘ ๐œƒ12 ๐‘๐›ฟ ๐‘๐œƒ2

2 + ๐‘ ๐œƒ22 ๐‘๐›ฟ ๐‘๐œƒ3

2 + ๐‘ ๐œƒ32 ๐‘๐›ฟ ๐‘๐œƒ4

2 + ๐‘ ๐œƒ42 ๐‘๐›ฟ

๐‘ ๐œƒ1๐‘๐œƒ1 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œƒ2๐‘๐œƒ2 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œƒ3๐‘๐œƒ3 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œƒ4๐‘๐œƒ4 1 โˆ’ ๐‘๐›ฟ๐‘ ๐œƒ1๐‘ ๐›ฟ ๐‘ ๐œƒ2๐‘ ๐›ฟ ๐‘ ๐œƒ3๐‘ ๐›ฟ ๐‘ ๐œƒ4๐‘ ๐›ฟ

โ€ข Similarly, for four chosen angles of analyzer QWP โ€“ ๐“๐Ÿ, ๐“๐Ÿ, ๐“๐Ÿ‘ and ๐“๐Ÿ’,

๐‘ƒ๐‘†๐ด =

1 โˆ’ ๐‘๐œ™12 + ๐‘ ๐œ™1

2 ๐‘๐›ฟ โˆ’๐‘๐œ™1๐‘ ๐œ™1 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œ™1๐‘ ๐›ฟ

1 โˆ’ ๐‘๐œ™22 + ๐‘ ๐œ™2

2 ๐‘๐›ฟ โˆ’๐‘๐œ™2๐‘ ๐œ™2 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œ™2๐‘ ๐›ฟ

1 โˆ’ ๐‘๐œ™32 + ๐‘ ๐œ™3

2 ๐‘๐›ฟ โˆ’๐‘๐œ™3๐‘ ๐œ™3 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œ™3๐‘ ๐›ฟ

1 โˆ’ ๐‘๐œ™42 + ๐‘ ๐œ™4

2 ๐‘๐›ฟ โˆ’๐‘๐œ™4๐‘ ๐œ™4 1 โˆ’ ๐‘๐›ฟ ๐‘ ๐œ™4๐‘ ๐›ฟ

โ€ข It can be shown that measured Mueller vector ๐‘€๐‘– is given by, ๐‘€๐‘– = ๐‘ƒ๐‘†๐ดโŠ— ๐‘ƒ๐‘†๐บ

๐‘‡

๐‘„

๐‘€๐‘  = ๐ดโŠ—๐‘Š๐‘‡ ๐‘€๐‘ 

โ€ข Optimal angles, ๐œƒโ€™s and ๐œ™โ€™s were computed so as to maximize the determinant of the ๐‘„ matrix and are as follows,

๐œƒ1๐œƒ2๐œƒ3๐œƒ4

=

๐œ™1๐œ™2๐œ™3๐œ™4

=

๐Ÿ‘๐Ÿ“ยฐ๐Ÿ•๐ŸŽยฐ๐Ÿ๐ŸŽ๐Ÿ“ยฐ๐Ÿ๐Ÿ’๐ŸŽยฐ

Page 5: Automated Spectral Mueller Matrix Polarimeter

E x p e r i m e n t a l S e t u p

Simplified schematic of the experimental setup. Additional lenses, filters etc. may be used for focusing and collecting the incident or scattered light.

๐‘ท๐‘บ๐‘ฎ = ๐‘ท๐Ÿ +๐๐Ÿ

๐‘ท๐‘บ๐‘จ = ๐‘ท๐Ÿ + ๐๐Ÿ

Page 6: Automated Spectral Mueller Matrix Polarimeter

E q u i p m e n t C a l i b r a t i o n

โ€ข Calibration was done using the Eigenvalue calibration method proposed by A. De. Martino et. al. in 2004.

โ€ข Consider, ๐‘0 = ๐‘Ž๐‘ค, ๐‘ = ๐‘Ž๐‘š๐‘ค

โ‡’ ๐‘ = ๐‘0โˆ’1๐‘ = ๐‘ค๐‘š๐‘คโˆ’1, ๐‘โ€ฒ = ๐‘๐‘0

โˆ’1 = ๐‘Ž๐‘š๐‘Žโˆ’1

โ€ข Mueller matrix of the sample with both diattenuation & retardance takes the form,

๐‘€ =

1 โˆ’cos 2๐œ“ 0 0โˆ’ cos 2๐œ“ 1 0 00 0 sin 2๐œ“ cos ฮ” sin 2๐œ“ sin ฮ”0 0 sin 2๐œ“ sin ฮ” sin 2๐œ“ cosฮ”

and has four eigenvalues (2 Re and 2 Im). Matrices ๐‘, ๐‘โ€ฒ and ๐‘š being similar have the same eigenvalues, which are ๐œ†๐‘…1 = 2๐œ cos

2๐œ“ , ๐œ†๐‘…2 = 2๐œ sin2๐œ“ , ๐œ†๐ถ1 = ๐œ sin 2๐œ“ ๐‘’

โˆ’๐‘–ฮ”, ๐œ†๐ถ2 = ๐œ sin 2๐œ“ ๐‘’๐‘–ฮ”

โ€ข So,

๐œ =๐œ†๐‘…1 + ๐œ†๐‘…22, ๐œ“ = tanโˆ’1

๐œ†๐‘…1๐œ†๐‘…2, ฮ” = ln

๐œ†๐ถ2๐œ†๐ถ1

Page 7: Automated Spectral Mueller Matrix Polarimeter

โ€ข Consider equations, ๐‘€๐‘‹ โˆ’ ๐‘‹๐ถ = 0

with a unique solution, ๐‘‹ = ๐‘Š.

โ€ข 4 ร— 4 matrix ๐‘‹ can also be written in a 16 ร— 1 basis as follows ๐ป๐‘€๐‘‹16 = 0

where ๐ป๐‘€ is a 16 ร— 16 matrix.

โ€ข Matrix ๐ป๐‘€ is, ๐ป๐‘€ = ๐‘”

1, ๐‘”2, ๐‘”3, โ€ฆ , ๐‘”16

where, ๐‘”๐‘– are constructed from ๐บ๐‘– and ๐บ๐‘– is a 4 ร— 4 matrix given by, ๐บ๐‘– = ๐‘€๐‘ˆ๐‘– โˆ’ ๐‘ˆ๐‘–๐ถ for ๐‘– = 1,2,3, โ€ฆ , 16

โ€ข Finally the solution of the above equation is given by,

๐พ = ๐ป๐‘€1๐‘‡ ๐ป๐‘€1 + ๐ป๐‘€2

๐‘‡ ๐ป๐‘€2 +โ‹ฏ

โ€ข ๐พ is a positive symmetric real matrix with a null eigenvalue, because it has a unique solution ๐‘Š16 of the equation ๐พ๐‘‹16 = 0.

โ€ข It has been shown that the Eigen vector of ๐พ with zero eigenvalue gives the 16 elements of the ๐‘Š (PSA) matrix.

โ€ข From ๐‘Š, ๐ด can also be obtained using, ๐ด = ๐ต0๐‘Šโˆ’1.

Page 8: Automated Spectral Mueller Matrix Polarimeter

M u e l l e r M a t r i x D e c o m p o s i t i o n

4 ร— 4 Mueller matrix was decomposed into three 4 ร— 4 matrices using the Polar Decomposition scheme and various polarization properties of the sample were extracted.

โ€ข Retardance ๐œน is the phase shift between two orthogonal polarizations of light.

โ€ข Diattenuation ๐’… is the differential attenuation of orthogonal polarizations for both linear and circular polarization states.

โ€ข If a completely polarized beam is incident and the emergent beam has a DOP less than unity, then the system is depolarizing.

Page 9: Automated Spectral Mueller Matrix Polarimeter

Limitations: โ€ข There should be at least two reference samples with different Mueller matrices, so that ๐‘Š

and ๐ด are uniquely determined.

โ€ข The forms of the Mueller matrices of the reference samples must be known.

Advantages: โ€ข Choice of reference sample does not depend on ๐‘Š or ๐ด.

โ€ข Independent of source and detector (spectrometer) polarization response.

โ€ข Optical elements constituting PSG and PSA need not be ideal.

โ€ข PSG and PSA matrices are determined using Eigenvalue calibration method for all wavelengths.

โ€ข System can easily be automated for fast and precise data acquisition.

L i m i t a t i o n s & A d v a n t a g e s

Page 10: Automated Spectral Mueller Matrix Polarimeter

Mueller Matrix elements for all wavelengths measured for air as a sample after calibration (normalized with ๐‘ด๐Ÿ๐Ÿ).

Page 11: Automated Spectral Mueller Matrix Polarimeter

Diattenuation versus wavelength for a wide band linear polarizer.

Linear Retardance versus wavelength for a quarter wave plate.

Measured Mueller Matrix for air at 633 nm.

1 0.010 0.009 0.0020.000 0.994 0.005 0.0010.000 โˆ’0.003 0.994 โˆ’0.0010.001 โˆ’0.003 โˆ’0.007 0.999

Diattenuation and Linear Retardance plotted against wavelength for two of the

reference samples

Page 12: Automated Spectral Mueller Matrix Polarimeter

Initial Applications on Human Cervical Tissues

โ€ข This approach was initially applied on the biopsy slides of human cervical cancer tissues to probe the changes in their polarization properties as compared to the normal cervical tissues.

โ€ข Following are some of the interesting results.

In the Backscattering Mode Geometry (scattering angle ๐Ÿ•๐Ÿ‘ยฐ) Histopathology Report - Grade III Cancer

From Stromal Region From Epithelial Region

Page 13: Automated Spectral Mueller Matrix Polarimeter

Retardance Plots for Grade II Cancer

Following are the retardance plots in the Transmission Mode Geometry for scattering angle eqaul to 7ยฐ, which were characterized histopathologically and were reported to have second grade cancer.

For Stromal Region For Epithelial Region

Page 14: Automated Spectral Mueller Matrix Polarimeter

C o n c l u s i o n s

โ€ข A completely automated spectral Mueller matrix polarimeter has been developed.

โ€ข Measured Mueller matrix elements are precise up to the 2nd decimal place.

โ€ข Typical time taken for measurement of all 16 elements averaged over 50 spectral readings is about 3 min. for air. This may vary depending upon the nature of the sample and the signal strength.

โ€ข This approach helps to study polarization properties of various biological samples such as to distinguish between diseased and normal tissues.

Page 15: Automated Spectral Mueller Matrix Polarimeter

R e f e r e n c e s

โ€ข General Methods for Optimized Design and Calibration of Mueller Polarimeters, A. De.

Martino et. al. 2004, Thin Solid Films, Vol. 455.

โ€ข General and self-consistent method for the calibration of polarization modulators,

polarimeters, and Mueller matrix ellipsometers, E. Compain, S. Poirier, B. Drevillon 1999,

Applied Optics, Vol. 38.

โ€ข Utilization of Mueller Matrix Formalism to Obtain Optical Targets Depolarization and

Depolarization properties. F. Le Roy โ€“ Brehonnet, B. Le Je 1997, Elsevier Science.

โ€ข Polarized Light: Fundamentals and Applications, E. Collette 1990, Marcel Dekker Inc., New

York.

โ€ข Absorption and Scattering of Light by Small Particles, C. F. Bohren, D. R. Huffman 1983,

Wiley, New York.

โ€ข Handbook of Optics, R. A. Chipman 2nd Edition, 1994, Vol. 2, McGraw-Hill, New York.