authors: f. rozpedek , s . r. brannon, d. w. longcope

20
The effects of canopy expansion on chromospheric evaporation driven by thermal conduction fronts Authors: F. Rozpedek, S. R. Brannon, D. W. Longcope Credit: M. Aschwanden et al. (LMSAL ), TRACE , NASA

Upload: semah

Post on 06-Jan-2016

16 views

Category:

Documents


0 download

DESCRIPTION

The effects of canopy expansion on chromospheric evaporation driven by thermal conduction fronts. Authors: F. Rozpedek , S . R. Brannon, D. W. Longcope. Credit:  M. Aschwanden et al. ( LMSAL ),  TRACE ,  NASA. Flare loop dynamics. Reconnection frees loop to contract. RD accels plasma. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

The effects of canopy expansion on chromospheric evaporation driven by thermal

conduction fronts

Authors: F. Rozpedek, S. R. Brannon, D. W. Longcope

Credit: M. Aschwanden et al. (LMSAL), TRACE, NASA

Page 2: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

RD RDGDSGDS

RD accels plasma

GDS heats plasma to flare temp. @

loop top

Simulationregion

Chromosphere

Reconnection frees loop to

contract

~90% free mag. energy => bulk plasma motion(Longcope et al. 2009)

Flare loop dynamics

Page 3: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

1-D “shocktube” model

•Model details:

•Static non-uniform grid:

• <1 km (chromosphere), ~10 km (corona), scales up in TR

•Include viscosity & Spitzer conductivity

•Neglect gravity & explicit radiative effects

•Simplified model atmosphere: temp. grad. @ const.

pressure

•Classical piston shock (tanh func. w/ Rankine-

Hugoniot)

Mp

Ms

ChromosphereT=0.01

CoronaT=1

Uniform pressure in TR

Trans. Reg.(TR)

GDS

Post-shockFluidinput

Page 4: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Model loop atmosphereChromosphere TR Corona

Page 5: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Time Evolution for the uniform tube

TCF

Page 6: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Time Evolution for the uniform tube

TCF

Page 7: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Time Evolution for the uniform tube

E

C

TCF

Page 8: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Time Evolution for the uniform tube

E

C

TCFC

E

Page 9: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Time Evolution for the uniform tubeE

C

TCF

CE

Page 10: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

A

CB

TR ??

Question:Is there some observational quantity that would enable us to determine where the nozzle is located relative to the Transition Region?

The canopy expansion

Page 11: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Varying Area Profile

Nozzle below the TRNozzle at the centre

of the TR Nozzle above the TR

The area profile has a form of a piecewise linear function.

ThermalConduction

Front

ThermalConduction

Front

ThermalConduction

Front

Page 12: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope
Page 13: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope
Page 14: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope
Page 15: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Transsonic points(lower) (upper)

Page 16: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Transsonic points (lower) (upper)

Page 17: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope
Page 18: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope
Page 19: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope
Page 20: Authors: F.  Rozpedek , S . R. Brannon, D. W.  Longcope

Thank You