aula 2-1 -eletroeletroeng1-0119/lib/exe/fetch...aula 2-1 -eletro.pptm author newton created date...

41
Eletromagnetismo Newton Mansur

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Eletromagnetismo Newton Mansur

  • 𝜀 = −𝑑

    𝑑𝑡Ί𝐵

    Lei de Faraday – Neumann - Lenz

    Ί𝐵 = 𝐵 ∙ 𝑑𝐎

  • B

    v ∆𝑉

    +

    -

    I

    I

    I

    I

    𝜀 = − 𝑑𝑑𝑡

    Ί𝐵

    Lei de Faraday

    Neumann

    Lenz

  • B(t)

    IInd IInd

    𝑩𝑰𝒏𝒅

    𝜀 = −𝑑

    𝑑𝑡 𝐵 ∙ 𝑑𝐎

    𝑬𝑰𝒏𝒅 𝑬𝑰𝒏𝒅

    𝑬𝑰𝒏𝒅

    𝑬𝑰𝒏𝒅 𝑬𝑰𝒏𝒅

    𝑬𝑰𝒏𝒅

  • q

    FB =BA cosq Ί𝐵 = 𝐵 ∙ 𝑑𝐎

    q =wt

    FB =BA coswt

    e= -N 𝑑𝑑𝑡

    FB(t)=-NBA (-wsenwt)

    e= NBAw senwt

    -1

    -0,5

    0

    0,5

    1

    0 Pi/2 Pi 3Pi/2 2Pi

    fem Fluxo

  • 𝜀 = −𝑑

    𝑑𝑡Ί𝐵

    𝜀 = −𝑑

    𝑑𝑡𝐿𝑖

    Ί𝐵 = 𝐿𝑖

    𝜀 = −𝐿𝑑𝑖

    𝑑𝑡

    L - Indutância

    Indutor

    𝐿 =Ί𝐵𝑖

    𝑈 =1

    2𝐿𝑖2 𝐿 =

    2𝑈

    𝑖2

  • 𝑈 =1

    2𝜇0 𝐵2𝑑𝑣 𝑈 =

    1

    2 𝐵.𝐻𝑑𝑣

    Indutor 𝑈 =

    1

    2𝐿𝑖2

  • i

    𝐵 =𝜇0𝑖

    2𝜋𝑟

    𝐵 <𝜇0𝑖

    2𝜋𝑟

    𝐵 <𝜇0𝑖

    2𝜋𝑟

    i

    i i

  • i

    𝐵 ∙ 𝑑𝑠 = 𝜇0𝑖

    i

    𝐵 ∙ 𝑑𝑠 = 𝜇0𝑖

  • 𝐵 ∙ 𝑑𝑠 = 𝜇0𝑖

    i i

    i i

  • i i 𝐵 =𝜇0𝑖

    2𝜋𝑟

    i i

    𝑞(𝑡) −𝑞(𝑡)

    𝐞(𝑡)

    𝐞 𝑡 =𝜍(𝑡)

    𝜖0 =

    𝑞(𝑡)

    𝐎𝜖0 𝑞 𝑡 = 𝐎𝜖0𝐞(𝑡) 𝑖 =

    𝑑𝑞

    𝑑𝑡 = 𝐎𝜖0

    𝑑𝐞(𝑡)

    𝑑𝑡

    𝑖 = 𝜖0𝑑𝐞(𝑡)𝐎

    𝑑𝑡 𝑖 = 𝜖0

    𝑑Ί𝐞𝑑𝑡

    𝑖𝐷 = 𝜖0𝑑Ί𝐞𝑑𝑡

    𝐶𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑑𝑒 𝑑𝑒𝑠𝑙𝑜𝑐𝑎𝑚𝑒𝑛𝑡𝑜

  • 𝐵 ∙ 𝑑𝑠 = 𝜇0(𝑖 + 𝑖𝐷)

    𝐵 ∙ 𝑑𝑠 = 𝜇0(𝑖 + 𝜖0𝑑Ί𝐞𝑑𝑡

    )

    i i +

    +

    -

    -

    𝐵 ∙ 𝑑𝑠 = 𝜇0𝑖 𝐵 ∙ 𝑑𝑠 = 𝜇0𝑖𝐷

  • 𝐵 ∙ 𝑑𝑠 = 𝜇0(𝑖 + 𝜖0𝑑Ί𝐞𝑑𝑡

    ) = 𝜇0 (𝑖 + 𝜖0𝑑

    𝑑𝑡 𝐞 ∙ 𝑑𝐎 )

    𝐿𝑒𝑖 𝑑𝑒 𝐺𝑎𝑢𝑠𝑠 𝐞 ∙ 𝑑𝐎 =𝑞𝑖𝑛𝑡𝜖0

    𝐞𝑞𝑢𝑎çõ𝑒𝑠 𝑑𝑒 𝑀𝑎𝑥𝑀𝑒𝑙𝑙

    𝐵 ∙ 𝑑𝐎 = 0

    𝐿𝑒𝑖 𝑑𝑒 𝐎𝑚𝑝Ú𝑟𝑒

    𝐿𝑒𝑖 𝑑𝑒 𝐹𝑎𝑟𝑎𝑑𝑎𝑊 𝐞 ∙ 𝑑𝑠 = −𝑑Ί𝐵𝑑𝑡

    = −𝑑

    𝑑𝑡 𝐵 ∙ 𝑑𝐎

  • 𝐿𝑒𝑖 𝑑𝑒 𝐺𝑎𝑢𝑠𝑠

    𝐞 ∙ 𝑑𝐎 = 𝛻 ∙ 𝐞𝑑𝑉 =𝑞𝑖𝑛𝑡𝜖0

    =1

    𝜖0 𝜌𝑑𝑉

    𝐞𝑞𝑢𝑎çõ𝑒𝑠 𝑑𝑒 𝑀𝑎𝑥𝑀𝑒𝑙𝑙

    𝛻 ∙ 𝐞 =𝜌

    𝜖0 𝛻 ∙ 𝐵 = 0

  • 𝐵 ∙ 𝑑𝑠 = 𝛻 × 𝐵 ∙ 𝑑𝐎 = 𝜇0 (𝑖𝐌𝑛𝑡 + 𝜖0𝑑

    𝑑𝑡 𝐞 ∙ 𝑑𝐎 )

    𝐞𝑞𝑢𝑎çõ𝑒𝑠 𝑑𝑒 𝑀𝑎𝑥𝑀𝑒𝑙𝑙

    𝐿𝑒𝑖 𝑑𝑒 𝐎𝑚𝑝Ú𝑟𝑒

    𝛻 × 𝐵 ∙ 𝑑𝐎 = 𝜇0 ( 𝐜 ∙ 𝑑𝐎 + 𝜖0𝑑

    𝑑𝑡 𝐞 ∙ 𝑑𝐎 )

    𝛻 × 𝐵 ∙ 𝑑𝐎 = (𝜇0𝐜 + 𝜇0𝜖0𝑑𝐞

    𝑑𝑡) ∙ 𝑑𝐎

    𝛻 × 𝐵 = 𝜇0𝐜 + 𝜇0𝜖0𝑑𝐞

    𝑑𝑡

  • 𝐞𝑞𝑢𝑎çõ𝑒𝑠 𝑑𝑒 𝑀𝑎𝑥𝑀𝑒𝑙𝑙

    𝐿𝑒𝑖 𝑑𝑒 𝐹𝑎𝑟𝑎𝑑𝑎𝑊

    𝐞 ∙ 𝑑𝑠 = −𝑑Ί𝐵𝑑𝑡

    = −𝑑

    𝑑𝑡 𝐵 ∙ 𝑑𝐎

    𝛻 × 𝐞 ∙ 𝑑𝐎 = −𝑑𝐵

    𝑑𝑡∙ 𝑑𝐎

    𝛻 × 𝐞 = −𝑑𝐵

    𝑑𝑡

  • 𝐞𝑞𝑢𝑎çõ𝑒𝑠 𝑑𝑒 𝑀𝑎𝑥𝑀𝑒𝑙𝑙

    𝛻 ∙ 𝐞 =𝜌

    𝜖0 𝛻 ∙ 𝐵 = 0

    𝛻 × 𝐵 = 𝜇0𝐜 + 𝜇0𝜖0𝑑𝐞

    𝑑𝑡

    𝛻 × 𝐞 = −𝑑𝐵

    𝑑𝑡

    𝐿𝑒𝑖 𝑑𝑒 𝐺𝑎𝑢𝑠𝑠

    𝐿𝑒𝑖 𝑑𝑒 𝐎𝑚𝑝Ú𝑟𝑒

    𝐿𝑒𝑖 𝑑𝑒 𝐹𝑎𝑟𝑎𝑑𝑎𝑊

  • 𝐞𝑞𝑢𝑎çõ𝑒𝑠 𝑑𝑒 𝑀𝑎𝑥𝑀𝑒𝑙𝑙

    𝛻 × 𝐞 = −𝑑𝐵

    𝑑𝑡 𝐿𝑒𝑖 𝑑𝑒 𝐹𝑎𝑟𝑎𝑑𝑎𝑊

    𝛻 × 𝛻 × 𝐞 = 𝛻 × −𝑑𝐵

    𝑑𝑡= −

    𝑑

    𝑑𝑡𝛻 × 𝐵

    𝛻2𝐞 − 𝛻 ∙ (𝛻 ∙ 𝐞) = −𝑑

    𝑑𝑡𝛻 × 𝐵

    𝛻 ∙ 𝐞 =𝜌

    𝜖0 𝐿𝑒𝑖 𝑑𝑒 𝐺𝑎𝑢𝑠𝑠 𝛻 ∙ 𝐞 = 0 𝑝𝑎𝑟𝑎 𝜌 = 0

    𝛻 × 𝐵 = 𝜇0𝐜 + 𝜇0𝜖0𝑑𝐞

    𝑑𝑡 𝐿𝑒𝑖 𝑑𝑒 𝐎𝑚𝑝Ú𝑟𝑒

    𝑝𝑎𝑟𝑎 𝐜 = 0 𝛻 × 𝐵 = 𝜇0𝜖0𝑑𝐞

    𝑑𝑡

  • 𝛻2𝐞 = −𝜇0𝜖0𝑑2𝐞

    𝑑𝑡2

    𝐞𝑚 1 𝑑𝑖𝑚𝑒𝑛𝑠ã𝑜

    𝑑2𝐞𝑥(𝑧, 𝑡)

    𝑑𝑧2= −𝜇0𝜖0

    𝑑2𝐞𝑥(𝑥, 𝑡)

    𝑑𝑡2= −

    1

    𝑣2𝑑2𝐞𝑥(𝑥, 𝑡)

    𝑑𝑡2

    𝑣 =1

    𝜇0𝜖0= 2,998𝑥108

    𝑚

    𝑠= 𝑐

    𝐞𝑞𝑢𝑎çõ𝑒𝑠 𝑑𝑒 𝑀𝑎𝑥𝑀𝑒𝑙𝑙

  • x

    y

    𝜇1

    𝜇2

    𝜇0

    𝐵 = 𝐵0𝑎 𝑊

    𝐻 =𝐵0𝜇2

    𝑎 𝑊

    𝐵 = 𝐵0𝑎 𝑊

    𝐻 =𝐵0𝜇1

    𝑎 𝑊

    𝐵 = 𝐵0𝑎 𝑊

    𝐻 =𝐵0𝜇0

    𝑎 𝑊

  • 𝐌1

    𝐵1 Ί21 = 𝐵1 ∙ 𝑑𝑆 2 𝑀21 =

    Ί21𝐌1

    𝜀21 = −𝑁2𝑀21𝑑𝐌1𝑑𝑡

    Ί12 = 𝐵2 ∙ 𝑑𝑆 1 𝑀12 =Ί12𝐌2

    𝐵1 = 𝛻 × 𝐎 1 Ί21 = 𝛻 × 𝐎 1 ∙ 𝑑𝑆 2 = 𝐎 1. 𝑑𝑙 2

    𝐎 =𝜇14𝜋

    𝑗

    𝑟𝑑𝑣 = 𝑁

    𝜇1𝐌

    4𝜋

    𝑑𝑙

    𝑟

    𝜀12 = −𝑁1𝑀12𝑑𝐌2𝑑𝑡

    Ί21 = 𝑁1𝑁2𝜇1𝐌14𝜋

    𝑑𝑙 1𝑟

    . 𝑑𝑙 2 𝑀21 = 𝑁1𝑁2𝜇14𝜋

    𝑑𝑙 1𝑟

    . 𝑑𝑙 2 = 𝑀12

    𝑀21 = 𝑁1𝑁2𝜇14𝜋

    𝑑𝑙 1𝑟

    . 𝑑𝑙 2 = 𝑀12

  • 𝐌 𝐵

    𝑁𝐌 = 𝐻. 𝑑𝑙 = 𝐻𝑙 =𝐵

    𝜇𝑙 = 𝐵𝑆

    𝑙

    𝜇𝑆 = Κ

    𝑙

    𝜇𝑆

    𝜀 = 𝐌𝑅 = 𝐌𝑙

    𝜍𝑆 ℱ = Κ

    𝑙

    𝜇𝑆

    ℱ = 𝑁𝐌 → 𝐹𝑜𝑟ç𝑎 𝑀𝑎𝑔𝑛𝑒𝑡𝑜𝑚𝑜𝑡𝑟𝑖𝑧

    𝐌 = 𝑗 . 𝑑𝑆 Κ = 𝑗 . 𝑑𝑆

    Κ = 𝑗 . 𝑑𝑆 → 𝐹𝑙𝑢𝑥𝑜 𝑀𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    ℛ =𝑙

    𝜇𝑆→ 𝑅𝑒𝑙𝑢𝑡â𝑛𝑐𝑖𝑎 ℛ =

    ℱ

    Κ

  • 𝐌 𝐵

    ℛ =ℱ

    Κ

    𝑅 ℰ

    𝑅 =ℰ

    𝐌

    𝐌 𝐵

    𝑙2

    ℛ1 =𝑙1𝜇1𝑆

    ℛ2 =𝑙2𝜇0𝑆

    ℛ𝑇 = ℛ1 + ℛ2

    Κ =ℱ

    ℛ𝑇

    𝑅2

    ℰ 𝑅1

  • 𝐵

    𝑙2

    ℛ1 =𝑙1𝜇1𝑆

    ℛ2 =𝑙2𝜇0𝑆

    ℛ𝑇 =ℛ3ℛ4ℛ3+ℛ4

    + ℛ1 + ℛ2 Κ =ℱ

    ℛ𝑇

    𝑅4

    ℰ

    𝑅3 𝑅2

    𝑅1

    ℛ3 =𝑙3𝜇1𝑆

    ℛ4 =𝑙4𝜇0𝑆

  • ℇ

    ℰ = 𝑅𝑖 +𝑑Κ

    𝑑𝑡 ℰ𝑖 = 𝑅𝑖2 + 𝑖

    𝑑Κ

    𝑑𝑡 ℰ𝑖𝑑𝑡 = 𝑅𝑖2𝑑𝑡 + 𝑖𝑑Κ

    Κ = 𝑁𝜙 = 𝑁𝐵𝑆 ℰ𝑖𝑑𝑡 = 𝑅𝑖2𝑑𝑡 + 𝑖𝑁𝑆𝑑𝐵 𝑖𝑁𝑆𝑑𝐵 → 𝑑1

    2𝐿𝑖2 = 𝐿𝑖𝑑𝑖

    𝐻 = 𝑛𝑖 =𝑁

    𝑙𝑖 𝑁𝑖 = 𝐻𝑙 𝑑𝑊𝑚 = 𝐻𝑙𝑆𝑑𝐵 𝑊𝑚 = 𝑉 𝐻𝑑𝐵

    𝐵𝑀𝑎𝑥

    0

  • ℇ

    𝑊𝑚 = 𝑉 𝐻𝑑𝐵 𝐵𝑀𝑎𝑥

    0

    𝐻 = 𝜇𝐵

    𝐻

    𝐵

    𝐻𝑀𝑎𝑥

    𝐵

    𝐻𝑟

    𝐵

    𝐻

    𝐵𝑀𝑎𝑥

    𝐻

    Os materiais ferromagnéticos duros têm ciclos de histerese com áreas grandes e dão

    origem a maiores perdas por histerese, não sendo adequados para a construção de

    máquinas eléctricas, em geral.

    𝑊𝑚 =1

    2𝐿𝑖2

  • Κ = 𝑁𝜙 = 𝑁𝑁𝐌

    𝑅𝑚 =

    𝑁2

    𝑅𝑚𝐌

    𝐿 =𝑁2

    𝑅𝑚

    ℇ

    𝐵(𝑡)

    𝐌(𝑡)

    𝐞𝐌𝑛𝑑

    𝐵(𝑡)

    𝐌(𝑡)

    𝐞𝐌𝑛𝑑

    - Materiais não duros com baixa histerese e baixa relutância

    - Construído em lâminas isolados com materiais isolantes evitando corrente de Foucault

  • 𝐌1

    𝐵1 𝐎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    𝑖1 → 𝜙1 = 𝜙11 + 𝜙12

    𝑖2 → 𝜙2 = 𝜙22 + 𝜙21

    Κ11 = 𝑁1 𝜙11 + 𝜙12 = 𝑁1𝜙1

    Κ22 = 𝑁2 𝜙22 + 𝜙21 = 𝑁2𝜙2

    Κ1𝑡 = 𝑁1 𝜙1 ± 𝜙21 = Κ11 ± Κ21

    Κ2𝑡 = 𝑁2 𝜙2 ± 𝜙12 = Κ22 ± Κ12

    Κ1𝑡 = 𝐿11𝐌1 ± 𝑀21𝐌2

    Κ2𝑡 = 𝐿22𝐌2 ± 𝑀12𝐌1

  • 𝐎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    Κ1𝑡 = 𝐿11𝐌1 ± 𝑀21𝐌2

    Κ2𝑡 = 𝐿22𝐌2 ± 𝑀12𝐌1

    𝑀12 = 𝑀21 = 𝑀

    ℇ1𝑡 = −𝑑Κ1𝑡𝑑𝑡

    = −𝐿11𝑑𝐌1𝑑𝑡

    ∓ 𝑀𝑑𝐌2𝑑𝑡

    ℇ2𝑡 = −𝑑Κ2𝑡𝑑𝑡

    = −𝐿22𝑑𝐌2𝑑𝑡

    ∓ 𝑀𝑑𝐌1𝑑𝑡

    ℇ1𝑡𝐌1 = −𝑑Κ1𝑡𝑑𝑡

    = −𝐿11𝐌1𝑑𝐌1𝑑𝑡

    ∓ 𝑀𝐌1𝑑𝐌2𝑑𝑡

    ℇ2𝑡𝐌2 = −𝑑Κ2𝑡𝑑𝑡

    = −𝐿22𝐌2𝑑𝐌2𝑑𝑡

    ∓ 𝑀𝐌2𝑑𝐌1𝑑𝑡

    𝑊𝑚𝑡 =1

    2𝐿11𝐌1

    2 +1

    2𝐿22𝐌2

    2 ± 𝑀21𝐌1𝐌2

    𝐌1

    𝐵1

  • 𝐎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    Κ1𝑡 = 𝐿1𝐌1 + 𝑀𝐌2

    Κ2𝑡 = 𝐿2𝐌2 + 𝑀𝐌1

    Κ1𝑡Κ2𝑡

    =𝐿1 𝑀𝑀 𝐿2

    𝐌1𝐌1

    ∆= 𝐿1𝐿2 − 𝑀2 = 𝐿1𝐿2 1 −

    𝑀2

    𝐿1𝐿2

    𝑘 =𝑀2

    𝐿1𝐿2 → 𝐶𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒 𝑎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜

    𝑀 = 𝐿1𝐿2 → 𝑘 = 1 𝑎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜 𝑖𝑑𝑒𝑎𝑙

    𝑀 = 0 → 𝑘 = 0 𝑠𝑖𝑠𝑡𝑒𝑚𝑎 𝑑𝑒𝑠𝑎𝑐𝑜𝑝𝑙𝑎𝑑𝑜

    𝐌1

    𝐵1

  • 𝐎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    ℇ1 = 𝐿1𝑑𝐌1𝑑𝑡

    + 𝑀𝑑𝐌2𝑑𝑡

    ℇ2 = 𝐿2𝑑𝐌2𝑑𝑡

    + 𝑀𝑑𝐌1𝑑𝑡

    𝐌1 = 𝑖1𝑒−𝑗𝜔𝑡

    𝐌2 = 𝑖2𝑒−𝑗𝜔𝑡

    ℇ1 = 𝑗𝜔 𝐿1𝐌1 + 𝑀𝐌2

    ℇ2 = 𝑗𝜔 𝐿2𝐌2 + 𝑀𝐌1

    𝐿1 ∝ 𝑁12

    𝐿2 ∝ 𝑁22

    𝐿1𝐿2

    =𝑁1

    2

    𝑁22

    𝑘2 =𝑀2

    𝐿1𝐿2 𝐿1𝐿2 =

    𝑀2

    𝑘2

    𝐿1𝑀

    =𝑁1𝑁2𝑘

    𝐿2𝑀

    =𝑁2𝑁1𝑘

    𝐿1𝑀

    ℇ2 = 𝑗𝜔𝑀𝐿1𝐿2𝑀2

    𝐌2 +𝐿1𝑀

    𝐌1 ℇ1 = 𝑗𝜔𝑀𝐿1𝑀

    𝐌1 + 𝐌2

    𝐌1

    𝐵1

  • 𝐎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    ℇ1 =𝐿1𝑀

    ℇ2 + 𝑗𝜔𝑀 1 −𝐿1𝐿2𝑀2

    𝐌2

    ℇ1 =𝑁1𝑁2𝑘

    ℇ2 + 𝑗𝜔𝑀 1 −1

    𝑘2𝐌2

    𝐌1 =1

    𝑗𝜔𝑀ℇ2 −

    𝑁2𝑁1𝑘

    𝐌2

    𝐎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜 𝑖𝑑𝑒𝑎𝑙 → 𝑘 = 1

    ℇ1 =𝑁1𝑁2

    ℇ2

    𝐌1 =1

    𝑗𝜔𝑀ℇ2 −

    𝑁2𝑁1

    𝐌2

    ℇ2 = 0 → 𝐶𝑢𝑟𝑡𝑜 𝑛𝑜 𝑠𝑒𝑐𝑢𝑛𝑑á𝑟𝑖𝑜 𝐌1 = −𝑁2𝑁1

    𝐌2

    1

    𝑗𝜔𝑀ℇ2 → 𝐶𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑑𝑒 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑧𝑎çã𝑜

    𝐌1

    𝐵1

  • 𝐎𝑐𝑜𝑝𝑙𝑎𝑚𝑒𝑛𝑡𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    ℇ1 = 𝑗𝜔 𝐿1𝐌1 + 𝑀𝐌2

    ℇ2 = 𝑅2𝐌2 + 𝑗𝜔 𝐿2𝐌2 + 𝑀𝐌1

    ℇ2 = 𝑗𝜔 𝐿2𝐌2 + 𝑀𝐌1

    ℇ1 = 𝑅1𝐌1 + 𝑗𝜔 𝐿1𝐌1 + 𝑀𝐌2

    ℇ1ℇ2

    =𝑅1 00 𝑅2

    𝐌1𝐌1

    + 𝑗𝜔𝐿1 𝑀𝑀 𝐿2

    𝐌1𝐌2

    ℇ1ℇ2

    =𝑅1 + 𝑗𝜔𝐿1 𝑗𝜔𝑀

    𝑗𝜔𝑀 𝑅2 + 𝑗𝜔𝐿2

    𝐌1𝐌2

    𝐌1𝐌2

    =𝑅1 + 𝑗𝜔𝐿1 𝑗𝜔𝑀

    𝑗𝜔𝑀 𝑅2 + 𝑗𝜔𝐿2

    −1 ℇ1ℇ2

    𝐌1

    𝐵1

  • 𝛻2𝐞 = 𝜇0𝜖0𝜕2𝐞

    𝜕𝑡2

    𝐞𝑚 1 𝑑𝑖𝑚𝑒𝑛𝑠ã𝑜

    𝜕2𝐞𝑥(𝑥, 𝑡)

    𝜕𝑥2= 𝜇0𝜖0

    𝜕2𝐞𝑥(𝑥, 𝑡)

    𝜕𝑡2=

    1

    𝑣2𝜕2𝐞𝑥(𝑥, 𝑡)

    𝜕𝑡2

    𝑣 =1

    𝜇0𝜖0= 2,998𝑥108

    𝑚

    𝑠= 𝑐

    𝐞𝑞𝑢𝑎çõ𝑒𝑠 𝑑𝑒 𝑀𝑎𝑥𝑀𝑒𝑙𝑙

  • 𝜕2𝐞𝑥(𝑥, 𝑡)

    𝜕𝑥2=

    1

    𝑣2𝜕2𝐞𝑥(𝑥, 𝑡)

    𝜕𝑡2 𝐞𝑥(𝑥, 𝑡) = 𝑋 𝑥 𝑇(𝑡)

    1

    𝑋

    𝑑2𝑋

    𝑑𝑥2=

    1

    𝑇𝑣2𝑑2𝑇

    𝑑𝑡2= −𝛜2 𝑇 𝑡 = 𝑇0𝑒

    −𝑗𝛜𝑣𝑡

    𝑋 𝑥 = 𝑋0𝑒±𝑗𝛜𝑥

    𝐞𝑥(𝑥, 𝑡) = 𝐞0𝑒−𝑗𝛜(±𝑥+𝑣𝑡) 𝛜 =

    2𝜋

    𝜆

    𝛜𝑣 = 𝜔 =2𝜋

    𝑇 𝐞 (𝑟 , 𝑡) = 𝐞0𝑒

    −𝑗 (±𝛜.𝑟 +𝜔𝑡)

    𝐞 (𝑟 , 𝑡) = 𝐞0𝑒−𝑗 (𝑘.𝑟 ±𝜔𝑡)

  • 𝛜 =2𝜋

    𝜆 𝜔 =

    2𝜋

    𝑇

    𝑣 =𝜔

    𝛜

    𝐞𝑥(𝑥, 𝑡) = 𝐞0𝑒−𝑗 (±𝛜𝑥+𝜔𝑡)

  • 𝛻 ∙ 𝐞 =𝜌

    𝜖0 𝛻 ∙ 𝐵 = 0

    𝛻 × 𝐻 = 𝐜 + 𝜖0𝜕𝐞

    𝜕𝑡

    𝛻 × 𝐞 = −𝜕𝐵

    𝜕𝑡

    𝑆𝑒𝑚 𝑐𝑎𝑟𝑔𝑎 𝑙𝑖𝑣𝑟𝑒 𝑒 𝐞 (𝑟 , 𝑡) = 𝐞0 (𝑟 )𝑒𝑗𝜔𝑡

    𝛻 ∙ 𝐞 =𝜌

    𝜖0 𝛻 ∙ 𝐵 = 0

    𝛻 × 𝐻 = 𝜍 + 𝑗𝜔𝜖 𝐞

    𝛻 × 𝐞 = −𝑗𝜔𝜇𝐻

    𝐜 = 𝜍𝐞

    𝐶𝑜𝑛𝑑𝑢𝑡𝑜𝑟 𝑐𝑜𝑚 𝑐𝑜𝑛𝑑𝑢𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑏𝑎𝑖𝑥𝑎 (𝑑𝑖𝑒𝑙é𝑡𝑟𝑖𝑐𝑜 𝑐𝑜𝑚 𝑝𝑒𝑟𝑑𝑎)

  • 𝐶𝑜𝑛𝑑𝑢𝑡𝑜𝑟 𝑐𝑜𝑚 𝑐𝑜𝑛𝑑𝑢𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑏𝑎𝑖𝑥𝑎 (𝑑𝑖𝑒𝑙é𝑡𝑟𝑖𝑐𝑜 𝑐𝑜𝑚 𝑝𝑒𝑟𝑑𝑎)

    𝜕2𝐞𝑥(𝑥, 𝑡)

    𝜕𝑥2= 𝑗𝜔𝜇 𝜍 + 𝑗𝜔𝜖 𝐞𝑥(𝑥, 𝑡) 𝛻

    2𝐞 = 𝑗𝜔𝜇 𝜍 + 𝑗𝜔𝜖 𝐞

    𝐞𝑥(𝑥, 𝑡) = 𝐞0𝑒−𝑗 (±𝛟𝑥+𝜔𝑡) 𝛟2 = 𝑗𝜔𝜇 𝜍 + 𝑗𝜔𝜖

    𝐞𝑥(𝑥, 𝑡) = 𝐞0𝑒−𝛌𝑥cos (𝜔𝑡 ± 𝛜𝑥)

    𝛌 = 𝜔𝜇𝜖

    21 +

    𝜍

    𝜔𝜖

    2

    − 1

    𝛜 = 𝜔𝜇𝜖

    21 +

    𝜍

    𝜔𝜖

    2

    + 1

    ?

  • 𝐶𝑜𝑛𝑑𝑢𝑡𝑜𝑟 𝑐𝑜𝑚 𝑐𝑜𝑛𝑑𝑢𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑎𝑙𝑡𝑎 (𝑐𝑜𝑛𝑑𝑢𝑡𝑜𝑟 𝑞𝑢𝑎𝑠𝑒 𝑖𝑑𝑒𝑎𝑙)

    𝛌 = 𝜔𝜇𝜖

    21 +

    𝜍

    𝜔𝜖

    2

    − 1 =𝜇𝜔𝜍

    2 𝛜 = 𝜔

    𝜇𝜖

    21 +

    𝜍

    𝜔𝜖

    2

    + 1 =𝜇𝜔𝜍

    2

    𝛿 =2

    𝜇𝜔𝜍

    𝐞𝑥 𝑥, 𝑡 = 𝐞0𝑒−𝛌𝑥 cos 𝜔𝑡 ± 𝛜𝑥 = 𝐞0𝑒

    −𝑥 𝛿 cos (𝜔𝑡 ± 𝛜𝑥)

    skin depth

    Profundidade de penetração

  • 𝐷𝑖𝑒𝑙é𝑡𝑟𝑖𝑐𝑜 𝑠𝑒𝑚 𝑝𝑒𝑟𝑑𝑎

    𝛌 = 𝜔𝜇𝜖

    21 +

    𝜍

    𝜔𝜖

    2

    − 1 = 0 𝛜 = 𝜔𝜇𝜖

    21 +

    𝜍

    𝜔𝜖

    2

    + 1 = 𝜔 𝜇𝜖

    𝜍 = 0

  • 𝑀𝑒𝑖𝑜 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑜

    𝛜 = 𝜔 𝜇0𝜖(𝜔) 𝑣 =𝜔

    𝛜=

    1

    𝜇0𝜖(𝜔)