august 30, 2012 math for my slides “review of fundamentals”. linear algebra...

60
LINEAR ALGEBRA Topics: matrix, vector, norms, products Vector: product: norm: (Euclidean) Matrix: product: norm: (Frobenius) x =[x 1 ,...,x d ] > = 2 6 4 x 1 . . . x d 3 7 5 < x (1) , x (2) >= x (1) > x (2) = P d i=1 x (1) i x (2) i p p P (X (1) X (2) ) i,j = X (1) i,· X (2) ·,j = P k X (1) i,k X (2) k,j ||x|| 2 = p x > x = p P i x 2 i 2 3 X = 2 6 4 X 1,1 ... X 1,m . . . . . . . . . X n,1 ... X n,m 3 7 5 2 ||X|| F = p trace(X > X)= q P i P j X 2 i,j

Upload: others

Post on 15-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

LINEAR ALGEBRATopics: matrix, vector, norms, products

• Vector:

‣ product:

‣ norm: (Euclidean)

•Matrix:

‣ product:

‣ norm: (Frobenius)

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 30, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]> =

2

64x1.

.

.

xd

3

75

• < x

(1),x

(2)>= x

(1)>x

(2) =Pd

i=1 x(1)i x

(2)i

• ||x|| =p< x

>x > =

pPi x

2i

• X =

2

64X1,1 . . . X1,w

.

.

.

.

.

.

.

.

.

Xh,1 . . . Xh,w

3

75

• (X(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• Ii,j =

⇢1 si i = j

0 si i 6= j

• Xi,j = 0 si i 6= j

• Xi,j = 0 si i < j

• (X>)i,j = Xj,i

• trace(X) =P

i Xi,i

• X

�1X = I

• det (X) =Q

i Xi,i

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 30, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]> =

2

64x1.

.

.

xd

3

75

• < x

(1),x

(2)>= x

(1)>x

(2) =Pd

i=1 x(1)i x

(2)i

• ||x|| =p< x

>x > =

pPi x

2i

• X =

2

64X1,1 . . . X1,w

.

.

.

.

.

.

.

.

.

Xh,1 . . . Xh,w

3

75

• (X(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• Ii,j =

⇢1 si i = j

0 si i 6= j

• Xi,j = 0 si i 6= j

• Xi,j = 0 si i < j

• (X>)i,j = Xj,i

• trace(X) =P

i Xi,i

• X

�1X = I

• det (X) =Q

i Xi,i

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 30, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]> =

2

64x1.

.

.

xd

3

75

• < x

(1),x

(2)>= x

(1)>x

(2) =Pd

i=1 x(1)i x

(2)i

• ||x|| =px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,w

.

.

.

.

.

.

.

.

.

Xh,1 . . . Xh,w

3

75

• (X(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• Ii,j =

⇢1 si i = j

0 si i 6= j

• Xi,j = 0 si i 6= j

• Xi,j = 0 si i < j

• (X>)i,j = Xj,i

• trace(X) =P

i Xi,i

• X

�1X = I

• det (X) =Q

i Xi,i

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 30, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]> =

2

64x1.

.

.

xd

3

75

• < x

(1),x

(2)>= x

(1)>x

(2) =Pd

i=1 x(1)i x

(2)i

• ||x||2 =px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,w

.

.

.

.

.

.

.

.

.

Xh,1 . . . Xh,w

3

75

• (X(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =p

trace(X>X) =

qPi X

2i,i

• Ii,j =

⇢1 si i = j

0 si i 6= j

• Xi,j = 0 si i 6= j

• Xi,j = 0 si i < j

• (X>)i,j = Xj,i

• trace(X) =P

i Xi,i

• X

�1X = I

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 30, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd

]> =

2

64x1.

.

.

x

d

3

75

• < x

(1),x

(2)>= x

(1)>x

(2) =P

d

i=1 x(1)i

x

(2)i

• ||x||2 =px

>x =

pPi

x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

X

n,1 . . . X

n,m

3

75

• (X(1)X

(2))i,j

= X

(1)i,· X

(2)·,j =

Pk

X

(1)i,k

X

(2)k,j

• ||X||F

=p

trace(X>X) =

qPi

X

2i,i

• Ii,j

=

⇢1 si i = j

0 si i 6= j

• X

i,j

= 0 si i 6= j

• X

i,j

= 0 si i < j

• X

i,j

= X

j,i

(X> = X)

• trace(X) =P

i

X

i,i

• trace(X(1)X

(2)X

(3)) = trace(X(3)X

(1)X

(2))trace(X(2)X

(3)X

(1))

1

2

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

September 6, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi

Pj X

2i,j

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Page 2: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

LINEAR ALGEBRATopics: special matrices• Identity matrix :

•Diagonal matrix :

• Lower triangular matrix :

• Symmetric matrix : (i.e. )

• Square matrix: matrix with same number of rows and columns

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 30, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• Ii,j =

⇢1 if i = j0 if i 6= j

• Xi,j = 0 if i 6= j

• Xi,j = 0 if i < j

• Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2))trace(X

(2)X

(3)X

(1))

1

3

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Page 3: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

LINEAR ALGEBRATopics: operations on matrices• Trace of matrix:‣ trace of products:

• Inverse of matrix:‣ doesn’t exist if determinant is 0

‣ inverse of product:

• Transpose of matrix:‣ transpose of product:

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 30, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• Ii,j =

⇢1 if i = j0 if i 6= j

• Xi,j = 0 if i 6= j

• Xi,j = 0 if i < j

• Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

• X

�1X = I

• (X

>)i,j = Xj,i

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

4

Review of fundamentals

Hugo LarochelleD

´

epartement d’informatique

Universit

´

e de Sherbrooke

[email protected]

August 31, 2012

Abstract

Math for my slides “Review of fundamentals”.

Linear algebra

• x = [x1, . . . , xd]>=

2

64x1.

.

.

xd

3

75

• < x

(1),x(2) >= x

(1)>x

(2)=

Pdi=1 x

(1)i x

(2)i

• ||x||2 =

px

>x =

pPi x

2i

• X =

2

64X1,1 . . . X1,m

.

.

.

.

.

.

.

.

.

Xn,1 . . . Xn,m

3

75

• (X

(1)X

(2))i,j = X

(1)i,· X

(2)·,j =

Pk X

(1)i,kX

(2)k,j

• ||X||F =

ptrace(X

>X) =

qPi X

2i,i

• I Ii,j =

⇢1 if i = j0 if i 6= j

• X Xi,j = 0 if i 6= j

• X Xi,j = 0 if i < j

• X Xi,j = Xj,i (X

>= X)

• trace(X) =

Pi Xi,i

• trace(X

(1)X

(2)X

(3)) = trace(X

(3)X

(1)X

(2)) = trace(X

(2)X

(3)X

(1))

1

Page 4: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

LINEAR ALGEBRATopics: operations on matrices•Determinant‣ of triangular matrix:

‣ of transpose of matrix:

‣ of inverse of matrix:

‣ of product of matrix:

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

5

Page 5: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

LINEAR ALGEBRATopics: properties of matrices•Orthogonal matrix:

• Positive definite matrix: ‣ if « » , then positive semi-definite

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

6

Page 6: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

LINEAR ALGEBRATopics: linear dependence, rank, range and nullspace• Set of linearly dependent vectors :

• Rank of matrix: number of linear independent columns• Range of a matrix:

•Nullspace of a matrix:

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rh | 9w x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

7

Page 7: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

LINEAR ALGEBRATopics: eigenvalues and eigenvectors of a matrix• Eigenvalues and eigenvectors

• Properties‣ can write

‣ determinant of any matrix:

‣ positive definite if

‣ rank of matrix is the number of non-zero eigenvalues

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui and u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui and u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui and u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui and u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0 8i

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

8

Page 8: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

DIFFERENTIAL CALCULUSTopics: derivative, partial derivative•Derivative:

‣ direction and rate of increase of function

• Partial derivative:

‣ direction and rate of increase for variable assuming others are fixed

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui and u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0 8i

•d

dxf(x) = lim

�!0

f(x+�)� f(x)

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui and u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0 8i

•d

dxf(x) = lim

�!0

f(x+�)� f(x)

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui and u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0 8i

•d

dxf(x) = lim

�!0

f(x+�)� f(x)

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rf(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

9

Page 9: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

DIFFERENTIAL CALCULUSTopics: derivative, partial derivative• Example:

Dérivée partielle et gradient

●  Exemple%de%fonc7on%à%deux%variables:%

%●  Dérivées%par7elles:%%%

IFT615% Hugo%Larochelle% 39%

traite%comme%une%constante%

traite%comme%une%constante%

f(x, y) =x2

y

�f(x, y)�x

=2x

y

y x

�f(x, y)�y

=�x2

y2

•X

�1X

=I

•(X

>)i,j =X

j,i

•det(

X)=

QiX

i,i

•det(

X

>)=det(

X)

•det(

X

�1)=

det(X) �1

•det(

X

(1)X

(2))=det(

X

(1))det(X

(2))

•X

>=

X

�1

•v >

Xv>

0

•�

•{x

(t)}

•9w,t ⇤

x

(t ⇤)=P

t6=t ⇤w

tx

(t)

•R(X)=

{x2R

h|9w

x=

Pjw

jX

·,j }

•{x2R

h|x/2R

(X)}

•{�

i,u

i |Xu

i =�

iu

ietu >i

u

j =1i=

j }

•X

=P

i�

iu

iu >i

•det(

X)=

Qi�

i

•�

i>

0

•@

@x

f(x,y)=

lim�!

0

f(x+�,y)�

f(x,y)

•@

@y

f(x,y)=

lim�!

0

f(x,y+�)�

f(x,y)

Machinelearning

•S

up

erv

ised

learn

in

gex

am

ple:(x,y)

•T

rain

in

gset:D

train=

{(x

t,yt }

2

•X

�1X

=I

•(X

>)i,j =X

j,i

•det(

X)=

QiX

i,i

•det(

X

>)=det(

X)

•det(

X

�1)=

det(X) �1

•det(

X

(1)X

(2))=det(

X

(1))det(X

(2))

•X

>=

X

�1

•v >

Xv>

0

•�

•{x

(t)}

•9w,t ⇤

x

(t ⇤)=P

t6=t ⇤w

tx

(t)

•R(X)=

{x2R

h|9w

x=

Pjw

jX

·,j }

•{x2R

h|x/2R

(X)}

•{�

i,u

i |Xu

i =�

iu

ietu >i

u

j =1i=

j }

•X

=P

i�

iu

iu >i

•det(

X)=

Qi�

i

•�

i>

0

•@

@x

f(x,y)=

lim�!

0

f(x+�,y)�

f(x,y)

•@

@y

f(x,y)=

lim�!

0

f(x,y+�)�

f(x,y)

Machinelearning

•S

up

erv

ised

learn

in

gex

am

ple:(x,y)

•T

rain

in

gset:D

train=

{(x

t,yt }

2

treatas constant

treatas constant

• X

�1X = I

• (X>)i,j = Xj,i

• det (X) =Q

i Xi,i

• det (X>) = det (X)

• det (X�1) = det (X)�1

• det (X(1)X

(2)) = det (X(1)) det (X(2))

• X

> = X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t

⇤x

(t⇤) =P

t 6=t⇤ wtx(t)

• R(X) = {x 2 Rh | 9w x =P

j wjX·,j}

• {x 2 Rh | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =P

i �iuiu>i

• det (X) =Q

i �i

• �i > 0

•@

@x

f(x, y) = lim�!0

f(x+�, y)� f(x, y)

•@

@y

f(x, y) = lim�!0

f(x, y +�)� f(x, y)

• x y

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain = {(xt, yt}

2

• X

�1X = I

• (X>)i,j = Xj,i

• det (X) =Q

i Xi,i

• det (X>) = det (X)

• det (X�1) = det (X)�1

• det (X(1)X

(2)) = det (X(1)) det (X(2))

• X

> = X

�1

• v

>Xv > 0

• �

• {x(t)}

• 9w, t

⇤x

(t⇤) =P

t 6=t⇤ wtx(t)

• R(X) = {x 2 Rh | 9w x =P

j wjX·,j}

• {x 2 Rh | x /2 R(X)}

• {�i,ui | Xui = �iui et u

>i uj = 1i=j}

• X =P

i �iuiu>i

• det (X) =Q

i �i

• �i > 0

•@

@x

f(x, y) = lim�!0

f(x+�, y)� f(x, y)

•@

@y

f(x, y) = lim�!0

f(x, y +�)� f(x, y)

• x y

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain = {(xt, yt}

2

10

Page 10: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

DIFFERENTIAL CALCULUSTopics: gradient• Gradient:

Descente de gradient

●  Le%gradient%donne%la%direc7on%(vecteur)%ayant%le%taux%d’accroissement%de%la%fonc7on%le%plus%élevé%

IFT615% Hugo%Larochelle% 47%

x y

f(x, y)

• X

�1X = X X

�1= I

• (X

(1)X

(2))

�1= X

(2)�1X

(1)�1

• (X

>)i,j = Xj,i

• (X

(1)X

(2))

>= X

(2)>X

(1)>

• det (X) =

Qi Xi,i

• det (X

>) = det (X)

• det (X

�1) = det (X)

�1

• det (X

(1)X

(2)) = det (X

(1)) det (X

(2))

• X

>= X

�1

• v

>Xv > 0 8v 2 R

• �

• {x(t)}

• 9w, t⇤ such that x

(t⇤)=

Pt 6=t⇤ wtx

(t)

• R(X) = {x 2 Rn | 9w such that x =

Pj wjX·,j}

• {x 2 Rn | x /2 R(X)}

• {�i,ui | Xui = �iui and u

>i uj = 1i=j}

• X =

Pi �iuiu

>i

• det (X) =

Qi �i

• �i > 0 8i

•d

dxf(x) = lim

�!0

f(x+�)� f(x)

•@

@xf(x, y) = lim

�!0

f(x+�, y)� f(x, y)

•@

@yf(x, y) = lim

�!0

f(x, y +�)� f(x, y)

• x y

• rx

f(x) =h

@@x1

f(x), . . . , @@x

d

f(x)i>

=

2

64

@@x1

f(x).

.

.

@@x

d

f(x)

3

75

2

11

Page 11: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

DIFFERENTIAL CALCULUSTopics: Jacobian, Hessian• Hessian:

• If is a vector, the Jacobian is:

• rX

f(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2x

f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rx

f(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• X1 X2 X3

3

12

• rX

f(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2x

f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rx

f(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• X1 X2 X3

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

Page 12: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

DIFFERENTIAL CALCULUSTopics: gradient for matrices• If scalar function takes a matrix as input

• For functions that output functions and take matrices as input, we organize into 3D tensors

13

• rX

f(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2x

f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rx

f(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• X1 X2 X3

3

• r2x

f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rx

f(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• f(X) X

• rX

f(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• (⌦,F , P ), ⌦ F P ,

• ⌦

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

3

• r2x

f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rx

f(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• f(X) X

• rX

f(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• (⌦,F , P ), ⌦ F P ,

• ⌦

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

3

Page 13: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: probability space• Probability space: triplet‣ is the space of possible outcomes

‣ is the space of possible events

‣ is a probability measure mapping an outcome to its probability [0,1]

‣ example: throwing a die-

- (i.e. die is either 1 or 5)

-

• Properties:

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

1. 2.14

Page 14: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: random variable• Random variable: a function on outcomes• Examples: ‣ is the value of the outcome

‣ is 1 if the outcome is 1, 3 or 5, otherwise it’s 0

‣ is 1 if the outcome is smaller than 4, otherwise it’s 0

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

15

Page 15: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: distributions (joint, marginal, conditional)• Joint distribution: ( for short)‣ the probability of a complete assignment of all random variables

‣ example:

•Marginal distribution:‣ the probability of a partial assignment

‣ example:

• Conditional distribution:‣ the probability of some variables, assuming an assignment of other variables

‣ example:

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

16

Page 16: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: probability chain rule, Bayes rule• Probability chain rule:‣ in general:

• Bayes rule:

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(O = o, S = s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• p(x1, x2) = p(x1)p(x2)

3

17

Page 17: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: independence between variables• Independence: variables and are independent if

• Conditional independence: variables and are independent given if

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• X1 X2 X3

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• X1 X2 X3

3

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

or

or

or

or

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• X1 X2 X3

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• X1 X2 X3

3

• rf(X) =

2

664

@@X1,1

f(X) . . . @@X1,m

f(X)

.

.

. . . ..

.

.

@@X

n,1f(X) . . . @

@Xn,m

f(X)

3

775

• r2f(x) =

2

664

@2

@x21f(x) . . . @2

@x1@xd

f(x)

.

.

. . . ..

.

.

@2

@xd

@x1f(x) . . . @2

@x2d

f(X)

3

775

• f(x) = [f(x)1, . . . , f(x)k]>

• rf(x) =

2

64

@@x1

f(x)1 . . . @@x

d

f(x)1.

.

. . . ..

.

.

@@x1

f(x)k . . . @@x

d

f(x)k

3

75

• (⌦,F , P ), ⌦ F P ,

• e 2 F

• ⌦ = {1, 2, 3, 4, 5, 6}

• e = {1, 5} 2 F

• P ({1, 5}) = 26

• P ({!}) �= 0 8! 2 ⌦

•P

!2⌦ P ({!}) = 1

• X O S

• p(X = x,O = o, S = s) p(x, s, o)

• p(X = 1, O = 1, S = 0) = 0

• p(o, s) =P

x p(x, o, s)

• p(O = 1, S = 0) =

16

• p(S = s|O = o)

• p(S = 1|O = 1) =

23

• p(s, o) = p(s|o)p(o) = p(o|s)p(s)

• p(x) =Q

i p(xi|x1, . . . , xi�1)

• p(O = o|S = s) = p(S=s|O=o)p(O=o)Po

0 p(S=s|O=o0)p(O=o0)

• X1 X2 X3

3

18

Page 18: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: expectation, variance• Expectation:‣ properties:-

-

- if independent,

• Variance:‣ properties:-

- if independent,

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

19

Page 19: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: covariance matrix• Covariance:

‣ if independent

• Covariance matrix:

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

20

Page 20: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: continuous variables• for continuous variable , is a density function‣

‣ the probability is zero for continuous variables

‣ in previous equations, summations would be replaced by integrals

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

21

Page 21: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: Bernoulli, Gaussian distributions• Bernoulli variable: ‣

• Gaussian variable:

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) =

1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

�E[X] =

µ Cov[X] = ⌃

4

22

Page 22: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PROBABILITYTopics: Multivariate Gaussian distributions• Gaussian variable:

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) = 1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

• E[X] = µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) = 1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

• E[X] = µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) = 1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

• E[X] = µ Cov[X] = ⌃

4

• p(x1, x2) = p(x1)p(x2)

• p(x1|x2) = p(x1)

• p(x2|x1) = p(x2)

• p(x1, x2|x3) = p(x1|x3)p(x2|x3)

• p(x1|x2, x3) = p(x1|x3)

• p(x2|x1, x3) = p(x2|x3)

• E[X] =

Px x p(X = x)

• E[X + Y ] = E[X] + E[Y ]

• E[XY ] = E[X]E[Y ]

• E[f(X)] =

Px f(x) p(X = x)

• Var[X] =

Px(x� E(X))

2 p(X = x)

• Var[X] = E[X2]� E[X]

2

• Var[X + Y ] = Var[X] + Var[Y ]

Cov(X1, X2) = E[(X1 � E[X1])(X2 � E[X2])]

=

X

x1

X

x2

(x1 � E[X1])(x2 � E[X2]) p(x1, x2)

• Cov(X1, X2) = 0

• Var(X) = Cov(X,X)

• Cov(X) =

2

64Cov(X1, X1) . . . Cov(X1, Xd)

.

.

.

.

.

.

.

.

.

Cov(Xd, X1) . . . Cov(Xd, Xd)

3

75

• P (X 2 A) =

Rx2A

p(x)dx

• P (X = x)

• X 2 {0, 1} p(X = 1) = µ p(X = 0) = 1�µ E[X] = µ Var[X] = µ(1�µ)

• X 2 R p(x) = 1p2⇡�2

exp

⇣� (x�µ)2

2�2

⌘E[X] = µ Var[X] = �2

• X 2 Rd p(x) = 1p(2⇡)d det(⌃)

exp

�� 1

2 (x� µ)>⌃�1(x� µ)

• E[X] = µ Cov[X] = ⌃

4

23

Page 23: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

STATISTICSTopics: estimate of the expectation and covariance matrix• Sample mean:

• Sample variance:

• Sample covariance matrix:

• These estimators are unbiased, i.e.:

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[

b⌃] = ⌃

• bµ µ �2

T

• µ 2 [�1.96 b� + bµ, bµ+ 1.96 b�]

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[

b⌃] = ⌃

• bµ µ �2

T

• µ 2 [�1.96 b� + bµ, bµ+ 1.96 b�]

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[

b⌃] = ⌃

• bµ µ �2

T

• µ 2 [�1.96 b� + bµ, bµ+ 1.96 b�]

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ µ �2

T

• µ 2 [�1.96 b� + bµ, bµ+ 1.96 b�]

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

24

Page 24: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

STATISTICSTopics: confidence interval• Confidence interval of the sample mean (1D):‣ if T is big, the following estimator is approx. Gaussian with mean 0 and variance 1

‣ then we have that, with 95% probability, that

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 [�1.96 b� + bµ, bµ+ 1.96 b�]

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

25

Page 25: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

STATISTICSTopics: maximum likelihood, I.I.D. hypothesis•maximum likelihood estimator (MLE):

‣ the sample mean is the MLE for a Gaussian distribution

‣ the sample covariance matrix isnt, but this is

• Independent and identically distributed variables

• b�2=

1T�1

Pt(x

(t) � µ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[

b⌃] = ⌃

• bµ µ �2

T

• µ 2 [�1.96 b� + bµ, bµ+ 1.96 b�]

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

• p(x(1), . . . ,x(T )) =

Qt p(x

(t))

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

• b�2=

1T�1

Pt(x

(t) � µ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[

b⌃] = ⌃

• bµ µ �2

T

• µ 2 [�1.96 b� + bµ, bµ+ 1.96 b�]

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[

b⌃] = ⌃

• bµ µ �2

T

• µ 2 [�1.96 b� + bµ, bµ+ 1.96 b�]

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

26

Page 26: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

SAMPLINGTopics: Monte Carlo estimate•Monte Carlo estimate:‣ a method to approximate an expensive expectation

‣ the must be sampled from

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

5

27

Page 27: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

SAMPLINGTopics: importance sampling• Importance sampling:‣ a sampling method for when is expensive to sample from

‣ is easier to sample from and should be as similar as possible to - designing a good is often hard to do

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

5

28

Page 28: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

SAMPLINGTopics: Markov Chain Monte Carlo (MCMC)•MCMC:‣ iterative method to generate the sequence of

‣ the set of will be dependent of each other

‣ is a transition operator, that must satisfy certain properties

‣ K must be big for the set of samples be representative of distribution

‣ usually, we drop the first samples, which are not reliable

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

• x

(1) T (x0 x)�! x

(2) T (x0 x)�! x

(3) T (x0 x)�! · · · T (x0 x)�! x

(K)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Pt r✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

• x

(1) T (x0 x)�! x

(2) T (x0 x)�! x

(3) T (x0 x)�! · · · T (x0 x)�! x

(K)

• T (x0 x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

5

29

Page 29: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

SAMPLINGTopics: Gibbs sampling• Gibbs sampling:‣ MCMC method which uses the following transition operator- pick a variable

- obtain by only resampling this variable according to

- return

‣ often, we simply cycle through the variables, in random order

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

• x

(1) T (x0 x)�! x

(2) T (x0 x)�! x

(3) T (x0 x)�! · · · T (x0 x)�! x

(K)

• T (x0 x)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

• x

(1) T (x0 x)�! x

(2) T (x0 x)�! x

(3) T (x0 x)�! · · · T (x0 x)�! x

(K)

• T (x0 x)

• xi x

0

• p(xi|x1, . . . , xi�1, xi+1, . . . , xd)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

• x

(1) T (x0 x)�! x

(2) T (x0 x)�! x

(3) T (x0 x)�! · · · T (x0 x)�! x

(K)

• T (x0 x)

• xi x

0

• p(xi|x1, . . . , xi�1, xi+1, . . . , xd)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

• x

(1) T (x0 x)�! x

(2) T (x0 x)�! x

(3) T (x0 x)�! · · · T (x0 x)�! x

(K)

• T (x0 x)

• xi x

0

• p(xi|x1, . . . , xi�1, xi+1, . . . , xd)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[f(X)] =

Px

f(x) p(x) ⇡ 1K

Pk f(x

(k))

• x

(k) p(x)

• E[f(X)] =

Px

f(x) p(x)q(x)q(x) ⇡

1K

Pk f(x

(k))

p(x)q(x)

• q(x)

• x

(1) T (x0 x)�! x

(2) T (x0 x)�! x

(3) T (x0 x)�! · · · T (x0 x)�! x

(K)

• T (x0 x)

• xi x

0

• p(xi|x1, . . . , xi�1, xi+1, . . . , xd)

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

30

Page 30: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: supervised learning• Learning example: • Task to solve: predict target from input‣ classification: target is a class ID (from 0 to nb. of class - 1)

‣ regression: target is a real number

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y)

• Training set: Dtrain= {(x(t), y(t)}

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t)}

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t)}

5

31

Page 31: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: unsupervised learning• Learning example: •No explicit target to predict‣ clustering: partition data into groups

‣ feature extraction: learn meaningful features automatically

‣ dimensionality reduction: learning a lower-dimensional representation of input

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t)}

5

32

Page 32: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: learning algorithm, model, training set• Learning algorithm ‣ takes as input a training set

‣ outputs a model

•We then say the model was trained on ‣ the model has learned the information present in

•We can now use the model on new inputs

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

5

33

Page 33: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: training, validation and test sets, generalization• Training set serves to train a model• Validation set serves to select hyper-parameters• Test set serves to estimate the generalization

performance (error)

• Generalization is the behavior of the model on unseen examples‣ this is what we care about in machine learning!

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

5

34

Page 34: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: capacity of a model, underfitting, overfitting, hyper-parameter, model selection• Capacity: flexibility of a model • Hyper-parameter: a parameter of a model that is not trained

(specified before training)• Underfitting: state of model which could improve

generalization with more training or capacity•Overfitting: state of model which could improve generalization

with more training or capacity•Model selection: process of choosing the best hyper-

parameters on validation set35

Page 35: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: capacity of a model, underfitting, overfitting, hyper-parameter, model selection

0

0.1

0.2

0.3

0.4

0.5

Training Validation

underfitting overfitting

training time or capacity

36

Page 36: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: interaction between training set size/capacity/training time and training error/generalization error• If capacity increases:‣ training error will ?

‣ generalization error will ?

• If training time increases:‣ training error will ?

‣ generalization error will ?

• If training set size increases:‣ generalization error will ?

‣ difference between the training and generalization error will ?37

Page 37: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: interaction between training set size/capacity/training time and training error/generalization error• If capacity increases:‣ training error will ?

‣ generalization error will ?

• If training time increases:‣ training error will ?

‣ generalization error will ?

• If training set size increases:‣ generalization error will ?

‣ difference between the training and generalization error will ?

decrease

37

Page 38: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: interaction between training set size/capacity/training time and training error/generalization error• If capacity increases:‣ training error will ?

‣ generalization error will ?

• If training time increases:‣ training error will ?

‣ generalization error will ?

• If training set size increases:‣ generalization error will ?

‣ difference between the training and generalization error will ?

decrease

increase or decrease

37

Page 39: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: interaction between training set size/capacity/training time and training error/generalization error• If capacity increases:‣ training error will ?

‣ generalization error will ?

• If training time increases:‣ training error will ?

‣ generalization error will ?

• If training set size increases:‣ generalization error will ?

‣ difference between the training and generalization error will ?

decrease

increase or decrease

decrease

37

Page 40: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: interaction between training set size/capacity/training time and training error/generalization error• If capacity increases:‣ training error will ?

‣ generalization error will ?

• If training time increases:‣ training error will ?

‣ generalization error will ?

• If training set size increases:‣ generalization error will ?

‣ difference between the training and generalization error will ?

decrease

increase or decrease

decrease

increase or decrease

37

Page 41: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: interaction between training set size/capacity/training time and training error/generalization error• If capacity increases:‣ training error will ?

‣ generalization error will ?

• If training time increases:‣ training error will ?

‣ generalization error will ?

• If training set size increases:‣ generalization error will ?

‣ difference between the training and generalization error will ?

decrease

increase or decrease

decrease

increase or decrease

decrease (or maybe stay the same)

37

Page 42: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: interaction between training set size/capacity/training time and training error/generalization error• If capacity increases:‣ training error will ?

‣ generalization error will ?

• If training time increases:‣ training error will ?

‣ generalization error will ?

• If training set size increases:‣ generalization error will ?

‣ difference between the training and generalization error will ?

decrease

increase or decrease

decrease

increase or decrease

decrease (or maybe stay the same)

decrease37

Page 43: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: empirical risk minimization, regularization• Empirical risk minimization‣ framework to design learning algorithms

‣ is a loss function

‣ is a regularizer (penalizes certain values of )

• Learning is cast as optimization‣ ideally, we’d optimize classification error, but it’s not smooth

‣ loss function is a surrogate for what we truly should optimize (e.g. upper bound)

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

5

38

Page 44: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent• Gradient descent: procedure to minimize a function‣ compute gradient

‣ take step in opposite direction

39

Page 45: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent

��f(x)�x

Descent direction

40

Page 46: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent

��f(x)�x

Descent direction

40

Page 47: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent

��f(x)�x

Descent direction

40

Page 48: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent

��f(x)�x

Descent direction

40

Page 49: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent

��f(x)�x

Descent direction

40

Page 50: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent

��f(x)�x

Descent direction

40

Page 51: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent

��f(x)�x

Descent direction

40

Page 52: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: gradient descent• Gradient descent for empirical risk minimization‣ initialize

‣ for N iterations-

-

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

5

41

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ + ↵ �

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

Page 53: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: local and global optima

42

Page 54: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: critical points, local optima, saddle point, curvature• Critical points:

• Curvature in direction :

• Types of critical points:‣ local minima: (i.e. positive definite)

‣ local maxima: (i.e. negative definite)

‣ saddle point: curvature is positive in certain directions and negative in others

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

5

43

Page 55: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: saddle point

44

Page 56: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: stochastic gradient descent• Algorithm that performs updates after each example‣ initialize

‣ for N iterations- for each training example

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

5

• bµ =

1T

Pt x

(t)

• b�2=

1T�1

Pt(x

(t) � bµ)2

• b⌃ =

1T�1

Pt(x

(t) � bµ)(x(t) � bµ)>

• E[

bµ] = µ E[b�2] = �2

E

hb⌃

i= ⌃

• bµ�µpb�2/T

• µ 2 bµ±�1.96p

b�2/T

•b✓ = argmax

✓p(x(1), . . . ,x(T )

)

•p(x(1), . . . ,x(T )

) =

Y

t

p(x(t))

• T�1T

b⌃ =

1T

Pt(x

(t) � bµ)(x(t) � bµ)>

Machine learning

• Supervised learning example: (x, y) x y

• Training set: Dtrain= {(x(t), y(t))}

• f(x;✓)

• Dvalid Dtest

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

5

45

•argmin

1

T

X

t

l(f(x(t);✓), y(t)) + �⌦(✓)

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ + ↵ �

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

Page 57: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: bias-variance trade-off• Variance of trained model: does it vary a lot if the training set

changes • Bias of trained model: is the average model close to the true

solution• Generalization error can be seen as the sum of bias and the

variance

low variance/high bias good trade-off high variance/

low bias

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

possible

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

possible

• l(f(x(t);✓), y(t))

• ⌦(✓)

• � = � 1T

Ptr✓l(f(x

(t);✓), y(t))� �r✓⌦(✓)

• ✓ ✓ +�

• {x 2 Rd | rx

f(x) = 0}

• v

>r2x

f(x)v > 0 8v

• v

>r2x

f(x)v < 0 8v

• � = �r✓l(f(x(t);✓), y(t))� �r✓⌦(✓)

• (x

(t), y(t))

• f⇤ f

6

possible

46

Page 58: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MACHINE LEARNINGTopics: parametric vs. non-parametric• Parametric model: its capacity is fixed and does not increase

with the amount of training data‣ examples: linear classifier, neural network with fixed number of hidden units, etc.

•Non-parametric model: the capacity increases with the amount of training data‣ examples: k nearest neighbors classifier, neural network with adaptable hidden

layer size, etc.

47

Page 59: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

PYTHONhttp://docs.python.org/tutorial/ (EN)

http://www.dmi.usherb.ca/~larocheh/cours/tutoriel_python.html (FR)

48

Page 60: August 30, 2012 Math for my slides “Review of fundamentals”. LINEAR ALGEBRA …bilgisayar.kocaeli.edu.tr/.../03032012473013313.pdf · 2020-03-03 · LINEAR ALGEBRA Topics: special

MLPYTHONhttp://www.dmi.usherb.ca/~larocheh/mlpython/tutorial.html#tutorial (EN)

49