atv71_m10_network braking unit v5 en_.ppt

Upload: joaquin-mec

Post on 02-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    1/32

    Altivar 71 Training

    ATV71_regen-harmonic modules V3 EN 126/10/20148 Sept 2004 STIE \ Bertrand Guarinos

    Network B raking Uni ts

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    2/32

    Summary

    ATV71

    26/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    I The Offer

    II How it works ?

    III Sizing principal

    IV Sizing example

    V Appendix

    Summary

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    3/32

    Summary

    ATV71

    26/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    I The Offer

    II How it works ?

    III Sizing principal

    IV Sizing example

    V Appendix

    Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    4/32

    Summary

    ATV71

    26/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Introduction

    With ATV71 came a new range of option: theNetwork Braking Unit

    This device allows toregenerate power onto the network when the drive system isworking as a generator.

    ATV71 offer is well optimised for duty cycle up to 50% with 5mn braking time

    It may replace braking resistors in system witch have quite long generating cycle or

    high braking power needs like : hoisting, high inertia machines ..

    For such applications, it's agood compromise volume/efficiency/cost.

    And the energy saving allows a quick paying off.

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    5/32Summary

    ATV71

    26/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Offer

    Customer benefits

    Small compact housing

    User friendly first start up, no programming or adjustment necessary

    Limitation of the harmoniccurrent regen on the main (line chokes)

    DC-bus coupling of several controllersis possible

    Up to 4 units can be paralleled(no derating)

    DC bus short circuit protection(fuses)

    Overload protectionduring back feed operation

    97% efficiency

    Overvoltage, rotating field sequence and temperature detection

    IGBT technology

    Self synchronizing

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    6/32Summary

    ATV71

    26/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    When do I need a Network Braking Unit ?

    Advantages of the NBU compare to braking resistors

    Energy saving

    Volume saving

    Efficiency

    Quick response

    Smooth DC bus voltage regulation

    Disadvantages

    The cost

    Can't regen in case of network cut (no ride through operation)

    Can increase a little the network voltage (supply impedance must be

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    7/32

    Summary

    ATV71

    26/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Offer

    Main specifications

    2 power ranges

    380V- 415V 7kW to 200kW

    440V-480V 18kW to 180kW

    Frenquency :40 - 60Hz +/-10%

    Effiencency : 97%

    Cos = 1

    Line inductance(4% to 6% => THDI

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    8/32

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    9/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Offer

    7,6

    13.8

    22

    33

    45

    70

    90

    135

    160

    200

    250

    345

    Ppeak

    400V380V-415V offer

    from 7 to 200kW

    continuous braking

    power

    3..minaclinepeak

    IrmsUP

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    10/32

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    11/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Ex of NBU paying off calculation

    Ex for a hoist application

    Braking power Pb = 100kW

    Braking time per cycle tb = 10s

    Number of cycles per hour n = 30/ h

    Operation hours per day h = 18h / d

    Working days d = 350d / y

    Energy-costs K = 0,1 EUR / kWh

    Costs of the power feedback unit RK = 6600 eur

    Costs of equivalent braking resistor CK = 2800 eur

    Energy saving per year

    Energy-costs saving per year:

    Paying off in days:

    The network feedback unit is paid off within 9 months.

    3600

    350183010100 yddhhskWW

    ///

    yearkWhW /52500

    KWE

    kWheakWhE /ur,/ 1052500 yeareE /ur5250

    FKBntP

    CRA

    TBB

    KK

    )(

    eu rdhhskW

    seu reu rA

    10183010100

    360028006600

    ,//

    )(

    days254A

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    12/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    I The Offer

    II How it works ?

    III Sizing principal

    IV Sizing example

    V Appendix

    Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    13/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Network Braking Units internal structure

    Internal diagram VW3A7211 (135kW)

    N t k B ki U it ki

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    14/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Network Braking Units working

    DC bus management

    II The DC-bus voltage increases, when the motor is in regenerative mode. The feedback current increases

    straight proportionally with the DC-bus voltage.

    IV The difference between the generated and inverted voltage and the mains voltage is the necessary

    voltage which drives the current back to the mains. Therefore the mains network operates as energy drain,

    where a minimal voltage increase can be seen (depending on the network impedance at this point).

    V Between 620 and 630V DC the IGBTs trip due to an overcurrent -> the NBU is locked till reset operation.

    The time delay for overcurrent tripping is 10s.

    460Vac

    444Vac

    400Vac

    II

    I

    III

    IV

    V

    620-630Vdc Ir = 120% Imax

    NBU tripping Threshold

    600Vdc Ir = 100% Imax

    max peak power

    540Vdc Ir = 0% Imax

    750-850Vdc

    Drive tripping Threshold

    Example for a 400V NBU :

    M i f t

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    15/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Main features

    Set up

    No settings, in factory configuration the NBU is ready to work

    However :

    Check the supply voltage is corresponding to the NBU name plate

    Check the network connection L1,L2,L3 (the phase rotation must be respected)

    Check the DC bus connection from the drive (+/-)

    Check the fan supply connection (>45kW)

    Check the fault relay is connected to external fault input of the drive

    At voltage turn on the green led is lighten the NBUis ready to work

    In case of fault there are other leds for trouble shooting

    1. red: phase failure

    2. red: overcurrent

    orange: overtemperature

    The reset button allows acquit the fault

    Internal jumpers allow to set different ways of tripping and autostart in case of fault

    N t k B ki U it

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    16/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    I The Offer

    II How it works ?

    III Sizing principal

    IV Sizing example

    V Appendix

    Network Braking Units

    Si ing of the Net ork Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    17/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units

    The basics

    Sizingthe Network Braking Units for the technical and economic optimum requires toknow several characteristics of the application.

    Without this knowledge you choose the NBUin accordance with the continuous and

    maximum power rating of the drive.

    Naturally this will not lead to the best economic solutionas most often the NBUwill be

    oversized.

    The sizing can be done in 3 steps :

    - 1. Calculate the electrical braking power to feedback

    - 2. Calculate the NBU peak power(function of the minimum network voltage)

    - 3. Choose the corresponding NBU power rating

    Sizing of the Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    18/32

    Summary

    ATV71

    126/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units

    Electrical braking power calculation

    To size the Network Braking Units you must know :

    thepeak braking power Pb to feedback

    the mean braking powerPb to feedback

    Ex of a braking power cycle :

    The power is depending on the cycle, the inertia, the load and the efficiency of the system.

    Braking power

    Pb2Pb1

    T

    t0 t1 t2

    Pb

    Pb T

    tPtPtPP bbb

    b

    221100...

    Sizing of the Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    19/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units

    Real regenerating power

    The braking power calculated results of the energy that is fed back from the mechanical

    system.

    Not the whole energy comes back to the Network Braking Units unit.

    Themechanical friction, inverter losses help for braking.

    Theselossesare generally represented by theefficiency () of the system.

    In an other hand some loads can increase the braking power, as for example the wind

    on a crane jib arm.

    Anyway, it's good to take a safety margin.

    For example, to simplify the calculation, efficiency (if not supposed very bad) can be

    considered = 1.

    drive m o tm ect ..

    tm ecbrealb PP

    Sizing of the Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    20/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units

    Power flow during regenerating phase

    L1L2L3

    UV

    W

    M

    3 ~

    Drive

    Network Braking Unit

    NetworkM, w

    J

    L1L2L3

    Input-rectifier DC-bus-

    capacitor

    Inverter Motor

    Load

    Power

    regenerated

    onto the network

    Motor

    losses

    Mechanical

    losses

    System

    mechanical

    Power

    Motor elec.

    power

    Motor mec

    power

    Inverter

    losses

    Network

    Braking

    Units

    losses

    Braking

    power

    cos... 3mmem

    IUP .TPmm

    mecm o tdm ecb PP ... dtd

    JPmec

    2

    .

    dcdcdr IUP .

    3..minmax nr

    IUP

    Sizing of the Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    21/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units

    Some efficiency datas*

    Drive efficiency

    0.37- 1.5kW 0,9-0,94 2.2kW-500kW 0,95-0,97

    AC Motor efficiency (standard)

    0.37-3kW = 0,75-0.82

    4-7.5kW = 0,85

    11-55kW =0.9-0.93

    75-500kW =0,95

    Transmission part efficiency

    Gear box = 0.8-0.95

    Pignon-Rack = 0.7-0.8

    Belt or Chain = 0.95

    Endless screw = 0.6-0.8

    *Can be used for a first approach calculation

    Sizing of the Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    22/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units

    Effective regenerating power

    With a Network Braking Units the power regenerated is depending on the network

    voltage.

    Thus the minimum network voltage must be consideredin order to size the unit.

    Ex :

    for an application32kW barking peak poweris calculated

    33kW 400V unit VW3A7204 is chosen

    but the network voltage can decrease to Umin = 340V

    max ac currentfor VW3A7204 => In= 48A

    If we take into account the min voltage, the peak regenerating power availableis only :

    It would be better in this case to choose a range above VW3A7205 (45kW 400V)

    kWPIUPrnr 283340483 ....

    maxminmax

    Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    23/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    I The Offer

    II How it works ?

    III Sizing principal

    IV Sizing example

    V Appendix

    Network Braking Units

    ATV71

    Sizing of the Network Braking Units ex.1

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    24/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units ex.1

    Simplified example for a hoist application

    Motor torque

    t

    Speed

    Network = 400V +/-5%

    Braking power reflected on the

    motor shaft160kW

    Motor efficiency=0.9

    Drive efficiency=0.98

    Braking

    Power

    3s 3s 3s30s 40s

    T1=40s T2=3sT0 = 79s

    1.8 Tn

    0.8 Tn

    0.8 Tn

    1.8 Tn

    up

    down

    kWPb 54588034079

    316081504016080..

    )..().(

    88098090 ... t

    tnb PP 81.

    t

    bbb

    bT

    tPtPtPP .

    ...221100

    kWPb

    25388016081 ..

    Peak regenerative power :

    Mean regenerative power :

    Efficiency :

    ATV71

    Sizing of the Network Braking Units ex.1

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    25/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units ex.1

    Choice of the braking unit

    1- Choose a module witch maximumpeak power

    is equal or higher the peak braking power

    calculated (230kW).

    Ppeak power of the module VW3A7212:

    Ppeak = Irms*Umain*SQR3 Ppeak

    =500*380*SQR3 = 329kW > 253kW

    2- Check that the continuous poweris

    equal or higher than the mean braking

    power calculated (45.5kW).

    P mean = 200kW >45.5kW

    Or check with the duty cycle

    ATV71

    Sizing of the Network Braking Units ex.2

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    26/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Sizing of the Network Braking Units ex.2

    Exemple of using the catalogue diagram for a cycle

    Example 1:

    necessary braking power : 33 kW

    braking duration : 2 min.

    time between two brakes : 5 min.

    Evaluation: In this case the point of

    intersection of braking time and

    intermission time is below

    the thermal limited power graph in the

    allowed area this operation cycle is

    allowed.

    Example 2 :

    necessary braking power : 45 kW

    braking duration : 3 min.

    time between two brakes : 3 min.

    Evaluation: In this case the point of

    intersection of braking time and

    intermission time is above

    the thermal limited power graph.That means this operation cycle is not

    allowed.

    Remark: In case of an intermission time

    of e.g. 3,5 min. this operation cycle

    would be allowed again

    ATV71

    Network Braking Units

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    27/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    I The Offer

    II How it works ?

    III Sizing principal

    IV Sizing example

    V Appendix

    g

    ATV71

    Example of association of several modules

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    28/32

    Summary

    ATV71

    226/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    p

    2x Regen

    modules

    110kW

    VW3A7210

    ATV71

    90kW

    ATV71

    90kW

    ATV71

    110kW

    ATV71

    45kW

    Regen

    module

    26kW

    VW3A7205

    Up to 4 modules // possible, the

    range can be different.

    ATV71

    Calculation of mechanical braking power

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    29/32

    Summary

    ATV71

    326/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    g p

    Braking power for an horizontal movement (ex trolley)

    constant deceleration (n->0) and negligible inertia and friction

    Braking power

    Pb

    tb

    Pb

    Speed

    Torque

    bb PP . 2

    b

    ki n

    b

    t

    EP 2

    2

    1vmE

    kin..

    inrv ...

    Ekin (j)= kinetic energy

    m (kg) = mass of the mobile

    v (m/s)= linear speed

    r (m)= radius of the wheel

    n (t/s)= motor speed

    i = gearbox ratio

    tb

    (s) = time to stop

    Pb(W)= mean braking power during stopping

    Pb(W)= peak braking power during stopping

    n

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    30/32

    ATV71

    Calculation of mechanical braking power

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    31/32

    Summary 326/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Braking power for constant speed (ex motor test bench)

    negligible acc/dec power, inertia and friction

    Braking power

    Pb

    tb

    Speed

    nTPP bbb ...

    2

    Tb (N.m)= braking torque

    n (t/s)= motor speed

    v (m/s)= linear speed

    g (m/s2)= gravity acceleration

    m (kg) = mass of the mobile

    Pb(W)= mean braking power during stopping

    Pb(W)= peak braking power during stopping

    M

    n

    G

    Torque

    Tb

    vgmPPbb

    ..

    ATV71

    Calculation of mechanical braking power

  • 8/10/2019 ATV71_M10_Network Braking Unit V5 EN_.ppt

    32/32

    Summary 326/10/2014 STIE Bertrand Guarinos ATV71_regen-harmonic modules V3 EN

    Calculation formulas of the braking power for a vertical movement

    T (s)= total cycle time

    t0(s) = stop time + ascent time t1

    (s)= descent time t2

    (s) = stop time in descent

    Pb1(W)= mean braking power during descent

    Pb2(W)= mean braking power to stop in descent

    Pb2(W)= peak braking power to stop in descent

    m(rd/s)

    =max angular speed

    Jtm(kg.m2)= total inertia reflected to the motor

    g (m/s2)= gravity acceleration (9,81)

    a (m/s)= load deceleration

    v (m/s)= linear speed

    T

    tPtPP bb

    b

    2211..

    Braking power

    Pb2Pb1

    Pb

    T

    t0 t1 t2

    Pb2

    Braking Torque

    Speed

    vgmPPbb

    .. 11

    Up

    down

    1

    2

    2t

    JvagmPb .)..(

    2

    2

    2

    b

    b

    PP