attachment 2 final structural evaluation technical memorandum

77
Attachment 2 Final Structural Evaluation Technical Memorandum

Upload: others

Post on 05-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Attachment 2 Final Structural Evaluation Technical Memorandum

Attachment 2 Final Structural Evaluation Technical Memorandum

Page 2: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 3: Attachment 2 Final Structural Evaluation Technical Memorandum

1

T E C H N I C A L M E M O R A N D U M

Wyckoff Sheet Pile Wall - Structural Analysis Ken Scheffler, PE Rob Healy, PETerri Tovey, PEJerry Duppong

PREPARED BY: Christina Kapoi, EIT 

DATE: December 12, 2013 

PROJECT NUMBER: 438527.DE.03 

Executive Summary The  sheetpile  wall  at  the Wyckoff  facility  on  Bainbridge  Island, Washington  was  recently  evaluated  to estimate  the  rate of corrosion and  remaining structural strength.   Corrosion expert  Jerry Duppong visited the site October 30, 2013 and recorded his observations and measured wall thicknesses at several locations (Ref. 1). This information was used to approximate the existing section properties of the sheetpile to predict the  current  strength of  the  sheetpile  sections.    The  analysis  shows  that  the  sheetpile wall has  a  current demand to capacity ratio of 0.5. 

The minimum expected lifespan of the sheetpile wall in the “Splash” zone due to general corrosion rates is approximately 13.5 years,  if yearly  inspections and repairs are not conducted.   Wall failure due to general corrosion rates will likely be in the form of a localized, ductile failure that will be seen as bulging of the wall or  splitting or  cracking of  the  sheetpile  sections. With periodic  inspection,  these  localized  failures  can be dealt  with  on  a  case‐by‐case  basis  and  repaired  as  needed.  The  sheetpile  in  the  Splash  zone  is  also vulnerable to the development of small holes due to pitting corrosion that will grow larger if not monitored and repaired. With periodic monitoring and maintenance, the lifespan of the sheetpile wall can be extended to 23 ‐ 29 years. 

Background Information The sheet pile wall bordering the Wyckoff Treatment Facility on Puget Sound was constructed using British Steel Z  ‘5’ section sheet piling, also referred  to as Frodingham #5 sheet pile. The base metal used  for  the sheetpile sections conforms to ASTM A572, Grade 50 (Ref. 2). Manufacturer’s literature for the sheetpile is included as Appendix A. 

Dimensions of the sheetpile sections were measured at nine test locations by Jerry Duppong on October 30, 2013.  At each of these test locations, the depth and width of the individual sheet pile sections was recorded at the top of the wall, see Appendix B.  The thickness of the sheet pile web and interior and exterior flange faces was also recorded at these nine test locations (see Appendix F, Ref. 1). 

Analysis Procedure and Results The area and section modulus of the existing sheetpile was calculated using the measurements recorded in Appendix  B  and  the  thicknesses  in  Appendix  F.    Appendix  C  includes  the  analysis  procedure  used.  A computer analysis  (‘L‐Pile’ program) was  then used  to determine  the moment and  shear  in  the  sheetpile sections at varying depths of bury (see Appendix D). 

Assumptions The  L‐Pile  analysis  shows  that  the  maximum  bending  moment  in  the  wall  will  occur  at  the  mudline.  Unfortunately,  visual  inspection  and measurement  of  active  corrosion  of  the  wall  in  this  area  are  not possible without excavation in front of the wall.  The minimum allowable section modulus of the sheet pile 

PREPARED FOR:

REVIEWED BY:

Page 4: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - STRUCTURAL ANALYSIS

wall within each of the exposure zones was calculated from their respective moment obtained from the L‐Pile analysis.   The maximum shear  load was used to calculate the minimum allowable web thickness.   The maximum  shear  value  also  occurs  below  the mudline.    A minimum web  thickness  of  3/16” was  set  to maintain the structural capacity of the sheetpile wall.  This value was selected since thinner material would be considered “gauge” metal which is not generally suitable for structural sections.  The corrosion rate used to evaluate the expected lifespan of the wall was the general corrosion rate of 9.8 mils per year (mpy) which is the estimated corrosion rate in the “Splash” zone. 

Figure 1: Vertical Exposure Zones 

L-Pile Analysis The L‐Pile program by Ensoft,  Inc, 2012, predicts that the existing sheet piles have adequate strength and that  the  sheetpile  retaining  wall  can  remain  in  service  under  the  current  conditions.    The  estimated remaining  lifespan of the sheetpile wall  in the “Splash” zone  is 13.5‐29 years, depending on maintenance.  For a complete table of dimensions and section properties at each test location refer to Appendix E. 

Conclusions Corrosion in the “Splash” zone area is controlling the lifespan of the wall.  The minimum remaining life of the sheetpile  wall  is  estimated  at  the  rate  of  corrosion  that  would  result  in  the minimum  allowable  web thickness.    The  remaining  life  is  estimated  to  be  between  13.5‐29  years.    Yearly  inspections  should  be conducted  during  low  tide  to monitor  pitting  corrosion,  splitting,  cracking  and  bulging  so  that  localized repairs can be made on any holes or deformations that are  identified to prolong the structural  integrity of the wall. 

References (Appendix F) 1.Wyckoff Sheet Pile Wall ‐ Thickness Testing, Technical memorandum by CH2M HILL, dated 11/5/13.2. Sheet Pile Installation Summary, Technical memorandum, 06/26/07

Page 5: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - STRUCTURAL ANALYSIS

Appendix A – Manufacturer’s Published Information

Page 6: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 7: Attachment 2 Final Structural Evaluation Technical Memorandum
ckapoi
Rectangle
Page 8: Attachment 2 Final Structural Evaluation Technical Memorandum
ckapoi
Rectangle
ckapoi
Line
Page 9: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - STRUCTURAL ANALYSIS

Appendix B – Sheet Pile Wall Dimensions

Page 10: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 11: Attachment 2 Final Structural Evaluation Technical Memorandum
ckapoi
Typewritten Text
Notes: 1. All dimensions are in inches. 2. Measurements provided by Wyckoff staff.
Page 12: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 13: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - STRUCTURAL ANALYSIS

Appendix C – Calculations

Page 14: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 15: Attachment 2 Final Structural Evaluation Technical Memorandum

WyckoffEngineer: C. Kapoi

Check: T. Tovey

Analysis Procedure1. Calculate the section modulus ofthe existing sheet piles

- Shape of the Frodingham #5 sheet pile- For calculating the section modulus about the x-axis we can assume the Z shapeis an I shape

- The formula for calculating the section modulus can be expressed as:

BH2

6

bh3

6H where b B t B and h H 2d d. Approximate B as the length of one

sheet pile section divided by 2.

- The thicknesses were measured to the nearest 1000th of an inch and were obtained from the technicalmemorandum "Wyckoff Sheet Pile Wall - Thickness Testing" Appendix F, Reference 1.- The height and length were measured with a tape measure to the nearest 1/16th of an inch.

2. Obtain the moment and shear along the depth of the sheet pile from the LPile Analysis. Identify the maximummoment and shear values.

3. Calculate the current stress in the sheet pile wall.

σ

MS

M

- The sheet piles are Grade 50 steel ("Sheet Pile Installation Summary" Technical Memo 6/26/07)- The maximum allowable stress in the sheet piles is from the yield strength in Appendix A. For BS 4360Grade 50A: 18.3 kg/mm2 = 25ksi

4. Calculate the minimum section modulus of the sheet pile based on the maximum moment obtained from theLPile Analysis and the maximum stress.

SminMmaxσmax

Mmax

- Calculate the minimum web thickness of the sheet pile based on the maximum shear obtained from the LPileAnalysis and the maximum allowable shear stress (0.4*50ksi).

tminVmax

0.4 50 ksi H

Vmax

- A minimum web thickness of 0.25 inches was used to maintain the integrity of the structural section.

12/11/2013 1 of 2

Page 16: Attachment 2 Final Structural Evaluation Technical Memorandum

WyckoffEngineer: C. Kapoi

Check: T. Tovey

5. Calculate the minimum thickness ofthe web and flanges utilizing the corrosion rates and S.min

SminBH2

6

B t rate year( )[ ] H 2 d rate year( )[ ]36 H

rate

- Check the thickness of the web against the predetermined minimum value.- Recalculate the minimum section modulus based on the revised web & flange thickness values.

6. The lifespan of the sheet pile wall can be approximated by dividing the change in web or flange thickness bythe rate of corrosion.

12/11/2013 2 of 2

Page 17: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - STRUCTURAL ANALYSIS

Appendix D – L-Pile Analysis Results

Page 18: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 19: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 20: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 21: Attachment 2 Final Structural Evaluation Technical Memorandum

Assumed Soil Profile

Sheetpile Properties

Page 22: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 23: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - STRUCTURAL ANALYSIS

Appendix E – Sheet Pile Wall Calculation Spreadsheet

Page 24: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 25: Attachment 2 Final Structural Evaluation Technical Memorandum

1 Uniform Rate 0.0098

b/2=(B‐t)/2

Flange 1 Web Flange 2 H B h b in3/sheet (kip)/sheet (kip‐in)/sheet (ksi) (year) d (in) t (in) h (in) b (in) S (in3)Test Location 3 12.375 8.625"Atmosphere" 0.641 0.399 0.641 11.09 8.23 68.91 6.27 8.366 25 21.6 0.43 0.19 11.52 8.44 46.59

"Splash" 0.5895 0.3205 0.5755 11.20 8.30 63.17 6.27 16.732 25 13.6 0.44 0.19 11.49 8.44 47.76"Mud" 0.65 0.4685 0.65 11.08 8.16 70.92 6.27 301.176 25 28.7 0.37 0.19 11.64 8.44 41.06

Test Location 4 12.375 8.25"Splash" 0.675 0.367 0.604 11.03 7.88 68.29 6.27 16.732 25 18.3 0.42 0.19 11.53 8.06 44.30

Test Location 5 12.3125 8.4375"Atmosphere" 0.651 0.4 0.64 11.01 8.04 67.96 6.27 8.366 25 21.7 0.43 0.19 11.46 8.25 45.22

"Splash" 0.588 0.3975 0.656 11.14 8.04 62.87 6.27 16.732 25 21.4 0.38 0.19 11.56 8.25 40.82"Tidal" 0.665 0.4355 0.6645 10.98 8.00 69.70 6.27 100.392 25 25.3 0.42 0.19 11.48 8.25 44.25

Test Location 6 11.5 8.75"Splash" 0.577 0.382 0.609 10.35 8.37 58.56 6.27 16.732 25 19.8 0.38 0.19 10.74 8.56 39.35

Test Location 7 12.1875 8"Atmosphere" 0.6595 0.448 0.6685 10.87 7.55 65.46 6.27 8.366 25 26.6 0.40 0.19 11.39 7.81 64.68

"Splash" 0.591 0.412 0.635 11.01 7.59 59.73 6.27 16.732 25 22.9 0.37 0.19 11.45 7.81 62.01"Tidal" 0.6625 0.433 0.6485 10.86 7.57 65.42 6.27 100.392 25 25.1 0.40 0.19 11.38 7.81 65.01

Test Location 8 12.25 8.5"Splash" 0.5835 0.4035 0.629 11.08 8.10 62.63 6.27 16.732 25 22.0 0.37 0.19 11.52 8.31 49.21

Test Location 9 12.25 8.75"Atmosphere" 0.685 0.467 0.6765 10.88 8.28 73.70 6.27 8.366 25 28.5 0.40 0.19 11.46 8.56 46.76

***Minimum web thickness  controls lifespa0.669 0.468 0.669

Below are the averaged, minimum and maximum values based on the above measured and calculated data.

Average 0.63 0.41 0.64 12.18 8.47 10.97 8.01 65.95 6.27 48.91 25.00 22.73 0.40 0.19 11.43 8.23 49.00Minimum  0.58 0.32 0.58 11.50 8.00 10.35 7.55 58.56 6.27 8.37 25.00 13.57 0.37 0.19 10.74 7.81 39.35Maximum 0.69 0.47 0.68 12.38 8.75 11.20 8.37 73.70 6.27 301.18 25.00 28.67 0.44 0.19 11.64 8.56 65.01

Assumed Corrosion Rate for this calculation (inches per year):

Average measured thickness (in)

B

h=H‐2*d H

Current Section Modulus (in)

Original Section Dimension

Lifespan Minimum Allowable Values  ‐ Uniform Corrosion Rate

Sheet Pile Wall DimensionsMoment 

(unfactored)Stress Limit

Shear (unfactored)

ckapoi
Oval
ckapoi
Oval
Page 26: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 27: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - STRUCTURAL ANALYSIS

Appendix F – References

Page 28: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 29: Attachment 2 Final Structural Evaluation Technical Memorandum

 

Reference 1

Page 30: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 31: Attachment 2 Final Structural Evaluation Technical Memorandum

1

T E C H N I C A L M E M O R A N D U M  Wyckoff Sheet Pile Wall - Thickness Testing

Howard Orlean/EPA Region 10

Ken Scheffler/SEA Rob Healy/SEA

PREPARED BY: Jerry Duppong/SEA 

DATE: December 3, 2013 

PROJECT NUMBER: 438527.DE.03 

 This memorandum summarizes thickness measurements of the perimeter sheet pile wall at the Wyckoff facility on Bainbridge Island, Washington.  The field tests were performed on October 30 and 31, 2013. 

Background A sheet pile wall was installed around the outer, shoreline perimeter of the Wyckoff remediation site.  Construction of the sheet pile wall was completed in February 2001. The wall is approximately 1,870 feet long and extends to a depth approximately 20 to 90 feet below grade.  The general arrangement of the sheet pile wall is shown in Figure 1. 

 

 Figure 1.  General arrangement of sheet pile wall around the Wyckoff Facility. 

PREPARED FOR:

COPY TO:

Sheet Pile Wall

Page 32: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - THICKNESS TESTING

2

The sheet pile wall was constructed using British Steel Z ‘5’section sheet piling—also referred to as Frodingham #5 sheet pile.  Figure 2 shows a typical individual pile with interlocking joints.  Dimensions of the piles, include thickness, are also included in Figure 2.  The sheet pile wall consists of 674 piles, with two interlocking joints per pile.  

 Figure 2.  Dimensions of steel piling. 

For the purposes of this work, the faces of the z‐piles that were tested are defined as shown in Figure 2.  The original thickness values for each face are summarized in Table 1.  

TABLE 1 Sheet Pile – Original Wall Thickness Values 

Face  Original Thickness (mm)  Original Thickness (mils) 

Exterior Face  17  669 

Web  11.9  468 

Interior Face   17  669 

 

Summary and Results of Testing Field tests included general observations, measurement of sheet pile thickness and pit depths, and measurement of distance between the top of the wall and the mud line (water side) and fill (soil side).  These tests were performed at 9 locations distributed around the perimeter of the sheet pile wall (see Figure 3).  The thickness of the piling was measured at one or a combination of 5 vertical spots at each test location.  Vertical spot definitions, dimensions, and general description of the piling condition (as found) are summarized in Table 2.  Photographs showing the piling condition are included in Attachment A.  

   

Web 

Exterior FaceInterior Face 

Page 33: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - THICKNESS TESTING

3

 Figure 3. Sheet Piling Test Locations. 

 

TABLE 2 Pile Test Locations, Vertical 

Spot Definition Typical Distance from Top of Wall to Test Spot (feet)  General Condition, As Found 

“Atmospheric”  3  Surface rust 

“Splash”  6  Heavy corrosion products (up to 1‐inch thick); orange stains on north side 

“Tidal”  9.5 – 11.5  Marine growth; tightly adhered corrosion products, moderately thick 

“Submerged”  11 – 13.5  No corrosion products or marine growth 

“Mud”  12 – 14.5  Thin, tightly adhered corrosion product 

 

1

2

3

5 678

9

Page 34: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - THICKNESS TESTING

4

Wall Height Measurements The distance from the top of the wall to the mud line (seaside) and the top of the wall to the fill (landside) were checked with a measuring tape.  These dimensions are shown in Table 3. 

TABLE 3 Dimension from Top of Wall 

Test Location Top of Wall to Mud 

Seaside Top of Wall to Fill 

Landside 

1  13'‐7"  2'‐10" 2  14'‐6"  3'‐0" 3  13'‐7"  3'‐2" 4  13'‐0"  11'‐2" 5  11'‐2"  2‐11" 6  7'‐9"  3'‐2" 7  12'‐10"  3'‐3" 8  12'‐10"  2’‐11” 9  12'‐9"  2'‐3" 

 

Thickness Testing The thickness of the existing piles was measured by ultrasonic test methods.  Sheet pile thickness tests were made by mechanically removing rust deposits and grinding small spots to achieve the smooth, clean surface required for the test.  Thickness test were made with a Krautkramer Model DM4E ultrasonic thickness gauge.  The gauge was field‐calibrated each day before testing.  The results of the thickness measurements are summarized in Table 4. Attachment A at the end of technical memorandum provides a table listing the field‐measured thickness values that were obtained at each test spot. 

TABLE 4 Summary of Wall Thickness Measurements 

  Average Thickness Range (mils)    No. of Individual Tests 

Vertical Exposure  Int. Face  Web  Ext. Face    Int. Face  Web  Ext. Face 

“Atmospheric”  640 to 677  399 to 467  641 to 685    6  8  6 

“Splash”  564 to 656  321 to 412  547 to 645    7  11  15 

“Tidal”  642 to 645  433 to 436  632 to 672    6  3  9 

“Submerged”  No Tests  469  650 to 680    0  2  11 

“Mud”  No Tests  No Test  642 to 709    0  0  11 

Ext. = exterior Int. = interior 

 

Pit Depths Pitting was observed in the splash and tidal zones.  Deposits were removed from the pits and the pit depth was measured with a caliper.   

Page 35: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - THICKNESS TESTING

5

A maximum pit depth of 100 mils (0.100) inch was measured on the north face of the wall (“splash” zone, Test Location No. 8).  Pit depths in the “tidal” zone were not as deep as that measured in the “splash” zone, and were estimated to be less than 50 mils (0.05 inch). 

The results of the visual observations, wall thickness, and pit depth measurements are summarized below.  The discussion includes corrosion rate calculations.  These calculated corrosion rates are based on measured metal loss (based on assumed original thickness values, 0.669 inch for interior and exterior faces, 0.448 inch for web), and an exposure period of 13 years.  

“Atmospheric” Zone 

Surface corrosion and shallow pitting was observed on the seaside face of the sheet pile wall in the “atmospheric” zone.  However, corrosion is occurring on the landside of the wall at the soil/air interface (thick corrosion products on the steel piling are visible at the soil surface on the landside of the structure).  This corrosion is due to chloride and oxygen at the soil‐to‐air interface on the landside.  It is assumed that chlorides are concentrating in the soil on the landside due to seawater splash.  The test measurements show reduction in wall thickness in this zone.   

The rate of general metal loss in the “atmospheric” zone is estimated to be 3.8 mils per year (0.0038 inch per year).  The relatively high corrosion rate for this zone is due to landside corrosion activity. 

“Splash” Zone 

Heavy corrosion products are present in this zone.  General metal loss and corrosion pitting is occurring.  The effect of corrosion is more significant on the north side of the wall; the corrosion products have a different appearance in this area and deeper pits were observed. 

The rate of general metal loss in the “splash” zone is estimated to be 9.8 mils per year (0.0098 inch‐year).  Pitting rates in this zone are estimated to be approximately 12.5 mils per year (0.0125 inch‐year).   

“Tidal” Zone 

The “tidal” zone area exhibited more marine growth than the other zones.  Moderately thick, tightly adhered corrosion products were found.  Some pitting is occurring, but to a lesser extent than that observed in the “splash” zone. 

The rate of general metal loss in the “tidal” zone is estimated to be 2.8 mils per year (0.0028 inch per year). 

“Submerged” Zone 

Very little corrosion or pitting was observed in the “submerged” zone (12 to 18 inches above the mud line, and below the marine growth associated with the “tidal” zone).  Very thin surface rust was observed in this area. 

The rate of general metal loss in the “submerged” zone is estimated to be 1.5 mils per year (0.0015 inch per year). 

“Mud” Zone 

The piling 12 inches below the “mud” level on the seaside surface of the wall exhibited some minor corrosion pitting in places.  A thin, tightly adhered layer of corrosion products were present on the north face. 

The rate of general metal loss in the “mud” zone is estimated to be 2.1 mils per year (0.0021 inch per year). 

Conclusions 1. The “atmospheric” exposed portion of the wall is experiencing relatively rapid corrosion.  The relatively 

high corrosion rate in this zone is attributed to soil‐side corrosion due to salt accumulation in the fill near the surface (very little corrosion was observed on the seaside surfaces in the atmospheric zone).   

Page 36: Attachment 2 Final Structural Evaluation Technical Memorandum

WYCKOFF SHEET PILE WALL - THICKNESS TESTING

6

2. The most significant corrosion is occurring in the “splash” zone.  The highest pitting rates were measured in this zone; the most rapid “time‐to‐penetration” of the wall is expected in this zone. 

a. Pit depth measurements indicated pitting is occurring at a rate of 12.5 mils per year.  At this pitting rate, the thinner section of the wall (web) would be penetrated approximately 37 years after installation (in the year 2038).  

b. However, since only a very small portion of the wall was cleaned for close observation and thickness measurements, it is probable that the pitting rate in this area could be much higher.  As a conservative estimate, a pitting rate as high as 25 mils per year is assumed.  At a 25 mil per year corrosion rate, the thinnest part of the wall would be penetrated 19 years after installation (in the year 2020). 

3. The corrosion rates in the “tidal,” “submerged,” and “mud” zone are relatively low when compared to the “splash” zone.  The time‐to‐penetration of the wall in these zones will be much longer than that expected for the “splash” zone. 

 

Page 37: Attachment 2 Final Structural Evaluation Technical Memorandum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attachments    

Page 38: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 39: Attachment 2 Final Structural Evaluation Technical Memorandum

 

 Photograph 1.  General condition of the sheet pile wall, Wyckoff (Bainbridge Island), with exposure “zones” shown.  

North face. 

    

“Atmospheric” Zone 

“Splash” Zone 

“Tidal” Zone 

“Submerged” Zone 

“Mud” Zone 

Page 40: Attachment 2 Final Structural Evaluation Technical Memorandum

 Photograph 2.  General condition of sheet piling, northwest side of facility.   

   

 Photograph 3.  Photograph illustrates the thickness and color of corrosion products in the “splash” zone.  Note the 

bright orange appearance on the surface, indicating active corrosion.   

    

Page 41: Attachment 2 Final Structural Evaluation Technical Memorandum

 Photograph 4.  Corrosion pit on pile web, north side of facility (Test Location No. 8).  After the deposits were removed 

from the pit, the depth was measured with a micrometer and found to be approximately 0.1‐inch deep. 

   

   

Page 42: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff Date: 10/30/2013Sheet Pile Wall Thickness Measurements 10/31/2013

By: J Duppong

Sheet Pile Wall

17mm = 669 mils

A F 11.9mm=

B E 468mils

C DTest Location on Pile

Distance Below

Top of Wall A B C D E FTest Location 1

Soil (Inside) 2'‐10""Atmosphere" 3'‐0"

"Splash" 6'‐0" 650"Tidal" 11'‐12" 670 625

"Submerged" 13'‐7" 668 659Mud 14'‐6" 668

Test Location 2Soil (Inside) 3'‐0"

"Atmosphere" 3'‐0""Splash" 6'‐0" 564 545 548"Tidal" 11'‐6" 665 670

"Submerged" 14'‐6" 674 686Mud 15'‐6" 676

Test Location 3Soil (Inside) 3'‐3"

"Atmosphere" 3'‐0" 448 636 646 350"Splash" 6'‐0" 567 356 589 590 285 584"Tidal" 11'‐6" 643 653 656 641

"Submerged" 14'‐6" 478 743 650 459Mud 15'‐6"

Test Location 4Soil (Inside) 3'‐0"

"Atmosphere" 3'‐0""Splash" 6'‐0" 604 367 679 671"Tidal" 10'‐7" 672 669

"Submerged" 13'‐7" 661 689Mud 14'‐7" 676 685

SOIL SIDE

Thickness (mils) at Test Location

WATER SIDE

Page 43: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff Date: 10/30/2013Sheet Pile Wall Thickness Measurements 10/31/2013

By: J Duppong

Sheet Pile Wall

17mm = 669 mils

A F 11.9mm=

B E 468mils

C DTest Location on Pile

SOIL SIDE

WATER SIDE

Test Location 5Soil (Inside) 2'‐7"

"Atmosphere" 3'‐0" 660 459 651 341 620"Splash" 6'‐0" 619 393 585 591 402 693"Tidal" 10'‐4" 669 428 790 665 443 660

"Submerged" 12'‐10"Mud 13'‐10" 662 657

Test Location 6Soil (Inside) 3'‐3"

"Atmosphere" 3'‐0""Splash" 6'‐0" 609 390 577 577 374"Tidal" 10'‐6" 624 640

"Submerged" 13'‐0" 662 650Mud 14'‐0" 732 709

Test Location 7Soil (Inside) 2'‐3"

"Atmosphere" 3'‐0" 672 448 662 657 448 665"Splash" 6'‐0" 616 424 593 589 400 654"Tidal" 9'‐11" 643 666 659 433 654

"Submerged" 12'‐5" 665 668Mud 13'‐5" 671 637

Test Location 8Soil (Inside) 2'‐11"

"Atmosphere" 3'‐0""Splash" 6'‐0" 629 422 577 590 385"Tidal" 9'‐8" 634 641

"Submerged" 11'‐2"Mud 12'‐2" 639 645

Test Location 9Soil (Inside) 3'‐2"

"Atmosphere" 3'‐0" 670 462 780 685 472 683Mud 7'‐9"

Page 44: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 45: Attachment 2 Final Structural Evaluation Technical Memorandum

Reference 2

Page 46: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 47: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

1. Purpose of the memorandum

This memorandum is intended to summarize the design basis and installation method for the sheet pile wall at the Wyckoff/Eagle Harbor Superfund site. The memo includes data used to arrive at the design basis for installation, as well as a comparison of design depths versus actual installation depths for the sheet piles.

2. Introduction

Two vertical barrier walls were constructed at the site. A 1,870-foot long perimeter vertical barrier wall was constructed by driving sheet piling through marine sediments and 4-5 feet into underlying glacial till. A 536-foot long vertical barrier wall was constructed on an upland portion of the site in preparation for a thermal remediation pilot study. This memo only discusses in detail the outer sheet pile wall. Both walls were constructed of British Steel Z ‘5’ section sheet piling—also referred to as Frodingham #5 sheet pile—that conforms to ASTM A 572, Grade 50. The vertical barrier walls were constructed between November 2000 and February 2001.

3. Data sources

Data available for this memo include design drawings (plan view and five profiles, including a modification; Appendix A), aquitard elevations (Table 1), design and as-built tip elevations (Table 2), and boring logs (Appendix B). The profiles contain notes made in the field regarding sheet pile numbering, re-positioning of turning points, and installation depths. The numbering system was unique for each segment (between turning points) of the sheet pile wall (Table 3). Generally, sheet pile pairs were numbered sequentially starting at one turning point and moving toward another. The numbering could increase in either direction, depending on the specific starting point. In the case of one segment (between turning points 3 and 4), the numbering does not increase sequentially in a consistent direction. Parts of the segment were started and then installation shifted to another part of the segment.

4. Design basis

The design basis for construction of the sheet pile wall was determined by a requirement to key the wall into the glacial till aquitard to a depth of 4-5 feet. Where the aquitard was shallower, the design called for driving as much as 20 feet into the aquitard.

In order to estimate installation depths for sheet piles along the proposed alignment, a top of aquitard surface was interpolated from soil boring data (Figure 1). Interpolations were made using the kriging option in Surfer. The base of the aquitard was estimated by using Surfer to interpolate aquitard thickness (as opposed to base of aquitard elevation) and then adding that thickness to the top of aquitard elevation. It was believed that thickness interpolations provided a better representation of actual conditions and that the base of aquitard elevation interpolation was too sensitive to lack of data off shore.

Page 48: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

141 borings were used to define the top of aquitard (Table 1). Of these, 23 were SCAPS pushes (SE series), and 41 were Geoprobe pushes (PP series). These two drilling techniques often had difficulty penetrating glacial till. No attempt was made to evaluate the validity of picks for the top of the glacial till aquitard. The contact between marine units of the surficial aquifer and glacial till was generally identified by an abrupt change from less dense, shell-bearing soils to very stiff or hard soils without shells. This contact was often accompanied by an increase in blow counts. 5. Installation method Sheet pile units consisted of a pair of welded sheet piles. The piles were driven using a 500 HP vibratory hammer. At times, two vibratory hammers were in operation on different parts of the site. Pile-driving times on the order of a few minutes were not unusual. 6. Summary statistics A summary of simple sheet pile installation statistics is provided in Table 4. Of 674 piles installed, 288 (42.7%) were installed at the design depth. Of the 76 sheet piles that were installed at depths shallower than design, all but seven were within 0.5 feet of design, and the remainder were within 1 foot of design. Nearly half (46%) of the sheet piles were driven deeper than design.

Page 49: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

Tables

Page 50: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 51: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

Table 1. Elevations used for Aquitard Surface Interpolation

Well ID# Easting Northing

Surface Elev.

(mllw)

Aquitard Elev.

(mllw) Well ID# Easting Northing

Surface Elev.

(mllw)

Aquitard Elev.

(mllw) 00PP01* 1229441.8 229232.3 17.68 -31.42 99CD05 1229349.1 229364.5 14.6 -37.37 00PP04* 1229468.3 229119.0 17.73 -21.77 99PP02A 1229033.8 229801.1 9.0 -54.52 00PP05* 1229398.0 229177.5 18.58 -21.92 99PP04 1229141.0 229827.1 6.5 -60.55 00PP07* 1229110.1 229458.6 15.40 -21.4 99PP06 1229218.5 229807.2 7.0 -62.5 00PP08* 1229033.5 229173.5 18.62 8.62 99PP07 1229264.4 229763.0 7.1 -64.36 00PP09* 1229127.9 229179.0 18.36 3.96 99PP08 1229355.0 229713.0 6.0 -72.5 00PP11* 1229248.1 229182.9 17.69 -1.51 99PP09 1229372.0 229678.0 6.0 -69 00PP12* 1228852.1 229327.0 18.47 -9.83 99PP11 1229384.0 229641.0 6.0 -70 00PP13* 1228907.2 229377.2 15.58 -14.42 99PP12 1229394.4 229576.2 8.0 -67 00PP14* 1228950.7 229406.6 15.52 -15.18 99PP16 1229445.0 229424.4 5.5 -56.2 00PP15* 1228976.0 229449.3 15.82 -16.68 99PP18 1229477.4 229316.2 5.9 -43.6 00PP16* 1229444.7 229038.3 16.13 -14.87 99PP20 1229490.5 229270.1 5.7 -44.82 00PP17* 1229247.5 229157.1 18.31 2.91 99PP23 1228914.5 229761.2 11.0 -53.3 00PP18* 1229177.3 229156.1 18.75 4.25 99PP24 1228975.5 229788.8 9.1 -54.87 00PP19* 1229130.8 229300.9 16.10 -7.8 99PP25 1229511.7 229150.0 5.0 -32.5 00PP20* 1229126.0 229370.8 15.73 -16.07 99PP27 1229343.6 229385.5 14.5 -40.53 00PP21* 1229077.3 229380.2 15.42 -13.18 99PP31 1229188.3 229792.1 14.9 -57.59 00PP22* 1229007.7 229267.2 16.33 -3.28 99SE01 1228993.3 229729.7 14.6 -44.89 00PP23* 1228945.7 229169.5 19.17 10.17 99SE02 1228987.4 229676.3 15.0 -42.04 00PP24* 1228577.0 229206.1 19.00 1.4 99SE03 1229088.8 229709.6 14.3 -43.19 00PP25* 1228944.3 229145.0 19.04 14.54 99SE05 1228887.8 229550.5 12.2 -30.27 00PP26* 1228943.6 229121.4 19.11 14.61 99SE12 1228874.4 229399.8 15.9 -17.12 00PP27* 1229031.0 229125.2 19.17 14.47 99SE13 1229003.3 229418.9 15.3 -18.66 00PP28* 1228941.3 229086.2 19.13 13.93 99SE15 1228761.9 229356.6 17.2 -10.84 00PP29* 1229031.8 229085.6 19.15 14.65 99SE16 1228975.7 229374.4 15.1 -13.36 97AP13 1229063.5 229733.5 15.1 -51.4 99SE17 1229064.7 229361.1 15.6 -11.22 97AP14 1229014.5 229700.5 15.2 -45.8 99SE19 1229265.2 229311.8 15.3 -19.52 97AP15 1228979.5 229663.5 15.3 -41.2 99SE21 1228698.0 229197.5 19.3 5.79 97AP16 1228829.5 229490.5 14.6 -20.9 99SE22 1228898.5 229165.3 19.0 14.51 97AP17 1228812.5 229403.5 16.4 -16.1 99SE23 1229101.4 229154.1 18.8 10.25 97AP18 1228873.5 229346.5 16.6 -13.7 99SE24 1229305.3 229180.4 17.9 -6.14 97AP19 1228977.5 229310.5 16.3 -9.2 99SE25 1229399.1 229031.5 18.5 -3.48 97AP20 1229144.5 229251.5 16.4 -3.6 99SE40 1228815.1 229473.7 14.1 -19.93 97AP21 1229235.5 229219.5 17.3 -3.7 99SE41 1228724.8 229298.1 17.8 -5.65 97AP22 1229337.5 229222.5 17.2 -17 99SE42 1228643.2 229247.1 18.2 -1.27 97AP24 1229287.5 229707.5 14.8 -65.2 99SE43 1229202.0 229155.5 18.6 2.12 97AP25 1228951.5 229613.5 13.6 -36 99SE45 1228967.1 229262.5 16.5 -3.98 97AP26 1228909.5 229570.5 13.2 -30.6 99SE46 1228831.2 229319.6 18.5 -9.55 97AP27 1228873.5 229527.5 13.6 -24.4 99SE47 1228843.7 229433.4 16.3 -16.71 97AP28 1229061.5 229280.5 16.4 -6.6 99SE48 1229290.8 229226.9 16.9 -11.13 97AP29 1228769.5 229443.5 16.1 -17.3 CW02 1229448.8 229253.9 17.0 -32.98 97AP30 1229021.5 229774.5 15.3 -53.9 CW03 1229441.2 229245.9 16.9 -35.09 97AP31 1228955.5 229756.5 14.9 -50.6 CW04 1229209.0 229672.4 15.0 -51.04

Page 52: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

97AP32 1228891.5 229698.5 13.0 -45.5 CW05 1229083.7 229749.7 15.8 -50.72 97AP33 1228839.5 229639.5 12.8 -40.2 CW06 1229146.7 229797.7 14.5 -54.51 97AP34 1228770.5 229330.5 17.6 -10.9 CW09 1229309.5 229580.6 15.4 -52.09 97AP35 1228898.5 229262.5 18.2 -2.9 CW10 1229377.3 229444.4 15.2 -54.13 97AP36 1229072.5 229213.5 18.2 0.7 CW12 1229061.5 229416.6 16.2 -33.76 97AP37 1229185.5 229182.5 18.3 -0.7 CW14 1228800.7 229466.6 14.9 -19.86 97AP38 1228689.5 229352.5 17.2 -11.8 CW15 1229160.2 229731.0 14.3 -52.69 97AP39 1228670.5 229318.5 17.4 -11.3 EWC1 1229051.2 229287.7 16.5 -6.33 97AP40 1228659.5 229283.5 17.7 -3.8 EWC4 1229305.6 229626.7 15.4 -56.6 97AP41 1228595.5 229248.5 17.4 -3.1 GB1 1228986.7 229753.9 15.4 -49.96 97AP42 1228716.5 229264.5 17.9 -1.6 GB2 1229274.2 229717.2 14.7 -60.8 97AP43 1228807.5 229263.5 18.8 -3.2 GB3 1229351.7 229604.8 16.0 -58.4 98AP01 1228747.0 229621.0 -8.8 -46.7 GB4 1229412.5 229365.1 15.7 -43.6 98AP02 1228679.6 229543.4 -19.8 -40.5 MWC20 1229085.4 229125.4 18.7 13.7 98AP03 1228604.0 229472.0 -18.5 -31.3 OB-1-2 1229051.9 229467.1 15.9 -20.1 98AP04 1228547.7 229339.5 -7.8 -15.5 PO17 1228982.3 229223.6 18.1 1.1 98AP05 1228791.2 229571.4 -13.2 -37.7 PW8 1229188.0 229532.0 14.3 -34.93 98AP06 1228715.4 229487.9 -18.3 -27.8 PW9 1228834.4 229450.2 14.9 -18.06 98AP07 1228644.1 229422.5 -14.9 -25.2 RPW1 1229059.4 229473.3 15.8 -21.7 98AP08 1228619.4 229611.6 -24.1 -56.1 RPW2 1229139.9 229677.6 14.7 -40.28 98AP09 1228509.5 229662.6 -27.2 -59.4 RPW3 1229287.4 229644.1 15.4 -60.08 98AP10 1228401.2 229786.6 -29.4 -73.7 RPW4 1229384.6 229280.2 15.1 -32.87 98AP11 1228836.0 229552.1 0.7 -33.5 RPW5 1229148.2 229615.6 14.2 -39.51 99AP03 1229369.4 229547.8 16.1 -59.63 RPW6 1229217.3 229365.2 15.3 -29.68 99CD01 1229028.1 229527.1 15.7 -26.27 RPW7 1229454.0 229265.8 15.8 -36.72 99CD02 1229118.2 229522.8 14.3 -31 TH8 1228784.0 229514.0 -10.0 -21.5 99CD03 1228935.4 229378.3 14.8 -13.17 TH9 1228770.0 229500.0 -11.0 -17.5 99CD04 1229145.1 229421.6 15.7 -21.27

* Horizontal and vertical coordinates are estimated.

Page 53: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

Table 2. Design and As-Built Tip Elevations

Piling Pair

Number

Original Pile Length

Design Tip

Elev. (mllw)

As-Built Tip

Elev. (mllw)

Driven Length

Piling Pair

Number

Original Pile Length

Design Tip

Elev. (mllw)

As-Built Tip

Elev. (mllw)

Driven Length

0-1 56 -28 -27.8 47.8 7-3 96 -68 -68.2 88 0-2 56 -28 -28.8 48 7-4 96 -68 -68.2 88 0-3 60 -28 -28.5 48 7-5 96 -68 -68.2 88 0-4 60 -28 -28 48 7-6 96 -68 -68.3 88 0-5 60 -28 -28 48 7-7 96 -68 -68.2 88 0-6 60 -28 -28.2 48 7-8 96 -68 -68 88 0-7 56 -28 -28.2 48 7-9 96 -68 -68.2 88 0-8 56 -28 -28.2 48 7-10 96 -68 -68 88 0-9 56 -28 -28.2 48 7-11 96 -68 -68.2 88 0-10 56 -28 -28.2 48 7-12 96 -68 -68.2 88 0-11 56 -28 -28 48 7-13 96 -69 -69.4 89 0-12 56 -28 -28.1 48 7-14 96 -69 -69.2 89 0-13 56 -28 -28.1 48 7-15 96 -69 -69.2 89 0-14 56 -28 -28.2 48 7-16 96 -69 -69.2 89 0-15 56 -28 -28 48 7-17 96 -69 -69.2 89 0-16 56 -26 -25.5 45.5 7-18 96 -69 -69.2 89 0-17 52 -24 -23.6 44 7-19 96 -69 -69.2 89 0-18 52 -24 -23.6 43.6 7-20 96 -69 -69.2 89 0-19 52 -24 -23.2 43.2 7-21 96 -69 -69.3 89 0-20 52 -24 -24 44 7-22 96 -69 -69.2 89 0-21 52 -24 -23.7 43.7 7-23 100 -70 -70 90 0-22 52 -24 -23.7 43.7 7-24 100 -70 -70 90 0-23 52 -22 -22 42 7-25 100 -70 -70 90 0-24 48 -22 -22 42 7-26 100 -70 -70 90 0-25 48 -22 -21.5 41.5 7-27 100 -71 -71 91 0-26 48 -22 -21.5 41.5 7-28 100 -71 -71 91 0-27 48 -22 -21.5 41.5 7-29 100 -71 -71 91 0-28 48 -22 -21.5 41.5 7-30 100 -71 -71 91 0-29 48 -22 -21.5 41.5 7-31 100 -72 -72 92 0-30 48 -18 -18 38 7-32 100 -72 -72 92 0-31 48 -16 -16 36 7-33 100 -72 -72 92 0-32 48 -16 -16 36 7-34 100 -72 -72 92 0-33 48 -16 -16 36 7-35 100 -73 -73.2 93 0-34 48 -16 -16 36 7-36 100 -73 -73 93 0-35 48 -16 -16 36 7-37 100 -73 -73 93 0-36 48 -16 -16 36 7-38 100 -73 -73 93 0-37 48 -16 -16 36 7-39 100 -74 -74 94 1-1 56 -30 -30.3 50 7-40 100 -74 -74 94 1-2 56 -30 -30.7 50 7-41 100 -74 -74 94 1-3 56 -30 -30.3 50 7-42 100 -74 -74 94 1-4 56 -30 -30.3 50 7-43 104 -75 -75 95 1-5 56 -30 -30.3 50 7-44 104 -75 -75 95 1-6 56 -30 -30.3 50 7-45 104 -75 -75 95

Page 54: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

1-7 56 -30 -30.3 50 7-46 104 -75 -75 95 1-8 56 -30 -30.3 50 7-47 104 -76 -76 96 1-9 56 -30 -30.3 50 7-48 104 -76 -76 96 1-10 56 -30 -30.3 50 7-49 104 -76 -76.3 96 1-11 56 -28 -28.1 48 7-50 104 -76 -76.3 96 1-12 56 -28 -28 48 7-51 104 -77 -77.4 97 1-13 56 -28 -28.2 48 7-52 104 -77 -77.3 97 1-14 56 -28 -28.3 48 7-53 104 -77 -77.2 97 1-15 56 -28 -28.3 48 7-54 104 -77 -77.2 97 1-16 56 -28 -28.3 48 7-55 104 -77 -77.2 97 1-17 56 -28 -28.1 48 7-56 104 -77 -77.2 97 1-18 56 -28 -28.2 48 7-57 104 -77 -77.2 97 1-19 56 -28 -28.2 48 7-58 104 -77 -77.2 97 1-20 56 -28 -28.2 48 7-59 104 -77 -77.2 97 1-21 56 -28 -28.2 48 7-60 104 -77 -77.2 97 1-22 56 -28 -28.2 48 7-61 104 -77 -77.2 97 1-23 56 -28 -28.2 48 7-62 104 -77 -77.2 97 1-24 56 -28 -28.2 48 7-63 104 -77 -77.2 91 1-25 56 -28 -28.2 48 8-1 104 -77 -77.2 91 1-26 56 -28 -28.2 48 8-2 104 -77 -77.2 97 1-27 56 -28 -28.2 48 8-3 104 -77 -77.2 97 1-28 56 -28 -28.2 48 9-1 104 -78 -78.2 98 1-29 56 -28 -28.2 48 9-2 104 -78 -78.2 98 1-30 56 -28 -28.2 48 9-3 104 -78 -78.2 98 1-31 56 -28 -28.2 48 9-4 104 -78 -78.2 98 1-32 56 -28 -28.2 48 9-5 104 -78 -78.2 98 1-33 56 -28 -28.2 48 9-6 104 -78 -78.7 98 1-34 56 -28 -28 48 9-7 104 -78 -78.2 98 1-35 56 -28 -28 48 9-8 104 -78 -78.2 98 1-36 56 -28 -28 48 9-9 104 -78 -78.3 98 1-37 56 -28 -28.2 48 9-10 104 -78 -78.2 98 1-38 56 -28 -27.8 47.8 9-11 104 -78 -78 98 1-39 56 -28 -28 48 9-12 104 -78 -78.2 98 1-40 56 -28 -27.6 47.6 9-13 104 -77 -78.5 97 1-41 56 -28 -27.1 47.1 9-14 104 -77 -77.1 97 1-42 56 -28 -28.4 48 9-15 104 -77 -77.1 97 1-43 56 -28 -28.2 48 9-16 104 -77 -77.1 97 1-44 56 -28 -28.2 48 9-17 104 -77 -77.2 97 1-45 56 -28 -28.2 48 9-18 104 -77 -77.1 97 1-46 56 -28 -28.3 48 9-19 104 -76 -76.3 96 1-47 56 -28 -28.3 48 9-20 104 -76 -76.8 96 1-48 56 -28 -28.4 48 9-21 104 -76 -76 96 1-49 56 -28 -28.5 48 9-22 104 -75 -76.2 95 1-50 36 -28 -28.6 48 9-23 104 -75 -75.4 95 1-51 56 -28 -28.2 48 9-24 104 -75 -78 95 1-52 56 -28 -28 48 9-25 104 -75 -75.2 95 1-53 56 -28 -28 48 9-26 104 -74 -76 94 1-54 56 -28 -28.2 48 9-27 100 -74 -74 94 1-55 56 -28 -28.2 48 9-28 100 -74 -75.2 94

Page 55: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

1-56 56 -28 -28 48 9-29 100 -74 -75.2 94 1-57 56 -28 -28.3 48 9-30 100 -74 -74 94 1-58 56 -28 -28.1 48 9-31 100 -74 -74.2 94 1-59 56 -28 -28 48 9-32 100 -74 -74.3 94 1-60 56 -28 -28.4 48 9-33 100 -74 -74 94 1-61 56 -28 -28.4 48 9-34 100 -74 -74 94 1-62 56 -28 -28.2 48 9-35 100 -74 -74 94 1-63 56 -28 -28.8 48 9-36 100 -74 -74 94 1-64 56 -28 -28.4 48 9-37 100 -74 -73.5 93.5 1-65 56 -28 -28.8 48 9-38 100 -74 -74 94 1-66 56 -28 -28.2 48 9-39 100 -74 -74 94 1-67 56 -28 -28 48 9-40 100 -74 -74 94 1-68 56 -28 -28 48 9-41 100 -74 -74 94 1-69 56 -28 -28 48 9-42 100 -74 -74 94 1-70 56 -28 -28.3 48 9-43 100 -73 -73.1 93 1-71 56 -28 -28.3 48 9-44 100 -73 -73 93 1-72 56 -28 -28.2 48 9-45 100 -73 -73 93 1-73 56 -28 -29 48 9-46 100 -73 -72.7 92.7 1-74 56 -28 -28 48 9-47 100 -73 -73 93 1-75 56 -28 -28 48 9-48 100 -73 -73.2 93 1-76 56 -28 -27.9 47.9 9-49 100 -73 -73.2 93 1-77 56 -28 -27.7 47.7 9-50 100 -72 -72.1 92 1-78 56 -28 -28 48 9-51 100 -72 -72.1 92 1-79 56 -28 -27 47 9-52 100 -72 -72 92 2-4 60 -30 -30.3 50 9-53 100 -72 -72.1 92 2-3 56 -30 -30.2 50 9-54 100 -72 -72.1 92 2-2 56 -30 -30.3 50 9-55 100 -72 -72.2 92 2-1 56 -30 -32 50 9-56 100 -72 -72.1 92 3-10 68 -41 -41.2 61 9-57 100 -72 -72.1 92 3-9 68 -41 -41.2 61 9-58 100 -72 -72.1 92 3-8 68 -41 -41.2 61 9-59 100 -72 -72 92 3-7 68 -41 -41.2 61 9-60 100 -72 -72 92 3-6 68 -41 -41.2 61 9-61 100 -72 -72.2 92 3-1 68 -41 -41.2 61 9-62 100 -72 -72.1 92 3-2 68 -41 -41.5 61 9-63 100 -72 -72 92 3-3 68 -41 -41.1 61 9-64 100 -72 -72.1 92 3-4 68 -40 -41.1 60 9-65 100 -72 -72.1 92 3-5 68 -40 -41.1 60 9-66 100 -72 -72 92 3-11 68 -40 -41.1 60 9-67 100 -71 -72 91 3-12 68 -40 -39.1 59.1 9-68 100 -71 -71 91 3-13 68 -40 -40.6 60 9-69 100 -71 -71 91 3-14 68 -40 -40.6 60 9-70 100 -71 -70.7 91 3-15 68 -40 -40.6 60 9-71 100 -71 -71.1 91 3-16 68 -40 -40.6 60 9-72 100 -71 -71.1 91 3-17 68 -40 -40.6 60 9-73 100 -71 -72 91 3-18 68 -40 -41.1 60 9-74 100 -70 -73 90 3-19 68 -40 -40.6 60 9-75 96 -70 -70 90 3-20 68 -40 -40.6 60 9-76 96 -70 -70 90 3-21 68 -40 -40.6 60 9-77 96 -70 -70 90

Page 56: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

3-22 68 -40 -39.7 59.7 9-78 96 -70 -70 90 3-23 68 -40 -39.8 59.8 9-79 96 -69 -69 89 3-24 68 -40 -39.8 59.8 9-80 96 -69 -69 89 3-25 68 -40 -40 60 9-81 96 -69 -69 89 3-26 68 -40 -40.9 60 9-82 96 -69 -69 89 3-27 68 -40 -40.9 60 9-83 96 -69 -69 89 3-28 68 -40 -40.9 60 9-84 96 -69 -69 89 3-29 68 -40 -40.9 60 9-85 96 -68 -68 88 3-30 68 -40 -40.9 60 9-86 96 -68 -67.7 87.7 3-31 68 -40 -40.9 60 9-87 96 -68 -67.7 87.7 3-32 68 -40 -40.9 60 9-88 96 -68 -67.7 87.7 3-33 68 -40 -40.9 60 9-89 96 -68 -67.7 87.7 3-34 68 -39 -38.9 58.9 9-90 96 -67 -67.7 87.7 3-35 68 -39 -38.9 58.8 9-91 96 -67 -67.1 87 3-36 68 -39 -38.9 58.9 9-92 96 -67 -67 87 3-37 68 -38 -38 58 9-93 96 -67 -67 87 3-38 68 -38 -38 58 9-94 96 -67 -67 87 3-39 72 -37 -37 57 9-95 96 -67 -67 87 3-40 72 -37 -37 57 9-96 96 -66 -65.5 85.5 3-41 72 -36 -36 56 9-97 96 -66 -65.5 85.5 3-42 72 -36 -36 56 9-98 96 -66 -65.5 85.5 3-43 72 -35 -35 55 9-99 96 -66 -65.7 85.7 3-44 72 -35 -35 55 9-100 96 -66 -65.7 85.7 3-45 72 -35 -35 55 9-101 96 -65 -65.2 85 3-46 72 -35 -35 55 9-102 92 -65 -65 85 3-47 72 -35 -35 55 9-103 92 -65 -65 85 3-48 68 -35 -35 55 9-104 92 -65 -65 85 3-49 68 -34 -34 54 9-105 92 -64 -64 84 3-50 68 -34 -34 54 9-106 92 -64 -64 84 3-51 64 -34 -34 54 9-107 92 -64 -64 84 3-52 64 -34 -34 54 9-108 92 -64 -64 84 3-53 64 -34 -34 54 9-109 92 -64 -64 84 3-54 60 -36 -36 56 9-110 92 -64 -64 84 3-55 60 -36 -36 56 9-111 92 -64 -64 84 3-56 60 -36 -36 56 9-112 92 -64 -64 84 3-57 60 -36 -36 56 9-113 92 -63 -63 83 3-58 60 -35 -36 55 9-114 92 -63 -63 83 3-59 60 -35 -36 55 9-115 92 -63 -63 83 3-60 60 -35 -36 55 9-116 92 -62 -62 82 3-61 60 -35 -36 55 9-117 92 -62 -62 82 3-62 68 -42 -42.2 62 9-118 92 -62 -62 82 3-63 68 -42 -42.2 62 9-119 88 -61 -61 81 3-64 68 -42 -42.3 62 9-120 88 -61 -61 81 3-65 72 -43 -43 63 9-121 88 -61 -60.8 80.8 3-66 72 -43 -43 63 9-122 88 -60 -60 80 3-67 72 -43 -43 63 9-123 88 -60 -60 80 3-68 72 -43 -43 63 9-124 88 -60 -60 80 3-69 72 -44 -44 64 9-125 88 -59 -59.5 79 3-70 72 -44 -44 64 9-126 88 -59 -59 79

Page 57: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

3-71 72 -44 -44 64 9-127 88 -59 -59 79 3-72 72 -44 -43.7 63.7 9-128 88 -59 -59 79 3-73 72 -44 -43.8 63.8 9-129 88 -58 -58.1 78 3-74 72 -44 -43.8 63.8 9-130 88 -58 -58 78 3-75 72 -44 -44 64 9-131 84 -58 -58 78 3-76 72 -44 -44 64 9-132 84 -58 -58 78 3-77 60 -35 -35.1 55 9-133 84 -57 -57 77 3-78 60 -35 -35.2 55 9-134 84 -57 -57 77 3-79 60 -34 -34 54 9-135 84 -57 -57 77 3-80 56 -33 -33 53 9-136 84 -56 -56 76 3-81 56 -33 -33 53 9-137 84 -56 -56 76 3-82 56 -31 -31 51 9-138 84 -56 -56 76 3-83 56 -31 -31 51 9-139 84 -55 -59 75 3-84 56 -31 -31 51 9-140 84 -55 -55 75 3-85 56 -31 -31 51 9-141 84 -55 -55 75 3-86 56 -31 -31 51 9-142 80 -54 -54 74 3-87 56 -31 -31 51 9-143 80 -54 -54 74 3-88 68 -31 -31 51 9-144 80 -54 -54 74 3-89 56 -31 -31 51 9-145 80 -53 -53 73 3-90 56 -31 -30.8 50.8 9-146 80 -53 -53.2 73 3-91 60 -31 -30.7 50.7 9-147 80 -53 -53.2 73 4-1 72 -45 -44.5 64.5 9-148 80 -52 -52.5 72 4-2 72 -45 -45.3 65 9-149 80 -52 -52.5 72 4-3 72 -45 -45.3 65 9-150 80 -52 -52.5 72 4-4 72 -45 -45.3 65 9-151 80 -51 -51.4 71 4-5 72 -45 -45.3 65 9-152 80 -51 -51.5 71 4-6 72 -45 -45.3 65 9-153 80 -51 -51.5 71 4-7 72 -45 -45.2 65 9-154 80 -50 -50.5 70 4-8 76 -46 -46.2 66 9-155 80 -50 -50 70 4-9 76 -46 -46.2 66 9-156 80 -50 -50 70 4-10 76 -46 -46.2 66 9-157 76 -50 -50 70 4-11 76 -46 -46.2 66 9-158 76 -50 -50.1 70 4-12 76 -46 -46.2 66 9-159 76 -50 -49.5 69.5 4-13 76 -46 -46.2 66 9-160 76 -49 -49 69 4-14 76 -47 -47 67 9-161 76 -49 -49 69 4-15 76 -47 -47 67 9-162 76 -49 -49 69 4-16 76 -47 -47 67 9-163 76 -49 -49 69 4-17 76 -48 -48 68 9-164 76 -49 -49 69 4-18 76 -48 -48.1 68 9-165 76 -49 -48.6 68.6 4-19 76 -48 -48.1 68 9-166 76 -49 -48.6 68.6 4-20 76 -48 -48.1 68 9-167 76 -49 -48.6 68.6 4-21 76 -49 -49.1 69 9-168 76 -49 -48.5 68.5 4-22 76 -49 -49.5 69 9-169 76 -49 -48.5 68.5 4-23 76 -49 -49.2 69 9-170 76 -49 -48.8 68.8 4-24 76 -49 -49.5 69 9-171 76 -49 -48.8 68.8 4-25 76 -50 -50.1 70 10-1 76 -49 -49 69 4-26 76 -50 -49.6 69.6 10-2 76 -49 -49 69 4-27 76 -50 -49.7 69.7 10-3 76 -49 -49 69 4-28 76 -50 -49.8 69.8 10-4 76 -49 -49 69

Page 58: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

4-29 76 -50 -50.1 70 10-5 76 -49 -49.2 69 4-30 80 -50 -50 70 10-6 76 -49 -49.2 69 4-31 80 -50 -50.1 70 10-7 76 -49 -49 69 4-32 80 -50 -50 70 10-8 76 -49 -48.8 68.8 4-33 80 -51 -51.2 71 10-9 76 -49 -48.8 68.8 4-34 80 -51 -51.3 71 10-10 76 -49 -48.5 68.5 4-35 80 -51 -51.2 71 10-11 76 -49 -49 69 4-36 80 -52 -52.2 72 10-12 76 -48 -48.1 68 4-37 80 -52 -52.2 72 10-13 76 -48 -48 68 4-38 80 -53 -53 73 10-14 76 -47 -47 67 4-39 80 -53 -53 73 10-15 76 -47 -47 67 4-40 80 -53 -53 73 10-16 76 -47 -47 67 4-41 80 -53 -53 73 10-17 72 -46 -46 66 4-42 80 -54 -54.2 74 10-18 72 -46 -46 66 4-43 80 -54 -54.2 74 10-19 72 -46 -46 66 5-1 84 -54 -54 74 10-20 72 -45 -45 65 5-2 84 -55 -54.6 74.6 10-21 72 -45 -44.5 64.5 5-3 84 -55 -55 75 10-22 72 -45 -45 65 5-4 84 -56 -55.9 75.9 10-23 72 -44 -43.5 63.5 5-5 84 -56 -56 76 10-24 72 -44 -43.5 63.5 5-6 84 -57 -57 77 10-25 72 -44 -44 64 5-7 84 -57 -57 77 10-26 72 -43 -43 63 5-8 84 -58 -57.5 77.5 10-27 72 -43 -43 63 5-9 84 -58 -58 78 10-28 72 -43 -43 63 5-10 84 -58 -58 78 10-29 72 -42 -42.5 62 5-11 84 -58 -58 78 10-30 72 -42 -42.5 62 5-12 88 -58 -58.2 78 10-31 72 -42 -42.5 62 5-13 88 -58 -58.2 78 10-32 68 -41 -41.4 61 5-14 88 -58 -58 78 10-33 68 -41 -41.2 61 5-15 88 -59 -59 79 11-1 68 -41 -41.2 61 5-16 88 -59 -58.2 78.2 11-2 68 -40 -40.5 60 5-17 88 -59 -58.2 78.2 11-3 68 -40 -40.5 60 5-18 88 -59 -58.2 78.2 11-4 68 -40 -40.4 60 5-19 88 -60 -60.2 80 11-5 68 -40 -40.3 60 5-20 88 -60 -60.2 80 11-6 68 -40 -40.3 60 5-21 88 -60 -60 80 11-7 68 -40 -40.3 60 5-22 88 -60 -60 80 11-8 68 -39 -39 59 5-23 88 -60 -60.4 80 11-9 68 -39 -39 59 5-24 88 -60 -60.4 80 11-10 68 -39 -39 59 5-25 88 -60 -60.3 80 11-11 64 -38 -38 58 5-26 88 -60 -60.2 80 11-12 64 -38 -38 58 5-27 88 -60 -60.3 80 11-13 64 -38 -38.2 58 6-1 88 -60 -60.7 80 11-14 64 -37 -37.1 57 6-2 88 -60 -59.8 80 11-15 64 -37 -37.2 57 6-3 88 -60 -59.5 80 11-16 64 -37 -37.3 57 6-4 88 -60 -60.5 80 11-17 61 -36 -36.5 56 6-5 88 -60 -60 80 11-18 64 -36 -36.5 56 6-6 88 -60 -59.5 80 11-19 64 -35 -35.6 55 6-7 88 -60 -59.7 80 11-20 64 -35 -35.8 55

Page 59: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

6-8 88 -61 -61 81 11-21 64 -34 -34.9 54 6-9 88 -61 -61 81 11-22 64 -34 -34.9 54 6-10 88 -61 -61 81 11-23 60 -33 -33.9 53 6-11 88 -61 -61 81 11-24 60 -33 -33.9 53 6-12 88 -61 -61 81 11-25 60 -33 -33 53 6-13 88 -61 -61 81 11-26 60 -32 -32.9 52 6-14 88 -61 -61 81 11-27 60 -31 -31.9 51 6-15 92 -62 -62 82 11-28 60 -31 -34.3 51 6-16 92 -62 -63.5 82 11-29 60 -31 -31 51 6-17 92 -62 -62 82 11-30 60 -31 -31 51 6-18 92 -62 -62 82 11-31 60 -30 -33 50 6-19 92 -62 -62 82 11-32 60 -30 -30 50 6-20 92 -62 -62 82 11-33 56 -29 -29.5 49 6-21 92 -62 -62 82 11-34 56 -29 -29.2 49 6-22 92 -62 -62 82 11-35 56 -28 -28.2 48 6-23 92 -62 -61.8 81.8 11-36 56 -28 -29 48 6-24 92 -62 -62 82 11-37 56 -28 -28.2 48 6-25 92 -62 -62 82 11-38 56 -28 -29.3 48 6-26 92 -62 -62 82 11-39 56 -28 -28.5 48 6-27 92 -62 -62 82 11-40 56 -28 -28.5 48 6-28 92 -63 -63 83 11-41 56 -28 -28 48 6-29 92 -63 -62.8 82.8 11-42 56 -28 -28.6 48 6-30 92 -63 -62.5 82.5 12-1 60 -28 -30 48 6-31 92 -63 -63.1 83 12-2 56 -27 -27.5 47 6-32 92 -64 -64.2 84 12-3 56 -27 -27.5 47 6-33 92 -64 -64.2 84 12-4 56 -27 -27.5 47 6-34 92 -64 -64.2 84 12-5 56 -26 -26.5 46 6-35 92 -64 -64.2 84 12-6 56 -26 -26.5 46 6-36 92 -65 -65 85 12-7 56 -26 -26.5 46 6-37 92 -65 -65 85 12-8 56 -25 -25.5 45 6-38 92 -66 -66 86 12-9 56 -25 -25 45 6-39 92 -66 -66 86 12-10 52 -25 -25 45 6-40 92 -66 -66 86 12-11 52 -24 -23.5 43.5 6-41 92 -66 -66 86 12-12 52 -24 -24 44 6-42 92 -66 -66 86 12-13 52 -24 -24.6 44 6-43 92 -66 -66 86 12-14 52 -23 -23 43 6-44 92 -66 -66 86 12-15 52 -23 -23 43 6-45 92 -66 -66 86 12-16 52 -23 -23 43 6-46 96 -67 -67 87 12-17 52 -22 -22 42 6-47 96 -67 -69 87 12-18 52 -22 -22 42 6-48 96 -67 -67 87 12-19 52 -22 -22.5 42 6-49 96 -67 -67 87 12-20 52 -21 -25 41 6-50 96 -67 -66.8 86.8 12-21 48 -21 -24 41 6-51 96 -67 -67 87 12-22 48 -21 -21 41 6-52 96 -67 -67 87 12-23 48 -20 -20 40 6-53 96 -67 -67 87 12-24 48 -20 -20 40 6-54 96 -67 -67 87 12-25 48 -20 -20 40 6-55 96 -67 -68 87 12-26 48 -20 -20 40 7-1 96 -67 -67 86.5 12-27 48 -20 -20 40

Page 60: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

Table 3. Sheet Pile Numbering System

Piling Number Prefix

Piling Pair Numbers Start Point End Point Between

0 1 to 29 TP-1 SP 1 1 to 79 TP-1 TP-2 2 1 to 4 TP-2 TP-3 3 1 to 91 TP-3 and TP-4* 4 1 to 43 TP-4 TP-5 5 1 to 27 TP-5 TP-6 6 1 to 55 TP-6 TP-7 7 1 to 63 TP-7 TP-8 8 1 to 3 TP-8 TP-9 9 1 to 171 TP-9 TP-10 10 1 to 33 TP-10 TP-11 11 1 to 42 TP-11 TP-12 12 1 to 27 TP-12 EP

Note: 4-8 designates the 8th piling pair between Turning Points 4 and 5, with piling pair numbers increasing from TP-4 to TP-5. On the design drawing, “Sheet Pile Cut-Off Wall, Profiles A & B,” found in Appendix A, pile number 4-8 is identified in pencil on Profile B directly below the crossed-out TP-4 location. * Piles are not numbered sequentially in one direction.

Page 61: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

Table 4. Sheet Pile Summary Statistics

Difference between Design Tip Elevation and Actual Tip Elevation Number Percent

Greater than -1 ft 0 0 Greater than -0.5 to -1 ft 7 1.0 Greater than 0 to -0.5 ft 69 10.2 0 ft (design basis) 288 42.7 Greater than 0 to 0.5 ft 245 36.4 Greater than 0.5 to 1 ft 44 6.5 Greater than 1 ft 21 3.1 Total sheet piles 674 100

Note: Values less than 0 represent installations shallower than design

Page 62: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 63: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

Figures

Page 64: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 65: Attachment 2 Final Structural Evaluation Technical Memorandum

1228400 1228450 1228500 1228550 1228600 1228650 1228700 1228750 1228800 1228850 1228900 1228950 1229000 1229050 1229100 1229150 1229200 1229250 1229300 1229350 1229400 1229450 1229500 1229550Easting (NAD 83)

229000

229050

229100

229150

229200

229250

229300

229350

229400

229450

229500

229550

229600

229650

229700

229750

229800

229850

Nor

thin

g (N

AD

83)

CW04

CW06

CW14

PW8

PW9

RPW1

RPW2

RPW3

RPW4

RPW5

RPW6

RPW7CW02

CW03

CW05

CW09

CW10

CW12

CW15

EWC1

EWC4

MWC20

OB-1-2

PO17

97AP13

97AP14

97AP15

97AP16

97AP17

97AP18

97AP19

97AP20

97AP21 97AP22

97AP24

97AP25

97AP26

97AP27

97AP28

97AP29

97AP30

97AP31

97AP32

97AP33

97AP34

97AP35

97AP36

97AP37

97AP38

97AP39

97AP40

97AP41

97AP42 97AP43

98AP01

98AP02

98AP03

98AP04

98AP05

98AP06

98AP07

98AP08

98AP09

98AP11 99AP03

99CD01 99CD02

99CD03

99CD04

99CD05

99PP02A

99PP04

99PP06

99PP07

99PP08

99PP09

99PP11

99PP12

99PP16

99PP18

99PP20

99PP23

99PP24

99PP25

99PP27

99PP31

99SE01

99SE02

99SE03

99SE05

99SE12

99SE13

99SE15

99SE1699SE17

99SE19

99SE21

99SE2299SE23

99SE24

99SE25

99SE40

99SE41

99SE42

99SE43

99SE45

99SE46

99SE47

99SE48

TH8TH9

GB1

GB2

GB3

GB4

00PP01

00PP04

00PP05

00PP07

00PP08 00PP09 00PP11

00PP12

00PP13

00PP14

00PP15

00PP16

00PP1700PP18

00PP19

00PP2000PP21

00PP22

00PP23

00PP24

00PP25

00PP26 00PP27

00PP28 00PP29

00CD01

00CD02

00CD03

Figure 1. Interpolated Elevation of Top of Glacial Till Aquitard

Page 66: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 67: Attachment 2 Final Structural Evaluation Technical Memorandum

Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington Sheet Pile Installation Summary Technical Memorandum 26 June 2007

Appendix A Design Drawings

Page 68: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 69: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 70: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 71: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 72: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 73: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 74: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 75: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 76: Attachment 2 Final Structural Evaluation Technical Memorandum
Page 77: Attachment 2 Final Structural Evaluation Technical Memorandum

Note: 

Appendix B – Boring Logs has not been provided with this submittal.