atomicscaleengineeringoflowdimensionalmaterials · atomicscaleengineeringoflowdimensionalmaterials...

1
Lead Scien*st Research Exper*se Applica*ons Research Facili*es Key Contact AtomicScale Engineering of LowDimensional Materials Atomicscale control of surface reac*vity: heterogeneous catalysis, surfactants for froth flota*on mining, molecular recogni*on (e.g. biosensors), gas storage Lowtemperature scanning probe microscopy in ultra high vacuum, in low vibra8on facility, including in situ tools for surface prepara8on, molecular beam epitaxy and op8cal characterisa*on NanoMaterials with Programmed Func8onality, from the Bo)omUp Electronics, optoelectronics, informa*on, catalysis and biosensing technologies rely on devices, where electronic processes take place at the interface of func*onal materials, at the atomic scale. Conven*onal device fabrica*on involves ‘topdown’ techniques (e.g. lithography): materials are paNerned by removing ma-er, with resolu*ons of, at best, several nanometres. Our group employs methods of supramolecular and metalorganic selfassembly on surfaces, to synthesise func8onal materials from the ‘boAomup’, via programmed interac8ons of atomic and molecular building units. This approach ensures exquisite atomicscale structural control, allowing to tailor the electronic , optoelectronic , magne8c and chemical proper8es of the targeted materials. It enables atomically precise synthesis of lowdimensional organic materials with novel electronic proper*es, yielding promise for ultrafast and dissipa8onless electronics, efficient photovoltaics, costeffec*ve catalysis, surfactant design, biosensing and spintronics. Selfassembled biomolecular nanogra6ngs on a metal surface [A. Schiffrin et al., PNAS 104, 5279 (2007)] Selfassembled 2D metalorganic nanostructures [U. Schlickum et al., Nano LeN. 7, 3813 (2007)] Atomicscale manipula6on of CO molecules on Cu(111): bo-omup design of molecular graphene [K.K. Gomes et al., Nature 483, 306 (2012)] Stateoftheart electronbeam lithography with few nm resolu6on [V.R. Manfrinato et al., Nano LeNers 13, 1555 (2013)] SiGe channel transistor with 7 nm node obtained via extreme ultraviolet lithography [IBM Research (2015)] Semiconductor microcircuit obtained via electronbeam lithography [S. Mark et al., Phys. Rev. LeN. 106, 057204 (2011)] Organic and metalorganic lowdimensional selfassembly on surfaces Atomicscale control of structure and electronic proper8es at surfaces Lowtemperature scanning probe microscopy and spectroscopy Synchrotronbased xray spectroscopies CW and *meresolved photonics Dr. Agus*n Schiffrin Tuning op*cal absorp*on and photoinduced charge dynamics of nanopaNerned interfaces via atomicscale structural control: organic photovoltaics (donoracceptor and DSSC), photocatalysis 2D organic nanostructures on NaCl/Ag(111): atomicscale boundary effects [K. A. Cochrane et al., Nat. Comm., forthcoming (2015)] 1D metal organic self assembly Quest for lowdimensional organic nanostructures with nontrivial, highly conduc*ve electronic phases (e.g. topological insulators): dissipa8onless nanoelectronics Control of atomicscale magne*c order: memory storage, spintronics Chemical and electronic characterisa8on (XPS, NEXAFS, ARPES) at Australian Synchrotron Ultrafast charge dynamics via 8meresolved spectroscopies (interna*onal collabora*ons e.g. MPQ, TUM) Synchrotron beamline Topological states in 2D metal organic frameworks [Z.F. Wang et al., Nat. Comm. 4, 1471 (2013) ] A. Damascelli et al., Rev. Mod. Phys. 75, 473 (2003) Dr. Agus8n Schiffrin Monash Centre for Atomically Thin Materials Monash University agus*n.schiff[email protected] Phone: +61 3 9905 9265

Upload: dohanh

Post on 14-Apr-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

 Lead  Scien*st  

 Research  Exper*se  

 Applica*ons   Research  Facili*es  

 Key  Contact  

Atomic-­‐Scale  Engineering  of  Low-­‐Dimensional  Materials  

Atomic-­‐scale  control  of  surface  reac*vity:  heterogeneous  catalysis,  surfactants  for  froth  flota*on  mining,  molecular  recogni*on  (e.g.  biosensors),  gas  storage  

§  Low-­‐temperature  scanning  probe  microscopy  in  ultra-­‐high  vacuum,  in  low-­‐vibra8on  facility,  including  in  situ  tools  for  surface  prepara8on,  molecular  beam  epitaxy  and  op8cal  characterisa*on    

Nano-­‐Materials  with  Programmed  Func8onality,  from  the  Bo)om-­‐Up  

 Electronics,   optoelectronics,   informa*on,   catalysis   and   biosensing  technologies  rely  on  devices,  where  electronic  processes  take  place  at  the  interface  of  func*onal  materials,  at  the  atomic  scale.  Conven*onal  device   fabrica*on   involves   ‘top-­‐down’   techniques   (e.g.   lithography):  materials   are   paNerned   by   removing   ma-er,   with   resolu*ons   of,   at  best,   several   nanometres.   Our   group   employs   methods   of  supramolecular   and   metal-­‐organic   self-­‐assembly   on   surfaces,   to  synthesise   func8onal   materials   from   the   ‘boAom-­‐up’,   via  programmed  interac8ons  of  atomic  and  molecular  building  units.  This  approach  ensures  exquisite  atomic-­‐scale  structural  control,  allowing  to  tailor   the   electronic,   optoelectronic,   magne8c   and   chemical  proper8es   of   the   targeted   materials.   It   enables   atomically   precise  synthesis   of   low-­‐dimensional   organic  materials  with   novel   electronic  proper*es,   yielding   promise   for   ultrafast   and   dissipa8on-­‐less  electronics,  efficient  photovoltaics,  cost-­‐effec*ve    catalysis,  surfactant  design,  biosensing  and  spintronics.      

Self-­‐assembled  biomolecular  

nanogra6ngs  on  a  metal  surface  

[A.  Schiffrin  et  al.,  PNAS  104,  5279  (2007)]  

Self-­‐assembled  2D  metal-­‐organic  

nanostructures  [U.  Schlickum  et  al.,  Nano  LeN.  7,  3813  (2007)]  

Atomic-­‐scale  manipula6on  of  CO  

molecules  on  Cu(111):  bo-om-­‐up  design  of  molecular  graphene  

[K.K.  Gomes  et  al.,  Nature  483,  306  (2012)]  

State-­‐of-­‐the-­‐art  electron-­‐beam  lithography  with  few-­‐nm  resolu6on  [V.R.  Manfrinato  et  al.,  Nano  LeNers  13,  1555  (2013)]    

SiGe  channel  transistor  with  7  nm  node  obtained  via  extreme  ultraviolet  lithography  [IBM  Research  (2015)]    

Semiconductor  microcircuit  obtained  via  electron-­‐beam  lithography  [S.  Mark  et  al.,  Phys.  Rev.  LeN.  106,  057204  (2011)]  

§  Organic  and  metal-­‐organic  low-­‐dimensional  self-­‐assembly  on  surfaces  

§  Atomic-­‐scale  control  of  structure  and  electronic  proper8es  at  surfaces    

§  Low-­‐temperature  scanning  probe  microscopy  and  spectroscopy  

§  Synchrotron-­‐based  x-­‐ray  spectroscopies  §  CW  and  *me-­‐resolved  photonics  

Dr.  Agus*n  Schiffrin   Tuning  op*cal  absorp*on  and  photo-­‐induced  charge  dynamics  of  nanopaNerned  interfaces  via  atomic-­‐scale  structural  control:  organic  photovoltaics  (donor-­‐acceptor  and  DSSC),  photocatalysis  

2D  organic  nanostructures  

on  NaCl/Ag(111):  atomic-­‐scale  

boundary  effects  [K.  A.  Cochrane  et  al.,  Nat.  Comm.,  

forthcoming  (2015)]  

1D  metal-­‐organic  self-­‐assembly  

§  Quest  for  low-­‐dimensional  organic  nanostructures  with  non-­‐trivial,  highly  conduc*ve  electronic  phases  (e.g.  topological  insulators):  dissipa8on-­‐less  nanoelectronics    

§  Control  of  atomic-­‐scale  magne*c  order:  memory  storage,  spintronics  

§  Chemical  and  electronic  characterisa8on  (XPS,  NEXAFS,  ARPES)  at  Australian  Synchrotron  

§  Ultrafast  charge  dynamics  via  8me-­‐resolved  spectroscopies  (interna*onal  collabora*ons  e.g.  MPQ,  TUM)  

Synchrotron  beamline  

Topological  states  in  2D  metal-­‐organic  frameworks  [Z.F.  Wang  et  al.,  Nat.  Comm.  4,  1471  (2013)  ]  

A. Damascelli et al., Rev. Mod. Phys. 75, 473

(2003)

Dr.  Agus8n  Schiffrin  Monash  Centre  for    Atomically  Thin  Materials  Monash  University  agus*[email protected]  Phone:  +61  3  9905  9265