atomic layer deposition, a rising technique for … · atomic layer deposition, a rising technique...

20
Atomic Layer Deposition, a rising technique for SOFC and MCFC devices A. Meléndez-Ceballos, D. Chery, A. Marizy, V. Albin, A. Ringuedé, M. Cassir* * Head Laboratoire dElectrochimie, Chimie des Interfaces et Modélisation pour lEnergie, LECIME, UMR 7575 CNRS, ENSCP, Paris, France EFC 2013 Rome

Upload: lamthuy

Post on 09-Sep-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Atomic Layer Deposition, a rising technique for SOFC and MCFC devices

A.  Meléndez-Ceballos, D. Chery, A. Marizy, V. Albin,

A. Ringuedé, M. Cassir*

* Head Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie, LECIME, UMR 7575 CNRS, ENSCP, Paris, France

EFC 2013 Rome

High temperature fuel cells & electrolysis

OHOH 222 21

…………+FC

SOEC

ZrO2-Y2O3

Cermet Ni-YSZ

La1-xSrxMnO3

O2- O2-

- → + 2 2

_ 2 2 1

O e O

_ 2 2 2

2 e O H O H + → + -

SOFC: 600-700°C

- e CO O H CO H 2 2 2 2 3 2

+ + → + -

CO32-

- → + + 2 3 2 2 2

2

1 CO - e CO O

Li2CO3- K2CO3

Ni + 2 à 10% Cr ou Al

NiO

MCFC: 600-650°C

↑ lifetime & performance:

Nanostruct./electrochem.

→ half-cells → single cells

EFC 2013 Rome

MCFC/SOFC Composite

carbonate/oxide

Nano-scaled layers for SOFC, i.e. CeO2 or ZrO2-based

* Interfacial layers –  Chemical diffusion barrier (cathode/electrolyte interface) –  Electronic barrier (anode/electrolyte interface) –  Catalyst/electrode (at both interfaces) –  Bond layer

* As SOFC electrolytes: µ-SOFC Charge transfer enhancement, resistance ↓ conductivity ↑?

* As corrosion protective layers for interconnects * As active layer at the cathode interface

Cathode (thick or thin)

Electronic barrierElectrolyte (thick or thin)

Anode (thick or thin)

Ionic diffusion barrier

Electrodecatalysts

Interconnect

Interconnect

Protective layer

Protective layer

EFC 2013 Rome

Atomic layer Deposition

4

Surface saturation reaction. Thickness: from few nm to µm

R. Puurunen, J. Appl. Phys., 97 (2005) 121301

Gro

wth

spe

ed

Deposition T

ALD window

- Crystaline as deposited

M. Cassir et al., J. Mater. Chem., 20 (2010) 8987

EFC 2013 Rome

Litterature orientations

Two main tendencies / use of ALD in SOFCs applications: Ø Low operating temperatures (<500°C) for micro systems such as portable applications. In µ-SOFCs, ultrathin electrolyte layers have a significant role and ALD presents a serious advantage.

ü  The use of ultrathin catalytic or current-collector layers of Pt and Pt grid-patterned catalysts is common.

ü However, this approach supposes the direct use of hydrogen and contradicts the requirements of SOFCs in cogeneration: avoiding precious metals and using fuels as natural gas or biomass which implies a reforming process operating at around 600°C.

Ø  The second tendency concerns electrolyte or catalysts interlayers

and / or cheaper electrode materials activated by ultrathin ALD-processed materials.

EFC 2013 Rome

State-of-the-Art Electrolyte, interfaces & current collectors: (i)  Stabilized zirconia (e.g. YSZ): ZrO2, YSZ, ZrO2-In2O3 from few nm to 1 µm. on planar substrates, on porous electrodes and on pre-patterned surfaces (ii)  Ceria and doped ceria (e.g. Gd0.2Ce0.8O2-d = GDC), YDC (iii)   LaGaO3, which is a potential electrolyte when doped: LSGM (La0.9Sr0.1Ga0.8Mg0.2O3) (iv)   BaZrO3, proton-conductor (v)  Pt deposits (catalysts or/and current collectors)

Cathode: a)  LaxSr1-xMnO3 (LSM) b)  La1-xCaxMnO3: potential electrode c)  La1-xSrxFeO3 (LSF)

Anode: LaGaO3-based materials when doped with Sr and Mg

Main teams: Prinz et al., Mc Intyre et al., Bent et al. (Standford), Niinistö et al (Helsinki), Cassir et al. (Paris), Nilsen et al. (Norway), …

Review “Input of Atomic Layer Deposition for Solid Oxide Fuel Cell Applications”, M. Cassir, A. Ringuedé, L. Ninistö, J. Mater. Chem., 20 (2010) 8987

EFC 2013 Rome

*  Chao  et  al.,  ACS  Nano,  7  (2013)  2186  **  Fan  et  al.,  Nanole:ers,  11  (2011)  2202.  ***  Fan  et  al.,  J.  Mater.  Chem.,  21,  10903  (2011).  

Ø  Enhancing  O2-­‐  incorpora/on  kine/cs  by  nanoscaled  interlayers**,***  •  17.5  nm  of  YDC  (14.1  mol.  %  Y)  between  YSZ  and  a  porous  Pt  cathode  

enhances  the  performance  of  LT-­‐SOFC  •  ↓  cathode/electrolyte  R  while  increasing  the  exchange  j0  by  a  factor  of  

4  at  300-­‐500  °C  •  Enhancement  of  the  performance  of  the  cell  x  3  

Ø  Enhanced  oxygen  exchange  on  surface-­‐engineered  YSZ*  •  10  nm  of  ALD-­‐processed  YSZ  (14  mol.  %  Y)  on  YSZ  single-­‐crystal  YSZ  ↓  O2  

surface  exchange  coefficient  5  fold  increase  (Isotopic  oxygen  exchange                tests  +  SIMS)  

EFC 2013 Rome

 Grain  sizes  of  20-­‐30  nm  result  in  a  high  density  of  grain  boundaries,  which  together  with  the  OH-­‐  incorpora?on  tend  to  provoke  the  proton  conduc?vity  of  the  YSZ  thin  film  (200  nm)  10  mW/cm²  at  450°C  

*  Prinz  et  al.,  Chem.  of  Mater.  21,  3290  (2009)  **  J.  S.  Park  et  al.  ,  Chem.  Of  Mater.,  22,  5366  (2010)  

Ø  Y-­‐doped  BaZrO3  proton  conduc/ng  membranes  (BYZ)  of  100  nm  used  in  a  single  cell  with  Pt  porous  electrodes*  

100  nm  thin  films:  ü ALD-­‐processed:  136  mW/cm²  at  400°C      ü PLD  (pulsed  laser  deposi?on)-­‐  processed  :  120  mW/cm²  at  450°C    

Ø  Proton  conduc/on-­‐based  fuel  cell  with  YSZ  electrolyte  by  ALD**    

EFC 2013 Rome

ZrO2-Y2O3 (YSZ) 8 mol% / LSM at 300°C .

990 nm nm 990 nm

990 nm 540 nm 280 nm

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-315 17 19 21 23 25 27

10000/T(K-1)

Log(σ(S.m-1))

E=0.33eV

E=0.34eV

E=0.40eVж Sample AΔ Sample BÅSample C

100°CT(°C)

200°C300°C

activation energies < 1 eV (bulk YSZ)

σi(280)<σi(540)≈σi(990)

Sl

Rmeas1=σ

C. Brahim, Appl.. Surf. Sci. 253 (2007) 3962 M. Cassir et al. Appl. Surf. Sci., 193 (2002) 120 M. Cassir et al., Patent WO02053798 (2002)

-4.00E+02

-2.00E+02

0.00E+00

2.00E+02

4.00E+02

6.00E+02

0.00E+00 2.00E+02 4.00E+02 6.00E+02 8.00E+02 1.00E+03 1.20E+03 1.40E+03

Z'/Ohm

-Z''/Ohm 6

54

3

210 -1

-2

6

54

3210

-1

-2

65 4 3

ж Sample AΔ Sample BÅ Sample C

EFC 2013 Rome

Alternative electrolyte, yttria-doped ceria YDC (10/20 mol%)

400 nm, 6 mol% / ss

342 nm, 7 mol% / La0.8Sr0.2FeO3

300°C

342 nm, 7 mol% / La0.8Sr0.2FeO3

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

0.E+00 2.E+05 4.E+05 6.E+05 8.E+05 1.E+06 1.E+06 1.E+06Z' (Ohms)

Z" (O

hms)

0.05V0.1V0.15V0.2V0.25V

3

4

5

YDC

laye

r

Electrode reaction

-7

-6

-5

-4

-3

-2

-1

010 15 20 25 30

(10000/T) / K -1

log (s

igma /

S.m

-1)

YSZ 20at% [7,10]

YDC 16at%

400°C 300°C500°C 200°C-7

-6

-5

-4

-3

-2

-1

010 15 20 25 30

(10000/T) / K -1

log (s

igma /

S.m

-1)

YSZ 20at% [7,10]

YDC 16at%

400°C 300°C500°C 200°C

-  T > 420°C, σYDC > σYSZ - εr 10 x lower / bulk YDC: thin layer better dielectric material

E. Ballée et al., Chem. Mater., 2009, 21, 4614-4619 EFC 2013 Rome

•  In3+ size close to Zr4+ –  r(In3+)=0.80 A° –  r(Zr4+)=0.84 A°

Ø Ionic & electronic conductivity = f(In3+ ratio)

ZrO2-In2O3 system

••Ο

ΧΟ ++→ VOInOIn Zr

ZrO

32 '2

32

2

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

00% 20% 40% 60% 80% 100%

In mol%

log σ

(S/c

m)

Ionic conductivity Electronic conductivity

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

00% 20% 40% 60% 80% 100%

In mol%

log σ

(S/c

m)

Ionic conductivity Electronic conductivity

A. Ringuedé, P. Mourot, C. Alvarez Lugano, J-C. Badot and M. Cassir, J. New Mat. for Electrochem. Syst. 9 (2006) 201-208

EFC 2013 Rome

30 40 50 60 70 802θ (°)

Inte

nsité

(u.a

)

¿

¿

¿ ¿

Þ

Þ

Þ

Þ

Þ

¿ZrO2 ÞLSM

(a)

(b)

(111

)

(200

)

(220

)

(311

)

Þ

IDZ ionic conductor

320 nm of IDZ (34 mol%) /LSM 480 nm of IDZ (26 mol% ) / LSM 380 nm of IDZ (22 mol%) / NiO-YSZ Well-covering, dense and uniform cubic-structured deposits

λKαCo= 1.78897 Å

(a)  320 nm IDZ; 34 mol% (b)  480 nm IDZ; 26 mol%

•  Deposition at 300 °C

⇒  no annealing treatment

2 µm 1 µm 1 µm 2 µm

EFC 2013 Rome

Gradient Gradient 1 µm 1 µm

1,06 µm

ZrO2-In2O3 (gradient) / YSZ

Epaisseur désirée (nm)

Composition en InO1,5 désirée (mol%)

200 90 200 60 200 45 500 25

YSZ

IDZ

EFC 2013 Rome

Electrical behaviour of the gradient

7

8

9

10

11

12

13

14

15

11 12 13 14 15 16 17 18 19 20 21

10000/T /K-1

Log

((R

/e)/(Ω

/m))

YSZ30%50%65%90%gradient HT

300°C400°C500°C

% In ≤ 65 % ⇒ R with % In

65%

50% 30%

90%

% In = 90 % ⇒ R

EFC 2013 Rome

Theoretical/experimental approach of CeO2-based catalysts at the SOFC (or MCFC) anode

(Ph.D of T. Désaunay, sept. 2012) Ø  Oxygen source at SOFC anode: enhancement of hydrogen oxidation /

would allow the direct oxidation of CH4 without carbon deposit Ø  State of the surface: fundamental role / reactivity

Ø  Understanding mechanisms at the molecular level: higher performance

Ø  Theoretical approach of the behaviour of ceria and its interface reactivity by DFT

Ø  Nanoparticles of CeO2 synthesised by hydrothermal route Ø 

EFC 2013 Rome

Ø  Reactivity: T-programmed reduction (TPR): T order: nanocubes (100) < nanowires (110) < nanooctahedra (111)

> > Ea (kJ/mol) : 70 < 130 < 430

Ø  Thin-layered CeO2 / NiO-YSZ by ALD

EFC 2013 Rome

Al2O3 (102)

Y:ZrO2 (100)

SrTiO3 (100)

Non oriented

Thin layers for MCFC by ALD

H2 + CO2 + H2O ↓

Anode"Ni + 3% Cr"Li2CO3-Na2CO3/LiAlO2

Ni2+ → Ni (short-circuit)

LixNi1-xO → ↑"Cathode "O2 + CO2 ↑

!

Ni + 3% Cr"

Li2CO3-Na2CO3/LiAlO2

Thin layer < 1 µm"Ni/NiO

Protection of MCFC separator plates

Protection of the cathode cathode

Current collector Anticorrosion layer MCrAlY bond layer

Stainless steel

EFC 2013 Rome

Coatings

CeO2 TiO2 Nb2O5 Co3O4

EFC 2013 Rome

TiO2 + 2Li+ +CO32− → Li2TiO3 +CO2

LixTiyNiO3.59 ± 0.06 (x ≤ 0.5 and y ≤ 0.36): crystal structure similar to NiO

TiO2 coating (300 nm) / Ni in molten Li2CO3-K2CO3 at 650°C Before After 230 h Mapping: well-distributed mixed phase Ti-Ni-O

Sol. /

wt.ppm

Ni TiO2 / Ni (50 nm)

TiO2 / Ni (150 nm)

TiO2 /Ni (300 nm)

Ni 15 8.2 6.5 10

Ti 1.3 1.2 < 1

OCP evolution vs. time in Li2CO3-K2CO3 at 650OC, 230 h. a) Ni, b) TiO2 (50 nm), c) CeO2 (27 nm), d) Co3O4 (50 nm)

EFC 2013 Rome

Sample  Ni Porous   TiO2

50 nm  CeO2

20 nm  Co3O4 50 nm  

Measured Value

(wt. ppm)  15   8   10   12  

Conclusions Ø  ALD deposits

–  Crystalline at low T without annealing –  Dense, conformal –  Good composition and thickness control –  Production of thin layers with composition gradient –  Speed growth relatively low (15 nm/h IDZ)

Ø  Pellets ≠ µ or nano-structured thin layers Ø  Modification of the electrochemical properties with composition gradient Ø  Correlation between nanostructures and electrochemical properties?

- More active area (surface kinetics enhanced) - Reduced interfacial electrode-electrolyte reactions

- Thermal constraints control (rapid ageing of the fuel cell materials) Ø  Modelling effort required for complex materials surface organization Ø  Use of thin layers in new high-temperature electrochemical devices

EFC 2013 Rome