atomic energy of canada limited fluid modeling of critical

16
Atomic Energy of Canada Limited FLUID MODELING OF CRITICAL HEAT FLUX IN UNIFORMLY HEATED ANNULI by S.Y. AHMAD and D.C. GROENEVELD Paper 1-8 presented at the International Symposium on Two-phase Systems held at Technion City, Haifa, Israel, August 29-September 2, 1971 Chalk River, Ontario January 1972 AECL-4070

Upload: truongkhuong

Post on 12-Feb-2017

223 views

Category:

Documents


4 download

TRANSCRIPT

Atomic Energy of Canada Limited

FLUID MODELING OF CRITICAL HEAT FLUX

IN UNIFORMLY HEATED ANNULI

by

S.Y. AHMAD and D.C. GROENEVELD

Paper 1-8 presented atthe International Symposium on Two-phase Systems

held at Technion City, Haifa, Israel, August 29-September 2, 1971

Chalk River, Ontario

January 1972

AECL-4070

ATOMIC ENERGY OF CANADA LIMITED

FLUID MODELING OF CRITICAL HEAT FLUXIN UNIFORMLY HEATED ANNULI

S.Y. Ahmad and D.C. Groeneveld

Paper 1-8 presented at the International Symposium onTwo-phase Systems held at Technion City, Haifa,

Israel, August 29—September 2,1971

ABSTRACT

This paper presents the results of an experimental and analytical program to developFreon—water modeling of critical heat flux in annular geometries. Experimental criticalheat flux data were obtained with Freon-12 over a wide range of pressure and mass flux.These were compared with water data using Ahmad's compensated distortion model. Acritical heat flux correlation for annular geometries which is independent of fluid typeswas developed from the Freon data and subsequenUy applied to published water data. Itis concluded that adequate modeling of critical heat flux in an annular geometry can beobtained, provided the size of the model and prototype is identical.

Chalk River Nuclear LaboratoriesChalk River, Ontario

January 1972

AECL-4070

MODELAGE PAR FLUTOE DES ECOULEMENTS THERMIQUES CRITIQUES

DANS DES ANNEAUX UNIFORMEMENT CHAUFFES

par

S.Y. Ahmad et D.C. Groeneveld

Communication 1-8 presentee au Symposium internationalsur les systemes biphases tenu a Technion City, Haifa,

Israel, du 29 aout au 2 septembre 1971

Resume

On presente, dans ce rapport, les resultats d'un programme experimental etanalytique destine a mettre au point le modelage par eau-freon des ecoulementsthermiques critiques passant dans des geometries annulaires. Des donnees experimentalesconcernant ces ecoulements ont ete obtenues avec du freon-12 dans une vaste gamme depressions et d'ecoulements massifs. Elles ont ete comparees aux donnees relatives a l'eauau moyen du modele de distorsion compensee de Ahmad. Une correlation de Pecoulementthermique critique, valable pour les geometries annulaires et ne dependant pas des typesde fluides, a ete realisee a partir des donnees obtenues avec le freon et ulterieurementappliquee aux donnees relatives a l'eau deja publiees. La conclusion est que Ton peutconfectionner der, modeles adequats pour les ecoulements thermiques critiques dans unegeometrie annulaire, a condition que les dimensions des modeles soient identiques a cellesdes prototypes.

L'Energie Atomique du Canada, LimiteeLaboratoires Nucleaires de Chalk River

Chalk River, Ontario

AECL-4070

NOMENCLATURE

CHF Critical beat flux

D Hydraulic equivalent diameter

D he

F

G

Hg

Hf

H i n

AHg

A H i n

L

P

W*

x i n

x o u t

- 4 x flow area/wetted perimeter

Heated equivalent diameter '*- 4 x flow area/heated perimenter

Scaling factor

Mass flux

Enthalpy of saturated vapor

Enthalpy of saturated liquid

Enthalpy of liquid at inlet

"VH inInlet subcooling (- H f - H j n)

Heated length

Pressure

Reduced power number defined in equation (5)

Quality at inlet

Quality at outlet

Greek Symbols

"L

"t

"L

"g

Density of liquid phase

Density of vapor phase

Viscosity of liquid phase

Viscosity of vapor phase

(ft)

(ft)

-

(Ib/h.ft2)

(Btu/lb)

(Btu/lb)

(Btu/lb)

(Btu/ib)

(Btu/lb)

(ft)

(psia)

-

-

-

(lb/ft3)

(ib/ft3)

(lb/h.ft)

(lb/h.ft)

0 Critical heat flux (CHF)

X Latent heat of vaporization ( - H g - H f )

'''CHF C H F m o°eling parameterdefined in equation (3)

(h2ft3;ib.ft)

(Btu/h.ft2)

(Btu/lb)

Note:

Error (%) - 1 0 0

- 1 0 0

^predicted

^measured Jw+measured ~ ^predicted*]

{W+raeisured calculated from equation (5))

^predicted c a ' c u l a t e d f™"1 equation (9))

. / £ Error3

lo. of observations

Average error- £ ' E r f o r l

No. of observations

ATOMIC ENERGY OF CANADA LIMITED

MODELING OF CRITICAL HEAT FLUXIN UNIFORMLY HEATED ANNULI

S.'jf. Ahmad and D.C. Groeneveld

INTRODUCTION

Measurements of critical heat flux (CHF1) condi-tions for a given nuclear fuel channel are usuallyobtained from out-reactor loops using a similar testsection geometry. Heat generation in the reactor fuelis simulated by high heat flux electrical heatersequipped with dryout detectors. To reduce theexpense of CHF testing of full-scale fuel channels,studies have been made to scale down the electricalpower requirements of such loops [1] . Two methodshave been used.

(1) The critical power for dryout in simple geome-tries can be scaled down by using the samecoolant at the same conditions in a smaller-scaletest section. Half-size experimental set-ups haveresulted in a 70% saving in power [2 ] . However,evidence exists [3] that this scaling method maynot work well if applied to annuli or multi-rodbundles.

(2) The critical power of a steam—water system canbe scaled down by using a liquid with a lowerlatent heat of vaporization but the samevapor/liquid density-ratio as the original coolant[4,5]. Liquids which have been used to success-fully scale down the CHF are Freon-12,Freon-112 and Freon-22.

There are two main advantages in using Freon tomodel CHF conditions in boiling water at reactorcoolant conditions:

(1) The scaling factor for critical heat flux for waterat 1000 psia is approximately 18. Thus the testsection power of a Freon system will be only ~6% of that of an equivalent water system.

(2) Freon-12 at 155 psia and 112°F has been usedto scale critical heat flux in steam—water mix-

1 Other terms used to denote CHF: dryout heatflux, burnout heat flux.

tures at 1000 psia and 545°F. At these lowertemperatures and pressures loop constructioncosts are reduced considerably and visualizationstudies can be conducted. Visualization isparticularly helpful in dry patch, flow regime,instability, crossflow and void-distributionstudies.

The use of Freon to model CHF behaviour of highpressure water in tubes has proven accurate, simpleand inexpensive [6,7]. If the technique could be assuccessfully applied to annular geometries, it wouldthen be possible to extend it with greater confidenceto more complex geometries such as rod bundles.

Freon CHF data for annuli have not been exten-sively reported. A few results (17 points) in graphicalform are given in reference [8] for 155 psia only.Stevens et al. [9] reported 79 dryout points for anannuius 12 ft long, at pressures of 114 and 155 psia,and the range of mass flux from 0.66 to 1.65 x 106

lb/h.ft2.

The present investigation presents data for 418Freon dryout points for two 72 in. long annuli(shroud diameter 0.875 in., and rod diameters of 0.55and C.41 inches) within the pressure range of 90 to245 psia and mass flux range of 0.1 to 2.4 x 10s

lb/h.ft2. These results are compared with the waterdata of references [ 10] and [ 11 ] .

EXPERIMENTAL EQUIPMENT AND PROCEDURE

Freon-12 Loop

A schematic of the Freon-12 loop is shown inFigure 1. The Freon flow entering the pump isapproximately 30°F subcooled. The pump outletpressure is reduced from 310 psia to the approximatedesired pressure by a throttle valve located before thepreheaier of the test section. The test section outletpressure is kept constant by maintaining the pressurein the jet condenser with a pressure controller which

operates a three-way valve in the bypass. The testsection pressure was increased by throttling of thetest section outlet. Increasing the throttling at thepreheater inlet reduced the test section pressure. Toavoid vapor voids at the pump inlet the Freon waspressurized to at least 85 psia.

LIQUIDEIPKSIOH

SUBCOOLER

JET CONDENSER

SUBCODLED LIQUID

TIO PH1SE IIITURE

INLET r \ _TEMP. K~/

PRE-HEtTEflv---

BTPiSS

Figure 1 — Freon-12 Loop Schematic

Test Section

The test section consisted of a central heater and aconcentric 0.875 in. unheated shroud. Two heatersizes were used: 0.550 in. and 0.410 in. diameter. Thetotal heated length was 72.00 in. Nichrome V wasselected as the heater element material because of itslow temperature coefficient of resistance. A 50V1000 Amp SCR regulated DC power supply suppliedthe test section power.

Instrumentation

Dryout was detected by three thermocoupleswhich were embedded in the heater sheath near theoutlet, Vi in. upstream of the heated end.

Test section and bypass flows were measured byturbine flow meters. Inlet and outlet pressures wereindicated by a Heise-Bourdon-tube pressure gauge.

All measurements were converted to mV signals,then fed to a digital on-line computer and printed outin engineering units.

Experimental Procedure

After the loop was brought to operating pressurethrough the use of the expansion tank heater, therequired flow and inlet temperatures were esta-blished. The test section power was then raised to70% of the estimated dryout power and increased bysmall steps until dryout was obtained.

The power was consequently backed off 5% anddryout was again approached at a very slow rate. Atthe appearance of the first temperature spikescharacteristic of dryout, measurements were made,then the power was backed off, new operatingconditions were established, and the same procedurewas repeated.

EXPERIMENTAL RESULTS

A total of 418 CHF tests were done with the twoannular test sections. The following operating con-ditions were covered.

THREE I MYiLYE Outlet pressure range

Mass fluxInlet subcooling

: 90, 154 and 240 psia: 0.1 to 2.4 x 106 lb/h.ft2

: 0.7 to 18 Btu/lb

The critical conditions are tabulated in Table Al(Appendix). In 15 repeat tests the maximum diffe-rence in CHF was 1.5%.

CORRELATION OF FREON DATA AND COM-PARISON WITH PUBLISHED WATER DATA

The objective of doing CHF experiments with amodeling fluid such as Freon is to determine whetherthe behaviour of the prototype" fluid (in this casewater) can be accurately predicted from modelingdata.

Two modeling approaches have recently beenproposed:

(a) the scaling factor method [6,7 ], and

(b) the compensated distortion modeling technique[12].

The latter has been adopted here because of itsgenerality.

It was shown in reference [12] that the appli-cation of a general dimensional analysis to the theoryof models [13], in which many dimensionless groupsmust be made equal, leads to excessively restrictiveexperimental conditions. One of the solutions to thisproblem suggested by Murphy [13] is to compensate

The conventional modeling term for the physicalsystem for which predictions are to be made.

for an inequality in one dimensionless group byintroducing a controlled distortion in another.Applying this technique, Ahmad [12] showed thatCHF behaviour can be modeled if the followingcriteria are satisfied:

and

W/GX)

<L/D>n

prototype (0/GX) model . . . (1)

) = ( " L ^ m

(AHg/X)p - (AHg/X)m

<*CHF>

(independent

variables). . . (2)

where ^CJJF is a "critical heat flux modeling para-

meter" defined as

''CHF

On this basis Ahmad [12] derived the followingprediction equation, which b applicable to bothmodeling and prototype fluids:

. . . (3)

• (4)

where W , the reduced power number, is defined as

w + „ Power number 4L»/GXDhe X g u t - X m

Maximum power number AH- /X - X

and E+ = F (i/<CHF, L/D, AHin/X)

For the present analysis the following functional formwas assumed, i.e.,

in

. . . ( 5 )

. . . ( 6 )

. . . ( 7 )

W + = | l - e

where E = ^ J J J . ( L / D ) d

and a, b, c, d, g and f are constants to be determinedfrom the Freon data of Table A l .

By plotting data on a log—log graph die value of Twas first determined. The rest of the constants werethen optimized to yield minimum root mean square(iros) error. The resulting correlation is as follows:

-(8)

.(8a)

w + f _ ^ 0 . 0 2 5 ( p L / V l ) 0 - 2 6 6 .E.

where E

The above equation correlates the Freon data witha rms error of 6% within ±15% — shown in Figure 2.

Since correlation equation (9) should be applicableto both modeling and prototype fluids, it wascompared with water data of references [10] and[11]. Table 1 gives the range of parameters used in(a) developing correlation equation (9) from theFreon data, and (b) comparing equation (9) withwater data. The results of the comparison betweenwater data and equation (9) are shown in Figure 3. Itcan be seen that the rms error in correlating 233water data is only 8% and all data fall within ±15%.

TABLE 1. Range of Parameters for Freon and Water Data

Parameters

*CHF

PL">g

AHin/X

L/D

Source and RunNumber

Total Numberof Data

Freon-12(used in development

of equation (9))

1.68 to 32.9(Mass flux: 0.096 to2.39x10' Ib/h-ft2)

11.5 to 38(Outlet pressure:88 to 244 psia)

0.0148 to 0.368(Inlet subcooling:0.71 to 17.6 Btu/Ib

155 to 222(Hydraulic diameter;

0.335 to 0.465 in.Length: 72 in.)

Present investigation:Table AL

Runs 1 to 418

418

Water

3.86 to 71.9(Mass flux: 0.3 to6.2 xlO6 lb/h.ft7)

13.1 to 38.3(Outlet pressure:

599 to 1406 psia)

0.003 to 0.614(Intet subcooiing:2 to 400 Blu/lb)

140 to 216(Hydraulic diameter

0.25 to 0.50 in.Length: 36 to 108 in.

lief. [10]: Runs 303 to434, 455 to 477, 510 to531, 550 to 556 and 584

to 605.Ref . [ l l ] as reported

in[141:Runs759to785.

233

DISCUSSION AND CONCLUSION

It is evident from Figures 2 and 3 that thecompensated distortion model of reference [12] issuccessful for annular geometries. Comparison ofFigures 2 and 3 shows that the trend — as predictedby correlation equation (9) - i s similar for bothmodeling and prototype data. The rms errors are 6%for Freon and 8% for water, both within thedeviation of ±15%. Higher rms errors are to be

expected with water because

(a) there is greater scatter in water data

(b) the range of parameters for water data hasexceeded the range of validity of the correlation(see Table 1)

(c) water data were not used in the development ofthe correlation.

FREOH 12 DATAR.H.S. ERROR = bX TOTAL NO. OF POINTS = 118

1.00

WATER DATA

R.M.S. ERROR = 8S TOTAL NO. OF POINTS = 233

0.25 0 . 5 0 Q.75

MEASURED REDUCTED POWER NUMBER

1 . 0 0

Figure 2 — Comparison Between Prediction of Equa-tion (9) and Freon 12 Data

Although the intention of the present investigationwas not to present a CHF correlation for annuli, it isinteresting to compare the present correlation withthat of Bamett. From 724 reliable experimental data,Barnett [15] developed a CHF correlation (for waterflowing in annuli at 1000 psia) with a rms error of5.9%. Since the water data of reference [11] werenot used in the development of Barnett's correlation,and since the correlation equation (9) was developedfrom Freon data only, the water data of reference[11] were used as a basis for comparing the twocorrelations. The results of comparison are presentedin Table 2; it shows that (a) the error trends for thetwo correlations are remarkably similar, and (b) themaximum difference in predicted CHF between thetwo correlations is only 6%.

These encouraging results suggest that the dimen-sionless groups identified by Ahmad in reference

0.75—

0.50 h~

0.25—

0.25 Q.5Q Q.75

MEASURED REDUCED POWER NUMBER

Figure 3 — Comparison Between Prediction of Equa-tion (9) and Water Data References [10] and [11]

[12] and combined in the form of equation (9) forannuli, give a generalized correlation for bothFreon-12 and water, and possibly other fluids as well.The limitations imposed on the accuracy of thistechnique are those of experimentation and thecorrelation function used.

Finally, an estimate of the accuracy of thecompensated distortion modeling technique [12] wasobtained. For accurate modeling, the four modelingdesign criteria outlined in equation (2) must besatisfied. These criteria are approximately satisfiedfor the 14 pairs of Freon/water data shown in Table3. To compensate for any mismatch of parameters,correlation equation (9) was compared with both theFreon and the water data. The difference in the errorsbetween Freon and water data eliminates the errorintroduced by the correlating function, and *;hus givesan indication of the accuracy of the modelingtechnique. It can be seen from Table 3 that for anidentical annular geometry, the average error betweenFreon and water data is only 4% and the maximumerror does not exceed 6.5%. For pairs 11 and 13 thewater data are inconsistent. Hence these were notincluded in the comparison.

In summary it may be concluded that

(1) Accurate modeling of CHF in annuli can beachieved if the physical size of the model is

1.00

identical to the prototype — this is consistent TABLE 3. Estimation of the Accuracy of Modeling Technique

(2)

will

Fori me inn

annulai

lings u i ousveua miu iviauueui L d l -

: geometries, CHF correlationsobtained solely from modeling experiments cansatisfaprm-ilv nrpHirf. f!HF for nrototvnps.

TABLE 2. Comparison Between Barnett's [15] Correlation and Equation (9)

1000 psia water data of ref. [11] as reported in ref. [14]. Shroud dia. - 0.607,Rod dia.

RunNo.

759

760

761

762

763764

765766767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

- 1.053

MassFlux106lbruft2

0.498

0.499

0.503

0.513

0.514

0.522

0.5230.5280.529

0.533

0.793

0.808

0.8160.991

1.0071.021

1.4771.479

1.480

1.4831.489

1.493

1.9301.971

2.419

2.441

2.480

; Length - 72 in.

InletSub-coolingBtu/lb

93

2

176

38

93

114

4147

67

36

72

113

44

78

117

51

14

75

119

45

128

39

113

73

57

17

120

Total No. of Data 27

MeasuredCHF

106 Btuh.ft2

0.521

0.398

0.637

0.470

0.520

0.564

0.4010.643

0.491

0.455

0.653

0.722

0.613

0.757

0.866

0.718

0.718

0.889

1.011

0.813

1.050

0.792

L064

0.961

0.942

0.771

1.141

% Error in Predicting CHFfrom

Barnett's [ 15 J CorrelationCorrelation Equation (9)

-14.3

-14.7

-14.0

-10.2

-16.3

-13.9

-16.9- 8.7

-16.4

-15.1

- 5.3

- 8.3

- 3.4

- 0.5

0.2

2.6

9.2

3.6

0.5

6.9

1.1

6.8

- 1.9

3.5

3.3

7.1

- 1.2

-13.4

-11.7

-16.7

- 7.5

-15.0

-13.4

-13.2- 9.5

-13.9

-11.7

0

- 4.7

2.8

5.1

3.8

8.9

14.8

9.1

3.9

12.9

3.9

12.9

1.6

8.8

8.7

10.8

- 4.5

Maximum difference between

two correlations * 6%

Pah-

No.

1

2

34

5ao78

9

10

11

12

13

14

Test Section:

Shroud dia. - 0.875 in.Heated length = 72 in.

Freon Data (Table Al)(Rod dia. •

Run No.

1

2

34

5ctD

78

9

10

11

12

13

14

* 0.55 in.)

% Error ofEquation (9)

(EF)

3.6

-1 .5

1.30.8

0.5

0.2-5.8

2.6

0.9

L3

5.2

4.3

3.1

-4.8

} "L'P8, ~20

Water Data [10)(Rod dia.

Run No.

303

304

305308

309

310312316

317

318

321

322

325

326

(*Water data inconsistent with each other -

flux for constant inlet subcooling)

- 0.54 in.)

% Error ofEquation(9)

( % )

-2.9

0.9

-3.9-2.2

-2.6

-3.4-5.25.0

-2.6

-5.0

-2.8

-0.5

11.6

- L 4

AbsoluteDifference

in Error

EU - lEm -E 1

%

6.5

2.4

5.23.0

3.1

3.60.6

2.4

3.5

6.3

8.0*

4.8

8.5*

5.4

CHF increases with decreasing mass

REFERENCES

[I] P.G. Barnett, "The scaling of forced convectionboiling heat transfer," AEEW-R-134,1963.

[2]G.J. Kirby, "The scaling of burnout data for asingle fluid at a fixed pressure," AEEW-M-696,1966.

[3] G.F. Stevens and R.V. Macbeth, "The use ofFreon-12 to model forced convection bumout inwater: The restriction on the size of the model,"ASME Paper 70-HT-20,1970.

[4] P.G. Bamett, "An experimental investigation todetermine the scaling laws of forced convectionboiling heat transfer. Part 1: Preliminaryexamination using burnout data for water andArcton-12," AEEW-R-363,1964.

[5] P.G. Bamett and R.W. Wood, "An experimentalinvestigation to determine the scaling laws offorced convection boiling heat transfer. Part 2:An examination of burnout data for water,Freon-12 and Freon-21 in uniformly heatedround tubes," AEEW-R-443,1965.

[6] G.F. Stevens and G.J. Kirby, "A quantitativecomparison between burnout data for water at1000 psia and Freon-12 at 155 psia,"AEEW-R-327,1964.

[7] D.C. Groeneveld, "Similarity of water and Freondryout data for uniformly heated tubes," ASMEPaper 70-HT-27,1970.

[8] G.F. Stevens and R.W. Wood, "A comparisonbetween burn-out data for 19-rod cluster test-sections cooled by Freon-12 at 155 psia, and bywater at 1000 psia in vertical upflow,"AEEW-R-468,1966.

[9] G.F. Stevens, R.W. Wood and J. Pryzbylski, "Aninvestigation into the effects of a cosine axialheat flux distribution in a 12 ft. long annulususing Freon-12," AEEW-R-609,1968.

[10] E. Janssen and J.A. Kervinen, "Burnout condi-tions for single rod in annular geometry, waterat 600 to 1400 psia," GEAP-3899,1963.

[ I I ] D.F. Judd and R.H. Wilson, "Non-uniform heatgeneration experimental programme. Quarterlyprogress report No. 9," BAW-3238-10,1965.

[12] S.Y. Ahmad, "Fluid to fluid modeling of criticalheat flux —A compensated distortion model,"AECL-3663,1971.

[13] G. Murphy, "Similitude in engineering," TheRonald Press Co., New York, N.Y., pp. 57,107,1950.

[14] P.G. Bamett, "A comparison of the accuracy ofsome correlations for burnout in annuli and rodbundles," AEEW-R-558,1968.

[15] P.G. Bamett, "A correlation of burnout data foruniformly heated annuli and its use for pre-dicting burnout in uniformly heated rod bun-dles," AEEW-R-463,1966.

APPENDIX

TABLE Al

Freon-12 Critical Heat Flux Data in Uniformly Heated Annuli

Shroud dia.

No.

12345

6789

10

11121314IS

1617181920

2122232425

Outlet

psla

154153154153153

154156155152153

156155153155154

8889939493

89928890

155

- 0.875

Mass

10*lbh . f t '

0.7540.7290.7520.7340.737

0.7420.3781.1370.7460.737

1.1471.1320.9490.3770.198

0.3950.5860.7950.9841.185

0.2060.4140.5940.7740.099

Inches;

Inlet

coolingBtu/lb

3.303.148.213.706.99

9.255.362.083.586.27

3.866.973.134.527.60

2.062.754.294.434.49

2.262.822.282.749.93

Rod dla

CHF

10*Btuh.ft"

3.49113.26084.17253.42553.9158

4.27412.70613.65543.42793.B352

4.11254.70983.68582.65472.1198

2.55083.15533.69694.22274.5692

1.82592.53743.08503.54051.5470

. - 0.550 Inches;

Exit

X

2 3 .2 2 .2 0 .2 2 .2 0 .

1 9 .3 5 .1 6 .2 2 .2 1 .

1 5 .1 3 .1 8 .3 6 .5 4 .

3 3 .2 6 .1 9 .1 7 .1 4 .

4 7 .3 0 .2 5 .2 1 .8 1 .

3359048079

4471605241

6852874702

5734663771

1769977205

No.

2627282930

3132333435

3637383940

4142434445

4647484950

Outlet

psla

154154155154153

155156153155154

15415415 3154152

153153157154156

155153153152153

Heated length

Mass

10'lbh.fc'

0.1010.1000.0990.0960.104

0.2030.2030.1970.1970.199

0.1950.40 30.3950.3940.401

0.4050.3830.6020.5960.597

0.5990.5890.6030.7990.774

-

Inlet

coollnjBtu/lb

8.6 .4 .2 .0 .

9 .8 .6 .3 .2 .

1 .9 .8 .6 .3 .

2 .1 .9 .8 .6 .

4 .2 .198

5569296185

3854109142

1643005380

2907933391

3250807914

72 Inches

CHF

10* Btuh.ft'

1 .1.1 .1 .1.

2 .2 .2 .2 .2 .

1.3 .2 .2 .2 .

2 .2 .3 .3 .3 .

3 .2 .2 .4 .4

43684810404428232424

23923833209304200715

B54007519724869 75532

395230 329734856S5590

1738B2198440461?3657

ExitQuality

Z

7 4 .8 1 .8 2 .80 .7 4 .

5 2 .5 8 .5 9 .5 8 .6 0 .

58 .3 1 .3 2 .3 4 .3 3 .

3 3 .3 6 .2 3 .2 5 .2 5 .

2 5 .2 5 .261720

6882381139

8197897415

3404992239

3425626914

7181642872

Shroud dia.

RunNo.

5152535455

5657585960

6162636465

6667686970

7172737475

OutletPress .

psia

155155154153155

153154155154156

152155155156152

155154155157157

157157152154153

-

HF

0 .0 .0 .0 .1.

0 .0 .0 .01

11111

11111

11111

0.875

a B S

5820804799782002

9959869879B5023

183185190199181

182414

.379

.373

.365

.371

.386

.602

.604

.597

inches;

InletSub-coolingBtu/lb

6 .4 .2 .1 .9 .

86421

98742

19875

32986

7815785046

7588408493

4476056077

8580

. 85

.49

.07

. 2 8

. 3 1

.44

.65

.60

Rod dia. - 0.550 Inches;

CHF

10*Btuh . f t '

4 .3 .3 .3 .5 .

4 .4 .4 .33

55443

36554

44665

05246238430622440326

73155553052470125211

35263849832343689869

76560348

.6856

.3589

.5763

.3061

.1354

.3279

.0787

.2767

ExitQuality

Z

18.8621.0122.1623.4114.39

13.9516.5917.9618.6418.37

11.2112.6212.7515.0316.29

16.878.939.78

10.9511.96

13.9314.76

7.558.028.73

RunNo.

7677787980

8182838485

8687888990

9192939495

96979899

100

OutletPress.

psla

156157157155152

155156158155156

154156155156154

153153156158156

154157157159237

Heated length -

MassFlux

10h.

1 .1 .1 .1 .1 .

1 .1 .1 .12

12112

22222

22220

"lbf t '

5 8 1567537776801

768784770983008

962007991994175

181207159

.151

.403

.377

.360

.341

.365

.101

nletub-oollngtu/lb

4.833.692.57

10.068.52

7.264.733.939.588.69

7.245.453.662.929.78

8.587.014.783.669.11

7.665.524.003.14

17.45

72 inches

CHF

lO'Btuh.ft '

4.74584.57154.22676.81196.3232

5.89934.93704.83627.01936.6546

5.89025.26604.80344.65417.06436.72773.95905.09584.93816.97466.33745.48375.05034.81571.7892

EiltQuality

I

10.1511.7412.775.706.47

7.748.83

10.134.704.94

5.636.568.569.442.483.664. 146.157. B51.532.724.536. 307.17

89.86

APPENDIX

TABLE Al

Freon-12 Critical Heat Flux Data in Uniformly Heated Annuli

Sh

No.

101102103104105

106107108109110

111112113114115

116117118119120

121122123124125

roud dla

psia

237237236238238

2402342372 392 39

238237238240237

235237238237240

23923B2 392402 38

0.87

10' lbh .

0 .0 .0 .0 .

f t '

10009 70 9 8099

0.102

0 .0 .0 .0 .0 .

0 .0 .0 .0 .0

0 .0 .0 .0 .0

00000

118111208203191

20420620S210210

40 340240039639 8

606600602601601

5 inchea

coolingBtu/lb

1 3 .9 .7.6 .4 .

21

1613

9

75421

1613

984

171310

86

3089993811

6528750047

6680216930

466160

. 0 826

63. 6 304

. 2 8

. 4 0

Rod d

Cat

10'Btuh . f t '

1 .1 .1 .1 .1 .

11222 .

21111

33322

54333

6434545850594 7003681

31003566576944501455

18389930941781056940

83605645056570653873

.347461628119

.3888

.0763

l a . > 0 .

Exit

1

8 9 .9 2 .929287 .

7384535860

6056585654

3334343134

2626242323

3496725508

900 3378643

3779760878

43814885

. 0 0

. 1 9

. 4 5

.26

.04

. 1 6

550 i

S o .

126127128129130

131132133134135

136137138139140

141142143144145

146147148149150

aches;

Ou t le t

psia

237239238238239

23723823823B241

2412382332382 39

2382402402402 39

2342 39241237

.240

ieated

Haas

lO'lbh.

0 .0 .0 .0 .0 .

0 .0 .0 .0 .1.

1.0 .1.1 .1.

1 .0 .1 .1 .1 .

11111

f t '

576783797794798

797792795787002

004988026023012

02598219 8195175

194181226212231

1ength •

Inlet

coolingBtu/lb

3171310

8

6421

16

1610

864

21

1714

9

76422

. 8 1

. 5 4

. 7 3

. 0 0

. 4 3

. 6 1

. 4 2

. 4 4

. 3 1

. 8 9

. 1 4

. 1 6

. 4 3

. 3 3

. 0 3

. 7 8

. 4 4

. 3 5

. 2 0

. 8 1

. 9 4

. 5 4

. 8 4. 6 9. 1 3

72

10.1 •

26543

33226

65433

327o5

44433

inche

*H V.HIT

"DtuIP^.7274.0494.2234.2417.9880

.5736

.1308

.8373

.6484

.6408

.14 70

.2364

.6012

.9809

.4409

.2900

.9313

.2804

.2742

.2020

.7845

.4562

.0268

.3706

.0395

s

Quality

:

25.8018.5718.1217.2318.09

18.1818.9920.3521.2712.09

14.2416.6214.4114.5515.87

17.1118.34

7.197.86

11.15

11.9513.3013.3914.2013.22

Shroud dia

RunNo.

151152153154155

156157158159160

161162163164165

166167168169170

171172173174175

OutletPress .

psia

239240240238238

240241238241239

2372402 362372 36

236237238235236

2352 362362332 39

H

0.875 Inche:

as 8Flux

10h7

1 .1 .1 .1 .1 .

1 .I .1 .1 .1 .

1 .1 .1 .1 .1 .

I .1 .1.12 .

1 .11 .11

' l b

418384361390393

419393396616587

5735746 0 3588585

5739 8 19709670 2 3

8318047799 76S76

InletSub-coolingBtu/lb

1 6 .1 4 .1 0 .

8 .6 .

4 .2 .I .

16 .1 2 .

9 .8 .5 .4 .2 .

I .1 5 .1 3 .

7 .5 .

4 .3 .0 .

1 6 .1 3 .

8016196032

3496786983

8444791426

4478349292

4475715765

; Rod dla.

CHF

10h.

7.6 .5 .5 .4 .

4 .3 .3 .8 .7 .

6 .5 .4 .4 .3 .

3 .8 .7.6.5 .

4 .4 .3 .8 .7

"Btuf t 2

75299940757136167414

24367743535720683464

18066394494523024354

5B356516976919724371

70033665639686615723

» 0

ExitQuality

Z

3 .6 .8 .9 .

1 1 .

1 2 .1 3 .1 4 .

1 .6 .

7.7.7 .

1 0 .1 0 .

1 3 .- 1 .

1 .5 .6 .

4 .9 .

1 3 .- 2 .- 1 .

9654955810

3221354327

49969 13672

2176069480

8742075 313

550 Inches;

RunNo.

176177178179180

181182183184185

186187188189190

191192193194

OutletCress.

psla

240242240241241

239241241240241

240235240244239

238237240242

Repeats*

195/3196/5197/12198/13199/14

153155157153152

Heated

MassFlux

10h.

1.1.21.1

12222

22222

2222

00100

' l bf t z

9 869670089 869 88

982180173191170

19420339 3392380

349258241255

.743

.745

.125

.933

.374

length =

InletSub-coolingBtu/lb

1 0 .a.4 .6 .2 .

1 .1 6 .10

8 .6

24

1610

8

5433

87734

0538265441

5954311267

6410385622

95008023

.0918

. 0 720

. 2 2

72 inches

CHF

10i.

6 .6 .5 .5 .4 .

4 .96 .6 .5

45976

5544

44532

-Btu-UT-

63251134072552524566

36371494695729957101

55420883553102053374

76661404504086 70

.21641358

.1783

.9442

.6461

ExitQuality

Z

2 .4 .9 .6 .

1 1 .

1 2 .- 4 .

0 .3 .4 .

9 .7.

- 5 .- 1 .

1.

5 .7.6 .8

2122162037

8772162201

4058485889

3190711086

09894270

0400209209

APPENDIX

TABLE Al

Freon-12 Critical Heat Flux Data in Uniformly Heated Annuli

Sh

RunNo.

20020120220 3204

20520620720 8209

210211212213214

215216217218219

220221222223224

roud d i a

Press.

psia

155154154155154

155154154155155

154157

9091

118

118185188186185

219217216217214

. - 0.81

FluxlO6lbh . f t !

0.7280.7600.7590.7630.763

0.7611.1091.1141.1431.106

1.1030.3520.7380.3410.741

0.7360.7390.7350.7350.74S

0.7280.7290.7360.7341.110

5 inches

Sub-coalingBtu/lb

2 .4 .7.

1 0 .1 1 .

1 2 .2 .4 .8 .

10 .

9 .4 .4 .4 .7 .

2 .3 .

1 2 .1 4 .1 4 .

8 .1 2 .15 .16 .1 1 .

1884606291

6022947286

7359035663

6015349748

8375082657

• Rod c

CHF

lO'Btuh.Ft 2

4 .4 .5 .6 .6 .

6 .4 .5 .6 .7.

7.3 .4 .3 .5 .

4 .4 .7.7.7 .

5 .6 .8 .8 .7.

09448162621746857918

99215178532695085804

39125056758957667801

41231786012812148612

67319216313334566365

l a . - 0.

ExitQuality

Z

16.6614.2913.0911.4410.56

10.3510.859.0B6.155.00

6.5328.2114.6727.2613.75

16.3215.5612.698.11

12.36

13.3412.1714.6312.574.09

410 i

No.

225226227228229

230231232233234

2 35236237238239

240241242243244

245246247248249

aches;

Outlet

psia

21B215219219215

216154155157155

155155156155156

154154156158155

155155154

8991

Seated

Haas

10'lbh .

1 .1 .1 .1 .1 .

I .0 .0 .0 .0 .

0 .0 .0 .1 .0 .

0 .0 .J.1 .1 .

0 .0 .0 .0 .0 .

ft2"

10310310 5109111

110747745741743

74373636 7133754

7497 35144150152

957382199102341

length -

Inlet

coolingBtu/lb

9 .B.6 .3 .2 .

9 .3 .3 .8 .3 .

6 .9 .5 .2 .2 .

3 .6 .3 .7.

1 2 .

3 .6 .7.3 .4 .

3509759935

7350407797

5981686814

7937495968

4566885756

72

10.i .

66544

74464

56344

45568

43313

Inches

:HF

•Btu

756339499089

.91842 839

.03614065

.4796

.0409

.5740

.4500

.2603

. 7584

.6831

.1341

.6153

.2751

.0806

.7022.9980

.8432

.9841

.2162

.9613

.5766

Exit

t

5 .6 .7.9 .

10 .

5 .15 .1 5 .1 3 .1 5 .

1 4 .1 3 .2 7 .1 0 .16 .

1 5 .1 4 .

9 .7.5 .

1 2 .264 4 .5727

5879756865

6617807126

720 318232 2

6253863414

22008 0B926

Shroud dla

RunMo.

250251252253254

255256257258259

26026126 2263264

265266267268269

270271272273274

OutletPres s .

psia

929291

100100

98100

888992

92102102104103

157157155155157

1S6154154154156

H

0.875 Inches;

M BFlux

10h .

0 .0 .0 .1 .1 .

1 .1 .0 .0 .0 .

0 .1 .1 .1 .1 .

0 .0 .0 .0 .0 .

c.0 .0 .0 .0

• l bf t T

4 1 1606807027212

390543206410608

801017187414592

102102103103106

101204208206208

InletSub-coolingBtu/lb

34 .44 .5

56122

33444

98632

18642

9326179706

4004923794

11924B9997

866555

.90

.85

. 8 5

. 0 8

.40

. 3 6

.74

Rod dia.

CHF

10h .

3 .4 .4 .5 .5 .

6 .6 .2 .3 .4 .

4 .5 .5 .5 .6 .

2 .22 .22

23322

*Btuf t *

69113731B06161066545

193555496969563S1993

47493185068997043154

49823641298914471362

14361993177091428342

- 0.

ExitQuality

231612

97

54

402418

1311

654

7269696969

7442444345

C

. 3 3

. 9 1

. 8 1

. 9 8

. 1 3

. 8 2

. 0 3

. 1 7

. 8 9

. 1 0

. 3 9

. 0 3. 8 1. 7 9. 9 4

. 0 4

. 4 1

. 9 8

. 4 2

. 0 6

. 7 9

. 6 3

. 2 6

. 8 9

. 1 4

410 inches:

RunNo.

2752762772782 79

2802B1282283284

2852862872882B9

290291292293294

29529629 7298299

OutletPress .

psia

157153155154153

155155155156157

155156156153155

1*4154154156155

156155155157155

leated

MassFlux

1Ch .

0 .0 .0 .0 .0 .

00000

00000

00001

11111

• l bf t *

210415415412412

410411597598599

594593602825824

818829812

.B23018

.034

.039

.026

.047

.031

length •

InletSub-coolingBcu/lb

1 .9 .8 .6 .4 .

21987

43198

64219

87431

6127515512

6945625610

1503346149

8421658064

. 8 6

.12

. 5 9. 3 1.76

72 inches

CHF

10h .

2 .4 .4 .4 .3 .

3 .3 .5 .5 .4 .

4 .3 .3 .6 .6 .

5.4447

66544

*Btuf t 2

71765570406007956561

45152385545436419831

24439788585661001818

7107872337 7910021861

96303212338789623631

ExitQuality

X

4 4 .2 3 .2 3 .2 4 .2 4 .

2 6 .2 6 .16 .17 .17 .

1 8 .19 .1 9 .1 1 .1 1 .

1 2 .131415

8.

89

101112

7612232395

01?028114 4

5 90 8455781

9579910103

3014620829

APPENDIX

TABLE Al

Freon-12 Critical Heat Flux Data in Uniformly Heated Annuli

Shroud dia

BunHo.

300301302303304

305306307308309

310311312313314

315316317318319

320321322323324

OutletPress.

psifl

156157155155158

155154154158158

15715 8155156156

15 7157156153155

159153155159238

- 0.875 Inches;

HaasFlux

10h .

1 .1 .1 .1 .1 .

1 .1 .1 .1 .1 .

1 .1 .1 .1 .1 .

1 .

' l bf t 7

2052062 0 11972 1 3

20039 7402396390

3923 9 1615597607

6091.6111 .1 .1 .

1 .1 .1 .10

607805808

777788795790105

InletSub-coollr.gBtu/lb

9 .8 .7 .4 .3 .

2 .9 .

a.7.4 .

3 .2 .9 .8 .7 .

4 .3 .1 .

1 0 .9 .

7 .4 .2 .1 .

17

9181164458

0235961289

2834686700

5704820532

1012549321

10h .

7 .7 .6 .5 .5 .

4 .7.7 .6 .5 .

5 .4 .8 .7 .7 .

6 .5 .4 .

Bod

CHF

*BtuTt5"

68532873656148341066

512070 86531693339868

10767054082260740801

000631648013

8.08067.

7 .5 .542

8676

19629794233293338797

dia. - C

ExitQuality

J

5 .5 .7 .8 .8

102 .356

780

0485076086

0 890070578

431339

1.393

567

- 2- 1

1466

77

19

235062

. 2 434

69. 6 3. 0 0. 5 9. 1 3

.410

RunNo.

3253263273283 2 9

330331332333334

335336337338339

34034134234 3344

34534634 7348349

Lnches;

Press.

psia

238237236240240

239237237239238

2402382 39236237

2 39237237236238

238236240238•237

Heated

Flux10 "lbh

00000

00000

00000

00000

00000

. f t 2

.104

.103

.10 3

.102

.105

.124

.207

.206

.207

.205

.205

.206

.206

.210

.410

.409

.'.08

.40 7

.403

.418

.416

.405

.613

.598

.593

length -

Sub-coolingBtu/lb

1 2 .9 .7 .5 .2 .

1 .1 7 .1 3 .

9 .8 .

6 .3 .2 .1 .

1 7 .

1 3 .9 .8 .6 .3 .

2 .0 .

J.713

9

6571848727

7837368008

3378314647

9 374143386

4089641 868

72 inches

CH?

10'Btuh

22222

23333

22225

54433

32665

. f t 2

.5485

.4107

.3339

.2237.1442

.1643

.9327

.5422

.1823

.0090

.8728

.6492

.4817

.4484

.8602

.2057

.3328

.0000

.6058

.2555

.0271

.7790

.8278

.3567

.2470

ExitQuali ty

J

7 4 .7 6 .7 6 .7 7 .7 9 .

6 8 .4 1 .4 2 .4 1 .4 3 .

4 4 .4 5 .4 4 .4 4 .2 2 .

2 3 .

5509868971

3497949561

6908938744

442 3 . 4 22 3 .232 4 .

2 5 .2 6 .

91616

506704

0 135143426

Shroud dia

RunN o .

350351352353354

355356357358359

360361362363364

365366367368369

370371372373374

OutletPress.

psia

237239240237237

238238240238237

238240237236237

236238237236237

240239237236237

. - 0.875 inches

HaasFlux

10'lbh.ft2

0.6010.6000.6120.6000.602

0.8260.8220.8230.8190.821

0.8230.8241.0291.0331.031

1.0291.0371.1961.2181.212

1.2161.2191.4101.4081.402

InletSub-coolingBtu/lb

8.206.424.132.631.18

13.4210.008.456.374.11

2.541.748.066.224.19

2.70l . / I8.196.564.32

2.921.866.264.232.71

; Rod dia. - 0

CHF

10*Btuh.ft2

4.92324.53483.95023.51043.0758

7.56556.3016S.75475.19774.4425

3.92433.65986.18875.60844.8877

4.3048?-93066.38325.9i435.15.'7

4.62274.19-16.11355.39654.7552

ExitQuality

Z

16.6317.7818.0418.5918.56

9.7510.7311.2412.8613.72

14.3414.71

7.979.37

10.77

11.5812.044.916.368.49

9.6010.314.816.968.32

410 inches; Heated le

RunNo.

375376377378379

330381382383384

385386387

Repeats

388/205389/202390/200391/206392/209

393/211394/288395/310396/322397/312

OutletPress.

psia

2372332362352 36

236235234235236

237339235

157157155157155

154157162158154

MassFlux

106 lbh . f t 2

1.4111.6221.6251.6071.622

1.6151.6191.8561.8171.80 3

1.7651.7631.782

0.7380.7370.7321.0791.104

0.3500.8261.3981.7981.622

ngth -

InletSub-coolingBtu/lb

2.749.858.556.624.26

2.731.91

10.128.306.51

4.763.452.36

12.967.892.172.67

10.92

4.1410.03

3.202.83

10.34

72 inches

CHF

10*Btuh . f t 2

4.32607.50416.97996.40765.5841

4.93804.65887.85227.06846.4452

5.739 35.25764.8734

7.05315.63233.92804.58097.8029

3.44686.61325.03875.10508.1336

ExitQuality

Z

6.90-1.47-0.13

2.615.28

6.897.84

-3.65-1.26

1.15

3.466.106.32

11.0713.4615.7210.695.68

28.5110.81

7.375. 19

-0.80

10

APPENDIX

TABLE Al

Freon-12 Critical Heat Flux Data in Uniformly Heated Annuli

Shroud dia.

Run;io.

398/314399/317400/311401/308402/306

403/257404/382405/236406/235407/233

408/234409/232410/231411/240412/241

4i.3/243414/242415/245416/237417/246

418/247

OutletPress.

psia

158156153154156

892 39158157153

154155154155156

15415415415 4156

155

- 0.875 inches

HaasFlux

10t .

1.1 .1 .1 .1 .

0 .1000

00000

1A000

0

Mbf t 2

59360740 3405400

2058237377 34740

740748747744746

.132135

.942

.370

.384

.198

n l eub-

c

cool ingtu/lb

7.2 .1.6 .

10

31010

7a

33336

63345

7

*(Run a/b indicates thatof Run b)

7616799403

3141281925

9471

.50

.80

.45

. 9 3

. 4 1

.19

.26

. 3 4

.79

Run

; Rod

CKP

10a.

7 .4 .4 .6 .7.

2 .7 .6.55

44445

64433

3

a

*Btuf t 2

24607600598483749731

83796932373735146858

5 3005130406548762587

29959428

.6593

.4510

.3964

.1511

dia. • 0.410 inches; Heated length « 72 inches

ExitQuality

2

2 .6 .8 .4 .2 .

4 0 .- 4121312

1515151513

79

122622

44

Ls repeat

3089719929

3933754889

17311712

. 9 5

. 5 6

. 6 8

. 2 6

. 3 7

. 6 4

. 0 8

11

Additional copies of this documentmay be obtained from

Scientific Document Distribution OfficeAtomic Energy of Canada Limited

Chalk River, Ontario, Canada

Price - 50< per copy

317-72