atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6...

13
Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4 d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc.

Upload: hester-annis-holmes

Post on 19-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Atomic configuration

1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p6 etc.

Page 2: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Atomic shells

• Currently 7 known shells– K, L, M, N, O, P, Q from inside to outside

• Each shell comprises of different kinds of orbitals– 4 known orbitals: sharp, principal, diffuse and fundamental

– There is a proposed g orbital for the 8th period

Page 3: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Shape of atomic orbitals

• No real shape, just a probability density• Possible to define a region in which the

electron can be found >90% of the time• Wavefunction given by:

• Square of wavefunction gives probability of electron at a certain point from the nucleus.

,22

!2

)!1(2 1213

3

lmlln

l

na

Zr

nlm Yna

ZrL

na

Zre

lnn

ln

na

Z

Page 4: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Electrons in orbitals• There are varying kinds of each orbital:• s – 1, p – 3, d – 5, f – 7• Each orbital can hold 2 electrons– Pauli’s exclusion principle states that no 2 particles

can occupy the same state at the same time– Only 2 possible values for spin– Hence only 2 electrons with opposite spins can

occupy the same orbital, else rule will be violated• Maximum number of electrons per type of

orbital:• s – 2, p – 6, d – 10, f – 14

Page 5: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Atomic Configuration• List out all the orbitals that the atom has as

follows:• E.g. Na: 1s 2s 2p 3s• Add the number of electrons in each orbital as a

superscript:• Na: 1s22s22p63s1

• Filled shells up to the previous period can be replaced by square brackets around a noble gas

• E.g. Na: [Ne]3s1

– Sodium’s electron configuration is simply Neon’s + 3s1

Page 6: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

A slice of an atomA rough representation

Mg

1s2

2s2

2p2

2p4

2p6

3s2

1s22s22p63s2Low High

Page 7: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Aufbau rule

• Aufbau – German, meaning ‘construction’• Rule for filling in orbitals• List out all the orbitals and shells as follows,

then they are filled in in this order:Shell s p d f

1 / K 1s

2 / L 2s 2p

3 / M 3s 3p 3d

4 / N 4s 4p 4d 4f

5 / O 5s 5p 5d 5f

6 / P 6s 6p 6d 6f

7 / Q 7s 7p 7d 7f

Page 8: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Exceptions

• There a few exceptions to the Aufbau rule starting from the transition metals.

• Chromium (24Cr)– Should be [Ar]4s23d4

– Atomic configuration [Ar]4s13d5

• Copper (29Cu)– Should be [Ar]4s23d9

– Atomic configuration [Ar]4s13d10

• 20 known exceptions in total

Page 9: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

The ExceptionsH He

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Fr Ra **

* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw

Exceptions are shown in red text.Elements whose atomic configuration have not been determined are not shown.

Page 10: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Why are there exceptions?

• Aufbau rule assumes that each orbital has different energy levels

• In reality, this may not be true• Hence electrons can be located in another

orbital with similar energy• Half-filled and completely filled orbitals may

also be more stable

Page 11: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

Why are there exceptions?

• For the heavier elements, electrons are moving closer to the speed of light

• This causes the mass of the electron to increase and the orbital size to shrink

• Tends to decrease the energy level of the s orbital

• Explains anomalies like mercury, a liquid at room temperature, and the colour of gold

Page 12: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

References• IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book").

Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook.

• Electron Configuration. (n.d.). Retrieved January 18, 2011, from http://en.wikipedia.org/wiki/Electron_configuration

• Norrby, L. J. (1991). Why Is Mercury Liquid? Accounts of Chemical Research, pp110-113.

Page 13: Atomic configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 etc

The End

Any questions?