atmospheric chemistry and aerosols

39
ATMOSPHERIC CHEMISTRY and AEROSOLS Peter Hess Cornell University WHOLE ATMOSPHERE COMMUNITY CLIMATE MODEL Michael Mills NCAR

Upload: others

Post on 11-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ATMOSPHERIC CHEMISTRY and AEROSOLS

•  ATMOSPHERIC CHEMISTRY and AEROSOLS

Peter Hess Cornell University

•  WHOLE ATMOSPHERE COMMUNITY CLIMATE MODEL

Michael Mills NCAR

Page 2: ATMOSPHERIC CHEMISTRY and AEROSOLS

Chemical  Effluents  to  the  Atmosphere  

 Where  does  it  go?    What  are  the  impacts?    What  are  the  processes  to  be  modeled?      

Page 3: ATMOSPHERIC CHEMISTRY and AEROSOLS

Where  do  Pollutants  Go?  

 -­‐Chemically  transformed    -­‐Deposited  onto  surface  through  contact  (dry  deposi;on)    -­‐Dissolved  in  rain  and  deposited  onto  surface  (wet  deposi;on)  

  How are these processes simulated in a CESM ?

Page 4: ATMOSPHERIC CHEMISTRY and AEROSOLS

Atmospheric  Chemistry  and  Aerosols  

Earth  System  

•  Paths to sustainability often involve chemically active species - Biofuels: CO2 , N2O

•  Climate – Health – Air Pollution Interactions - Emission Tradeoffs

- Climate – Biosphere - Hydrological Cycle-

Wetland Emissions (CH4) Soil Emissions (NO, N2O) Biogenic Emissions

Page 5: ATMOSPHERIC CHEMISTRY and AEROSOLS

RF (w/m2) GWP CO2: 1.66 1.0 Ozone: 0.35 Methane: 0.48 25 N2O: 0.16 298 CFCs: 0.34 100 - >10000

Radiative Impacts (1)

Page 6: ATMOSPHERIC CHEMISTRY and AEROSOLS

Smoke from forest fires burning in Alaska and the Yukon, travelling into the

Arctic over ice-covered areas

Partly absorbing dust aerosol downwind of Sahara

Absorbing aerosols (black carbon, dust) warm the climate by absorbing solar Radiation, other aerosols (sulfate) cool the climate by reflecting solar radiation

AEROSOLS

NET FORCING: -0.5 W/m2

Radiative Impacts (2)

Page 7: ATMOSPHERIC CHEMISTRY and AEROSOLS

Indirect  Effect  

Ramanthan et al., Science, 2001

Radiative Impacts (3)

Page 8: ATMOSPHERIC CHEMISTRY and AEROSOLS

N ~ 100 cm-3

W ~ 0.75 g m-3

re ~ 10.5 µm

N ~ 40 cm-3

W ~ 0.30 g m-3

re ~ 11.2 µm

from D. Rosenfeld

Indirect Effects: -Clouds Brighter -Precipitation Suppressed: More Persistent Clouds

NET FORCING: -0.7 W/m2

Radiative Impacts (4)

Page 9: ATMOSPHERIC CHEMISTRY and AEROSOLS

AVHRR, 27. Sept. 1987, 22:45 GMT US-west coast

NASA, 2002 Atlantic, France, Spain

SATELLITE  IMAGES  OF  SHIP  TRACKS  Radiative Impacts (5)

Page 10: ATMOSPHERIC CHEMISTRY and AEROSOLS

  Direct  radiaFve  forcing:  ozone  and  methane,                  aerosols    Aerosol  indirect  effects    

Radiative Impacts (6)

Page 11: ATMOSPHERIC CHEMISTRY and AEROSOLS

Chemistry  to  climate  Radiative Impacts (7)

Page 12: ATMOSPHERIC CHEMISTRY and AEROSOLS

Ozone      

-Detrimental for plants and crops- •  Approximately a 20-30% reduction of winter wheat in the Yangtze

Delta region due to ozone exposure (Huixang et al)

Biogeochemical Impacts (1)

Page 13: ATMOSPHERIC CHEMISTRY and AEROSOLS

Ozone  and  vegetaFon  

Sitch et al., 2007

Radiative impact of ozone on CO2 cycle may exceed its direct radiative impact (-0.35 W/m^2)

Biogeochemical Impacts (2)

Page 14: ATMOSPHERIC CHEMISTRY and AEROSOLS

Nitrogen  DeposiFon  and  Response  of  Carbon  

-Quinn Thomas, Nature Geoscience

Data from 20,067 plots remeasured during the early 1980s to mid-1990s by the US Forest Service Forest Inventory and Analysis (FIA) Program

Biogeochemical Impacts (3)

Page 15: ATMOSPHERIC CHEMISTRY and AEROSOLS

Diffuse  FracFon  of  RadiaFon  

Mercado et al., 2009

Biogeochemical Impacts (3)

Simulated percentage change (colour scale) in diffuse fraction between 1950 and 1980

Diffuse fraction contribution to land carbon accumulation between 1950 and 1980 (grams C/m^2-year)

Page 16: ATMOSPHERIC CHEMISTRY and AEROSOLS

∂µ/ ∂t = - · V µ +T + Ω µ + S(x,y,z,t) + L

Explicit Transport

Chemistry Emissions Physical Losses

µ: vector of constituents, typically ~100 V: velocity field Ω: reaction matrix: reaction coefficients, photolysis rates, species concentrations S: emissions L: physical losses: dry and wet deposition

Param. Transport

Model Specification

Page 17: ATMOSPHERIC CHEMISTRY and AEROSOLS

Emissions  Natural Anthropogenic

Lightning (NO) Wetlands (CH4) Trees (VOCs) Soils (NO)

Combustion (NO, CO) --Cars, Factories

-Biomass Burning -Agriculture - NH3, CH4, N2O, -Landuse Change

Emission Specification:

-User-specified netcdf files -No explicit response to climate change • Namelist Control Parameter

-Lightning, calculated internally • Strength Namelist Control Parameter

OR

Emissions Chemistry Physical Losses

Page 18: ATMOSPHERIC CHEMISTRY and AEROSOLS

   InteracFve  Emissions  Atmosphere  

Emissions  

Atmospheric Feedback -Temperature -Precipitation -Chemical Deposition

Interactive Emissions in Model Lightning, Biogenic VOC, Biomass burning, Soil NO (partially)

Interactive Emissions in Development Methane, Full Suite of Odd Nitrogen

Future Human component?

Emissions Chemistry Physical Losses

Page 19: ATMOSPHERIC CHEMISTRY and AEROSOLS

• Chemistry consists of highly coupled stiff differential equations

d[NO2]/dt = k1[NO][O3] + k2[NO][HO2] –j[NO2] –k4[NO2][OH]+… d[HO2]/dt = k5[CO][OH] – k2[NO][HO2] –k6[HO2][O3] + …

-> increases cost by ~ 5x for reasonably complex mechanisms

• Vastly different time-scales [O(sec) – O(years)] occur in chemical equations

• Coupled equations solved w/ implicit and explicit solvers

• Chemical mechanism (i.e., the selected chemistry) is a parameterization of the full chemistry

• Selection depends on the problem addressed

Emissions Chemistry Physical Losses

Page 20: ATMOSPHERIC CHEMISTRY and AEROSOLS

rate uncertain to ~10x

yield uncertain by ~2

yield not known

Deposition not known

Deposition not known

Thousands of Atmospheric Reactions: Isoprene ~50,000

Emissions Chemistry Physical Losses

Page 21: ATMOSPHERIC CHEMISTRY and AEROSOLS

Select  Chemical  Mechanism  (problem  dependent)  

i)  Predefined  mechanism  in  build  configura;on  -chem  trop_mozart  |  trop_ghg  |  trop_bam  |  trop_mam3  |

trop_mam7  |  waccm_mozart  |  waccm_ghg  |  super_fast_llnl  |  none  

 ii)  User-­‐specified  mechanism  defined  in  build  -usr_mech_infile  $mechanism_file  

 Allow  user  to  specify  a  customized  preprocessor  input  file  

 Determines  the  number  of  advected  tracers  

Emissions Chemistry Physical Losses

Page 22: ATMOSPHERIC CHEMISTRY and AEROSOLS

mechanism file:

SPECIES

Solution CO End Solution

Fixed OH End Fixed

END SPECIES

CHEMISTRY

Reactions [usr8] CO + OH -> CO2 + HO2 End Reactions

Ext Forcing CO<-dataset End Ext Forcing

END CHEMISTRY

Example  of  preprocessor  input  file  

Emissions Chemistry Deposition

Page 23: ATMOSPHERIC CHEMISTRY and AEROSOLS

Preprocessor  input  file   Chemistry  code  

Preprocessor  

Build  

CAM-­‐chem  

Preprocessor   Emissions Chemistry Physical Losses

Page 24: ATMOSPHERIC CHEMISTRY and AEROSOLS

DeposiFon  processes  •  Dry  deposiFon:  uptake  of  chemical  consFtuents  by  plants  and  soil  (handled  by  CLM),  water  

             -­‐Depends:  species  solubility,  reacFvity,  surface  characterisFcs,  meteorology  

             -­‐Impacted  species:  Namelist  control  parameter    

•  Wet  deposiFon:  uptake  of  chemical  consFtuents  in  rain  or  ice  (linked  to  precipitaFon,  both  large-­‐scale  and  convecFve)  

             -­‐  Depends:  species  solubility  

               -­‐Impacted  species:  Namelist  control  parameter    

Emissions Chemistry Physical Losses

Page 25: ATMOSPHERIC CHEMISTRY and AEROSOLS

AEROSOLS  

Aerosol Microphysics Precursor Emissions

Primary Emissions

Deposition (wet, dry)

Aerosols (1)

Page 26: ATMOSPHERIC CHEMISTRY and AEROSOLS

26

Bulk Aerosol Model (BAM)

• External  mixtures  of  all  important  aerosol  types:  sulfate,  sea  salt,  dust,  hydrophobic  and  hydrophilic  OC  &  BC  

• PredicFon  of  aerosol  mass  • Number  proporFonal  to  mass  

   Prescribed  size  distribuFon  •  Aerosol  aging  set  diagnosFcally  (through  a  Fmescale)  

•  Coupled  to  2-­‐moment  cloud  microphysics  • Tuned  to  produce  an  acceptable  climate  

Aerosols (2)

Page 27: ATMOSPHERIC CHEMISTRY and AEROSOLS

Benchmark 7-Mode Modal Aerosol Model (MAM) Simplied 3-Mode Scheme also implemented

27

Aitken number sulfate ammmonium secondary OM sea salt

Accumulation number sulfate ammonium secondary OM hydrophobic OM BC sea salt

Primary Carbon number hydrophobic OM BC

Fine Soil Dust number soil dust sulfate ammonium

Fine Sea Salt number sea salt sulfate ammonium

Coarse Soil Dust number soil dust sulfate ammonium

Coarse Sea Salt number sea salt sulfate ammonium

coagulation condensation

All modes log-normal with prescribed width.

Total transported aerosol tracers: 31

Cloud-borne aerosol and aerosol water predicted but not transported.

7-mode: Computer time is ~100% higher than BAM 3-mode: Computer time is ~30% higher than BAM

Aerosols (3)

Page 28: ATMOSPHERIC CHEMISTRY and AEROSOLS

Changes w/ Modal Formulation •  Prediction of Number and Mass •  Consistent coupling with Morrison-Gettlemen

microphysics •  Consistent simulation of the indirect effect (-­‐1.0  to  -­‐1.8  

W/m2) •  Aging of primary carbon to accumulation mode based on

sulfate coating from condensation & coagulation •  Radiation based on mixed phase aerosols (from Ghan and

Zaverhi, 2007) •  Coagulation within, between modes •  Dynamic condensation of trace gas (H2SO4, NH3) on

aerosols •  New particle formation (in UT and BL) •  Ultrafine sea salt emissions from Martensson et al. •  A new secondary organic aerosol treatment: reversible

condensation of SOA (gas)

Aerosols (4)

Page 29: ATMOSPHERIC CHEMISTRY and AEROSOLS

Example  of  build  configuraFon  Predefined chemistry packages:

-chem trop_mozart | trop_ghg | trop_bam | trop_mam3 | trop_mam7 | waccm_mozart | waccm_ghg | super_fast_llnl | none

Predefined bulk aerosol/GHG packages:

-prog_species SO4 | DST | SSLT | OC | BC | GHG | CARBON16

Configure will generate a preprocessor input file for any combination of these predefined prognostic aerosol and GHG packages.

Page 30: ATMOSPHERIC CHEMISTRY and AEROSOLS

Temperature Ozone Exceedances

Netherlands:  1000-­‐1400  deaths,  400–600  air  polluFon-­‐related  deaths  (Fischer  et  al.)  Driven by: stagnation, biogenic hydrocarbon emissions, forest fires, chemistry  

Examples: Chemistry-Climate Interactions (1)

Page 31: ATMOSPHERIC CHEMISTRY and AEROSOLS

Examples: Chemistry-Climate Interactions (2)

Page 32: ATMOSPHERIC CHEMISTRY and AEROSOLS

NO  NO2  hν  

O3  (Ozone)    

Hydrocarbon  OxidaFon    

OH   HO2  h  ν,  H2O  

CO,  CH4  

CO2,  H2O  

<.1  pptv  1.8  ppm  

Examples: Chemistry-Climate Interactions (3)

Page 33: ATMOSPHERIC CHEMISTRY and AEROSOLS

2030:  GHG  Increase  +  MFR  Aerosols   2030:  GHG  Increase  Only  

Kloster  et  al.,  2009  

Examples: Chemistry-Climate Interactions (4)

Page 34: ATMOSPHERIC CHEMISTRY and AEROSOLS

Examples: Chemistry-Climate Interactions (4)

Climate amplifier due CH4 emissions from wetlands

Page 35: ATMOSPHERIC CHEMISTRY and AEROSOLS

Change in Soil Temperature, 2050, GFDL

-permafrost melting, permafrost pool ~1/3 global soil carbon -additional emission of 1-4 PC/year over 100 years if ½ permafrost thaws -release of CO2 or CH4 -CH4 favored in wet conditions

Examples: Chemistry-Climate Interactions (5)

Page 36: ATMOSPHERIC CHEMISTRY and AEROSOLS

‘World is running out of nitrogen…’ Sir William Crooks, president of the British Association for the Advancement of Science

BNF

Haber-Bosch

Slide courtesy Marina Molodvskaya

Page 37: ATMOSPHERIC CHEMISTRY and AEROSOLS

Namelist  control  parameters  

•  Photolysis  rates:  LUT  or  inline  •  Surface  emissions/Other  sources  

•  Species  affected  by  dry  deposiFon  •  Species  affected  by  wet  deposiFon  •  Lightning  strength  •  Lower  boundary  condiFons  •  Stratosphere  overwriFng  

Page 38: ATMOSPHERIC CHEMISTRY and AEROSOLS

Possibility  of  using  observed  meteorology  (campaign)  

•  Goal:  use  meteorological  fields  as  close  as  possible  to  observed  condiFons  

•  Method  

1) CAM:  processing  of  meteorological  fields  through  dynamical  core  

2) WACCM:  relaxaFon      

Page 39: ATMOSPHERIC CHEMISTRY and AEROSOLS

Chemistry  in  CAM  

•  Must  be  done  in  FV  dynamical  core  (tracer  conservaFon)  

•  Requires  to  build  CAM  with  specific  opFon  

•  Requires  use  of  pre-­‐defined  chemistry  or  user-­‐specified