atmospheric aerosol

24
Lidar remote sensing for the characterization of the atmospheric aerosol on local and large spatial scale

Upload: alessa

Post on 05-Jan-2016

44 views

Category:

Documents


1 download

DESCRIPTION

Lidar remote sensing for the characterization of the atmospheric aerosol on local and large spatial scale. Aerosols interact both directly and indirectly with the Earth’s radiation budget and climate. Minute particles suspended in the atmosphere. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Atmospheric aerosol

Lidar remote sensing for the characterization of the atmospheric aerosol

on local and large spatial scale

Page 2: Atmospheric aerosol

Atmospheric aerosol

What are THEY and why are THEY so important?

Minute particles suspended in the

atmosphere

Aerosols interact both directly and indirectly

with the Earth’s radiation budget and climate

Aerosols reflect or absorb sunlight

Aerosols modify the size of cloud particles,

changing how the clouds reflect and absorb sunlight

WHAT ABOUT THE ESTIMATION OF THEIR EFFECTS?

MOTIVATION

Page 3: Atmospheric aerosol
Page 4: Atmospheric aerosol
Page 5: Atmospheric aerosol

MOTIVATION

from IntergovernmentalPanelClimateChange

Page 6: Atmospheric aerosol

INTERACTION LIGHT - ATMOSPHERE

• Elastic scattering

• Anelastic scattering

a

x2

Mie scattering

Rayleigh scattering

x << 1

moleculesRayleigh scattering Mie scattering Mie scattering,

larger particles

Direction of incident light

AE

Raman scattering

Information on the species concentration

Page 7: Atmospheric aerosol

LIDAR remote sensing

Page 8: Atmospheric aerosol

THE REMOTE SENSING LIDAR TECHNIQUE

Sor

gen

te

lase

rN

d-Y

ag

La

ser

Receiver

LIghtDetectionAndRanging

Signal processing

Page 9: Atmospheric aerosol

ELASTIC LIDAR EQUATION (SINGLE SCATTERING)

z: altitude

: wavelength

1 equation2 unknown parameters

+ a priori hypothesis Lidar Ratio (LR)

z

0

dς ςλ,α2-L

20

L e zλ,β zλ,ξ 2

z

A Pz λ,P

PL: laser power

Standard Atmosphere

vertical resolution : efficiency

β = βm + βa backscatter coefficient

ma extinction coefficient

z

A20

acceptance angle 2

cτL

Page 10: Atmospheric aerosol

RAMAN LIDAR EQUATION (SINGLE SCATTERING)

No a priori hypothesis

1 Elastic lidar equation + 1 Raman lidar equation2 unknown parameters

z

0

RLdς ς,λα ς,λα2-

RLRL

20

LRL e z,λ,λβ z,λξ 2

z

A Pz ,λ,λP

d

drNr RL

RL

,,,,

Page 11: Atmospheric aerosol

RCS - RANGE CORRECTED SIGNAL = P(z)*z2

PBL height

Planetary Boundary Layer

Directly influenced by the presence

of the Earth's surface

Aerosol as tracers

Time (UT)

18:00 20:00 22:00 24:00 02:00 04:00 06:00

He

igh

t a

bo

ve

lid

ar

sta

tio

n

(m)

7000

6000

5000

4000

3000

2000

1000

RCS @ 532 nm (a.u.)Naples, 9-10 May 2005

Page 12: Atmospheric aerosol

EARLINET (European Aerosol Research LIdar NETwork)

Since May 2000

ARPAC

Naples station (40.833°N, 14.183°E, 118 m. asl)

• regular measurements twice a week

• special measurements (Saharan dust, forest fires, volcanic eruption, etc…)

• intercomparison both for hardware and software

25 stations

Page 13: Atmospheric aerosol

THE NAPLES LIDAR SYSTEM

Lc DBS1

D

M1 M3 M2

PMT3

IF2

Discr

IF4 QP

PMT7

IF3 PMT4

QP

PMT5

PMT2

DBS2

2

QP

IF1

PMT8

IF5 PMT6

PMT1

Nd:

YA

G la

ser

sour

ce

DBS3

2

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

0.00E+00 5.00E+03 1.00E+04 1.50E+04

Altitude (m)

RCS

(a.u

.)

5X beam expanders

Diaphragm

Collimating Lens407

387

387 High

387 Low

407

387 407

355532

355 High

355 Low

355

> 532

532

532 High

532 Low

607

607

Page 14: Atmospheric aerosol

CLOUD SCREENING Sharp variation

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0.00E+00 5.00E+03 1.00E+04 1.50E+04 2.00E+04

cloud

RC

S (

a.u

.)

Height (m)

0 5000 10000 15000 20000

108

109

1010

1011

PRE - PROCESSING DATA

Page 15: Atmospheric aerosol

PRE - PROCESSING DATA

PILE UP CORRECTION

Measure the same signal:

- D1 at low acquisition rate (< 500kHz)

- D2 at working condition

0 5 10 15 20 250

1

2

3

4

5 Y =668.68516+0.14171 X+3.50923E-9 X2+

-1.48633E-16 X3+5.72961E-24 X4

Ref rate Polinomial fitR

ate

Re

f, M

Hz

Rate R386L, MHz

Polinomial fit

Rate D2 (MHz)

Rat

e D

1 (M

Hz)

Page 16: Atmospheric aerosol

PRE - PROCESSING DATA

MERGE

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0.00E+00 5.00E+03 1.00E+04 1.50E+04 2.00E+04

Height (m)

0 5000 10000 15000 20000

108

109

1010

1011

Analog – low height

Photocounting – high height

RC

S (

a.u

.)

Page 17: Atmospheric aerosol

CALIBRATION

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0.00E+00 5.00E+03 1.00E+04 1.50E+04 2.00E+04

Height (m)

0 5000 10000 15000 20000

108

109

1010

1011

RC

S (

a.u

.)

PRE - PROCESSING DATA

Molecular signal

“Clean” air

Page 18: Atmospheric aerosol

Depolarization measurement

Why?

Function of the particles’ morphology

Identification of solid and liquid phases of the particles

Page 19: Atmospheric aerosol

How do we perform linear depolarization measurements?

1. Use a linearly polarized laser source

2. Align a detecting channel (P channel) in the same direction of the initial polarization of the laser

3. Align another detecting channel (S channel) orthogonal with respect to the laser initial direction of polarization

4. Calibration of the system

Page 20: Atmospheric aerosol

Total Depolarization coefficientDefined as:

Is the backscattering coefficient

S(z) and P(z) are the ortoghonal and parallel signals

H is the calibration constant

k takes into account the instrumental effects

1

// / /

( ) ( ) ( ) ( )( ) 1

( ) ( )( ) ( )

a m

a m

z z S z S zz H k H k

P z P zz z

Page 21: Atmospheric aerosol

Aerosol Depolarization coefficient

m

(1 ) (1 )

(1 ) (1 )

m ma

m

R

R

m a

mR

Molecular depolarization (0.00376)

R Backscatter ratio

Total depolarization coefficient

Page 22: Atmospheric aerosol

How do we calibrate depolarization channels?

The calibration constant measures the relative efficiency of the polarization channels.

There were studied and evaluated 4 techniques:

1. Rayleigh method

2. 90° rotation of the polarization of the laser

3. 45° rotation

4. Depolarization

Page 23: Atmospheric aerosol

Eyjafjallajökull

Page 24: Atmospheric aerosol

Depolarization by ETNA volcanic particles