at the intersection: merging ca2+ and ros signaling pathways in pollen

6
At the intersection: Merging Ca 2+ and ROS 1 signaling pathways in pollen 2 3 Michael M. Wudick and José A. Feijó 4 5 Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 6 Maryland 20742-5815 7 and 8 Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal 9 10 Correspondence to [email protected] 11 12 13 14 15 The mixed blessing of ROS: Don't you know that I'm toxic? 16 Due to plant's aerobic metabolism, reactive oxygen species (ROS) continuously 17 accrue in different tissues and organs as a byproduct of many metabolic reactions. 18 Despite their toxic activity, plants also rely on ROS as a major form of second 19 messenger to integrate, induce and/or propagate biotic and abiotic signals and 20 signaling cascades. Being small, short lived and rapidly diffusible, makes ROS ideal 21 messenger molecules for local biochemical reactions. Hence, a delicate finetuning of 22 localized ROS production and signaling events is crucial for many physiologic 23 processes. 24 In pollen tube (PT) growth, ROS were shown to be involved in various processes, 25 including germination (Speranza et al., 2012), polarized growth (Potocký et al., 26 2007), elongation (Lassig et al., 2014), guidance and ovule targeting (Prado et al., 27 2008) as well as PT burst during fertilization (Duan et al., 2014). 28 Genetic evidence that production of ROS could be associated to members of the 29 respiratory burst oxidase homolog (Rboh) family of the plasma membrane localized 30 and PTspecific NADP(H) oxidases (NOX) was first shown by Potocký et al. (2007). 31 More recently, three groups provided genetic evidence that RbohH and RbohJ seem 32 to be essential for PT growth and fertilization (BoissonDernier et al., 2013; Lassig et 33 Molecular Plant Advance Access published September 18, 2014 at University of Utah on October 15, 2014 http://mplant.oxfordjournals.org/ Downloaded from

Upload: jose-a

Post on 09-Feb-2017

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: At the Intersection: Merging Ca2+ and ROS Signaling Pathways in Pollen

At  the  intersection:  Merging  Ca2+  and  ROS  1  

signaling  pathways  in  pollen  2  

 3  

Michael  M.  Wudick  and  José  A.  Feijó  4  

 5  

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 6  Maryland 20742-5815 7  

and 8  

Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal 9  

 10  

Correspondence  to  [email protected]  11  

 12  

 13  

 14  

 15  

The  mixed  blessing  of  ROS:  Don't  you  know  that  I'm  toxic?  16  

Due   to   plant's   aerobic   metabolism,   reactive   oxygen   species   (ROS)   continuously  17  accrue  in  different  tissues  and  organs  as  a  by-­‐product  of  many  metabolic  reactions.    18  

Despite   their   toxic   activity,   plants   also   rely   on   ROS   as   a   major   form   of   second  19  messenger   to   integrate,   induce   and/or   propagate   biotic   and   abiotic   signals   and  20  signaling   cascades.   Being   small,   short   lived   and   rapidly   diffusible,  makes  ROS   ideal  21  messenger  molecules  for  local  biochemical  reactions.  Hence,  a  delicate  fine-­‐tuning  of  22  localized   ROS   production   and   signaling   events   is   crucial   for   many   physiologic  23  processes.  24  

In   pollen   tube   (PT)   growth,   ROS  were   shown   to   be   involved   in   various   processes,  25  including   germination   (Speranza   et   al.,   2012),   polarized   growth   (Potocký   et   al.,  26  2007),   elongation   (Lassig   et   al.,   2014),   guidance   and   ovule   targeting   (Prado   et   al.,  27  2008)  as  well  as  PT  burst  during    fertilization  (Duan  et  al.,  2014).  28  

Genetic   evidence   that   production   of   ROS   could   be   associated   to  members   of   the  29  respiratory  burst  oxidase  homolog  (Rboh)  family  of  the  plasma  membrane  localized  30  and   PT-­‐specific   NADP(H)   oxidases   (NOX)  was   first   shown   by   Potocký   et   al.   (2007).  31  More  recently,  three  groups  provided  genetic  evidence  that  RbohH  and  RbohJ  seem  32  to  be  essential  for  PT  growth  and  fertilization  (Boisson-­‐Dernier  et  al.,  2013;  Lassig  et  33  

Molecular Plant Advance Access published September 18, 2014 at U

niversity of Utah on O

ctober 15, 2014http://m

plant.oxfordjournals.org/D

ownloaded from

Page 2: At the Intersection: Merging Ca2+ and ROS Signaling Pathways in Pollen

al.,   2014;  Kaya  et  al.,   2014).   These  proteins   consist  of   six   integral   trans-­‐membrane  1  segments  and  bear  a  FAD/NADP(H)  binding  domain   in   their  C-­‐terminal   region.   Like  2  other  NOX,  RobhH  and  J  display  two  Ca2+-­‐binding  EF-­‐hand  motifs  in  the  cytosolic  N-­‐3  terminus,  suggesting  a  direct   functional   link  between  Ca2+  and  ROS  (Steinhorst  and  4  Kudla,   2013).   Circumstantial   evidence   for   this   link   initially   came   by   externally  5  applying  Ca2+  to  trigger  an  increase  of  ROS  production  in  tobacco  PT  (Potocký  et  al.,  6  2007).   Discrepancies   exist,   however   on   the   interpretation   of   these   results.   Double  7  mutants  of  RobhH  and  J  were  shown  to  have  no  detectable  H2O2  in  the  cytosol,  and  8  were  functionally  linked  to  the  action  of  the  receptor-­‐like  kinases  (RLKs)  ANXURs  and  9  to  the  modulation  of  cytosolic  free  Ca2+,  putatively  by  ROS’  control  of  Ca2+  channels,  10  and   possibly   through   Rho   GTPases   (Boisson-­‐Dernier   et   al.,   2013).   More   Recently,  11  Duan  et  al.  (2014),  by  making  use  of  feronia  (the  RLK  female  homologue  of  ANXUR),  12  suggested  that  exogenous  ROS,  either  applied  to  in  vitro  or  emanating  from  ovules,  13  induce  Ca2+  influx  just  prior  to    PT  rupture.  However,  point  mutations  of  the  EF-­‐hand  14  motifs   of   RobhH   and   J   showed   impaired   ROS   production   (Kaya   et   al.,   2014),   in  15  apparent  contradiction  of  ROS  being  upstream  of  Ca2+.  Complex  patterns  of  cytosolic  16  Ca2+  and  growth-­‐rate  were  also  described  when  growing  robhH  and  J  double  knock-­‐17  out  PTs  in  vitro  (Lassig  et  al.,  2014),  which  could  support  any  of  these  views,  or  both,  18  depending  on  the  way  one  interprets  the  sequence  of  events.  19  

Things  are  further  complicated  by  the  finding  that  phosphorylation  and  Ca2+  signaling  20  act  synergistically  as  part  of  a  positive  feedback  loop  that  leads  to  ROS  production  in  21  plant  cells,  as  recently  demonstrated  for  RbohF,  where  phosphorylation  was  shown  22  necessary  for  Ca2+  activation  of  ROS  production  (Kimura  et  al.,  2012).  Although  up  to  23  date  there  are  no  genes   that  could  account   for   its  production   in  plants,   it   is  worth  24  noting  that  another  relevant  ROS  species,  nitric  oxide  (NO),  was  shown  to  modulate  25  PT  growth  and  orientation  in  a  Ca2+  dependent  manner  (Prado  et  al.,  2008).  26  

 27  

Putting  it  all  together?  A  positive  feedback  model  for  ROS/  Ca2+signaling  in  pollen    28  

In   a   minimalistic   model   (Figure   1),   Rbohs   would   be   activated   by   an   initial  29  phosphorylation  step,  which  allows  them  to  bind  Ca2+  through  their  EF-­‐hand  motifs.  30  Ca2+  binding  triggers  the  production  of  ROS,  which  can  also  act  on  plasma  membrane  31  Ca2+   channels,   leading   to   an   increase   of   the   cytosolic   Ca2+   concentration.   The  32  increase   in   Ca2+   can   also   activate   Ca2+-­‐dependent   protein   kinases   (CPKs)   that   in  33  return   might   amplify   the   phosphorylation   signal.   Small   GTPases   are   likely   to  34  integrate   different   signals   in   the   ROS/Ca2+   signaling   network,   as   it   has   been  35  demonstrated  in  root  hairs  (Cheung  and  Wu,  2011)  and  proposed  in  PT  growth  (see  36  for   example   Duan   et   al.,   2014).   While   many   experimental   gaps   are   still   present,  37  identification   of   the   PT   CPKs   and   Ca2+   channels   (Konrad   et   al.,   2011)   involved  38  emerges  as  a  crucial  step  forward.  39  

CPK17  and  CPK34  are  candidates  for  Ca2+-­‐dependent  protein  kinases  that  are  highly  40  expressed   in  pollen  and   localize   to   the  PT  plasma  membrane;   their  double   loss-­‐of-­‐41  

at University of U

tah on October 15, 2014

http://mplant.oxfordjournals.org/

Dow

nloaded from

Page 3: At the Intersection: Merging Ca2+ and ROS Signaling Pathways in Pollen

function  mutants  revealed  impaired  PT  growth  and  fertilization  (Myers  et  al.,  2009).  1  CPK32,   CPK2   and   CPK20   have   also   been   recently   implied   in   the   regulation   of   PT  2  growth  (Zhou  et  al.  2014;  Gutermuth  et  al.,  2013).  The  issue  of  specificity  is  still  open  3  for   this   diverse   and   relevant   family  of   kinases,   and  multiple   targets   are   known   for  4  each,   suggesting   that   they   target   other   proteins,   including   Rbohs.   Other  5  phosphorylation   enzymes,   like   the   CBL/CIPK   pairs   are   also   possible   candidates  6  (Konrad  et  al.,  2011;  Mähs  et  al.  2013).  Indeed,  it  has  been  recently  shown  that  the  7  direct   binding   of   CIPK26   to   the   N-­‐terminus   of  AtRbohF   negatively  modulates   ROS  8  production  when  heterologously  expressed  in  HEK  cells  (Kimura  et  al.,  2013),  thereby  9  establishing  a  molecular  pathway  to  repress  NOX  activity.  Further  work  showed  that  10  CIPK26  is  dependent  on  either  CBL1  or  9  (Drerup  et  al.  2013).  11  

More   uncertainties   exist   about   possible   Ca2+   channels   to   be   regulated   by   ROS.   To  12  date   the  characterized  arsenal  of  plant  bona   fide  Ca2+   channels   that  could  account  13  for   the  ROS-­‐activated   [Ca2+]cyt   increase   is   scarce.  Members  of   the   cyclic  nucleotide  14  gated   channel   (CNGC)   family   along   with   channels   encoded   by   the   glutamate  15  receptor-­‐like   (GLR)   genes   are   the   only   candidates   with   a   proven   function   as   Ca2+  16  channels.  Loss-­‐of-­‐function  lines  for  members  of  both  families  display  phenotypes  in  17  PT  germination  and  reproduction  (reviewed  in  Konrad  et  al.  2011;  Gao  et  al.  2014).  18  Data  is  missing  of  any  putative  ROS  regulation  of  any  of  these.  19  

In  tip-­‐growing  cells,  small  GTPases  from  the  RAC/ROP  family  play  important  roles  in  20  the   integration  of   signaling  cascades.   It   is   thus  not  astonishing   that   they  were  also  21  shown  to  act  on  NOX.  For  instance,  expression  of  pollen  enriched  NtRAC5  in  tobacco  22  PT   led   to   an   increased   ROS   production   while   expression   of   a   dominant-­‐negative  23  RAC5  version  led  to  reduced  ROS  levels  (Potocký  et  al.,  2012).  An  implication  of  small  24  GTPases  in  targeting  NOX  to  the  plasma  membrane  has  also  been  proposed  for  ROP1  25  by  acting  on  the  assembly  status  of  F-­‐actin  (Kaya  et  al.,  2014).  This  status  however  is  26  also   tightly   regulated   by   the   local   Ca2+   concentration   that   affects   the   majority   of  27  cytoskeleton  proteins.    28  

By  necessity,  this  minimal  feedback  model  is  affected  by  the  lack  of  characterization  29  of   still  many   interacting   partners.   The   ubiquitous   action   of   ROS   and   cytosolic   free  30  Ca2+  makes  it  very  likely  that  what  we  presently  know  about  Ca2+  binding/regulated  31  proteins  and  what  they  have  to  tell  about  the  fine-­‐tuning  of  the  ROS/Ca2+  signaling  is  32  only   part   of   the  whole   picture.   But,   as   in  many   other   processes,   PTs   are   likely   to  33  stand  out  as  one  of  the  effective  models  to  dissect  this  complexity,  as  two  common  34  patterns  for  both  ROS  and  Ca2+-­‐derived  signals  emerge:  that  they  are  both  generated  35  or  focused  at  the  tip  of  the  PT;  and  that  this  spatial  overlap  in  return  is  fundamental  36  for  pollen  tube  growth.      37  

 

Acknowledgements:  

JF’s  lab  is  funded  by  Fundação  para  a  Ciência  e  Tecnologia  (PTDC/BEX-­‐BCM/0376/2012  and  PTDC/BIA-­‐PLA/4018/  2012).  MW  acknowledges  an  FCT  

at University of U

tah on October 15, 2014

http://mplant.oxfordjournals.org/

Dow

nloaded from

Page 4: At the Intersection: Merging Ca2+ and ROS Signaling Pathways in Pollen

fellowship  (SFRH/BPD/70739/2010).  We  thank  Alice  Cheung  for  careful  reading  of  the  manuscript.  Many  references  were  left  out  due  to  space  constraints,  we  apologize  the  authors  for  that.  

 

Cited  Literature:  

Boisson-­‐Dernier,  A.,  Lituiev,  D.,  Nestorova,  A.,  Franck,  C.M.,  Thirugnanarajah,  S.,  Grossniklaus,  U.  (2013)  ANXUR  Receptor-­‐Like  Kinases  Coordinate  Cell  Wall  Integrity  with  Growth  at  the  Pollen  Tube  Tip  Via  NADPH  Oxidases.  PLoS  Biol  11(11):  e1001719.  

Cheung,  A.Y.,  Wu,  H.M.  (2011)  THESEUS  1,  FERONIA  and  relatives:  a  family  of  cell  wall-­‐sensing  receptor  kinases?  Curr  Opin  Plant  Biol.  14:632-­‐41.  

Drerup  M.M.,  Schlücking,  K.,  Hashimoto,  K.,  Manishankar,  P.,  Steinhorst,  L.,  Kuchitsu,  K.,  Kudla,  J.  (2013)  The  Calcineurin  B-­‐like  calcium  sensors  CBL1  and  CBL9  together  with  their  interacting  protein  kinase  CIPK26  regulate  the  Arabidopsis  NADPH  oxidase  RBOHF.  Mol  Plant.  6:559-­‐69  

Duan,  Q.,  Kita,  D.,  Johnson,  E.A.,  Aggarwal,  M.,  Gates,  L.,  Wu,  H.-­‐M.  and  Cheung,  A.Y.  (2014).  Reactive  oxygen  species  mediate  pollen  tube  rupture  to  release  sperm  for  fertilization  in  Arabidopsis.  Nat.  Commun.  5:3129.    

Gao,  Q.-­‐F.,  Fei,  C.-­‐F.,  Dong,  J.-­‐Y.,  Gu,  Li-­‐Li,  Wang,  Y.-­‐F.  (2014)  Arabidopsis  CNGC18  Is  a  Ca2+-­‐Permeable  Channel.  Mol.Plant.  7:739-­‐743  

Gutermuth,  T.,  Lassig,  R.,  Portes,  M.T.,  Maierhofer,  T.,  Romeis,  T.,  Borst,  J.W.,  Hedrich,  R.,  Feijó,  J.A.,  Konrad,  K.R.  (2013)  Pollen  tube  growth  regulation  by  free  anions  depends  on  the  interaction  between  the  anion  channel  SLAH3  and  calcium-­‐dependent  protein  kinases  CPK2  and  CPK20.  Plant  Cell.  25:4525-­‐43  

Kaya,  H.,  Kakajima,  R.,  Iwano,  M.,  Kanaoka,  M.M.,  Kimura,  S.,  Takeda,  S.,  Kawarazaki,  T.,  Senzaki,  E.,  Hamamura,  Y.,  Higashiyama,  T.,  Takayama,  S.,  Abe,  M.,  Kuchitsu,  K.  (2014).  Ca2+-­‐Activated  Reactive  Oxygen  Species  Production  by  Arabidopsis  RbohH  and  RbohJ  Is  Essential  for  Proper  Pollen  Tube  Tip  Growth.  Plant  Cell.  26:1069-­‐1080  

Kimura,  S.,  Kaya,  H.,  Kawarazaki,  T.,  Hiraoka,  G.,  Senzaki,  E.,  Michikawa,  M.  and  Kuchitsu,  K.  (2012).  Protein  phosphorylation  is  a  prerequisite  for  the  Ca2+-­‐dependent  activation  of  Arabidopsis  NADPH  oxidases  and  may  function  as  a  trigger  for  the  positive  feedback  regulation  of  Ca2+  and  reactive  oxygen  species.  Biochim.  Biophys.  Acta.  1823:398–405.    

Kimura,  S.,  Kawarazaki,  T.,  Nibori,  H.,  Michikawa,  M.,  Imai,  A.,  Kaya,  H.,  &  Kuchitsu,  K.  (2013).  The  CBL-­‐interacting  protein  kinase  CIPK26  is  a  novel  interactor  of  

at University of U

tah on October 15, 2014

http://mplant.oxfordjournals.org/

Dow

nloaded from

Page 5: At the Intersection: Merging Ca2+ and ROS Signaling Pathways in Pollen

Arabidopsis  NADPH  oxidase  AtRbohF  that  negatively  modulates  its  ROS-­‐producing  activity  in  a  heterologous  expression  system.  Journal  of  Biochemistry,  153(2),  191–5.  doi:10.1093/jb/mvs132  

Konrad,  K.R.,  Wudick,  M.M.  and  Feijó,  J.A.  (2011).  Calcium  regulation  of  tip  growth:  new  genes  for  old  mechanisms.  Curr.  Opin.  Plant  Biol.  14:721–30.    

Lassig,  R.,  Gutermuth,  T.,  Bey,  T.D.,  Konrad,  K.R.  and  Romeis,  T.  (2014).  Pollen  tube  NAD(P)H  oxidases  act  as  a  speed  control  to  dampen  growth  rate  oscillations  during  polarized  cell  growth.  Plant  J.  78:94–106.    

Mähs  A,  Steinhorst  L,  Han  JP,  Shen  LK,  Wang  Y,  Kudla  J.  (2013)  The  calcineurin  B-­‐like  Ca2+  sensors  CBL1  and  CBL9  function  in  pollen  germination  and  pollen  tube  growth  in  Arabidopsis.  Mol  Plant.  6:1149-­‐62  

Myers,  C.,  Romanowsky,  S.M.,  Barron  Y.D.,  Garg,  S.,  Azuse,  C.L.,  Curran,  A.,  Davis,  R.M.,  Hatton,  J.,  Harmon,  A.C.,  Harper,  J.F.  (2009)  Calcium-­‐dependent  protein  kinases  regulate  polarized  tip  growth  in  pollen  tubes.  Plant  J.  59:528-­‐39  

 Ogasawara,  Y.  et  al.  (2008).  Synergistic  activation  of  the  Arabidopsis  NADPH  oxidase  AtrbohD  by  Ca2+  and  phosphorylation.  J.  Biol.  Chem.  283:8885–92.    

Potocký,  M.,  Jones,  M.A.,  Bezvoda,  R.,  Smirnoff,  N.  and  Zárský,  V.  (2007).  Reactive  oxygen  species  produced  by  NADPH  oxidase  are  involved  in  pollen  tube  growth.  New  Phytol.  174:742–51.    

Potocký,  M.,  Pejchar,  P.,  Gutkowska,  M.,  Jiménez-­‐Quesada,  M.J.,  Potocká,  A.,  Alché,  J.  de  D.,  Kost,  B.  and  Žárský,  V.  (2012).  NADPH  oxidase  activity  in  pollen  tubes  is  affected  by  calcium  ions,  signaling  phospholipids  and  Rac/Rop  GTPases.  J.  Plant  Physiol.  169:1654–63.    

Prado,  A.M.,  Colaço,  R.,  Moreno,  N.,  Silva,  A.C.  and  Feijó,  J.  A.  (2008).  Targeting  of  pollen  tubes  to  ovules  is  dependent  on  nitric  oxide  (NO)  signaling.  Mol.  Plant.  1:703–14.    

Speranza,  A.,  Crinelli,  R.,  Scoccianti,  V.  and  Geitmann,  A.  (2012).  Reactive  oxygen  species  are  involved  in  pollen  tube  initiation  in  kiwifruit.  Plant  Biol.  14:64–76.    

Steinhorst,  L.,  Kudla,  J.  (2013)  Calcium  and  reactive  oxygen  species  rule  the  waves  of  signaling.  Plant  Physiol.  163:471-­‐85  

Zhou,  L.,  Lan,  W.,  Jiang,  Y.,  Fang,  W.,  Luan,  S.  (2014)  A  Calcium-­‐Dependent  Protein  Kinase  Interacts  with  and  Activates  A  Calcium  Channel  to  Regulate  Pollen  Tube  Growth.  Mol.Plant.  7:369-­‐376  

 

at University of U

tah on October 15, 2014

http://mplant.oxfordjournals.org/

Dow

nloaded from

Page 6: At the Intersection: Merging Ca2+ and ROS Signaling Pathways in Pollen

at University of U

tah on October 15, 2014

http://mplant.oxfordjournals.org/

Dow

nloaded from