at once arbitrary yet specific and particular

20
At once arbitrary yet specific and particular 1 Life without variables is verbose At once arbitrary yet specific and particular Functions Imaginary square root of -1 2s= 20m ( 10 m/s) 5s= 50m ( 10 m/s) 7s= 70m ( 10 m/s) ( , ( ) ) = ( ) X Y F = 0 1 . . . -1 0 1 . . . -1 0 1 . . . -1 ( ) 2 = βˆ’ 1 - 1 3 4 -2 -1 2 -2 1 2 - 2 0 1 2

Upload: xanthe

Post on 21-Mar-2016

23 views

Category:

Documents


0 download

DESCRIPTION

At once arbitrary yet specific and particular. Life without variables is verbose. At once arbitrary yet specific and particular. X. F. Y. -2. -1. -1. -1. 0. 0. 0. 1. 1. 1. 0. 3. 1. 2. 4. -1. -2. Functions. Imaginary square root of -1. -1. 2. 2. 1. -2. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: At once arbitrary yet specific and particular

At once arbitrary yet specific and particular

1

Life without variables is verbose At once arbitrary yet specific and particular

Functions Imaginary square root of -1

2s= 20m(10   m / s )

5s= 50m(10  m / s ) 7s= 70m

(10  m / s )

(π‘₯ , 𝑓 (π‘₯ ) )π‘₯𝑦= 𝑓 (π‘₯ )

X YF

𝑑=π‘₯𝑣

0 1 . . .-1

0 1 . . .-1

0 1 . . .-1

(𝑖 )2=βˆ’1

-1 3 4

-2

-12

-21

2

-2 0 1 2

Page 2: At once arbitrary yet specific and particular

Life without variables is verbose

4

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

STOP

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

STOP

STOP

2s= 20m(10   m / s )

5s= 50m(10  m / s ) 7s= 70m

(10  m / s )

Page 3: At once arbitrary yet specific and particular

Life without variables is verbose

5

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

STOP

2s= 20m(10   m / s )

5s= 50m(10  m / s ) 7s= 70m

(10  m / s )

Example duration

Example distance

Example speed

Page 4: At once arbitrary yet specific and particular

Life without variables is verbose

6

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

STOP

2s= 20m(10   m / s )

5s= 50m(10  m / s ) 7s= 70m

(10  m / s )

Example duration

Example distance

Example speed

Page 5: At once arbitrary yet specific and particular

At once arbitrary yet specific and particular

7

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

STOP

2s= 20m(10   m / s )

5s= 50m(10  m / s ) 7s= 70m

(10  m / s )

Example duration

Example distance

Example speed

t0 1 2 3 4 5 6 7 . . .-2 -1

# of seconds

x. . .0 1 2 3 4 5 6 7-2 -1

# of meters

v0 1 2 3 4 5 6 7 . . .-2 -1

# of meters per second

𝑑=π‘₯𝑣

? ? ? ??

? ? ? ??

? ? ? ??

Page 6: At once arbitrary yet specific and particular

At once arbitrary yet specific and particular

8

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

STOP

Example duration

Example distance

Example speed

t0 1 2 3 4 5 6 7 . . .-2 -1

# of seconds

x. . .0 1 2 3 4 5 6 7-2 -1

# of meters

v0 1 2 3 4 5 6 7 . . .-2 -1

# of meters per second

0 1 . . .-1t

0 1 . . .-1x

0 1 . . .-1v

= 𝑑=π‘₯𝑣

Page 7: At once arbitrary yet specific and particular

At once arbitrary yet specific and particular

9

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

STOP

t, an arbitrary yet specific and particular example of a duration measured in seconds whose number value is chosen from the highlighted domain below

x, an arbitrary yet specific and particular example of a distance measured in meters whose number value is chosen from the highlighted domain below

v, an arbitrary yet specific and particular example of a speed measured in meters per second whose number value is chosen from the highlighted domain below

𝑑=π‘₯𝑣

0 1 . . .-1

0 1 . . .-1

0 1 . . .-1

=

0 1 . . .-1

0 1 . . .-1

0 1 . . .-1

t

x

v=

Obvious now, but easy to forget when doing β€œcalculus of variations,” (i.e. optimization problems)

?? ?

? ??

? ??

Page 8: At once arbitrary yet specific and particular

At once arbitrary yet specific and particular

10

Main street

1 N

2 N

3 N

4 N

5 North

1 S

2 S

3 S

4 S

5 South

STOP

t, an arbitrary yet specific and particular example of a duration measured in seconds whose number value is chosen from the highlighted domain below

x, an arbitrary yet specific and particular example of a distance measured in meters whose number value is chosen from the highlighted domain below

v, an arbitrary yet specific and particular example of a speed measured in meters per second whose number value is chosen from the highlighted domain below

0 1 . . .-1

0 1 . . .-1

0 1 . . .-1

=

Obvious now, but easy to forget when doing β€œcalculus of variations,” (i.e. optimization problems)𝑑=π‘₯

𝑣

Page 9: At once arbitrary yet specific and particular

At once arbitrary yet specific and particular

11

Life without variables is verbose At once arbitrary yet specific and particular

Functions Imaginary square root of -1

2s= 20m(10   m / s )

5s= 50m(10  m / s ) 7s= 70m

(10  m / s ) 𝑑=π‘₯𝑣

0 1 . . .-1

0 1 . . .-1

0 1 . . .-1

(𝑖 )2=βˆ’1

-1 3 4

-2

-12

-21

2

-2 0 1 2(π‘₯ , 𝑓 (π‘₯ ) )π‘₯𝑦= 𝑓 (π‘₯ )

X YF

Page 10: At once arbitrary yet specific and particular

an ordered pair

Functions

12

an arbitrary yet specific and particular (asap)

object from collection X

the resulting object in the collection Y

The function f

Domain X Codomain YGraph F

Page 11: At once arbitrary yet specific and particular

Functions

13

(π‘₯ , 𝑓 (π‘₯ ) )π‘₯𝑦= 𝑓 (π‘₯ )

The function fDomain X Codomain YGraph F

The β€œsquaring” function f

Domain X

Codomain Y

0 1 2 3 4 . . .-2 -1. . . -4 -3

0 1 2 3 4 . . .-2 -1. . . -4 -3

(0 ,02=0 )(1 ,12=1 )(2 ,22=4 )(βˆ’2 , (βˆ’2 )2=4 )

𝑓 (π‘₯ )=π‘₯2Association rule

π‘₯0 1 2-2 -1

𝑓 (π‘₯ )

1

2

3

4

Graph F

(π‘₯ , 𝑓 (π‘₯ ) )

Page 12: At once arbitrary yet specific and particular

(π‘₯ , 𝑓 (π‘₯ ) )𝑓 (π‘₯ )

Co/domain YGraph F

( 𝑓 (π‘₯ ) ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G

( 𝑦 ,𝑔 (𝑦 ) )𝑦 𝑧=𝑔 ( 𝑦 )

The function gCodomain ZDomain Y Graph G

Composition of functions

14

(π‘₯ , 𝑓 (π‘₯ ) )π‘₯𝑦= 𝑓 (π‘₯ )

The function fDomain X Codomain YGraph F

π‘₯

Domain X

𝑧=𝑔 ( 𝑓 (π‘₯ ) )

Codomain Z

(π‘₯ , 𝑓 (π‘₯ ) )π‘₯𝑦= 𝑓 (π‘₯ )

The function fDomain X Codomain YGraph F

( 𝑦 ,𝑔 (𝑦 ) )𝑦 𝑧=𝑔 ( 𝑦 )

The function gCodomain ZDomain Y Graph G

(π‘₯ ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G FThe function g f

Page 13: At once arbitrary yet specific and particular

π‘₯0 1 2-2 -1

𝑔 ( 𝑓 (π‘₯ ) )

1

2

3

4

5

(π‘₯ , 𝑓 (π‘₯ ) )𝑓 (π‘₯ )

Co/domain YGraph F

( 𝑓 (π‘₯ ) ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G

Composition of functions

15

π‘₯

Domain X

𝑧=𝑔 ( 𝑓 (π‘₯ ) )

Codomain Z

(π‘₯ ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G FThe function g f

f

Domain X

Co/domain Y

0 1 2 3 4 . . .-2 -1. . .-4 -3

0 1 2 3 4 . . .-2 -1. . .-4 -3

𝑓 (π‘₯ )=π‘₯2Graph F

g

0 1 2 3 4 . . .-2 -1. . .-4 -3Codomain Z

𝑔 ( 𝑦 )=𝑦+1Graph G

Page 14: At once arbitrary yet specific and particular

π‘₯2 3 40 1

𝑔 ( 𝑓 (π‘₯ ) )

1

2

3

4

5

(π‘₯ , 𝑓 (π‘₯ ) )𝑓 (π‘₯ )

Co/domain YGraph F

( 𝑓 (π‘₯ ) ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G

Inverses of functions

16

(π‘₯ ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G FThe function g f

f

Domain X

Co/domain Y

0 1 2 3 4 . . .-2 -1. . .-4 -3

0 1 2 3 4 . . .-2 -1. . .-4 -3

somethingGraph F

g

0 1 2 3 4 . . .-2 -1. . .-4 -3Codomain X

undo somethingGraph G

π‘₯

Domain X

π‘₯=𝑔 ( 𝑓 (π‘₯ ) )

Codomain X

Page 15: At once arbitrary yet specific and particular

Inverses of functions

17

f

Domain X

Co/domain Y

0 1 2 3 4 . . .-2 -1. . .-4 -3

0 1 2 3 4 . . .-2 -1. . .-4 -3

somethingGraph F

g

0 1 2 3 4 . . .-2 -1. . .-4 -3Codomain X

undo somethingGraph G

𝑓 (π‘₯ )2 3 40 1

5

𝑔 ( 𝑓 (π‘₯ ) )1234 STOP

(π‘₯ , 𝑓 (π‘₯ ) )𝑓 (π‘₯ )

Co/domain YGraph F

( 𝑓 (π‘₯ ) ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G

(π‘₯ ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G FThe function g f

π‘₯

Domain X

π‘₯=𝑔 ( 𝑓 (π‘₯ ) )

Codomain X

π‘₯2 3 40 1

5

𝑓 (π‘₯ )1234

Page 16: At once arbitrary yet specific and particular

At once arbitrary yet specific and particular

18

Life without variables is verbose At once arbitrary yet specific and particular

Functions Imaginary square root of -1

2s= 20m(10   m / s )

5s= 50m(10  m / s ) 7s= 70m

(10  m / s ) 𝑑=π‘₯𝑣

0 1 . . .-1

0 1 . . .-1

0 1 . . .-1

(𝑖 )2=βˆ’1

-1 3 4

-2

-12

-21

2

-2 0 1 2(π‘₯ , 𝑓 (π‘₯ ) )π‘₯𝑦= 𝑓 (π‘₯ )

X YF

Page 17: At once arbitrary yet specific and particular

or 0 1 2-2 -1

or

1

2

3

4

3 4

Square-root β€œfunction” and

19

Domain X

Co/domain Y

0 1 2 3 4 . . .-2 -1. . .-4 -3

0 1 2 3 4 . . .-2 -1. . .-4 -3

f 𝑓 (π‘₯ )=π‘₯2Graph F

0 1 2 3 4 . . .-2 -1. . .-4 -3Codomain X

g 𝑔 ( 𝑦 )=√ (𝑦 )Graph G

(π‘₯ , 𝑓 (π‘₯ ) )𝑓 (π‘₯ )

Co/domain YGraph F

( 𝑓 (π‘₯ ) ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G

(π‘₯ ,𝑔 ( 𝑓 (π‘₯ ) ) )

Graph G FThe function g f

π‘₯

Domain X

π‘₯=𝑔 ( 𝑓 (π‘₯ ) )

Codomain X

Page 18: At once arbitrary yet specific and particular

Square-root β€œfunction” and

20

𝑦1 2 3 4

-2

-1

𝑔 ( 𝑦 )

1

2

-1-2 0

Page 19: At once arbitrary yet specific and particular

Square-root β€œfunction” and

21

𝑦1 2 3 4

-2

-1

1

2

𝑔 ( 𝑦 )

-1-2 0

Page 20: At once arbitrary yet specific and particular

-1

Square-root β€œfunction” and

22

𝑦3 4

-2

-1

β„œ [𝑔 ( 𝑦 ) ]

2

-2

𝑖ℑ [𝑔 (𝑦 ) ]

1

2

-2 0 1 2𝑖

(β„œ [𝑔 (𝑦 ) ]+ 𝑖ℑ [𝑔 (𝑦 ) ] )2

(𝑖 )2=βˆ’1