astrophysics i, lecture slides – chapter 2, eth zurich · 2019. 9. 23. · spectral energy...

17
Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich 1

Upload: others

Post on 17-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Spectral energy distribution of the sun

400 600 800 1000 1200 [nm]

Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich

1

Page 2: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Wien's displacement lawBlack body curves for different temperatures

250 500 750 1000 1250 nm

2

Page 3: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Low resolution spectra of stars

3500350 400 450 500 550wavelength [nm]

rel.

flux

3

Page 4: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

''Mindmap'' for plane-parallel atmosphere

4

formal solution + Taylor expansion for source funct. I(τ) as function of B(τ)

~ U ~ F~aT4 ~σTeff

4

isotr. anisotr.

B(τ): - grey atmosphere approximation- RT-equation (pp-atmosphere) rad.pressure ~ flux + Eddington approximation

approx.Temperature structure

U or B(τ) decreasewith τ

F or dB(τ)/dτ= const

approximation: very good good not so good

surface

τ=2/3τ>>1 τ>1

Page 5: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Comparison of detailed models with grey atmosphere and Eddington approximation

• Temperature structure as function of optical depths at 500nm, for two modern 1-D models (red and green) and the mean of a 3D-model (blue). The dashed lines give the rms variations of the 3-D model (because of surface structures). Asplund et al. 2009, ARA&A 47,481

Temperature structure T(τ) for the solar atmosphere

grey atmosphere withEddington approximationTeff=5780 K adopted

4 43 2( ) ( )4 3effT Tτ τ= +

5

Page 6: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Limb darkening for the sun

from Choudhuri

6

Page 7: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Limb darkening

Grey atmosphere + Eddington approximation

Two parameter description (for diff. λ )

from Wikipedia, Photosphäre, 6.10.2017

sun during Venus transit 2012

7

Page 8: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Planet transits yield limb darkening for stars

from Knutson et al., ApJ 655, 564 (2007)

HST observations of the color dependence of the transit of the planet around HD 209458

HD 209458 G0V (Teff=6000 K)Planet, 0.7 MJ, 1.3 RJ, P=3.5 d, Teq=1000K

wavelengths from top to bottom:950nm, 870nm, 770nm, 680nm, 580nm540nm, 480nm, 430nm, 380nm, 330nm

(curves not corrected for finite size of planet)

8

Page 9: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Line formation in stars

from Choudhuri

9

Page 10: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Spectral atlas for the sun

10

Page 11: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Fe I (Fe0) and FeII (Fe+)

The atomic transitions of FeI and FeII which are partly responsible for the many absorption lines in the solar spectrum

Energy given in cm-1

E/hc = 1/λ (hν=hc/λ)λ = wavelength of line

from F. Thevenin, T.P. Idiart,

arXiv:astro-ph/9906433

11

Page 12: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Curve of growth (interstellar/intergalactic Lyα)

• Curve of grows for HI Lyα line

b: Doppler widths b/c=ΔνD/ν

Top: line profiles for b=23 km/s(with HI column density log x=12,13,…,21 in cm2)

Middle: curves of growthdifferent b-parameters

Bottom: lines profiles with different b-parameters

https://ned.ipac.Caltech.edu/level5/Charlton/Charlton1_1.html 12

Page 13: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Curve of growths analysis

Arcturus (K-giant , 4000K) relative to empirical curves from the sun

yields differential abundancese.g. NaIArcturus/NaIsun

(from Griffin and Griffin)

13

Page 14: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Solar photospheric elemental abundances (by number) normalized to nH = 1012

Asplund et al. 2009, ARA&A 47,481 14

Page 15: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

there are stars with very peculiar abundances

15

Page 16: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

Warning: sun and stars have complex structures

A monster quiescent prominence photographed through a SolarMax II 60 H-alpha scope on September 17, 2015. Two days later, when the prominence rotated onto the disk, it appeared as a prominent, dark filament. Bright white patches are "plages", described below.

Bob Antol / stargate4173.com 16

Page 17: Astrophysics I, Lecture Slides – Chapter 2, ETH Zurich · 2019. 9. 23. · Spectral energy distribution of the sun 400 600 800 1000 1200 [nm] Astrophysics I, Lecture Slides –

https://ase.tufts.edu/cosmos/print_images.asp?id=28

Outer structure of the solar atmosphere- Photosphere- Chromosphere- Transition region- Corona

Complex magneticfield processesheat thehigher layers

17