artigo_tio2_angulodepositado

8
Thin Solid Films 518 (2009) 1590–1594 Contents lists available at ScienceDirect Thin Solid Films journal homepage: www.elsevier.com/locate/ts f Glancing angle deposited titania lms for dye-sensitized solar cells Hsiao-Yun Yang a , Ming-Fu Lee a , Chia-Hua Huang b , Yu-Shi Lo c , Yi-Jia Chen a,d , Ming- Show Wong a,d, a Inst. of Electronics Engineering, National Dong Hwa University, Hualien, Taiwan b Dept. of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan c Dept. of Chemistry, National Dong Hwa University, Hualien, Taiwan d Dept. of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan a r t i c l e i n f o Available online 19 September 2009 Keywords: Dye-sensitized solar cell (DSSC) TiO2 Anatase Porous lm Sculptured lm Glancing angle deposition (GLAD) 1. Introduction a b s t r a c t A series of sculptured porous nano-columnar titanium oxide lms were prepared by glancing angle deposition (GLAD) method using an electron-beam evaporation system. The lms were deposited on ITO glasses at various incident angles from 53° to 86°and used as photoanode in a dye-sensitized solar cell (DSSC). The as-deposited TiO2 lms are comprised of helical nano-columns and assembled in an orderly manner with gaps or pores in between. The porous nanostructured lms provide a synergetic effect of high surface area , effective route for electron transfer, tight interfaces, and enhanced light trapping, which are all benecial for higher cell efciency. The DSSCs incorporated with the GLAD lms of 4 μm thick exhibited a high ll factor (FF) up to 0.77. The TiO2 lm deposited at an incident angle of 73° provides the largest internal surface area and the largest amount of dye absorption and results in the highest light conversion efciency of 2.78%. © 2009 Elsevier B.V. All rights rese rved. region, and limited access to the entire internal surface [4 6]. Thus, it is of interest to DSSC technology to develop new and improved po rous TiO2 Dye-sensitized solar cell (DSSC) has become a popular and prom- ising photovoltaic cell since its introduction by M. Grätzel in 1991, because it is made of low-cost materials and is relatively easy to prepare [1,2].A lot of progress has been made to increase the solar conversion ef ciency, reliability and fabrication cost of the cell s through improve- ment on photoanode, dye, electrolyte and counter electr ode [1 6]. The photoanode made of a high-bandgap semiconductor is used mainly for absorption of dye and charge separation and transport, and the photoelectrons are provided by the photosensitiv e dye. Charge separation occurs at the surfaces between the dye, the s emiconductor and the electrolyte. The photoanode is usually a ~10 20 μ m thick l ayer of sintered titanium dioxide (TiO2) nanoparticles (NP) forming a highly porous structure with an extremely high surface area, and servin g as a scaffold to hold a large number of the light-absorbing dye molecules in a 3-D matrix. The photoanode is usually prepared with anatase TiO 2 nanoparticles about 20 nm in size by the doctor-blade method [7]

Upload: aline-lima

Post on 16-Dec-2015

217 views

Category:

Documents


3 download

DESCRIPTION

tio2

TRANSCRIPT

ThinSolidFilms518(2009)15901594

ContentslistsavailableatScienceDirect

ThinSolidFilms

journalhomepage:www.elsevier.com/locate/tsf

Glancingangledepositedtitanialmsfordye-sensitizedsolarcellsHsiao-YunYanga,Ming-FuLeea,Chia-HuaHuangb,Yu-ShiLoc,Yi-JiaChena,d,Ming-ShowWonga,d,aInst.ofElectronicsEngineering,NationalDongHwaUniversity,Hualien,TaiwanbDept.ofElectricalEngineering,NationalDongHwaUniversity,Hualien,TaiwancDept.ofChemistry,NationalDongHwaUniversity,Hualien,TaiwandDept.ofMaterialsScienceandEngineering,NationalDongHwaUniversity,Hualien,Taiwan

articleinfoAvailableonline19September2009Keywords:Dye-sensitizedsolarcell(DSSC)TiO2AnatasePorouslmSculpturedlmGlancingangledeposition(GLAD)

1.Introduction

abstractAseriesofsculpturedporousnano-columnartitaniumoxidelmswerepreparedbyglancingangledeposition(GLAD)methodusinganelectron-beamevaporationsystem.ThelmsweredepositedonITOglassesatvariousincidentanglesfrom53to86andusedasphotoanodeinadye-sensitizedsolarcell(DSSC).Theas-depositedTiO2lmsarecomprisedofhelicalnano-columnsandassembledinanorderlymannerwithgapsorporesinbetween.Theporousnanostructuredlmsprovideasynergeticeffectofhighsurfacearea,effectiverouteforelectrontransfer,tightinterfaces,andenhancedlighttrapping,whichareallbenecialforhighercellefciency.TheDSSCsincorporatedwiththeGLADlmsof4mthickexhibitedahighllfactor(FF)upto0.77.TheTiO2lmdepositedatanincidentangleof73providesthelargestinternalsurfaceareaandthelargestamountofdyeabsorptionandresultsinthehighestlightconversionefciencyof2.78%.2009ElsevierB.V.Allrightsreserved.

region,andlimitedaccesstotheentireinternalsurface[46].Thus,itisofinteresttoDSSCtechnologytodevelopnewandimprovedporousTiO2

Dye-sensitizedsolarcell(DSSC)hasbecomeapopularandprom-isingphotovoltaiccellsinceitsintroductionbyM.Grtzelin1991,becauseitismadeoflow-costmaterialsandisrelativelyeasytoprepare[1,2].Alotofprogresshasbeenmadetoincreasethesolarconversionefciency,reliabilityandfabricationcostofthecellsthroughimprove-mentonphotoanode,dye,electrolyteandcounterelectrode[16].Thephotoanodemadeofahigh-bandgapsemiconductorisusedmainlyforabsorptionofdyeandchargeseparationandtransport,andthephotoelectronsareprovidedbythephotosensitivedye.Chargeseparationoccursatthesurfacesbetweenthedye,thesemiconductorandtheelectrolyte.Thephotoanodeisusuallya~1020mthicklayerofsinteredtitaniumdioxide(TiO2)nanoparticles(NP)formingahighlyporousstructurewithanextremelyhighsurfacearea,andservingasascaffoldtoholdalargenumberofthelight-absorbingdyemoleculesina3-Dmatrix.ThephotoanodeisusuallypreparedwithanataseTiO2nanoparticlesabout20nminsizebythedoctor-blademethod[7]followingwithlow-temperaturecalcinationsatabout450C[1].Lightconversionefcienciesupto11.2%werereportedwithDSSCsincorporatingTiO2NPlm[3].Nevertheless,therearestillroomsforimprovementintherandomlyporousnanostructuredTiO2layer,includinglowporosity,lackofmaterialgenerality,tediousparticlesynthesis,lowconductivity,lowspacecharge

Correspondingauthor.DepartmentofMaterialsScienceandEngineering,NationalDongHwaUniversity,Hualien,974Taiwan,ROC.Tel.:+88638634206;fax:+88638634200.E-mailaddress:[email protected](M.-S.Wong).0040-6090/$seefrontmatter2009ElsevierB.V.Allrightsreserved.doi:10.1016/j.tsf.2009.09.026

nanostructurestofurtherenhancethecellefciency.Recently,physicalvapordepositiontechniquehasbeenusedtodepositporousTiO2thinlmswithlargesurfaceareaforuseinDSSCandachieveddecentconversionefciency[811].Thenewmeth-odologyappliedaso-calledglancingangledepositiontechnique(GLAD)topreparethree-dimensionalnanostructuresofnanostruc-turedcolumnarlmswithcontrolledporosityandgeometry[1217].Byplacingasubstrateaboveamaterialvaporsourceatanobliqueangleandrotatingthesubstrate,variousnanostructurescanbeprepared,suchasporousnano-columnarlm,nanorodarrayswithdifferentshapes,nanospringarrays,andevenmultilayernanostructures.Inthisstudyweusedanelectron-beamevaporationsystemandappliedtheGLADmethodtoprepareaseriesofhighly-ordered,sculpturedporousnano-columnartitaniumoxidelmsonITOglassesandusedthemasphotoanodeinthedye-sensitizedsolarcells(DSSCs).Wevariedtheglancingangleandlmthickness,andfocusedonthestructure,crystallinity,dyeabsorption,andlight-absorptionofthelms,andtheireffectsontheperformanceofDSSCs.Thepreparation,characterization,andimplementationofporoustitaniumoxidelayerinDSSCsarereported.

2.ExperimentalTheTiO2thinlmswerepreparedintheelectron-beamevapora-tionsystemassembledbyBranchyVacuumTechnologyCo.,Ltd(Toayuan,Taiwan)[18].Thedistancebetweentheregularhorizontal

H.-Y.Yangetal./ThinSolidFilms518(2009)15901594

rotationholderandtheelectron-beamevaporationsourcewas550mm.AnadditionalvariableglancinganglesubstrateholderwasinstalledfromthechambersidewallandthedistancebetweentheGLADsubstrateholderandthenormalofe-beamsourceis260mm.Thedepositionuxisincidentontoasubstratewithalargeangle()withrespecttothesurfacenormalandthesubstrateisrotating.GLADproducescolumnarstructuresthroughtheeffectofshadowingduringlmgrowth,whilethesubstraterotationcontrolstheshapeofthecolumns.Inthistechnique,therearethreeparametersthatdeterminethemorphologyofthecolumns:theincidentangle,thedepositionrateandthesubstraterotationrate.TheangleandrotationrateoftheGLADholdercanbeadjustedintherangesof45to90andof0.05to8.6rpm,respectively.Thechamberwasevacuatedbyamechanicalpump(ALCATEL-2033SD)andacryo-pump(CTI-Cryo-Torr8)toabasepressurebelow5.3105Pa.Thesubstratesusedwere1815mm2indium-tinoxide(ITO)oxidecoated,0.5mmthicksodalimeglasswithanas-delivered

1591

resistivityof7.0/square.TheTiO2lmsweredepositedat350Cmaintainedbyquartzlampsinoxygenatmosphere(4.0103Pa)usingrutileTiO2(99.99%)asasourcematerial.Thelmdepositionratewas2.0nm/sandcontrolledbyaquartzcrystalmonitor.AdenseTiO2lmof200nmthickasbarrierlayerwasrstdepositedusingtheregularsubstrateholder.Then,thesamplesweretransferredtotheGLADholderrotatingataconstantrateof1rpmfordepositionofaporousTiO2layerof4mthickwithoutsubsequentcalcination.Aseriesoftitaniumoxidelmsweredepositedatfourdifferentobliqueanglestothesubstratenormal:53,65,73,and86,andtheywereassignedasFilmsA,B,CandD,respectively.ThelmstructureandcrystallinitywereinvestigatedbyaRigakuD/MAX-2500V18kWlowangleX-raydiffractometer(XRD)operat-ingwithCu-Kradiationat40kVand150mA.Thelmmorphologieswereinvestigatedusingaeldemissionscanningelectronmicroscope(SEM)ofJEOLJSM-7000F.TheopticalabsorptionspectraofthesamplesweremeasuredbyUVvisiblespectrometerofJascoV650inawavelengthregionof200~900nm.DSSCcomprisesadye-coatedTiO2lmonatransparentconduct-ingglasssubstrate,aPt-coatedcounterelectrode,andaredoxelectrolyte.Beforedyesensitization,theTiO2lmswereheatedonahotplateat100Cfor10mintogetridofwatervapor.Thelmswerethenimmersedinadyesolutionof5104MofN719(cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium)(Ru620-1H3TBA,SolaronixSA,Swit-zerland)inethanolandkeptat70Cfor24h.Theexcessdyeofthesamplewasremovedbyrinsingwithethanolandthesamplewasdriedinsideaventhood.Thedye-coatedTiO2lmwasthenbondedtoacounterelectrodepreparedbysputteringa~100nmofplatinumlmonaglassplate.Aredoxelectrolyteof0.1MI2,1.0MLiIand0.5M4-ter-butylpyridineinacetonitrilewasintroducedintotheinter-electrodespacebycapillaryaction.Aclipwasusedtoholdthesandwichedelectrodestogether.TheDSSCsincorporatedwithFilmsA,B,CandDasphotoanodearedesignatedasCellsA,B,CandD,respectively.ThecellswereilluminatedwithaclassAxenonarcsolarsimulator,whichcontainsa1000WXenonarclamp.Thecurrentvoltagecharacteristicsofdevicesweremeasuredunderthestandardconditionsat25Cwithairmass1.5andpowerdensityof1000W/m2.ThesolarsimulatorwascalibratedwithareferencecellcalibratedbyNationalRenewableEnergyLaboratory[19].Theoverallenergyconversionefciency,,ofasolarcelldeterminesitsperformance.Threeparametersareusedtocharacterizesolarcelloutputsincludingshortcircuitcurrent,Isc,opencircuitvoltage,Voc,andllfactor(FF).TheFFiscalculatedfromtheratioofthemaximumpowerpoint(denedbythesquareoftheIVcurve)dividedbytheproductofIscandVoc.Themaximumcellpoweroutput,Pm,isgivenbyPm=FFIscVoc.TheenergyconversionefciencyisthengivenbyPm/Pin,wherePinisthetotalpowerinputbythelightincidentonthecell[20].

Fig.1.XRDpatternsofTiO2lmsdepositedatvariousincidentanglesfrom53to86.

3.ResultsanddiscussionFig.1showstheXRDpatternsoftheGLADTiO2lmsofFilmsA,B,CandDdepositedatvariousincidentangles.MostofthepeaksinthepatternscouldbeassignedtotheanatasephaseofTiO2inadditiontothepeaksfromtheITOsubstrate.Theintensitiesandpositionsofthepeaksremainaboutthesameexceptthewidthofthepeaks.Thewidthsofthepeaksbecomebroaderasgaugedfromthefullwidthathalfmaximum(FWHM)ofthe(101)peak.TheFWHMsofthe(101)peaksincreasefrom0.64to0.81,whentheincidentangleisincreasedfrom53to86,indicatingareductionofoverallanatasecrystallinity.Fig.2showstheFESEMmicrographsofthetopandcross-sectionalviewoftheGLADTiO2lms.Themicrographsrevealasignicantdifferencebetweenlmsdepositedatdifferentincidentanglesfrom53to86.Undernormallmgrowthbyvapordepositionmethods,thesubstratesurfaceisusuallynormaltotheuxofsourcematerial(=0)andthetypicalresultantlmisofdensecolumnarstructureandwithapackingfactorover90%[17].Withtheincreasingincidentangle,thelmmorphologychangesandthelmporosityincreasesduetotheself-shadowingeffect.FilmAdepositedat=53isstillrelativelydensefromtopview,butcross-sectionalviewrevealsadensely-packedhelicalcolumnarstructure.Forthelmsdepositedat=65andabove,poresareclearlyseenonthetopsurfaceandemptyspacesorgapsbetweenthehelicalcolumnsareobviousfromsideview.Thediametersofthehelicalcolumnsandtheseparation(gap)betweenthemincreasewithincreasingincidentangleofdeposition.ItisevidentfromFig.2thatasthedepositionangleisincreasedfrom65,73to86thediameterofthehelicalcolumnsincreasesandthegapsbetweenthecolumnsincreasesfrom~15nm,~16nmto~56nm,respectively.Thus,theeffectivesurfaceareaalsochangeswithdepositionangle.Thesurfaceareaofthelmcontinuestoincreasewithdepositionangleuntilallthecolumnsbecomeisolated.Thereafter,thesurfaceareadecreasessincethedensityofthenumberofcolumnsdecreasesduetoincreasesincolumnsizeandgap.Itwasreportedthattheeffectivesurfaceareabecomesmaximumat=~70asaresultofthecompetitionduetothecolumnarformationandduetothecolumnarspacingorgap[21,22].Fig.3showstheUVVisibleabsorptionspectraoftheas-depositedTiO2lms(solidline)andofthelmsafterdyeabsorption(dottedline)aswellasoftheabsorbeddyealone(inset).Thespectrashowtwoimportantcharacteristics.Astheincidentangleisincreasedto86,theabsorptionedgesofTiO2lmsred-shiftto450nm,andatthesametime,theabsorptiontailsinvisibleregion(400700cm1)becomesmoreintense.Thisphenomenoncanbeattributedtotheincreasinglmporosity,crystallinityanddefects.Afterthelmswere

1592H.-Y.Yangetal./ThinSolidFilms518(2009)15901594

Fig.2.FESEMmicrographsofthetopandcross-sectionalviewoftheTiO2lmsdepositedatdifferentincidentanglesof(a)53,(b)65,(c)73and(d)86from53to86.

impregnatedwiththeN713dye,theabsorptionedgesofallthespectrared-shiftedfurtherwithhigherlevelsofabsorptiontail.ThisisclearlyduetotheabsorptionofdyeontheinternalsurfaceoftheporoussculpturedTiO2lm.Thedyewhichispresentintheformofahighlydispersedcoveringorasashellonthesurfaceoftitaniagrains,isreectedintheUVVisspectraasanintense,broadabsorptioninthevisibleregion.Wehaveintegratedtheabsorptionbetween400nmand700nmofthespectraofeachlmbeforeandafterdye

impregnationandfromthedifferenceofthetwospectraweobtainedthenetabsorptionbytheabsorbeddyealone(insetinFig.3).Theintegratedlightabsorptionbytheas-depositedlms,bythelmsabsorbedwithdyeandbythedyealoneaswellasthenormalizedlightabsorptionbydyealonearetabulatedinTable1.FilmDhasthelargestlightabsorptionofall,butFilmChasthelargestnetlightabsorptionbytheabsorbeddye.FilmAhasthelowestporosityandabsorbedthesmallestamountofdye.

H.-Y.Yangetal./ThinSolidFilms518(2009)15901594

1593

Fig.3.UVVisibleabsorptionspectraoftheas-depositedTiO2lms(solidline)andofthelmsafterdyeabsorption(dottedline).Theinsetisthenetabsorptionbytheabsorbeddye.

Table2providesthesummarizedresultsfromcellcharacterizationofDSSCsincorporatingtheGLADTiO2lms,andFig.4showsthephotovoltaicmeasurementsusedtogeneratethevaluesinTable2.ThecellperformanceoftheDSSCsmadeoftheGLADTiO2lmsvariedquitealotwiththeincidentangleofdeposition.CellCperformedsignicantlybetterthantherestofthecellsintermsofshortcircuitcurrentdensityJscandtheoverallsolarconversionefciencyofthecells.Theopencircuitvoltage(Voc)isabout0.6Vandthellfactorisabove71%foralltheDSSCs.Themaximumphotovoltageobtainablefromthistypeofsolarcellisdependentontherelativepositionoftheconductionbandedge(VCB)ofTiO2electrodeandtheredoxpotentialoftheelectrolyte.Allthelmsweredepositedatarelativelyhighsubstratetemperatureat350C,resultinginlmsofcomparablecrystallinityandthussimilarVoc.ThesameelectrolytewasusedinalltheDSSCsandshouldpossesssimilarredoxpotential.Therefore,thevaluesofVocforalltheDSSCsareaboutthesame.Theshortcircuitcurrentdensities(Jsc)arequitedifferentamongtheDSSCs.CellChasthehighestJscandfollowedbyCellsD,BandA.TheJscisdirectlylinkedtotheamountoflightabsorbedandconvertedbythecell,soitisinuencedmainlybytheamountofdyeabsorbed.However,theamountoflighttrappedandthequalityofTiO2photoanodethatdeterminestheelectrondiffusionefciencycanalsoaffectJsc.PhotoanodeofTiO2intheanatasephaseofhighcrystallinitywillimprovethetransportofinjectedelectrons,reducerecombinationwiththeelectrolyteandresultinhigherquantumefciencies.ThemaximumJscofCellCmaybeexplainedwithregardtothelargestamountofadsorbeddye,sincetheamountofdyeadsorbedwillbeproportionaltotheaccessiblesurfaceareaandFilmCoftheGLADTiO2layerprovidesthemostaccessibleinternalsurfacearea.TheGLADlmswithconnectedopenporeslikelyimprovetheaccessibilityoftheentirelminternalsurfacetothedyeandtothe

Table1ThecrystallinityoftheGLADtitanialmandtheintegratedlightabsorption(ILA)bythelms,thelmsabsorbedwithdyeandthedyealone.FilmIDABCDIncidentAngle53657386FWHM,An(101)0.650.810.800.81ILAofFilmalone36.44468196.5ILAofFilm+Dye56.0177242.9308.3ILAofDyealone19.6133174.9111.8Normalizeddyeabsorption0.110.7610.64

Table2PhotovoltaiccharacteristicsoftheDSSCsincorporatingtheGLADTiO2lms.Film/CellABCDIncidentAngle53657386Voc(V)0.59(0.02)0.64(0.02)0.62(0.01)0.58(0.03)Jsc(mA/cm2)2.2(0.1)3.9(0.2)6.0(0.1)5.4(0.3)FF%71(2)72(4)74(2)77(3)%0.92(0.09)1.81(0.15)2.78(0.08)2.40(0.1)

electrolyte,leadingtoamoredirectpathfortheinjectedelectrons.Furthermore,thecolumnarnatureoftheGLADlmsprovidesamoredirectandshorterpathforelectrontransfer.ThisresultisconsistentwiththereportbyTagaetal.TheresultsoftheirsimulationandactualpreparationofGLADTiO2lmsindicatedthattheeffectivesurfaceareaisenhancedbyobliquedepositionowingtocolumnarformationandbecomesmaximumatadepositionangleof70.Thelmsdepositedat70possessthemaximumeffectivesurfaceareaandthebestphotocatalyticperformance[21,22].ThellfactorsoftheDSSCsare7177%,muchhigherthanmostofthereportedvaluesinliterature[5,6].AsthellfactorisinuencedbytheinterfacesofthemajorcomponentsinDSSCs.TwooftheinterfacesarefromthecontactsbetweentheTiO2photoanodeandtheconductingelectrodesofITOandPt.SinceGLADproducesawell-adheredandwell-organizedsculpturedstructureontheITOlayerandthetopsurfacesofporousTiO2layerarerelativelyatwhichensuresgoodcontactwiththeotherconductingelectrodeofPt-coatedglass.ThetightinterfacesbetweentheTiO2photoanodelayerandthetwoconductingelectrodescontributepositivelytoahighllfactor.TheoverallefcienciesoftheDSSCsincorporatedwiththeGLADTiO2photoanodeinthisstudyweredecidedlargelybytheirJsc.Assuch,thecellswithTiO2layerannealedathighertemperaturestoenhancecrystallinityandwiththickerTiO2layertoincreasetheamountofdyeabsorptionwilllikelyincreaseJscvaluesandtheoverallefciency.Indeed,wehavepreparedanotherseriesofGLADTiO2lmswithvariousthicknessesfrom410matincidentangleof86.Thelmsweredepositedatambienttemperatureandsubsequentlyannealedat350Ctooptimizetheircrystallinity.ThecellefcienciesincreasemonotonicallywithTiO2lmthicknessupto5.23%forthe10mthicklmandtheresultswillbereportedinanotherpaper.Furtherimprovementincellefciencyshouldbepossiblebyoptimizationofcrystallinity,nanostructures,porosityandlmthicknessoftheGLADTiO2photoanode.

Fig.4.IVphotovoltaicmeasurementsoftheDSSCsusedtogeneratethevaluesinTable2.

1594H.-Y.Yangetal./ThinSolidFilms518(2009)15901594

4.Conclusions

Photoanodeofsculpturedporousnano-columnartitaniumoxidelmsweresuccessfullypreparedbyglancingangledeposition(GLAD)methodandintegratedintoDSSCs.Thephotoanodeoforderedporousnano-columnarTiO2layerprovideslargesurfaceareafordyeabsorption,fastelectrontransferpath,enhancedlighttrapping,andtightinterfacestoconductingelectrodesandcontributestoahighllfactorandanoverallcellefciency.AwidevarietyofporousnanostructuresofsemiconductingoxidescreatedbyGLADcanbefurtheroptimizedsystematicallyforDSSCstoachieveevenhigherpowerefciencies.Acknowledgements

FinancialgrantbyTaiwanNationalScienceCouncilunderNo.96-2221-E-259-010-MY3andtheuseofcore-facilityofNanotechnologyCenterinEastTaiwanareacknowledged.

References[1]O'Regan,M.Grtzel,Alow-cost,high-efciencysolarcellbasedondye-sensitizedcolloidalTiO2lms,Nature353(1991)737.[2]M.Grtzel,Nature414(2001)338.[3]M.Grtzel,J.Photochem.Photobiol.,AChem.164(2004)3.[4]J.M.Kroon,N.J.Bakker,H.J.P.Smit,P.Liska,K.R.Thampi,P.Wang,S.M.Zakeeruddin,M.Grtzel,A.Hinsch,S.Hore,U.Wurfel,R.Sastrawan,J.R.Durrant,E.Palomares,H.Pettersson,T.Gruszecki,J.Walter,K.Skupien,G.E.Tulloch,Prog.Photovolt.:Res.Appl.15(2007)1.

[5]V.Thavasia,V.Renugopalakrishnan,R.Jose,S.Ramakrishna,Mater.Sci.Eng.R63(2009)81.[6]A.B.F.Martinson,T.W.Hamann,M.J.Pellin,J.T.Hupp,Chem.Eur.J.14(2008)4458.[7]ChristopheJ.Barbe,etal.,J.Am.Ceram.Soc.80(1997)3157.[8]J.Rodr'guez,M.Go'mez,J.Lu,E.Olsson,C.G.Granqvist,Adv.Mater.12(2000)341.[9]M.Go'mez,J.Lu,J.L.Solis,E.Olsson,A.Hagfeldt,C.G.Granqvist,J.Phys.Chem.,B104(2000)8712.[10]G.K.Kiema,M.J.Colgan,M.J.Brett,Sol.EnergyMater.Sol.Cells85(2005)321.[11]S.M.Waitaa,B.O.Adudaa,J.M.Mwabora,C.G.Granqvist,S.E.Lindquist,G.A.Niklasson,A.Hagfeldt,G.Boschloo,J.Electroanal.Chem.605(2007)151.[12]H.vanKranenburg,C.Lodder,Mater.Sci.Eng.,RRep.R11(1994)295.[13]K.Robbie,M.J.Brett,A.Lakhtakia,Nature384(1996)616.[14]R.Messier,C.Gehrke,C.Frankel,V.C.Venugopal,W.Otano,A.Lakhtakia,J.Vac.Sci.Technol.A15(1997)2148.[15]Y.-P.Zhao,D.-X.Ye,G.-C.Wang,T.-M.Lu,in:LakhtakiaAkhlesh(Ed.),ProceedingsofSPIEVol.5219NanotubesandNanowires,2003,p.59.[16]K.Robbie,G.Beydaghyan,T.Brown,C.Dean,J.Adams,C.Buzea,Rev.Sci.Instrum.75(2004)1089.[17]CMZhou,DGall,J.Appl.Phys.103(1)(2008)014307.[18]T.S.Yang,C.B.Shu,M.S.Wong,Surf.Sci.548/1-3(2004)75.[19]C.HHuang,C.H.Huang,T.P.Nguyen,C.S.Hsu,ThinSolidFilms515(2007)6493.[20]A.Martin,Green,SolarCells:OperatingPrinciples,Technology,andSystemApplications,Prentice-Hall,Inc.,(EnglewoodCliffs,NJ,1982pp.7981.[21]M.Suzuki,T.Ito,Y.Taga,Appl.Phys.Lett.78(2001)3968.[22]M.Suzuki,Y.Taga,J.Appl.Phys.90(2001)5599.