artigo - ultrasonic welding

Upload: alexandre-urquiza

Post on 03-Jun-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/12/2019 Artigo - Ultrasonic Welding

    1/7

    U l t r a s o n i c W e l d i n g

    T h e o r y

    - P r i n c i p l e s

    H P o t e n t e

    Technologie der Kunstoff Universitfit-Gesamthochschule, Pohlweg 47/49

    4790 Paderborn, Federal Republic of Germany

    This paper looks into the fundamental phenomena of ultrasonic welding. It starts with a simple model rod, covering the

    sound field, energy conversion and energy transmission. The geometrical dependence of ultrasonic energy transmission

    and the energy conversion in the energy director are then examined on simple joined parts with real contact surface

    geometries. Finally, criteria are set out fo r assessing the welding capacity of thermoplastics. The paper concludes by

    showing the signO canee of oining pressurg for welded seam quality.

    I n t r o d u c t i o n

    Ultrasound welding has come to gain a

    significant share of the market over the

    past twenty years. A survey of the

    developments and research of these

    years may be found in references 1-2 2.

    Welding machines are available both

    as compact units and as ultrasonic kits.

    The latter are purpose-designed for

    incorporation in special machines pro-

    duction lines and multiple-head plants.

    Automatic welding machines with up to

    62 sound generators are now built for

    large parts - such as motor car instru-

    ment panels and bumpers.

    The key to the success of this process

    lies chiefly in the very short welding

    times. These are generally in the order

    of magnitude of 0.1 to 1 sec. I t must

    however be added that the moulded

    part and the process must be precisely

    tailored to each other since the shape

    of the part influences the welding

    process to a much greater degree than in

    any other method. Failures with this

    process are generally due to a lack of

    coordination between the machine manu-

    facturer and the user.

    This paper will look into the basic

    principles and the theory behind ultra-

    sonic welding.

    S o u n d f ie ld a n d e n e r g y c o n v e r s i o n

    When plastics are joined by ultrasonic

    welding longitudinal vibrations are

    transmitted from the sonotrode to the

    parts being joined. The frequency of the

    vibrations lies between 20 and 50 kFIz.

    A stationary wave field forms in the

    joined parts. This has a decisive in-

    fluence on the energy transmission and

    the energy conversion. Theoretical

    predictions about the wave field are

    only possible in the simplest of geo-

    metrical cases.

    This is to be explained in greater

    F i g . 1

    F r i n g e p a t t e r n o f th e s o u n d f i e ld a n d e n e r g y

    c o n v e r s i o n i n a r o d 1 0 1 3

    2 2 8 M A T E R I A L S D E S IG N V oL 5 O C T O B E R / N O V E M B E R 1 9 8 4

  • 8/12/2019 Artigo - Ultrasonic Welding

    2/7

    d e t ai l t a k i n g th e e x a m p l e o f a r o d

    i r r a d ia t e d b y u l t r a - s o u n d 1 0 , 1 3 . F ig u re 1

    l e f t ) s h o w s t h e f r i n g e p a t t e r n o f a

    s t a t i o n a r y l o n g i t u d i n a l w a v e . T h e r o d i s

    p l a c e d o n a r e v e r b e r a n t s u p p o r t s t e e l

    a n vi l) . W e l l - f o c u s e d z o n e s a n d o u t - o f -

    fo c u s , i . e . b lu r re d r e g io n s a re v i s ib l e in

    t h e F i g u r e .

    P r o c e e d i n g f r o m t h e s u p p o r t u n d e r

    th e ro d , i . e. t h e s t e e l a n v i l , t h e f i r s t w e l l -

    f o c u s e d z o n e o c c u r s a t a r o d l e n g th o f

    l

    ---- X / 4 t h e s e c o n d a t 3 X / 4 a n d t h e n t h

    a t 1 = n X / 2 + ) , / 4 , w h e r e ) k i s t h e

    w a v e l e n g t h . T h e s e r e g i o n s a r e t h e

    z o n e s o f m a x i m u m v i b r a t i o n a l a m p li -

    t u d e . T h e p o i n t s o f m a x i m u m a l t e r n at i n g

    s t r a i n o r a l t e r n a t i n g s t r e s s a r e p h a s e -

    s h i ft e d b y a q u a r t e r w a v e l e n g t h i n e a c h

    c a s e . T h e s e a r e t h e b l u r r e d a r e a s i n

    F i g , 1 . T h e y l ie m i d w a y b e t w e e n t w o

    w e l l - f o c u s e d z o n e s . T h e p l a s t i c o n l y

    s o f t e n s a n d f u s e s i n t h e r e g i o n o f

    m a x i m u m s t r a i n o r s t r e s s F i g . 1 , r i g ht ) .

    A f u r t h e r z o n e o f f u s e d p l a s t i c o u g h t

    t h e o r e t i c a l l y t o h a v e o c c u r r e d i n t h e

    r e g i o n o f t h e r o d s u p p o r t . T h e r e a s o n

    f o r i t s a b s e n c e i s t o b e f o u n d

    a ) i n t h e h i g h s o u n d a b s o r p t i o n o f th e

    f u s e d z o n e s a b o v e i t

    b ) i n t h e h i g h h e a t t r a n s f e r h e a t

    c o n d u c t i o n ) i n t h e s t e e l a n v i l .

    W i t h a so u n d - a b s o rb e n t s u p p o r t - i n

    t h e e x t re m e c a se , a i r - t h e m a x i m u m

    v i b r a t io n a l a m p l i t u d es o c c u r a t r o d

    l e n g t h s o f l = n ) k / 2 w h e r e n = 0 , 1 , 2 .. ..

    a n d t h e m a x i m u m s t r a i n o r st r e s s a t I =

    n ) k / 2 + ) k / 4 .

    T h e c o n c l u s i o n t o b e d r a w n i n it i al l y

    f r o m t h e s e m o d e l i n v e s t i g a t i o n s i s t h a t

    w e l d e d s e a m s m u s t b e p l a c e d i n t h e

    a r e a o f m a x i m u m s t r ai n o r s tr e ss .

    T h e e n e r g y t r a n s m i s s i o n f r o m t h e

    s o n o t r o d e t o t h e r o d i s li k e w i s e d e p e n d -

    e n t o n g e o m e t r y . W i t h a r e v e r b e r a n t

    t e r m i n a t io n , m a x i m u m e n e r g y t r a n s -

    m i s s i o n i s o b t a i n e d w i t h r o d l e n g t h s o f

    1 - - n ) k / 2 + ) k / 4 w h e r e n = 0 , 1 , 2 . . .)

    a n d w i t h a s o u n d - a b s o r b e n t t e r m i n a -

    t i o n a t 1 = n ) k / 2 . M i n i m u m e n e r g y

    t r a n s m i s s i o n o c c u r s a t r o d l e n g t h s

    p h a s e - s h i f t e d b y a q u a r t e r w a v e l e n g t h

    i n e a c h c a s e .

    T h e s e s i m p l e m o d e l i n v e s t i g a t i o n s

    a l r e a d y s h o w t h e d e c i s i v e i n f lu e n c e o f

    m o u l d e d p a r t g e o m e t r y o n t h e t r a n s -

    m i s s i o n o f u l t r a -s o u n d a n d o n t h e

    c o n v e r s i o n o f th e s o u n d i n t o h e a t.

    E n e r g y t r a n s m i s s io n

    F l a t c o n t a c t s u r f a c e s a r e u n s u i t ab l e f o r

    u l t r a s o n i c w e l d i n g . T h e r e a s o n f o r t h is

    w i l l b e g i v e n l at e r. T h e c o n t a c t s u r f a c e

    g e o m e t r i e s d e p i c t e d i n F i g s . 2 a n d 3

    h a v e p r o v e d s u c c e s s f u l , w i t h t h e g e o -

    m e t r i e s s h o w n i n F i g . 2 g e n e r a l l y b e i n g

    u s e d f o r a m o r p h o u s t h e r m o p l a s t i c s a n d

    t h o s e i n F i g . 3 f o r s e m i - c r y s t a l l i n e

    - : - 0 1

    F i g 2

    C O

    Q U

    C o n t a c t s u r f a ce g e o m e t r i e s r e f 2 0

    MATERIALS DESIGN VoL 5 OCTOBER/NOVEMBER 1984 229

  • 8/12/2019 Artigo - Ultrasonic Welding

    3/7

    t hermop l as t i cs .

    Al m os t a l l con t ac t su rf ace geomet r i es

    h a v e a V - s h a p e d t o n g u e . T h i s i s c a l le d

    t he ene rgy d ir ec t o r. Th i s energy d i r ec t o r

    c a n b e v i e w e d i n g o o d a p p r o x i m a t i o n

    a s a f e a t h e r k e y w h i c h c o n n e c t s t h e

    u p p e r a n d l o w e r j o i n c o m p o n e n t s t o

    e a c h o t h e r .

    H e r e a g a i n th e r e a r e j o i n e d p a r t

    geomet r i es and c r i t i ca l l eng t hs where

    n o e n e r g y t r a n s m i s s i o n t a k e s p l a c e

    f r o m t h e s o n o t r o d e t o t h e p a r t b e i n g

    j o i ne d . W i t h s i m p l e jo i n e d p a r t g e o -

    m e t r i e s s u c h a s r o d , p a n e l o r p i p e

    sys t ems , t hese c r i t i ca l l eng t hs can be

    c a l c u l a t e d b y t h e f o l l o w i n g e q u a t i o n

    ref. 11, 13:

    s - 7 m I . +

    T h e p a r a m e t e r s c o n t a i n e d i n t h i s

    equat i on a re p resen t ed i n F i g , 4 . Para-

    me t er s lb and Sb can be i n f l uenced w i t h in

    cer t a i n l i mi t s by t he j o i n i ng p ressu re

    s t a t i c con t ac t p ressu re) .

    I f the v i b ra t i ona l am pl i t ude a t t he

    s o n o t r o d e o u t p u t is e n t e r e d a s a m e a s u r e

    o f t h e e n e r g y t r a n s m i s s io n , t h e n t h e

    cr i t i ca l l eng t hs can be es t ab l i shed expe r i -

    m e n t a l l y . F i g u r e 5 s h o w s a n e x a m p l e o f

    t h i s r e f. 12 , 13 . The c r i t i ca l va l ue here i s

    24 .4 hUrL Th e va l ue o b t a i ned t heo re t i -

    ca l l y i s 24 .6 mm.

    I - - -

    1

    ' / / / A

    t . ~

    Fig . 3 Contact surface geom etr ies re f 20

    + 1 . = ?

    T h i s p r o n o u n c e d d e p e n d e n c e o f t h e

    t r a n s m i tt a b l e e n e r g y o n t h e g e o m e t r y o f

    t h e j o i n e d p a r t o c c u r s p r i m a r i ly a t h i g h

    j o i n i n g p r e s s u r e s . I t c a n b e r e d u c e d

    a l m o s t c o m p l e t e l y i f th e j o i n in g p r e s s u r e

    s t a t i c con t ac t p ressu re) i s l owered

    a c c o r d i n g l y F i g 6 ) . T h e r e is t h e n,

    h o w e v e r , a d a n g e r o f t h e s o n o t r o d e

    l e a v in g m a r k s o n t h e s u r f a c e o f t h e j o i n e d

    p a r t . T h e s e m a r k s c a n b e a v o i d e d i f

    po l ye t hy l ene f i l m o r s i mi l a r i s p l aced

    b e t w e e n t h e s o n o t r o d e a n d t h e p a r t b e i n g

    j o i ned .

    A p a r t f r o m t h e j o i n in g p r e s s u r e , t h e

    sono t rode mass a l so has an i n f l uence .

    T h e g e o m e t r y - d e pe n d e n c e o f th e e n e r g y

    t r ansmi ss i on f a l l s wi t h an i ncreas i ng

    sono t rod e mass r e f . 12 , 13 .

    En e r g y c o n v e r s i o n

    A s h a s a l r e a d y b e e n s h o w n w i t h t h e

    exam pl e o f t he rod i r r ad i a t ed wi t h u l t r a -

    sound , t he m at er i a l fu ses a t po i n t s o f h igh

    a l t e rna t i ng s t r a i n o r s t r ess . Fo r t he

    e n e r g y d i r e c t o r t h i s m e a n s t h a t a h i g h

    v i b ra ti ona l ampl i tude , A , mus t be p resen t

    at i t s input . A t i t s output , i .e . at the poin t

    o f c o n t a c t w i t h t h e l o w e r j o i n e d p a r t , b y

    con t r as t , t he ampl i t ude shou l d be as

    smal l as poss i b l e , o r i n t he i dea l case ,

    zero . The m ax i m um s t r a i n ~ i s t hen , by

    wa y o f a fi r s t app rox i mat i on , t he qu o t i en t

    o f t he d i f f e r ence i n v i b ra t i ona l ampl i -

    t u d e s A A a n d t h e h e i g h t o f th e e n e r g y

    d i r e c t o r Ib E ~ A A f l b ) .

    F i g u r e 7 s h o w s m e a s u r e d v i b r a t io n a l

    osci l lat ion dis tr ibut ions in d i f feren t p lane s

    SO ~

    L

    ~ S C D

    / / / / / / / / / / / / / / /

    / / / / / / ~ /

    Fig . 4 Diagram matic sketch of a

    rod shaped jo ine d part geometry

    2 3 0 M A T E R I A L S D E S IG N V ol. 5 O C T O B E R / N O V E M B E R 1 9 8 4

  • 8/12/2019 Artigo - Ultrasonic Welding

    4/7

    1 2

    p m

    9