artificial intelligence and iot

85
Page 1 Free Powerpoint Templates Programmable web of the future { firstName: Veselin, lastName: Pizurica, epochTime: 1381953702 }

Upload: veselin-pizurica

Post on 25-Dec-2014

953 views

Category:

Technology


1 download

DESCRIPTION

Artificial intelligence and IoT talk at IoTBE - The Belgian Internet of Things user group November 21, 2013 iMinds

TRANSCRIPT

Page 1: Artificial intelligence and IoT

Page 1 Free Powerpoint Templates

Programmable web of the future

{ firstName: Veselin, lastName: Pizurica, epochTime: 1381953702

}

Page 2: Artificial intelligence and IoT

Page 2

Today talk is about the future - future of the web

Integration/convergence: – API’s – Sensor Networks/M2M – Cloud – Data mining –  Intelligent decision engines

Page 3: Artificial intelligence and IoT

Page 3

Introduction to AI

– Learning, Pattern recognition –  Intelligent agents – Probabilistic reasoning and uncertainty – Graphical models

Page 4: Artificial intelligence and IoT

Page 4

Material used

•  UGent AI course: http://telin.ugent.be/~sanja/ArtificialIntelligence •  BaysiaLab  white  paper  •  Wikipedia  •  Google  search  

Page 5: Artificial intelligence and IoT

Page 5

Map  of  Analy;c  Modeling    

Breiman  (2001)  and  Shmueli  (2010)

Page 6: Artificial intelligence and IoT

Page 6

= f (X)

Predic;ve  modeling  

Page 7: Artificial intelligence and IoT

Page 7

Y = (X)

Explanatory  modeling  

Page 8: Artificial intelligence and IoT

Page 8 8  

Intelligent  agents  

Agent:  an  en;ty  that  perceives  and  acts  (from  La;n  agere,  to  do)  Ra)onal  agent  is  one  that  acts  so  as  to  achieve  the  best  outcome,  or  when  there  is  uncertainty,  the  best  expected  outcome  Abstractly,  an  agent  is  a  func;on  from  percept  histories  to  ac;ons:  For  any  given  class  of  environments  and  tasks,  we  seek  the  agent  (or  class  of  agents)  with  the  best  performance  In  prac;ce,  computa;onal  limita;ons  make  perfect  ra;onality  unachievable  à  design  best  program  for  given  machine  resources  

Page 9: Artificial intelligence and IoT

Page 9

Ra;onality  

9  

•  A  ra;onal  agent  is  one  that  does  the  right  thing.    •  How  do  we  know  whether  it  is  the  right  thing?    

-­‐    By  considering  the  consequences  of  the  agent  behavior  (i.e.,  the  sequence  of  states  through  which  the  environment  goes  as  a  result  of  agent’s  behavior)  

•  A  sequence  of  states  (through  which  the  environment  goes)  is  evaluated  by  a  performance  measure    

Page 10: Artificial intelligence and IoT

Page 10

Specifying  the  task  environment  

10  

To design a rational agent, we must specify the task environment Consider the task of designing an automated taxi:

–  Performance measure: safety, destination, profits, legality, comfort

–  Environment: streets/freeways, traffic, pedestrians, weather –  Actuators: steering, accelerator, brake, horn, speaker/display –  Sensors: video, acceleromaters, gauges, engine sensors,

keyboard, sensors

Page 11: Artificial intelligence and IoT

Page 11

Environment  types  

11  

Page 12: Artificial intelligence and IoT

Page 12

Environment  types  

12  

Page 13: Artificial intelligence and IoT

Page 13

Environment  types  

13  

Page 14: Artificial intelligence and IoT

Page 14

Environment  types  

14  

Page 15: Artificial intelligence and IoT

Page 15

Environment  types  

15  

Page 16: Artificial intelligence and IoT

Page 16

Environment  types  

16  

Page 17: Artificial intelligence and IoT

Page 17

Environment  types  

17  

Page 18: Artificial intelligence and IoT

Page 18

Environment  types  

18  

Page 19: Artificial intelligence and IoT

Page 19

•  Four  basic  types  in  order  of  increasing  generality:  –  simple  reflex  agents  –  reflex  agents  with  state  –  goal-­‐based  agents  –  u;lity-­‐based  agents  

All  these  can  be  turned  into  learning  agents  

Agent  types  

19  

Page 20: Artificial intelligence and IoT

Page 20

Simple  reflex  agents  

20  

Page 21: Artificial intelligence and IoT

Page 21

Reflex  agents  with  state  

21  

Page 22: Artificial intelligence and IoT

Page 22

Goal-­‐based  agents  

22  

Page 23: Artificial intelligence and IoT

Page 23

U;lity-­‐based  agents  

23  

Page 24: Artificial intelligence and IoT

Page 24

Why  learning?

Why  do  we  want  an  agent  to  learn?  (Why  not  program  an  improved  design  from  the  beginning)?  

–  Cannot  an;cipate  all  possible  situa;ons  that  the  agent  might  find  itself  in  

–  Cannot  an;cipate  all  changes  over  ;me  –  Programmers  might  not  know  how  to  program  a  solu;on  themselves  (e.g.  how  to  program  face  recogni;on)  

 Learning  modifies  the  agent's  decision  mechanisms  to  improve  performance  

Page 25: Artificial intelligence and IoT

Page 25

Paaern  recogni;on

Unsupervised  learning  –  Learning  paaerns  without  explicit  feedback  supplied  –  The  system  forms  clusters  or  natural  groupings  of  the  input  paaerns  

(based  on  some  similarity  criteria).  ➡Clustering    

Reinforcement  learning  –  Learning  from  a  series  of  reinforcements  –  rewards  and  punishments  

Supervised  learning  –  Learning  a  func;on  that  maps  input  to  output  based  on  available  

(observed)  input-­‐output  pairs  (Correct  answers  for  each  instance)  

Semi-­‐supervised  learning  –  A  few  labeled  samples  available  and  a  large  collec;on  of  unlabeled  

ones  –  Learn  from  geometry  of  unlabeled  samples  and  use  the  labeled  ones  

to  improve  the  learning    

Page 26: Artificial intelligence and IoT

Page 26

Supervised  Learning

labeled training sets, used to train a classifier

Page 27: Artificial intelligence and IoT

Page 27

Unsupervised Learning

•  No labeled training sets are provided •  System applies a specified clustering/grouping criteria to unlabeled dataset Clusters/groups

together “most similar” objects (according to given criteria)

Page 28: Artificial intelligence and IoT

Page 28

Pattern Recognition Process Data acquisition and sensing

– Measurements of physical variables. – Important issues: bandwidth, resolution , etc.

Pre-processing – Removal of noise in data. – Isolation of patterns of interest from the background.

Feature extraction – Finding a new representation in terms of features.

Classification – Using features and learned models to assign a pattern to a category.

Post-processing – Evaluation of confidence in decisions.

Page 29: Artificial intelligence and IoT

Page 29

Feature vectors

Single object represented by several features, e.g. shape, size, color, weight

x1 = shape(e.g.nr of sides) x2 = size(e.g. some numeric value) x3 = color (e. g. rgb values) xd = some other(numeric)feature.

X becomes a feature vector

Page 30: Artificial intelligence and IoT

Page 30

Classical model of Pattern Recognition

Page 31: Artificial intelligence and IoT

Page 31

Example of Simple Classifier

Page 32: Artificial intelligence and IoT

Page 32

Clustering: k-means

Page 33: Artificial intelligence and IoT

Page 33

“Curse of dimensionality”

Finding  the  principal  eigenvectors  of  the  covariance  matrix  of  the  data:  PCA  

Page 34: Artificial intelligence and IoT

Page 34

PCA Principal component analysis (PCA) is a orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

It is not, however, optimized for class separability. An alternative is the linear discriminant analysis, which does take this into account. PCA is also sensitive to the scaling of the variables.

Page 35: Artificial intelligence and IoT

Page 35

Deep Learning

•  Choosing the correct feature representation of input data, is a way that people can bring prior knowledge of a domain to increase an algorithm's computational performance and accuracy. To move towards general artificial intelligence, algorithms need to be less dependent on this feature engineering and better learn to identify the explanatory factors of input data on their own.

•  Deep learning tries to move in this direction by capturing a 'good' representation of input data by using compositions of non-linear transformations.

Page 36: Artificial intelligence and IoT

Page 36

Two types of models •  Probabilistic graphical models have

nodes in each layer that are considered as latent random variables. In this case, you care about the probability distribution of the input data x and the hidden latent random variables h that describe the input data in the joint distribution p(x,h). These latent random variables describe a distribution over the observed data.

•  Direct encoding (neural network) models have nodes in each layer that are considered as computational units. This means each node h performs some computation (normally nonlinear like a sigmoidal function) given its inputs from the previous layer.

Page 37: Artificial intelligence and IoT

Page 37

Decision trees

1.  Learn rules from data 2.  Apply each rule at each

node 3.  Classification is at the

leafs of the tree

Page 38: Artificial intelligence and IoT

Page 38

Decision Trees example

Example:  decision  whether  to  wait  for  a  table  in  a  restaurant  depending  on  the  following  aaributes:  1.  Alternate  (Alt):  Is  there  a  suitable  alterna;ve  restaurant  nearby?  2.   Bar:  Is  there  a  comfortable  bar  area  in  the  restaurant,  where  I  can  wait?  3.   Fri/Sat  (Fri):  True  on  Fridays/Saturdays  4.   Hungry  (Hun):  Are  we  hungry?  5.   Patrons  (Pat):  How  many  people  are  in  the  restaurant  (None,  Some  or  Full)  6.   Price:  the  restaurant’s  price  range  ($,  $$,  $$$)  7.   Raining  (Rain):  Is  it  raining  outside?  8.   ReservaBon  (Res):  Did  we  make  a  reserva;on?  9.   Type:  the  kind  of  restaurant  (French,  Italian,  Thai  or  burger)  10.   WaitEsBmate  (Est):  the  wait  ;me  es;mated  by  the  host  (0-­‐10min,  10-­‐30,  30-­‐60,  or  >60)  

Page 39: Artificial intelligence and IoT

Page 39

Decision tree How  many  dis;nct  decision  trees  we  have  with  n  Boolean  aaributes?  =  number  of  Boolean  func;on  =  number  of  dis;nct  truth  tables  with  2^n  rows  =  2^n^n  E.g., with 6 Boolean attributes 18,446,744,073,709,551,616

Page 40: Artificial intelligence and IoT

Page 40

Uncertainty  

40  

? ?

?

Let  At  denote  the  ac;on  “leave  for  airport  t  minutes  before  flight”                                          Will  At  get  me  there  on  ;me?    

•  Purely  logical  approach  leads  to  weak  conclusions:  §   “A90  will  get  me  there  on  ;me  if  there  is  no  accident  on  the  way  and  it  doesn't  rain  and  my  ;res  remain  intact  and  no  meteorite  hits  the  car,  etc”  

§ None  of  these  can  be  inferred  for  sure  à  plan  success  cannot  be  inferred  

Page 41: Artificial intelligence and IoT

Page 41

Uncertainty  

41  

•  Consider  diagnosis  of  a  pa;ent  with  headache.  Many  reasons  are  possible  like  sinus  problems  or  eye  vision,  tense  muscles,  flu,  cancer,…  Suppose  a  logical  rule  that  aaempts  to  express  this  

Headache  ⇒  SinusiBs  ∨  EyeSight  ∨  SBffNeck  ∨  Flu  ∨  Cancer…

     

 

•  The  problem  is  that  there  is  almost  unlimited  list  of  possible  causes.    The  causal  rule,  like  SBffNeck=>Headache  doesn’t  work  either  (s;ff  neck  doesn’t  always  cause  headache)    

•  Trying  to  use  logic  in  this  type  of  domains  fails  because    §  there  is  too  much  work  to  list  all  the  aaributes  §  no  complete  theory  or  knowledge  §  not  all  the  necessary  tests  can  be  or  have  been  run  

     

 

Page 42: Artificial intelligence and IoT

Page 42

Theore;cal    

(no  complete  knowledge  of  the  domain)

Why  probabilis;c  reasoning?  

42  

•  Probabilis;c  reasoning  is  useful  because  logic  olen  fails  due  to  

Laziness   Ignorance  too  many  aaributes  to  list

and  

Prac;cal    

(not  enough  observa;ons,  tests,..)

•  Probabilis;c  asser;ons  summarize  the  effects  of  laziness  and  ignorance    

     

 

Page 43: Artificial intelligence and IoT

Page 43

Graphical  models    

43  

•  Graphical  models  • Markov  random  fields  •  Bayesian  networks  

Page 44: Artificial intelligence and IoT

Page 44

Graphical  models  

Graphical  models  

Bayesian  networks  

Graphical  models  are  related  to  mathema;cal  graph  theory  

44  

Page 45: Artificial intelligence and IoT

Page 45

•  A  graph  is  a  set  of  objects  (represented  by  nodes,  also  called  ver)ces  or  points),  where  some  pairs  of  the  nodes  are  connected  by  links  (edges).    

 •  If  the  edges  are  directed,  they  are  also  called  arrows  and  the  

graph  is  directed.  In  a  weighted  graph,  weights  are  assigned  to  the  edges.  The  graph  is  complete  if  all  the  ver;ces  are  connected  to  each  other.  

•  Probabilis;c  graphs  –  nodes  ↔  random  variables  (r.v.s)  –  edges  ↔  probabilis;c  dependencies  between  these  r.v.s.    

Probabilis;c  graphs  

45  

Page 46: Artificial intelligence and IoT

Page 46

•  Bayesian  networks  –  directed  graphical  models  

 • Markov  random  fields  –  not  directed  graphs  

Common  graphical  models  

X neighbors  of  X

descendants  of  X

X Causal  influence  

46  

Page 47: Artificial intelligence and IoT

Page 47

•  In  a  directed  graph      •  A  special  case:  Markov  chain    

•  Markov  random  field  

Markov  rule  

P(Xi | all other nodes) = P(Xi | Neighbors (Xi ))

P(Xi | all nondescend ants) = P(Xi | Parents(Xi ))

P(Xi | Xi−1,...,X1) = P(Xi | Xi−1)

47  

Page 48: Artificial intelligence and IoT

Page 48

•  Non-­‐directed  probabilis;c  graphs  •  Used  a  lot  in  digital  image  processing  and  computer  vision  •  This  example  illustrates  applica;on  in  image  segmenta;on  

 

Markov  Random  Fields  (MRFs)  

48  

Page 49: Artificial intelligence and IoT

Page 49

Bayesian  networks  

disease  1  

X-­‐ray    

symptoms  

travel  

smoker?  

disease  2  

49  

Page 50: Artificial intelligence and IoT

Page 50

Bayes’  rule  

50  

Olen  we  perceive  as  evidence  the  effect  of  some  unknown  cause  and  we  want  to  determine  that  cause,  e,g.  the  chance  of  diseasex  given  symptomy:  

   

                                                                                                   

Product  rule  

   

                                                                                                   

)()|()( bPbaPbaP =∧

Or  in  distribu;on  form  

   

                                                                                                   

Bayes’  rule  

                                                                                                       

)()()|()|(

bPaPabPbaP =

)()|()(

)()|()|( YYXX

YYXXY PPP

PPP α==

Useful  for  accessing  diagnos)c  probability  from  causal  probability  

   

                                                                                                   )(

)()|()|(Effect

CauseCauseEffectEffectCauseP

PPP =

)()()|(

)|(y

xxyyx symptomP

diseasePdiseasesymptomPsymptomdiseaseP =

Page 51: Artificial intelligence and IoT

Page 51

A  simple,  graphical  nota;on  for  condi;onal  independence  asser;ons  and  hence  for  compact  specifica;on  of  full  joint  distribu;ons  Syntax:  •  a  set  of  nodes,  one  per  variable  •  a  directed,  acyclic  graph  (each  link  means  “directly  influences”)  •  a  condi;onal  distribu;on  for  each  node  given  its  parents:  

Bayesian  networks  

51  

))(|( ii XParentsXP

Page 52: Artificial intelligence and IoT

Page 52

X has causal influence on Y •  Evidence for X forms causal support for Y •  Evidence for Y forms diagnostic support for X

Network:  directed  acyclic  graph  

52  

X

Y

nodes:  random  variables  

edges:  causal  influence  

Descendants  of  X Non-­‐descendants  of  X

Page 53: Artificial intelligence and IoT

Page 53

Network  separa;on  

53  

Let  us  inves;gate  (condi;onal)  independence  in  three  simple  networks  featuring  these  types  of  nodes,  and  let                                            denote  “a  and  b  are  condi;onally  independent  given  c”  

)|()|()(),,( cbPacPaPcbaP =)()(

)|()()|()|()(),(

bPaP

abPaPcbPacPaPbaPc

==∑

(in  this  network  a  and  b  are  in  general  not  independent)  

Consider  now  evidence  in    c:    P(a,b | c) = P(a,b,c)

P(c)=P(a)P(c | a)P(b | c)

P(c)=

= P(a | c)P(b | c)

 So,  we  can  say  that  the  node  c    blocks  the  path  between  a  and  b.  

Page 54: Artificial intelligence and IoT

Page 54

D-­‐separa;on  contd.  

The  sets  A  and  B  are  d-­‐separated  by  C  if    each  node  in  A  is  d-­‐separated  from  each  node  in  B  by  C

A,  B  and  C  are  non-­‐overlapping  sets  

54  

A B C

Page 55: Artificial intelligence and IoT

Page 55

Example:  Car  diagnosis  

55  

Ini;al  evidence:  car  won't  start  Testable  variables  (green),  “broken,  so  fix  it”  variables  (orange)  Hidden  variables  (gray)  ensure  sparse  structure,  reduce  parameters

Page 56: Artificial intelligence and IoT

Page 56

•  Belief  propaga;on  algorithm  was  introduced  by  Judea  Pearl,  1982  •  Exact  inference  in  networks  without  loops;  complexity  linear  in  the  number  

of  nodes  •   Became  very  popular  aler  it  was  shown  that  the  same  computa;ons  are  in    

turbo  codes  and  the  same  principles  in  the  Viterbi  algorithm  •  Main  idea:  inference  by  local  message  passing  among  neighboring  nodes  

           The  message  can  loosely  be  interpreted  as  “I  (node  i )  think  that  you            (node  j)  are  that  much  likely  to  be  in  a  given  state”.  

 

Belief  propaga;on  

56  

Page 57: Artificial intelligence and IoT

Page 57

Message  passing  revisited  

57  

1.  Distributed  soldier  coun;ng.  

2.  Distributed  soldier  coun;ng  with  the  leader  in  line.  

Page 58: Artificial intelligence and IoT

Page 58

Numenta: HTM model

An HTM network consists of regions arranged in a hierarchy. Jeff Hawkins: “It combines and extends approaches used in Bayesian networks, spatial and temporal clustering algorithms, while using a tree-shaped hierarchy of nodes that is common in neural networks.”

Read a book, it is a great fun ->

Page 59: Artificial intelligence and IoT

Page 59

Semantic web and IBM’s Watson

The "heart and soul” is Unstructured Information Management Architecture [UIMA]

Page 60: Artificial intelligence and IoT

Page 60

Presentation 2nd part

•  Smart web – API economy –  IOT

•  Bayesian nets – Troubleshooting and diagnostic – Sensor integration via plugin framework –  Inteligent decisions and actions – Cloud deployment –  IFTTT like application using framework above

Page 61: Artificial intelligence and IoT

Page 61

Page 62: Artificial intelligence and IoT

Page 62

API

•  APIs have become new patents •  Who holds the data, holds the knowledge •  Companies don’t share their know-how, but

they are willing to share their know-what (via application programming interface API)

•  API economy is coming, and it will be the major driver of the profit for many companies

Page 63: Artificial intelligence and IoT

Page 63

Classical products distribution

Services distributed via API

Page 64: Artificial intelligence and IoT

Page 64

API Market

Page 65: Artificial intelligence and IoT

Page 65

Page 66: Artificial intelligence and IoT

Page 66

Sensor Networks

•  Network of specialized sensors intended to monitor and record conditions at diverse locations.

•  Commonly monitored parameters are temperature, humidity, pressure, wind direction and speed, illumination intensity, vibration intensity, sound intensity, power-line voltage, chemical concentrations, pollutant levels and vital body functions.

Page 67: Artificial intelligence and IoT

Page 67

Page 68: Artificial intelligence and IoT

Page 68

M2M is becoming a reality

API economy has become reality

Page 69: Artificial intelligence and IoT

Page 69

Programmable web of the future

Sensors gather and push data to the cloud. API economies share data and services in the cloud. In the cloud, intelligent engine aggregates and correlates data from different sources, creating a new VALUE. That can be used either to:

– Provide new insights (analysis) – Create new instructions (actions) via API

Page 70: Artificial intelligence and IoT

Page 70

Three types of AI/IOT implementations

•  “Ambient intelligence” – mash networks, information flow and decisions stay local

•  “IOT Analytics” – big data like use case scenarios

•  IOT Analytics + API’s + cloud + decision engine + actions

Page 71: Artificial intelligence and IoT

Page 71

From IBM talk on IOT

Page 72: Artificial intelligence and IoT

Page 72

Decision Engine

Page 73: Artificial intelligence and IoT

Page 73

IF THIS THEN THAT IS NOT GOING TO WORK

Page 74: Artificial intelligence and IoT

Page 74

CRM/BPM IS NOT GOING TO WORK

Page 75: Artificial intelligence and IoT

Page 75

Technology that can deal with huge data sets under complexity and uncertainty?

Google/Toyota/Renault/Volvo driverless car research projects

Page 76: Artificial intelligence and IoT

Page 76

Bayes models will win the battle

Page 77: Artificial intelligence and IoT

Page 77

Why is this different?

Page 78: Artificial intelligence and IoT

Page 78

Bayesian network modeling

Data analysis technique ideally suited to messy, complex data. The focus is on structure discovery – determining an optimal graphical model which describes the inter-relationships in the underlying processes

structure discovery AND inter-relationships

Page 79: Artificial intelligence and IoT

Page 79

•  How do you express that car needs both battery and fuel to function? Easy.

•  How do you say that if your lights are not working, most likely it is a battery fault, but it could be as well that just lights are broken? Still the fact that lights are not working point to most likely cause of the battery fault.

If you only model via composition and add behavior

separately – what most of the tools do these days – you are heading for complexity!

Page 80: Artificial intelligence and IoT

Page 80

Example, car model

Car model with relations: NO Data available Chance that the car will start is above 98%

Page 81: Artificial intelligence and IoT

Page 81

Lights are off Chance that battery functions dropped from 99,99% to less 50% Chance that the car will start is bellow 50%

off

Car example, lights are off

Page 82: Artificial intelligence and IoT

Page 82

Lights are on Battery works, there is no need to check it Chance that the car will start now only depends on the fuel

on

Car example, lights are on

Page 83: Artificial intelligence and IoT

Page 83

Prototype architecture

Pluggable sensors

Pluggable Actions

Decision engine

Website where User configures Logic (recipes)

Developer extensions (new capabilities)

Database of recipes

Page 84: Artificial intelligence and IoT

Page 84

DEMO!!

Page 85: Artificial intelligence and IoT

Page 85

“Trading places”