art. generalizations of poly-bernoulli numbers and polynomials.pdf

Upload: geralt-rivia

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 art. Generalizations of poly-Bernoulli numbers and polynomials.pdf

    1/10

    arXiv:1212

    .3989v1

    [math.NT

    ]17Dec2012

    IJMC: INTERNATIONAL JOURNAL OF MATHEMATICAL COMBINATORICS (2010), Vol 2 #A07-14

    GENERALIZATIONS OF POLY-BERNOULLI NUMBERS AND

    POLYNOMIALS

    Hassan Jolany and M.R.Darafsheh, R.Eizadi Alikelaye

    School of Mathematics,college of science,university of Tehran, Tehran, Iran

    [email protected]

    Received April 12, 2010: , Accepted: May 28, 2010

    Keywords:Poly-Bernoulli polynomials,Euler polynomials

    ,generalized Euler polynomials,generalized poly-Bernoulli polynomials

    Abstract

    The Concepts of poly-Bernoulli numbers B(k)n , poly-Bernoulli polynomials Bkn(t) and the

    generalized poly-bernoulli numbers B(k)n (a, b) are generalized to B

    (k)n (t,a,b,c) which is called

    the generalized poly-Bernoulli polynomials depending on real parameters a,b,c .Some prop-erties of these polynomials and some relationships between Bkn , B

    (k)n (t) , B

    (k)n (a, b) and

    B(k)n (t,a,b,c) are established.

    1. Introduction

    In this paper we shall develop a number of generalizations of the poly-Bernoulli numbersand polynomials , and obtain some results about these generalizations.They are fundamentalobjects in the theory of special functions.

    Euler numbers are denoted with Bk and are the coefficients of Taylor expansion of thefunction t

    et1 ,as following;

    tet 1

    =

    k=0

    Bk tk

    k!.

    The Euler polynomials En(x) are expressed in the following series

    2ext

    et + 1=

    k=0

    Ek(x)tk

    k!.

    for more details, see [1]-[4].

    http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1http://arxiv.org/abs/1212.3989v1
  • 8/11/2019 art. Generalizations of poly-Bernoulli numbers and polynomials.pdf

    2/10

    2

    In [10], Q.M.Luo, F.Oi and L.Debnath defined the generalization of Euler polynomialsEk(x,a,b,c) which are expressed in the following series :

    2cxt

    bt +at =

    k=0

    Ek(x,a,b,c) tk

    k!.

    where a,b,c Z+.They proved that

    I) for a= 1 and b= c = e

    Ek(x+ 1) =k

    j=0

    k

    j Ej(x), (1)and

    Ek(x+ 1) +Ek(x) = 2xk, (2)

    II) for a= 1 and b= c ,

    Ek(x+ 1, 1, b , b) +Ek(x, 1, b , b) = 2xk(ln b)k. (3)

    In[5], Kaneko introduced and studied poly-Bernoulli numbers which generalize the clas-

    sical Bernoulli numbers. Poly-Bernoulli numbers B(k)n with k Zand n N, appear in the

    following power series:

    Lik(1 ex)

    1 ex =

    n=0

    B(k)ntn

    n!, ()

    where k Z and

    Lik(z) =

    m=1

    zm

    mk. |z|

  • 8/11/2019 art. Generalizations of poly-Bernoulli numbers and polynomials.pdf

    3/10

    3

    et 1

    et 1

    t0

    1

    et 1

    t0

    ... 1

    et 1

    t0

    t

    et 1dtdt...dt

    =n=0

    B(k)ntn

    n!.

    In the special case, one can see B(1)n =Bn.

    Definition 1 The poly-Bernoulli polynomials,B(k)n (t), are appeared in the expansion of

    Lik(1ex)

    1ex ext

    as following,

    Lik(1 ex

    )1 ex ext =

    n=0

    B

    (k)

    n (t)n! xn (4)

    for more details, see [6] [11].

    Proposition 1 (Kaneko theorem[6]) The Poly-Bernoulli numbers of non-negative index k,satisfy the following

    B(k)n = (1)n

    n+1

    m=1

    (1)m1(m 1)!

    n

    m 1

    mk

    , (5)

    and for negative index k, we have

    B(k)n =

    min(n,k)j=0

    (j!)2

    n+ 1j+ 1

    k+ 1j+ 1

    , (6)

    where

    nm= (1)

    m

    m!

    m

    l=0

    (1)l ml ln m, n 0 (7)

    Definition 2 Let a, b > 0 and a = b. The generalized poly-Bernoulli numbers B(k)n (a, b),

    the generalized poly-Bernoulli polynomialsB(k)n (t, a, b) and the polynomialB

    (k)n (t,a,b,c) are

    appeared in the following series respectively;

    Lik(1 (ab)t)

    bt at =

    n=0

    B(k)n (a, b)

    n! tn |t| a >0, we have

    B(k)n (x+y, a, b , c) =l=0

    n

    l

    (ln c)nlB

    (k)l (x; a,b,c)y

    nl =n

    l=0

    n

    l

    (ln c)nlB

    (k)l (y, a, b , c)x

    nl.

    (17)

    Proof: We have

    Lik(1 (ab)t)

    bt at c(x+y)t =

    n=0

    B(k)n (x+y; a, b , c)tn

    n!

  • 8/11/2019 art. Generalizations of poly-Bernoulli numbers and polynomials.pdf

    7/10

    7

    =Lik(1 (ab)

    t)

    bt at cxt.cyt =

    n=0B(k)n (x; a,b,c)

    tn

    n!

    i=0yi(ln c)i

    i! ti

    =n=0

    nl=0

    n

    l

    ynl(ln c)nlB

    (k)l (x,a,b,c)

    tn

    n!

    so we getLik(1 (ab)t)

    bt at c(x+y)t =

    Lik(1 (ab)t

    bt at cytcxt

    =n=0

    nl=0

    n

    l

    xnl(ln c)nlB

    (k)l (y, a, b , c)

    tn

    n!.

    Theorem 3 Letx R andn 0.For every positive real numbers a,b and c such thata =bandb > a >0, we have

    B(k)n (x; a, b , c) =n

    l=0

    n

    l

    (ln c)nlB

    (k)l

    ln b

    ln a+ ln b

    (ln a+ ln b)lxnl, (18)

    B(k)n (x; a,b,c) =n

    l=0

    l

    j=0

    (1)lj nl l

    j (ln c)nl(ln b)lj(ln a+ ln b)jB(k)j xnk. (19)

    Proof:

    (18)By applying Theorems 1 and 2 we know ,

    B(k)n (x; a, b , c) =n

    l=0

    n

    l

    (ln c)nlB

    (k)l (a, b)x

    nl

    and

    B(k)n (a, b) =B (k)n ( lnb

    ln a+ ln b)(ln a+ ln b)n

    The relation (18)will follow if we combine these formulae.

    (19) proof is similar to(18).

    Now,we give some results about derivatives and integrals of the generalized poly-Bernoullipolynomials in the following theorem.

  • 8/11/2019 art. Generalizations of poly-Bernoulli numbers and polynomials.pdf

    8/10

    8

    Theorem 4 Letx R.Ifa, bandc >0 , a =b andb > a > 0 ,For any non-negative integerl and real numbers andwe have

    lB(k)n (x,a,b,c)

    xl =

    n!

    (n l)! (lnc

    )

    lB(k)

    nl(x,a,b,c

    ) (20)

    B(k)n (x,a,b,c)dx= 1

    (n+ 1) ln c[B

    (k)n+1( , a, b , c) B

    (k)n+1( , a, b , c)] (21)

    Proof: By applying (20) and (21) can be proved by induction on n.

    In [9], GI-Sang Cheon investigated the classical relationship between Bernoulli and Eulerpolynomials, in this paper we study the relationship between the generalized poly-Bernoulli

    and Euler polynomials.

    Theorem 5 Forb >0 we have

    B(k1)n (x+y, 1, b , b) =1

    2

    nk=0

    n

    k

    [B(k1)n (y, 1, b , b) +B

    (k1)n (y+ 1, 1, b , b)]Enk(x, 1, b , b).

    Proof:We know

    B(k1)n (x+y, 1, b , b) =

    k=0

    nk (ln b)nkB(k1)k (y; 1, b , b)xnk

    andEk(x+y, 1, b , b) +Ek(x, 1, b , b) = 2x

    k(ln b)k

    So, We obtain B(k1)n (x+y, 1, b , b) =

    1

    2

    n

    k=0

    n

    k

    (ln b)nkB

    (k1)k (y; 1, b , b)

    1

    (ln b)nk(Enk(x, 1, b , b) +Enk(x+ 1, 1, b , b))

    =1

    2

    nk=0

    n

    k

    B

    (k1)k (y; 1, b , b)

    Enk(x, 1, b , b) +

    nkj=0

    n kj

    Ej(x, 1, b , b)

    =1

    2

    nk=0

    n

    k

    B

    (k1)k (y; 1, b , b)Enk(x, 1, b , b)

  • 8/11/2019 art. Generalizations of poly-Bernoulli numbers and polynomials.pdf

    9/10

    9

    +1

    2

    nj=0

    n

    j

    Ej(x; 1, b , b)

    njk=0

    n jk

    B

    (k1)k (y, 1, b , b)

    =

    1

    2

    nk=0

    nk

    B(k1)

    k (y; 1, b , b)Enk(x, 1, b , b)+

    1

    2

    nj=0

    n

    j

    B

    (k1)nj(y+ 1; 1, b , b)Ej(x, 1, b , b)

    So we have

    B(k1)n (x+y, 1, b , b) =1

    2

    nk=0

    n

    k

    [B(k1)n (y, 1, b , b) +B

    (k1)n (y+ 1, 1, b , b)]Enk(x, 1, b , b).

    Corollary 1 In theorem 5, if we setk1= 1 andb= e, we obtain

    Bn(x) =n

    (k=0),(k=1)

    n

    k

    BkEnk(x).

    For more detail see [7].

    Acknowledgement:The authors would like to thank the referee for has valuable com-

    ments concerning theorem 5.

    References

    [1] T.Arakawa and M.Kaneko:On poly-Bernoulli numbers,Comment.Math.univ.st.Pauli48,(1999),159-167

    [2] B.N. Oue and F.Qi:Generalization of Bernoulli polynomials ,internat.j.math.ed.sci.tech33, (2002),No,3,428-431

    [3] M.-S.Kim and T.Kim:An explicit formula on the generalized Bernoulli number withorder n,Indian.j.pure and applied math 31, (2000),1455-1466

    [4] Hassan Jolany and M.R.Darafsheh:Some another remarks on the generalization ofBernoulli and Euler polynomials,Scientia magna Vol5,NO 3

    [5] M.Kaneko:poly-Bernoulli numbers ,journal de theorides numbers de bordeaux. 9,(1997),221-228

  • 8/11/2019 art. Generalizations of poly-Bernoulli numbers and polynomials.pdf

    10/10

    10

    [6] Y.Hamahata,H.Masubuch:Special Multi-Poly- Bernoulli numbers,Journal of Integer se-quences vol 10, (2007)

    [7] H.M.Srivastava and A.Pinter:Remarks on some relationships Between the Bernoulli and

    Euler polynomials,Applied .Math.Letter 17, (2004)375-380

    [8] Chad Brewbaker :A combinatorial Interpretion of the poly-Bernoulli numbers and twofermat analogues, Integers journal 8, (2008)

    [9] GI-Sang Cheon:A note on the Bernoulli and Euler polynomials,Applied.Math.Letter16, (2003),365-368

    [10] Q.M.Luo,F.Oi and L.Debnath Generalization of Euler numbers and polynomi-als,Int.J.Math.Sci (2003)3893-3901

    [11] Y.Hamahata,H.Masubuchi Recurrence formulae for Multi-poly-Bernoulli num-bers,Integers journal 7(2007)

    [12] Hassan Jolany, Explicit formula for generalization of poly-Bernoulli numbers and poly-nomials with a,b,c parameters.http://arxiv.org/pdf/1109.1387v1.pdf

    http://arxiv.org/pdf/1109.1387v1.pdfhttp://arxiv.org/pdf/1109.1387v1.pdf