ars.els-cdn.com · web viewkotbu-initiated aryl c–h iodination: a powerful tool for the synthesis...

72
Supporting Information 1

Upload: others

Post on 30-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Supporting Information

1

Page 2: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Discussion on Electron Transport in BHJs with Different Acceptors

1. Evaluating Electron Mobilities with AS and SCLC Techniques

The structure of electron-only devices is ITO/Al/BHJ/LiF/Al, where an Al thin film between ITO

and BHJ acts as the hole blocking layer. Under a forward DC voltage biased with a small AC

perturbation, BHJ films show significant frequency dependent capacitances. A maximum in the

negative differential susceptance (−∆ B) can be extracted from a plot of −∆ B as a function of

frequency (f), and the corresponding frequency (f r ≡1/τ r) is defined to characterize the charge

carrier mobility from the follow relation

τ1 /2=0.56 τ r (S1a)

μave=d

τ1 /2 ∙ F= d2

0.56 τ r ∙V (S1b)

where τ r is the corresponding time, of which the maximum in −∆ B appears, τ1 /2 is the average

transit time of carriers, μave is the average carrier mobility, F is the applied electric field, V is the

applied voltage, and d is the BHJ thickness.

We study thefrequency-dependent capacitances of fullerene-based PTB7:PC71BM, PTB7-

Th:PC71BM, and non-fullerene-based PTB7-Th:ITIC BHJ films. First, effects of applied electric

fields were investigated. Figure S1displays AS signals of BHJs under various electric fields and

temperatures. AS signals of fullerene-based BHJs exhibit significant shifts of f r. For

PTB7:PC71BM BHJs, f r shifts towards to high frequency regions, when F increases gradually.

Correspondingly, under 240 and 300 (V/cm)1/2, calculated μe are 9.5×10-5 and 1.6×10-4 cm2V-1s-1,

respectively. However, there is no obvious shifts of f r in non-fullerene PTB7-Th:ITIC BHJs, and

2

Page 3: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

f r maintains around 2×104 Hz, when the applied electric field increases from 300 to 450

(V/cm)1/2. Interestingly, unlike fullerene-based BHJs where f r mainly shifts in the frequency

domain, the PTB7-Th:ITIC film achieves lower minimum capacitances under relatively higher

fields, indicating enhanced dispersity of electron transports in highfields. Besides F, temperature

is another factor for electron transport in BHJs. As shown in Figure S1(d-f), f r moves to low

frequency region, when temperature decreases in both fullerene- and non-fullerene-based BHJ

films.

Space-charge-limited current (SCLC) was performed to evaluate the property of electron

transport in all-polymer-based PTB7-Th:N2200 BHJs.(Figure S2) The structure of electron-only

devices is the same with samples for AS measurements. Compared with PTB7:PC71BM, μ0 , e of

PTB7-Th:N2200 film exhibit reduced variations when we tune the D:A compositions. μ0 , eof the

[98:02] BHJ is 1.7×10-7 cm2V-1s-1, and increases gradually to 2.2×10-4 cm2V-1s-1 in the [67:33]

BHJ, which is the optimized D:A composition for OPV device fabrication. As different tools for

mobility measurements, results of carrier transports extracted from AS and SCLC are compared,

and the temperature dependent electron mobilities of fullerene-based PTB7:PC71BM, PTB7-

Th:PC71BM, and non-fullerene-based PTB7-Th:ITIC BHJs from AS and SCLC measurements

are summarized in Figure S3. μe , SCLC is typically half to one order larger than μe , AS, and one

possible explanation is the hole carrier leakage in the electron-only devices.[S1] At room

temperature, μe ,0 , SCLC of the [40:60] PTB7:PC71BM and [43:57] PTB7-Th:ITIC BHJs are 2.3×10-

4and 1.6×10-4cm2V-1s-1, whereas μe ,0 from AS for the same devices are 9.6×10-6and 1.3×10-

5cm2V-1s-1, respectively. However, each BHJ shows similar energetic disorders σ from both

measurements. σ decreases gradually from ~90meV in the PTB7:PC71BM BHJ to ~67meV in the

PTB7-Th:ITIC BHJ.3

Page 4: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

  Three popular BHJs are under investigation, involving fullerene-based PTB7:PC71BM, NF

small molecule-based PTB7-Th:ITIC, and all-polymer PTB7-Th:N2200. Figure S4 shows the

field dependent electron mobilities of BHJs with their BHJs before electron percolation (a-c);

BHJs during electron percolation (d-f); and optimized D:A compositions in solar cells at room

temperature (g-i). The field dependent electron mobilities can be well-expressed by the Poole-

Frenkel (PF) equation i.e.

μe (F )=μ0 ,e exp ( βe F1 /2 ) (S2)

where μ0 , e is the zero-field electron mobility, βe is the associated PF slope, and F is the applied

electric field.[S7,S8] The PF slope βe is used to describe the electric field dependence of charge

transport properties in solid-state films.[S9,S10] We observe distinct differences in βe for

acceptors with different topologies. As shown in Figure S7(g), the optimized PTB7:PC71BM BHJ

exhibits highly field-dependent electron mobilities with βe of 4.1×10-3(V /cm )

12. In contrast, Non-

fullerene BHJs exhibit suppressed PF effects. The electron mobilities in the optimized PTB7-

Th:ITIC BHJ slightly fluctuate around 10-5 cm2V-1s-1. Interestingly, the optimized PTB7-

Th:N2200 BHJ displays negative PF effects of the electron transport, and the all-polymer BHJ

achieves higher electron mobilities under low applied field. The different PF effects of fullerene-

based BHJs, NF small molecular BHJs, and all-polymer BHJs are attributed to film topologies.

4

Page 5: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Figure S1. Capactiance-frequency signals of devices for AS measurements. The electron-only devices

had a structure of ITO/Al/BHJ/LiF/Al. The Al layer next to ITO was to block holes. (a-c) BHJs under

various applied electric field; (d-f) BHJs in RT and low temperatures; and (h-g) PTB7-Th:ITIC and

PTB7:PC71BM films with different D:A weight compositions of which electron transport are in the

conditions of (h) before percolation; (i) near critical point; and (g) PCE-optimized BHJs.

5

Page 6: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Figure S2. JV characteristics of electron-only PTB7-Th:N2200 BHJ devices with various D:A

compositions at room temperature.

6

Page 7: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

0 100 200 300 400 50010-6

10-5

10-4

10-3

PTB7:PC71BM PTB7-Th:PC71BM PTB7-Th:ITIC

Carr

ier M

obili

t(cm

2 V-1s-1

)

F1/2[(V/cm)1/2]

0 3 6 9 12 15 1810-7

10-5

10-3

10-1

From SCLC PTB7:PC71BM PTB7-Th:PC71BM PTB7-Th:ITIC

From AS PTB7:PC71BM PTB7-Th:PC71BM PTB7-Th:ITICZe

ro F

ield

Mob

ility

(cm

2 V-1s-1

)

(1000/T)2(K-2)

Figure S3 (a) Electron mobilities of PTB7:PC71BM, PTB7-Th:PC71BM, and PTB7-Th:ITIC

BHJs as a function of applied electric field from AS measurements at room temperature; (b)

zero-field electron mobilities of PTB7:PC71BM, PTB7-Th:PC71BM, and PTB7-Th:ITIC BHJs at

different temperatures extracted from AS and SCLC measurements.

7

Page 8: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Figure S4. Field dependent electron mobilities of PTB7:PC71BM, PTB7-Th:ITIC and PTB7-

Th:N2200 BHJs (a-c) before electron percolation; (d-f) near critical points of electron

percolation; and (g-i) optimized D:A compositions in BHJ solar cells.

8

Page 9: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Figure S5. Logarithm of electron mobilities of PTB7:PC71BM, PTB7-Th:ITIC, and PTB7-

Th:N2200 BHJs as a function of the acceptor weight fraction. Circular symbols are data and solid

curves are fits to the data using Eq. 3.

9

Page 10: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Figure S6. JV characteristics of (a) binary PTB7:PC71BM and (b) PTB7-Th:N2200 and ternary

devices with different polystyrene weight fractions under 100mW/cm2 of AM 1.5G condition.

10

Page 11: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Figure S7. JV characteristics of PTB7-Th:PC71BM; and PTB7-Th:N2200 BHJ solar cells before

and after moisture treatments (RH ~75-85%) for different exposure times (a) fresh cells; (b) 30

mins; (c) 60 mins; and (d) 120 mins. BHJ films with PC71BM acceptor degrade severely after

moisture exposure. In contrast, BHJ films with polymer acceptor N2200 remain almost

immuned.

11

Page 12: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Figure S8. JV characteristics of (a) PTB7:PC71BM (1:1.5), PTB7:PC71BM:PS (1:1.35:0.15) and

(b) PTB7-Th:N2200 (1:1.5), PTB7-Th:N2200:PS (1:0.45:0.05) electron-only devices.

12

Page 13: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Figure S9. AFM height images of PTB7:PC71BM, PBDB-T-SF:IT-4F, and PTB7-Th:N2200

BHJs in fresh and after a 180-min high humidity treatment.

13

Page 14: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Table S1. Fitting parameters of Eq. 3 for electron acceptors of N2200, ITIC, and PC71BM. The hopping distance ξ of the electron in BHJs is adopted from the reference 25. The saturation mobilities of N2200, ITIC, and PC71BM are adopted from the magnitude of the references S24, S25,S11-S14 and our data. b/a is estimated using the approximate dimensions of the acceptors. For the polymer acceptor N2200, the average repeatable NDI units is calculated from the molecular weight reported by 1-Material.

N2200 ITIC PC71BM

D /ξ 150 15 9

b /a 13 0.16 1

μ0 (cm2V-1s-1) 10-4 10-5 10-4

Chemical List

PTB7: Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl})

PTB7-Th: Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]

PBDB-T: Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)]

PBDB-T-SF: Poly[(2,6-(4,8-bis(5-(2-ethylhexylthio)-4-fluorothiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)]

N2200: Poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)}

ITIC: 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene

ITM: 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6/7-methyl)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene

ITIC-Th: 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene

14

Page 15: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

IT-4F: 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene

IEICO-4F: sindaceno[1,2-b:5,6-b'] dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis (methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1diylidene))dimalononitrile

PCBM: [6,6]-Phenyl-C61-butyric acid methyl ester

PC71BM: [6,6]-Phenyl-C71-butyric acid methyl ester

ICBA: 1′,1′′,4′,4′′-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′,56,60:2′′,3′′][5,6]fullerene-C60

15

Page 16: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

References in ESI

[S1] P. N. Murgatroyd, J. Phys. D1970, 3, 151.

[S2] C. H. Y. Ho, S. H. Cheung, H. Li, K. L. Chiu, Y. Cheng, H. Yin, M. H. Chan, F. So, S.

Tsang, S. K. So, Adv. Energy Mater. 2017, 7, 1602360.

[S3] Y. Lin, F. Zhao, Q. He, L. Huo, Y. Wu, T. C. Parker, W. Ma, Y. Sun, C. Wang, D. Zhu, A.

J. Heeger, S. R. Marder, X. Zhan, J. Am. Chem. Soc, 2016, 138, 4955-4961.

[S4] Y. Lin, J. Wang, Z. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170-

1174.

[S5] H. Yin, P. Bi, S. H. Cheung, W. L. Cheng, K. L. Chiu, C. H. Y. Ho, H. W. Li, S. W. Tsang,

X. Hao, S. K. So, Sol. RRL. 2018, 2, 1700239.

[S6] H. Yin, K. L. Chiu, C. H. Y. Ho, H. K. H. Lee, H. W. Li, Y. Cheng, S. W. Tsang, S. K. So,

Org. Electron. 2017, 40, 1-7.

[S7] J. G. Simmons, Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems.

Phys. Rev. 1967, 155, 657.

[S8] M. Ieda, G. Sawa, S. Kato, A Consideration of Poole-Frenkel Effect on Electric Conduction

in Insulators. J. Appl. Phys. 1971, 42, 3737.

[S9] J. L. Hartke, The Three-Dimensional Poole-Frenkel Effect. J. Appl. Phys. 1968, 39, 4871.

[S10] O. K. B. Lui, P. Migliorato, A New Generation-Recombination Model for Device

Simulation Including the Poole-Frenkel Effect and Phonon-Assisted Tunnelling. Solid State

Electron.1997, 41, 575-583.

16

Page 17: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

[S11] S. Foster, F. Deledalle, A. Mitani, T. Kimura, K. Kim, T. Okachi, T. Kirchartz, J. Oguma,

K. Miyake, J. R. Durrant, S. Doi, J. Nelson, Electron as a Limit to Polymer:PCBM Solar Cell

Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in

PTB7:PCBM, Adv. Energy Mater. 2014, 4, 1400311.

[S12] B. Ebenhoch, S. A. J. Thomson, K. Genevičius, G. Juška, I. D. W. Samuel, Charge Carrier

Mobility of the Organic Photovoltaic Materials PTB7 and PC71BM and Its Influence on Device

Performance, Org. Electron. 2015, 22, 62-68.

[S13] C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S.

Yang, F. Huang, A. Facchetti, H. Ade, H. Yan, High-Efficiency All-Polymer Solar Cells Based

on a Pair of Crystalline Low-Bandgap Polymers, Adv. Mater. 2014, 26, 7224-7230.

[S14]Y. Lin, F. Zhao, Q. He, L. Huo, Y. Wu, T. C. Parker, W. Ma, Y. Sun, C. Wang, D. Zhu, A.

J. Heeger, S. R. Marder, X. Zhan, High-Performance Electron Acceptor with Thienyl Side

Chains for Organic Photovoltaics, J. Am. Chem. Soc. 2016, 138, 4955-4961.

17

Page 18: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

References in Figure 2

1. Zhang, X., Lu, Z., Ye, L., Zhan, C., Hou, J., Zhang, S., Jiang, B., Zhao, Y., Huang, J., Zhang, S.,

Liu, Y., Shi, Q., Liu, Y. and Yao, J. (2013). A Potential Perylene Diimide Dimer-Based Acceptor

Material for Highly Efficient Solution-Processed Non-Fullerene Organic Solar Cells with 4.03%

Efficiency. Advanced Materials, 25(40), pp.5791-5797.

2. Sun, D., Meng, D., Cai, Y., Fan, B., Li, Y., Jiang, W., Huo, L., Sun, Y. and Wang, Z. (2015).

Non-Fullerene-Acceptor-Based Bulk-Heterojunction Organic Solar Cells with Efficiency over

7%. Journal of the American Chemical Society, 137(34), pp.11156-11162.

3. Guo, X., Zhang, M., Ma, W., Ye, L., Zhang, S., Liu, S., Ade, H., Huang, F. and Hou, J. (2014).

Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction

Polymer Solar Cells Based on PBDTTT-C-T/PC71BM. Advanced Materials, 26(24), pp.4043-

4049.

4. Wan, Q., Guo, X., Wang, Z., Li, W., Guo, B., Ma, W., Zhang, M. and Li, Y. (2016). 10.8%

Efficiency Polymer Solar Cells Based on PTB7-Th and PC71BM via Binary Solvent Additives

Treatment. Advanced Functional Materials, 26(36), pp.6635-6640.

5. Viterisi, A., Gispert-Guirado, F., Ryan, J. and Palomare, E. (2012). Formation of highly

crystalline and texturized donor domains in DPP(TBFu)2:PC71BM SM-BHJ devices via solvent

vapour annealing: implications for device function. Journal of Materials Chemistry, 22(30),

p.15175.

6. Guo, S., Cao, B., Wang, W., Moulin, J. and Müller-Buschbaum, P. (2015). Effect of Alcohol

Treatment on the Performance of PTB7:PC71BM Bulk Heterojunction Solar Cells. ACS Applied

Materials & Interfaces, 7(8), pp.4641-4649.

7. Wang, D., Kim, J., Seo, J., Park, O. and Park, J. (2012). Stability comparison: A

PCDTBT/PC71BM bulk-heterojunction versus a P3HT/PC71BM bulk-heterojunction. Solar

Energy Materials and Solar Cells, 101, pp.249-255.

18

Page 19: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

8. Namkoong, G., Kong, J., Samson, M., Hwang, I. and Lee, K. (2013). Active layer thickness

effect on the recombination process of PCDTBT:PC71BM organic solar cells. Organic

Electronics, 14(1), pp.74-79.

9. Ochiai, S., Imamura, S., Kannappan, S., Palanisamy, K. and Shin, P. (2013). Characteristics and

the effect of additives on the nanomorphology of PTB7/PC71BM composite films. Current

Applied Physics, 13, pp.S58-S63.

10. Pearson, A., Hopkinson, P., Couderc, E., Domanski, K., Abdi-Jalebi, M. and Greenham, N.

(2016). Critical light instability in CB/DIO processed PBDTTT-EFT:PC 71 BM organic

photovoltaic devices. Organic Electronics, 30, pp.225-236.

11. Kingsley, J., Marchisio, P., Yi, H., Iraqi, A., Kinane, C., Langridge, S., Thompson, R., Cadby, A.,

Pearson, A., Lidzey, D., Jones, R. and Parnell, A. (2014). Molecular weight dependent vertical

composition profiles of PCDTBT:PC71BM blends for organic photovoltaics. Scientific Reports,

4(1).

12. Wang, M., Hu, X., Liu, P., Li, W., Gong, X., Huang, F. and Cao, Y. (2011). Donor–Acceptor

Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance

Polymer Solar Cells. Journal of the American Chemical Society, 133(25), pp.9638-9641.

13. Lin, Y., Cheng, P., Li, Y. and Zhan, X. (2012). A 3D star-shaped non-fullerene acceptor for

solution-processed organic solar cells with a high open-circuit voltage of 1.18 V. Chemical

Communications, 48(39), p.4773.

14. Li, S., Liu, W., Shi, M., Mai, J., Lau, T., Wan, J., Lu, X., Li, C. and Chen, H. (2016). A

spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and

thermally stable polymer solar cells with high open-circuit voltage. Energy & Environmental

Science, 9(2), pp.604-610.

19

Page 20: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

15. Zhou, Y., Ding, L., Shi, K., Dai, Y., Ai, N., Wang, J. and Pei, J. (2012). A Non-Fullerene Small

Molecule as Efficient Electron Acceptor in Organic Bulk Heterojunction Solar Cells. Advanced

Materials, 24(7), pp.957-961.

16. Schwenn, P., Gui, K., Nardes, A., Krueger, K., Lee, K., Mutkins, K., Rubinstein-Dunlop, H.,

Shaw, P., Kopidakis, N., Burn, P. and Meredith, P. (2010). A Small Molecule Non-fullerene

Electron Acceptor for Organic Solar Cells. Advanced Energy Materials, 1(1), pp.73-81.

17. Lin, H., Chen, S., Li, Z., Lai, J., Yang, G., McAfee, T., Jiang, K., Li, Y., Liu, Y., Hu, H., Zhao, J.,

Ma, W., Ade, H. and Yan, H. (2015). High-Performance Non-Fullerene Polymer Solar Cells

Based on a Pair of Donor-Acceptor Materials with Complementary Absorption

Properties. Advanced Materials, 27(45), pp.7299-7304.

18. Bin, H., Gao, L., Zhang, Z., Yang, Y., Zhang, Y., Zhang, C., Chen, S., Xue, L., Yang, C., Xiao,

M. and Li, Y. (2016). 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl

substituted 2D-conjugated polymer as donor. Nature Communications, 7, p.13651.

19. Zhou, Y., Dai, Y., Zheng, Y., Wang, X., Wang, J. and Pei, J. (2013). Non-fullerene acceptors

containing fluoranthene-fused imides for solution-processed inverted organic solar

cells. Chemical Communications, 49(51), p.5802.

20. Bin, H., Zhang, Z., Gao, L., Chen, S., Zhong, L., Xue, L., Yang, C. and Li, Y. (2016). Non-

Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated

Polymers Reach 9.5% Efficiency. Journal of the American Chemical Society, 138(13), pp.4657-

4664.

21. Zhan, X., Tan, Z., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y., Zhu, D., Kippelen, B. and

Marder, S. (2007). A High-Mobility Electron-Transport Polymer with Broad Absorption and Its

Use in Field-Effect Transistors and All-Polymer Solar Cells. Journal of the American Chemical

Society, 129(23), pp.7246-7247.

20

Page 21: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

22. Zhou, Y., Kurosawa, T., Ma, W., Guo, Y., Fang, L., Vandewal, K., Diao, Y., Wang, C., Yan, Q.,

Reinspach, J., Mei, J., Appleton, A., Koleilat, G., Gao, Y., Mannsfeld, S., Salleo, A., Ade, H.,

Zhao, D. and Bao, Z. (2014). High Performance All-Polymer Solar Cell via Polymer Side-Chain

Engineering. Advanced Materials, 26(22), pp.3767-3772.

23. Zhou, E., Cong, J., Wei, Q., Tajima, K., Yang, C. and Hashimoto, K. (2011). All-Polymer Solar

Cells from Perylene Diimide Based Copolymers: Material Design and Phase Separation

Control. Angewandte Chemie International Edition, 50(12), pp.2799-2803.

24. Mandoc, M., Veurman, W., Koster, L., de Boer, B. and Blom, P. (2007). Origin of the Reduced

Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells. Advanced

Functional Materials, 17(13), pp.2167-2173.

25. Earmme, T., Hwang, Y., Murari, N., Subramaniyan, S. and Jenekhe, S. (2013). All-Polymer Solar

Cells with 3.3% Efficiency Based on Naphthalene Diimide-Selenophene Copolymer

Acceptor. Journal of the American Chemical Society, 135(40), pp.14960-14963.

26. Hwang, Y., Courtright, B., Ferreira, A., Tolbert, S. and Jenekhe, S. (2015). 7.7% Efficient All-

Polymer Solar Cells. Advanced Materials, 27(31), pp.4578-4584.

27. Kim, T., Kim, J., Kang, T., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T.

and Kim, B. (2015). Flexible, highly efficient all-polymer solar cells. Nature Communications,

6(1).

28. Schubert, M., Dolfen, D., Frisch, J., Roland, S., Steyrleuthner, R., Stiller, B., Chen, Z., Scherf, U.,

Koch, N., Facchetti, A. and Neher, D. (2012). Influence of Aggregation on the Performance of

All-Polymer Solar Cells Containing Low-Bandgap Naphthalenediimide Copolymers. Advanced

Energy Materials, 2(3), pp.369-380.

29. Jung, J., Jo, J., Chueh, C., Liu, F., Jo, W., Russell, T. and Jen, A. (2015). Fluoro-Substituted n-

Type Conjugated Polymers for Additive-Free All-Polymer Bulk Heterojunction Solar Cells with

High Power Conversion Efficiency of 6.71%. Advanced Materials, 27(21), pp.3310-3317.

21

Page 22: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

30. Zhou, N., Lin, H., Lou, S., Yu, X., Guo, P., Manley, E., Loser, S., Hartnett, P., Huang, H.,

Wasielewski, M., Chen, L., Chang, R., Facchetti, A. and Marks, T. (2013). Morphology-

Performance Relationships in High-Efficiency All-Polymer Solar Cells. Advanced Energy

Materials, 4(3), p.1300785.

31. Lee, C., Kang, H., Lee, W., Kim, T., Kim, K., Woo, H., Wang, C. and Kim, B. (2015). High-

Performance All-Polymer Solar Cells Via Side-Chain Engineering of the Polymer Acceptor: The

Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology. Advanced

Materials, 27(15), pp.2466-2471.

32. Tan, Z., Zhou, E., Zhan, X., Wang, X., Li, Y., Barlow, S. and Marder, S. (2008). Efficient all-

polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and

poly[perylene diimide-alt-bis(dithienothiophene)]. Applied Physics Letters, 93(7), p.073309.

33. Zhou, N., Dudnik, A., Li, T., Manley, E., Aldrich, T., Guo, P., Liao, H., Chen, Z., Chen, L.,

Chang, R., Facchetti, A., Olvera de la Cruz, M. and Marks, T. (2016). All-Polymer Solar Cell

Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor

Polymers. Journal of the American Chemical Society, 138(4), pp.1240-1251.

34. Hwang, Y., Earmme, T., Courtright, B., Eberle, F. and Jenekhe, S. (2015). n-Type

Semiconducting Naphthalene Diimide-Perylene Diimide Copolymers: Controlling Crystallinity,

Blend Morphology, and Compatibility Toward High-Performance All-Polymer Solar

Cells. Journal of the American Chemical Society, 137(13), pp.4424-4434.

35. Kang, H., Uddin, M., Lee, C., Kim, K., Nguyen, T., Lee, W., Li, Y., Wang, C., Woo, H. and Kim,

B. (2015). Determining the Role of Polymer Molecular Weight for High-Performance All-

Polymer Solar Cells: Its Effect on Polymer Aggregation and Phase Separation. Journal of the

American Chemical Society, 137(6), pp.2359-2365.

22

Page 23: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

36. Zhou, E., Nakano, M., Izawa, S., Cong, J., Osaka, I., Takimiya, K. and Tajima, K. (2014). All-

Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide

(NDTI) Copolymer. ACS Macro Letters, 3(9), pp.872-875.

37. Earmme, T., Hwang, Y., Subramaniyan, S. and Jenekhe, S. (2014). All-Polymer Bulk

Heterojuction Solar Cells with 4.8% Efficiency Achieved by Solution Processing from a Co-

Solvent. Advanced Materials, 26(35), pp.6080-6085.

38. Zhou, E., Cong, J., Zhao, M., Zhang, L., Hashimoto, K. and Tajima, K. (2012). Synthesis and

application of poly(fluorene-alt-naphthalene diimide) as an n-type polymer for all-polymer solar

cells. Chemical Communications, 48(43), p.5283.

39. Long, X., Ding, Z., Dou, C., Zhang, J., Liu, J. and Wang, L. (2016). Polymer Acceptor Based on

Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar

Cells. Advanced Materials, 28(30), pp.6504-6508.

40. Deshmukh, K., Qin, T., Gallaher, J., Liu, A., Gann, E., O'Donnell, K., Thomsen, L., Hodgkiss, J.,

Watkins, S. and McNeill, C. (2015). Performance, morphology and photophysics of high open-

circuit voltage, low band gap all-polymer solar cells. Energy & Environmental Science, 8(1),

pp.332-342.

41. Zhao, R., Dou, C., Xie, Z., Liu, J. and Wang, L. (2016). Polymer Acceptor Based on B←N Units

with Enhanced Electron Mobility for Efficient All-Polymer Solar Cells. Angewandte Chemie

International Edition, 55(17), pp.5313-5317.

42. Dou, C., Long, X., Ding, Z., Xie, Z., Liu, J. and Wang, L. (2015). An Electron-Deficient Building

Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells. Angewandte

Chemie International Edition, 55(4), pp.1436-1440.

43. Guo, Y., Li, Y., Awartani, O., Zhao, J., Han, H., Ade, H., Zhao, D. and Yan, H. (2016). A

Vinylene-Bridged Perylenediimide-Based Polymeric Acceptor Enabling Efficient All-Polymer

Solar Cells Processed under Ambient Conditions. Advanced Materials, 28(38), pp.8483-8489.

23

Page 24: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

44. Huang, H., Zhou, N., Ortiz, R., Chen, Z., Loser, S., Zhang, S., Guo, X., Casado, J., López

Navarrete, J., Yu, X., Facchetti, A. and Marks, T. (2014). Alkoxy-Functionalized Thienyl-

Vinylene Polymers for Field-Effect Transistors and All-Polymer Solar Cells. Advanced

Functional Materials, 24(19), pp.2782-2793.

45. Shi, S., Yuan, J., Ding, G., Ford, M., Lu, K., Shi, G., Sun, J., Ling, X., Li, Y. and Ma, W. (2016).

Improved All-Polymer Solar Cell Performance by Using Matched Polymer Acceptor. Advanced

Functional Materials, 26(31), pp.5669-5678.

46. Nam, S., Hahm, S., Han, H., Seo, J., Kim, C., Kim, H., Marder, S., Ree, M. and Kim, Y. (2015).

All-Polymer Solar Cells with Bulk Heterojunction Films Containing Electron-Accepting Triple

Bond-Conjugated Perylene Diimide Polymer. ACS Sustainable Chemistry & Engineering, 4(3),

pp.767-774.

47. Fan, B., Ying, L., Wang, Z., He, B., Jiang, X., Huang, F. and Cao, Y. (2017). Optimisation of

processing solvent and molecular weight for the production of green-solvent-processed all-

polymer solar cells with a power conversion efficiency over 9%. Energy & Environmental

Science, 10(5), pp.1243-1251.

48. Kang, H., Kim, K., Choi, J., Lee, C. and Kim, B. (2014). High-Performance All-Polymer Solar

Cells Based on Face-On Stacked Polymer Blends with Low Interfacial Tension. ACS Macro

Letters, 3(10), pp.1009-1014.

49. Choi, J., Kim, K., Yu, H., Lee, C., Kang, H., Song, I., Kim, Y., Oh, J. and Kim, B. (2015).

Importance of Electron Transport Ability in Naphthalene Diimide-Based Polymer Acceptors for

High-Performance, Additive-Free, All-Polymer Solar Cells. Chemistry of Materials, 27(15),

pp.5230-5237.

50. Tang, Y. and McNeill, C. (2012). All-polymer solar cells utilizing low band gap polymers as

donor and acceptor. Journal of Polymer Science Part B: Polymer Physics, 51(6), pp.403-409.

24

Page 25: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

51. Lee, W., Lee, C., Yu, H., Kim, D., Wang, C., Woo, H., Oh, J. and Kim, B. (2016). Side Chain

Optimization of Naphthalenediimide-Bithiophene-Based Polymers to Enhance the Electron

Mobility and the Performance in All-Polymer Solar Cells. Advanced Functional Materials,

26(10), pp.1543-1553.

52. Ye, L., Jiao, X., Zhou, M., Zhang, S., Yao, H., Zhao, W., Xia, A., Ade, H. and Hou, J. (2015).

Manipulating Aggregation and Molecular Orientation in All-Polymer Photovoltaic

Cells. Advanced Materials, 27(39), pp.6046-6054.

53. Holcombe, T., Woo, C., Kavulak, D., Thompson, B. and Fréchet, J. (2009). All-Polymer

Photovoltaic Devices of Poly(3-(4-n-octyl)-phenylthiophene) from Grignard Metathesis (GRIM)

Polymerization. Journal of the American Chemical Society, 131(40), pp.14160-14161.

54. Mori, D., Benten, H., Okada, I., Ohkita, H. and Ito, S. (2013). Low-Bandgap Donor/Acceptor

Polymer Blend Solar Cells with Efficiency Exceeding 4%. Advanced Energy Materials, 4(3),

p.1301006.

55. Jiang, Y., Lu, L., Yang, M., Zhan, C., Xie, Z., Verpoort, F. and Xiao, S. (2013). Taking the place

of perylene diimide: perylene tetracarboxylic tetraester as a building block for polymeric

acceptors to achieve higher open circuit voltage in all-polymer bulk heterojunction solar

cells. Polymer Chemistry, 4(23), p.5612.

56. Subramaniyan, S., Earmme, T., Murari, N. and Jenekhe, S. (2014). Naphthobisthiazole diimide-

based n-type polymer semiconductors: synthesis, π-stacking, field-effect charge transport, and all-

polymer solar cells. Polymer Chemistry, 5(19), p.5707.

57. Li, Z., Xu, X., Zhang, W., Genene, Z., Mammo, W., Yartsev, A., Andersson, M., Janssen, R. and

Wang, E. (2017). High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole–

isoindigo acceptor polymer. Journal of Materials Chemistry A, 5(23), pp.11693-11700.

58. Li, Z., Zhang, W., Xu, X., Genene, Z., Di Carlo Rasi, D., Mammo, W., Yartsev, A., Andersson,

M., Janssen, R. and Wang, E. (2017). High-Performance and Stable All-Polymer Solar Cells

25

Page 26: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Using Donor and Acceptor Polymers with Complementary Absorption. Advanced Energy

Materials, 7(14), p.1602722.

59. Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H. and Yan, H. (2014).

Aggregation and morphology control enables multiple cases of high-efficiency polymer solar

cells. Nature Communications, 5(1).

60. Cabanetos, C., El Labban, A., Bartelt, J., Douglas, J., Mateker, W., Fréchet, J., McGehee, M. and

Beaujuge, P. (2013). Linear Side Chains in Benzo[1,2-b:4,5-b′]dithiophene–Thieno[3,4-

c]pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance. Journal of the

American Chemical Society, 135(12), pp.4656-4659.

61. Cabanetos, C., El Labban, A., Bartelt, J., Douglas, J., Mateker, W., Fréchet, J., McGehee, M. and

Beaujuge, P. (2013). Linear Side Chains in Benzo[1,2-b:4,5-b′]dithiophene–Thieno[3,4-

c]pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance. Journal of the

American Chemical Society, 135(12), pp.4656-4659.

62. He, Z., Zhong, C., Huang, X., Wong, W., Wu, H., Chen, L., Su, S. and Cao, Y. (2011).

Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill

Factor in Polymer Solar Cells. Advanced Materials, 23(40), pp.4636-4643.

63. Liang, Y., Wu, Y., Feng, D., Tsai, S., Son, H., Li, G. and Yu, L. (2009). Development of New

Semiconducting Polymers for High Performance Solar Cells. Journal of the American Chemical

Society, 131(1), pp.56-57.

64. Small, C., Chen, S., Subbiah, J., Amb, C., Tsang, S., Lai, T., Reynolds, J. and So, F. (2011).

High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nature

Photonics, 6(2), pp.115-120.

65. Miller, N., Sweetnam, S., Hoke, E., Gysel, R., Miller, C., Bartelt, J., Xie, X., Toney, M. and

McGehee, M. (2012). Molecular Packing and Solar Cell Performance in Blends of Polymers with

a Bisadduct Fullerene. Nano Letters, 12(3), pp.1566-1570.

26

Page 27: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

66. Chu, T., Lu, J., Beaupré, S., Zhang, Y., Pouliot, J., Wakim, S., Zhou, J., Leclerc, M., Li, Z., Ding,

J. and Tao, Y. (2011). Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and

Dithieno[3,2-b:2′,3′-d]silole Copolymer with a Power Conversion Efficiency of 7.3%. Journal of

the American Chemical Society, 133(12), pp.4250-4253.

67. Hoven, C., Dang, X., Coffin, R., Peet, J., Nguyen, T. and Bazan, G. (2010). Improved

Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase

Separation via Solvent Additives. Advanced Materials, 22(8), pp.E63-E66.

68. Peng, Q., Huang, Q., Hou, X., Chang, P., Xu, J. and Deng, S. (2012). Enhanced solar cell

performance by replacing benzodithiophene with naphthodithiophene in diketopyrrolopyrrole-

based copolymers. Chemical Communications, 48(93), p.11452.

69. Zhang, Y., Hau, S., Yip, H., Sun, Y., Acton, O. and Jen, A. (2010). Efficient Polymer Solar Cells

Based on the Copolymers of Benzodithiophene and Thienopyrroledione. Chemistry of Materials,

22(9), pp.2696-2698.

70. Guo, X., Zhou, N., Lou, S., Smith, J., Tice, D., Hennek, J., Ortiz, R., Navarrete, J., Li, S.,

Strzalka, J., Chen, L., Chang, R., Facchetti, A. and Marks, T. (2013). Polymer solar cells with

enhanced fill factors. Nature Photonics, 7(10), pp.825-833.

71. Chu, T., Alem, S., Tsang, S., Tse, S., Wakim, S., Lu, J., Dennler, G., Waller, D., Gaudiana, R.

and Tao, Y. (2011). Morphology control in polycarbazole based bulk heterojunction solar cells

and its impact on device performance. Applied Physics Letters, 98(25), p.253301.

72. Ong, K., Lim, S., Tan, H., Wong, H., Li, J., Ma, Z., Moh, L., Lim, S., de Mello, J. and Chen, Z.

(2011). A Versatile Low Bandgap Polymer for Air-Stable, High-Mobility Field-Effect Transistors

and Efficient Polymer Solar Cells. Advanced Materials, 23(11), pp.1409-1413.

73. Zhang, Q., Kan, B., Liu, F., Long, G., Wan, X., Chen, X., Zuo, Y., Ni, W., Zhang, H., Li, M., Hu,

Z., Huang, F., Cao, Y., Liang, Z., Zhang, M., Russell, T. and Chen, Y. (2014). Small-molecule

solar cells with efficiency over 9%. Nature Photonics, 9(1), pp.35-41.

27

Page 28: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

74. Li, K., Li, Z., Feng, K., Xu, X., Wang, L. and Peng, Q. (2013). Development of Large Band-Gap

Conjugated Copolymers for Efficient Regular Single and Tandem Organic Solar Cells. Journal of

the American Chemical Society, 135(36), pp.13549-13557.

75. Woo, C., Beaujuge, P., Holcombe, T., Lee, O. and Fréchet, J. (2010). Incorporation of Furan into

Low Band-Gap Polymers for Efficient Solar Cells. Journal of the American Chemical Society,

132(44), pp.15547-15549.

76. Foster, S., Deledalle, F., Mitani, A., Kimura, T., Kim, K., Okachi, T., Kirchartz, T., Oguma, J.,

Miyake, K., Durrant, J., Doi, S. and Nelson, J. (2014). Electron Collection as a Limit to

Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and

Device Performance in PTB7:PCBM. Advanced Energy Materials, 4(14), p.1400311.

77. Xin, H., Guo, X., Kim, F., Ren, G., Watson, M. and Jenekhe, S. (2009). Efficient solar cells based

on a new phthalimide-based donor–acceptor copolymer semiconductor: morphology, charge-

transport, and photovoltaic properties. Journal of Materials Chemistry, 19(30), p.5303.

78. Wang, E., Ma, Z., Zhang, Z., Vandewal, K., Henriksson, P., Inganäs, O., Zhang, F. and

Andersson, M. (2011). An Easily Accessible Isoindigo-Based Polymer for High-Performance

Polymer Solar Cells. Journal of the American Chemical Society, 133(36), pp.14244-14247.

79. Chen, M., Hou, J., Hong, Z., Yang, G., Sista, S., Chen, L. and Yang, Y. (2009). Efficient Polymer

Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene

Bulk Heterojunctions. Advanced Materials, 21(42), pp.4238-4242.

80. Liu, Y., Chen, C., Hong, Z., Gao, J., (Michael) Yang, Y., Zhou, H., Dou, L., Li, G. and Yang, Y.

(2013). Solution-processed small-molecule solar cells: breaking the 10% power conversion

efficiency. Scientific Reports, 3(1).

81. Cao, J., Liao, Q., Du, X., Chen, J., Xiao, Z., Zuo, Q. and Ding, L. (2013). A pentacyclic aromatic

lactam building block for efficient polymer solar cells. Energy & Environmental Science, 6(11),

p.3224.

28

Page 29: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

82. He, X., Mukherjee, S., Watkins, S., Chen, M., Qin, T., Thomsen, L., Ade, H. and McNeill, C.

(2014). Influence of Fluorination and Molecular Weight on the Morphology and Performance of

PTB7:PC71BM Solar Cells. The Journal of Physical Chemistry C, 118(19), pp.9918-9929.

83. Chen, H., Chen, Y., Liu, C., Chien, Y., Chou, S. and Chou, P. (2012). Prominent Short-Circuit

Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion

Efficiency of 8.0%. Chemistry of Materials, 24(24), pp.4766-4772.

84. Kozub, D., Vakhshouri, K., Kesava, S., Wang, C., Hexemer, A. and Gomez, E. (2012). Direct

measurements of exciton diffusion length limitations on organic solar cell performance. Chemical

Communications, 48(47), p.5859.

85. Ye, L., Zhang, S., Ma, W., Fan, B., Guo, X., Huang, Y., Ade, H. and Hou, J. (2012). From Binary

to Ternary Solvent: Morphology Fine-tuning of D/A Blends in PDPP3T-based Polymer Solar

Cells. Advanced Materials, 24(47), pp.6335-6341.

86. Baumann, A., Lorrmann, J., Rauh, D., Deibel, C. and Dyakonov, V. (2012). A New Approach for

Probing the Mobility and Lifetime of Photogenerated Charge Carriers in Organic Solar Cells

Under Real Operating Conditions. Advanced Materials, 24(32), pp.4381-4386.

87. Ng, A., Yiu, W., Foo, Y., Shen, Q., Bejaoui, A., Zhao, Y., Gokkaya, H., Djurišić, A., Zapien, J.,

Chan, W. and Surya, C. (2014). Enhanced Performance of PTB7:PC71BM Solar Cells via

Different Morphologies of Gold Nanoparticles. ACS Applied Materials & Interfaces, 6(23),

pp.20676-20684.

88. Rauh, D., Deibel, C. and Dyakonov, V. (2012). Charge Density Dependent Nongeminate

Recombination in Organic Bulk Heterojunction Solar Cells. Advanced Functional Materials,

22(16), pp.3371-3377.

89. Park, J., Jo, J., Seo, J., Moon, J., Park, Y., Lee, K., Heeger, A. and Bazan, G. (2011). End-

Capping Effect of a Narrow Bandgap Conjugated Polymer on Bulk Heterojunction Solar

Cells. Advanced Materials, 23(21), pp.2430-2435.

29

Page 30: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

90. Wang, D., Kim, D., Choi, K., Seo, J., Im, S., Park, J., Park, O. and Heeger, A. (2011).

Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion

Efficiencies by Addition of Au Nanoparticles. Angewandte Chemie, 123(24), pp.5633-5637.

91. Zhou, J., Zuo, Y., Wan, X., Long, G., Zhang, Q., Ni, W., Liu, Y., Li, Z., He, G., Li, C., Kan, B.,

Li, M. and Chen, Y. (2013). Solution-Processed and High-Performance Organic Solar Cells

Using Small Molecules with a Benzodithiophene Unit. Journal of the American Chemical

Society, 135(23), pp.8484-8487.

92. Li, J., Ong, K., Lim, S., Ng, G., Tan, H. and Chen, Z. (2011). A random copolymer based on

dithienothiophene and diketopyrrolopyrrole units for high performance organic solar

cells. Chemical Communications, 47(33), p.9480.

93. Peng, Q., Liu, X., Su, D., Fu, G., Xu, J. and Dai, L. (2011). Novel Benzo[1,2-b:4,5-b

′]dithiophene-Benzothiadiazole Derivatives with Variable Side Chains for High-Performance

Solar Cells. Advanced Materials, 23(39), pp.4554-4558.

94. Osaka, I., Kakara, T., Takemura, N., Koganezawa, T. and Takimiya, K. (2013).

Naphthodithiophene–Naphthobisthiadiazole Copolymers for Solar Cells: Alkylation Drives the

Polymer Backbone Flat and Promotes Efficiency. Journal of the American Chemical Society,

135(24), pp.8834-8837.

95. Foertig, A., Kniepert, J., Gluecker, M., Brenner, T., Dyakonov, V., Neher, D. and Deibel, C.

(2013). Nongeminate and Geminate Recombination in PTB7:PCBM Solar Cells. Advanced

Functional Materials, 24(9), pp.1306-1311.

96. Azimi, H., Senes, A., Scharber, M., Hingerl, K. and Brabec, C. (2011). Charge Transport and

Recombination in Low-Bandgap Bulk Heterojunction Solar Cell using Bis-adduct

Fullerene. Advanced Energy Materials, 1(6), pp.1162-1168.

97. Vangerven, T., Verstappen, P., Drijkoningen, J., Dierckx, W., Himmelberger, S., Salleo, A.,

Vanderzande, D., Maes, W. and Manca, J. (2015). Molar Mass versus Polymer Solar Cell

30

Page 31: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Performance: Highlighting the Role of Homocouplings. Chemistry of Materials, 27(10), pp.3726-

3732.

98. Subramaniyan, S., Xin, H., Kim, F., Shoaee, S., Durrant, J. and Jenekhe, S. (2011). Effects of

Side Chains on Thiazolothiazole-Based Copolymer Semiconductors for High Performance Solar

Cells. Advanced Energy Materials, 1(5), pp.854-860.

99. Nielsen, C., Schroeder, B., Hadipour, A., Rand, B., Watkins, S. and McCulloch, I. (2011). A

benzotrithiophene-based low band gap polymer for polymer solar cells with high open-circuit

voltage. Journal of Materials Chemistry, 21(44), p.17642.

100. Chang, L., Lademann, H., Bonekamp, J., Meerholz, K. and Moulé, A. (2011). Effect of Trace

Solvent on the Morphology of P3HT:PCBM Bulk Heterojunction Solar Cells. Advanced

Functional Materials, 21(10), pp.1779-1787.

101. Lee, J., Singh, R., Sin, D., Kim, H., Song, K. and Cho, K. (2015). A Nonfullerene Small

Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar

Cells. Advanced Materials, 28(1), pp.69-76.

102. Chen, W., Yang, X., Long, G., Wan, X., Chen, Y. and Zhang, Q. (2015). A perylene diimide

(PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic

solar cells. Journal of Materials Chemistry C, 3(18), pp.4698-4705.

103. Zhang, X., Yao, J. and Zhan, C. (2015). A selenophenyl bridged perylene diimide dimer as an

efficient solution-processable small molecule acceptor. Chemical Communications, 51(6),

pp.1058-1061.

104. Ye, L., Sun, K., Jiang, W., Zhang, S., Zhao, W., Yao, H., Wang, Z. and Hou, J. (2015).

Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor

and Acceptor Materials. ACS Applied Materials & Interfaces, 7(17), pp.9274-9280.

31

Page 32: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

105. Cai, Y., Huo, L., Sun, X., Wei, D., Tang, M. and Sun, Y. (2015). High Performance Organic

Solar Cells Based on a Twisted Bay-Substituted Tetraphenyl Functionalized Perylenediimide

Electron Acceptor. Advanced Energy Materials, 5(11), p.1500032.

106. Chen, Y., Zhang, X., Zhan, C. and Yao, J. (2015). In-depth understanding of photocurrent

enhancement in solution-processed small-molecule:perylene diimide non-fullerene organic solar

cells. physica status solidi (a), 212(9), pp.1961-1968.

107. Wu, C., Chueh, C., Xi, Y., Zhong, H., Gao, G., Wang, Z., Pozzo, L., Wen, T. and Jen, A.

(2015). Influence of Molecular Geometry of Perylene Diimide Dimers and Polymers on Bulk

Heterojunction Morphology Toward High-Performance Nonfullerene Polymer Solar

Cells. Advanced Functional Materials, 25(33), pp.5326-5332.

108. Zhong, Y., Trinh, M., Chen, R., Purdum, G., Khlyabich, P., Sezen, M., Oh, S., Zhu, H., Fowler,

B., Zhang, B., Wang, W., Nam, C., Sfeir, M., Black, C., Steigerwald, M., Loo, Y., Ng, F., Zhu,

X. and Nuckolls, C. (2015). Molecular helices as electron acceptors in high-performance bulk

heterojunction solar cells. Nature Communications, 6(1).

109. Sun, D., Meng, D., Cai, Y., Fan, B., Li, Y., Jiang, W., Huo, L., Sun, Y. and Wang, Z. (2015).

Non-Fullerene-Acceptor-Based Bulk-Heterojunction Organic Solar Cells with Efficiency over

7%. Journal of the American Chemical Society, 137(34), pp.11156-11162.

110. Wang, J., Yao, Y., Dai, S., Zhang, X., Wang, W., He, Q., Han, L., Lin, Y. and Zhan, X. (2015).

Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of

bridge length. Journal of Materials Chemistry A, 3(24), pp.13000-13010.

111. Yi, J., Wang, Y., Luo, Q., Lin, Y., Tan, H., Wang, H. and Ma, C. (2016). A 9,9′-spirobi[9H-

fluorene]-cored perylenediimide derivative and its application in organic solar cells as a non-

fullerene acceptor. Chemical Communications, 52(8), pp.1649-1652.

32

Page 33: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

112. Fan, W., Liang, N., Meng, D., Feng, J., Li, Y., Hou, J. and Wang, Z. (2016). A high

performance three-dimensional thiophene-annulated perylene dye as an acceptor for organic solar

cells. Chemical Communications, 52(77), pp.11500-11503.

113. Li, S., Liu, W., Li, C., Lau, T., Lu, X., Shi, M. and Chen, H. (2016). A non-fullerene acceptor

with a fully fused backbone for efficient polymer solar cells with a high open-circuit

voltage. Journal of Materials Chemistry A, 4(39), pp.14983-14987.

114. Yu, Y., Yang, F., Ji, Y., Wu, Y., Zhang, A., Li, C. and Li, W. (2016). A perylene bisimide

derivative with a LUMO level of −4.56 eV for non-fullerene solar cells. Journal of Materials

Chemistry C, 4(19), pp.4134-4137.

115. Li, S., Liu, W., Li, C., Liu, F., Zhang, Y., Shi, M., Chen, H. and Russell, T. (2016). A simple

perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient

organic solar cells. Journal of Materials Chemistry A, 4(27), pp.10659-10665.

116. Wu, Q., Zhao, D., Schneider, A., Chen, W. and Yu, L. (2016). Covalently Bound Clusters of

Alpha-Substituted PDI—Rival Electron Acceptors to Fullerene for Organic Solar Cells. Journal

of the American Chemical Society, 138(23), pp.7248-7251.

117. Zhao, D., Wu, Q., Cai, Z., Zheng, T., Chen, W., Lu, J. and Yu, L. (2016). Electron Acceptors

Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells. Chemistry of Materials,

28(4), pp.1139-1146.

118. Hadmojo, W., Nam, S., Shin, T., Yoon, S., Jang, S. and Jung, I. (2016). Geometrically

controlled organic small molecule acceptors for efficient fullerene-free organic photovoltaic

devices. Journal of Materials Chemistry A, 4(31), pp.12308-12318.

119. Liu, T., Meng, D., Cai, Y., Sun, X., Li, Y., Huo, L., Liu, F., Wang, Z., Russell, T. and Sun, Y.

(2016). High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing

Polymer Donor and a Twisted Perylene Bisimide Acceptor. Advanced Science, 3(9), p.1600117.

33

Page 34: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

120. Meng, D., Sun, D., Zhong, C., Liu, T., Fan, B., Huo, L., Li, Y., Jiang, W., Choi, H., Kim, T.,

Kim, J., Sun, Y., Wang, Z. and Heeger, A. (2015). High-Performance Solution-Processed Non-

Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide

Acceptor. Journal of the American Chemical Society, 138(1), pp.375-380.

121. Shi, Q., Zhang, S., Zhang, J., Oswald, V., Amassian, A., Marder, S. and Blakey, S. (2016).

KOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron

Affinity Compounds. Journal of the American Chemical Society, 138(12), pp.3946-3949.

122. Liu, X., Liu, T., Duan, C., Wang, J., Pang, S., Xiong, W., Sun, Y., Huang, F. and Cao, Y.

(2017). Non-planar perylenediimide acceptors with different geometrical linker units for efficient

non-fullerene organic solar cells. Journal of Materials Chemistry A, 5(4), pp.1713-1723.

123. Liang, N., Sun, K., Zheng, Z., Yao, H., Gao, G., Meng, X., Wang, Z., Ma, W. and Hou, J.

(2016). Perylene Diimide Trimers Based Bulk Heterojunction Organic Solar Cells with

Efficiency over 7%. Advanced Energy Materials, 6(11), p.1600060.

124. Lin, H., Chen, S., Hu, H., Zhang, L., Ma, T., Lai, J., Li, Z., Qin, A., Huang, X., Tang, B. and

Yan, H. (2016). Reduced Intramolecular Twisting Improves the Performance of 3D Molecular

Acceptors in Non-Fullerene Organic Solar Cells. Advanced Materials, 28(38), pp.8546-8551.

125. Zhong, H., Wu, C., Li, C., Carpenter, J., Chueh, C., Chen, J., Ade, H. and Jen, A. (2015).

Rigidifying Nonplanar Perylene Diimides by Ring Fusion Toward Geometry-Tunable Acceptors

for High-Performance Fullerene-Free Solar Cells. Advanced Materials, 28(5), pp.951-958.

126. Hendsbee, A., Sun, J., Law, W., Yan, H., Hill, I., Spasyuk, D. and Welch, G. (2016). Synthesis,

Self-Assembly, and Solar Cell Performance of N-Annulated Perylene Diimide Non-Fullerene

Acceptors. Chemistry of Materials, 28(19), pp.7098-7109.

127. Meng, D., Fu, H., Xiao, C., Meng, X., Winands, T., Ma, W., Wei, W., Fan, B., Huo, L.,

Doltsinis, N., Li, Y., Sun, Y. and Wang, Z. (2016). Three-Bladed Rylene Propellers with Three-

34

Page 35: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Dimensional Network Assembly for Organic Electronics. Journal of the American Chemical

Society, 138(32), pp.10184-10190.

128. Zhang, A., Li, C., Yang, F., Zhang, J., Wang, Z., Wei, Z. and Li, W. (2017). An Electron

Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar

Cells. Angewandte Chemie International Edition, 56(10), pp.2694-2698.

129. McAfee, S., Dayneko, S., Hendsbee, A., Josse, P., Blanchard, P., Cabanetos, C. and Welch, G.

(2017). Applying direct heteroarylation synthesis to evaluate organic dyes as the core component

in PDI-based molecular materials for fullerene-free organic solar cells. Journal of Materials

Chemistry A, 5(23), pp.11623-11633.

130. Li, X., Wang, H., Schneider, J., Wei, Z., Lai, W., Huang, W., Wudl, F. and Zheng, Y. (2017).

Catalyst-free one-step synthesis of ortho-tetraaryl perylene diimides for efficient OPV non-

fullerene acceptors. Journal of Materials Chemistry C, 5(11), pp.2781-2785.

131. Wang, B., Liu, W., Li, H., Mai, J., Liu, S., Lu, X., Li, H., Shi, M., Li, C. and Chen, H. (2017).

Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for

efficient fullerene-free solar cells. Journal of Materials Chemistry A, 5(19), pp.9396-9401.

132. Fu, H., Meng, D., Meng, X., Sun, X., Huo, L., Fan, Y., Li, Y., Ma, W., Sun, Y. and Wang, Z.

(2017). Influence of alkyl chains on photovoltaic properties of 3D rylene propeller electron

acceptors. Journal of Materials Chemistry A, 5(7), pp.3475-3482.

133. Wu, Q., Zhao, D., Yang, J., Sharapov, V., Cai, Z., Li, L., Zhang, N., Neshchadin, A., Chen, W.

and Yu, L. (2017). Propeller-Shaped Acceptors for High-Performance Non-Fullerene Solar Cells:

Importance of the Rigidity of Molecular Geometry. Chemistry of Materials, 29(3), pp.1127-1133.

134. McAfee, S., Dayneko, S., Josse, P., Blanchard, P., Cabanetos, C. and Welch, G. (2017). Simply

Complex: The Efficient Synthesis of an Intricate Molecular Acceptor for High-Performance Air-

Processed and Air-Tested Fullerene-Free Organic Solar Cells. Chemistry of Materials, 29(3),

pp.1309-1314.

35

Page 36: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

135. Zhang, C., Liu, T., Zeng, W., Xie, D., Luo, Z., Sun, Y. and Yang, C. (2017). Thienobenzene-

fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-

circuit voltage and power conversion efficiency. Materials Chemistry Frontiers, 1(4), pp.749-756.

136. Chen, F., Ding, G., Tang, A., Xiao, B., Li, J. and Zhou, E. (2018). A perylenediimide dimer

containing an asymmetric π-bridge and its fused derivative for fullerene-free organic solar

cells. Journal of Materials Chemistry C, 6(10), pp.2580-2587.

137. Qu, J., Mu, Z., Lai, H., Xie, M., Liu, L., Lu, W., Chen, W. and He, F. (2018). Effect of the

Molecular Configuration of Perylene Diimide Acceptors on Charge Transfer and Device

Performance. ACS Applied Energy Materials, 1(2), pp.833-840.

138. Ma, Z., Fu, H., Meng, D., Jiang, W., Sun, Y. and Wang, Z. (2018). Isomeric N-Annulated

Perylene Diimide Dimers for Organic Solar Cells. Chemistry - An Asian Journal, 13(8), pp.918-

923.

139. Luo, Z., Xiong, W., Liu, T., Cheng, W., Wu, K., Sun, Y. and Yang, C. (2017). Triphenylamine-

cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells:

Tuning the optoelectronic properties by S/Se-annulated perylene diimide. Organic Electronics,

41, pp.166-172.

140. Singh, R., Suranagi, S., Lee, J., Lee, H., Kim, M. and Cho, K. (2018). Unraveling the efficiency-

limiting morphological issues of the perylene diimide-based non-fullerene organic solar

cells. Scientific Reports, 8(1).

141. Loser, S., Bruns, C., Miyauchi, H., Ortiz, R., Facchetti, A., Stupp, S. and Marks, T. (2011). A

Naphthodithiophene-Diketopyrrolopyrrole Donor Molecule for Efficient Solution-Processed

Solar Cells. Journal of the American Chemical Society, 133(21), pp.8142-8145.

142. Zhang, M., Gu, Y., Guo, X., Liu, F., Zhang, S., Huo, L., Russell, T. and Hou, J. (2013).

Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted

36

Page 37: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Benzodithiophene with a Power Conversion Efficiency over 8%. Advanced Materials, 25(35),

pp.4944-4949.

143. Stuart, A., Tumbleston, J., Zhou, H., Li, W., Liu, S., Ade, H. and You, W. (2013). Fluorine

Substituents Reduce Charge Recombination and Drive Structure and Morphology Development

in Polymer Solar Cells. Journal of the American Chemical Society, 135(5), pp.1806-1815.

144. Chang, W., Meng, L., Dou, L., You, J., Chen, C., Yang, Y., Young, E., Li, G. and Yang, Y.

(2015). A Selenophene Containing Benzodithiophene-alt-thienothiophene Polymer for Additive-

Free High Performance Solar Cell. Macromolecules, 48(3), pp.562-568.

145. Cates, N., Gysel, R., Beiley, Z., Miller, C., Toney, M., Heeney, M., McCulloch, I. and

McGehee, M. (2009). Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by

Adjusting Fullerene Size to Control Intercalation. Nano Letters, 9(12), pp.4153-4157.

146. Lee, S., Cho, J., Goo, Y., Shin, W., Lee, J., Lee, W., Kang, I., Shim, H. and Moon, S. (2011).

Synthesis and characterization of a thiazolo[5,4-d]thiazole-based copolymer for high performance

polymer solar cells. Chem. Commun., 47(6), pp.1791-1793.

147. Liao, S., Jhuo, H., Cheng, Y. and Chen, S. (2013). Fullerene Derivative-Doped Zinc Oxide

Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer (PTB7-

Th) for High Performance. Advanced Materials, 25(34), pp.4766-4771.

148. Chen, G., Cheng, Y., Chou, Y., Su, M., Chen, C. and Wei, K. (2011). Crystalline conjugated

polymer containing fused 2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-

4,6-dione units for bulk heterojunction solar cells. Chemical Communications, 47(17), p.5064.

149. He, M., Han, W., Ge, J., Yu, W., Yang, Y., Qiu, F. and Lin, Z. (2011). Annealing effects on the

photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk

heterojunction solar cells. Nanoscale, 3(8), p.3159.

37

Page 38: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

150. Ma, Z., Wang, E., Jarvid, M., Henriksson, P., Inganäs, O., Zhang, F. and Andersson, M. (2012).

Synthesis and characterization of benzodithiophene–isoindigo polymers for solar cells. J. Mater.

Chem., 22(5), pp.2306-2314.

151. Zhou, N., Guo, X., Ortiz, R., Li, S., Zhang, S., Chang, R., Facchetti, A. and Marks, T. (2012).

Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar

Cells. Advanced Materials, 24(17), pp.2242-2248.

152. Li, W., Qin, R., Zhou, Y., Andersson, M., Li, F., Zhang, C., Li, B., Liu, Z., Bo, Z. and Zhang, F.

(2010). Tailoring side chains of low band gap polymers for high efficiency polymer solar

cells. Polymer, 51(14), pp.3031-3038.

153. Shao, S., Zheng, K., Pullerits, T. and Zhang, F. (2013). Enhanced Performance of Inverted

Polymer Solar Cells by Using Poly(ethylene oxide)-Modified ZnO as an Electron Transport

Layer. ACS Applied Materials & Interfaces, 5(2), pp.380-385.

154. Mayer, A., Toney, M., Scully, S., Rivnay, J., Brabec, C., Scharber, M., Koppe, M., Heeney, M.,

McCulloch, I. and McGehee, M. (2009). Bimolecular Crystals of Fullerenes in Conjugated

Polymers and the Implications of Molecular Mixing for Solar Cells. Advanced Functional

Materials, 19(8), pp.1173-1179.

155. Meager, I., Ashraf, R., Mollinger, S., Schroeder, B., Bronstein, H., Beatrup, D., Vezie, M.,

Kirchartz, T., Salleo, A., Nelson, J. and McCulloch, I. (2013). Photocurrent Enhancement from

Diketopyrrolopyrrole Polymer Solar Cells through Alkyl-Chain Branching Point

Manipulation. Journal of the American Chemical Society, 135(31), pp.11537-11540.

156. Chen, K., Yip, H., Schlenker, C., Ginger, D. and Jen, A. (2012). Halogen-free solvent

processing for sustainable development of high efficiency organic solar cells. Organic

Electronics, 13(12), pp.2870-2878.

157. Duan, C., Cai, W., Hsu, B., Zhong, C., Zhang, K., Liu, C., Hu, Z., Huang, F., Bazan, G., Heeger,

A. and Cao, Y. (2013). Toward green solvent processable photovoltaic materials for polymer

38

Page 39: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic

behavior. Energy & Environmental Science, 6(10), p.3022.

158. Chu, T., Tsang, S., Zhou, J., Verly, P., Lu, J., Beaupré, S., Leclerc, M. and Tao, Y. (2012).

High-efficiency inverted solar cells based on a low bandgap polymer with excellent air

stability. Solar Energy Materials and Solar Cells, 96, pp.155-159.

159. Ren, G., Wu, P. and Jenekhe, S. (2010). Enhanced Performance of Bulk Heterojunction Solar

Cells Using Block Copoly(3-alkylthiophene)s. Chemistry of Materials, 22(6), pp.2020-2026.

160. Gu, Z., Shen, P., Tsang, S., Tao, Y., Zhao, B., Tang, P., Nie, Y., Fang, Y. and Tan, S. (2011).

Development of a new benzo(1,2-b:4,5-b′)dithiophene-based copolymer with conjugated

dithienylbenzothiadiazole–vinylene side chains for efficient solar cells. Chemical

Communications, 47(33), p.9381.

161. Lee, O., Yiu, A., Beaujuge, P., Woo, C., Holcombe, T., Millstone, J., Douglas, J., Chen, M. and

Fréchet, J. (2011). Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill

Factors via Pyrene-Directed Molecular Self-Assembly. Advanced Materials, 23(45), pp.5359-

5363.

162. Yiu, A., Beaujuge, P., Lee, O., Woo, C., Toney, M. and Fréchet, J. (2012). Side-Chain

Tunability of Furan-Containing Low-Band-Gap Polymers Provides Control of Structural Order in

Efficient Solar Cells. Journal of the American Chemical Society, 134(4), pp.2180-2185.

163. Hong, Y., Wong, H., Moh, L., Tan, H. and Chen, Z. (2011). Polymer solar cells based on

copolymers of dithieno[3,2-b:2′,3′-d]silole and thienopyrroledione. Chemical Communications,

47(17), p.4920.

164. Wolf, J., Cruciani, F., El Labban, A. and Beaujuge, P. (2015). Wide Band-Gap 3,4-

Difluorothiophene-Based Polymer with 7% Solar Cell Efficiency: An Alternative to

P3HT. Chemistry of Materials, 27(12), pp.4184-4187.

39

Page 40: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

165. Deng, D., Zhang, Y., Zhang, J., Wang, Z., Zhu, L., Fang, J., Xia, B., Wang, Z., Lu, K., Ma, W.

and Wei, Z. (2016). Fluorination-enabled optimal morphology leads to over 11% efficiency for

inverted small-molecule organic solar cells. Nature Communications, 7, p.13740.

166. Huang, Y., Wen, W., Mukherjee, S., Ade, H., Kramer, E. and Bazan, G. (2014). High-

Molecular-Weight Insulating Polymers Can Improve the Performance of Molecular Solar

Cells. Advanced Materials, 26(24), pp.4168-4172.

167. Wang, N., Chen, Z., Wei, W. and Jiang, Z. (2013). Fluorinated Benzothiadiazole-Based

Conjugated Polymers for High-Performance Polymer Solar Cells without Any Processing

Additives or Post-treatments. Journal of the American Chemical Society, 135(45), pp.17060-

17068.

168. Saadeh, H., Lu, L., He, F., Bullock, J., Wang, W., Carsten, B. and Yu, L. (2012).

Polyselenopheno[3,4-b]selenophene for Highly Efficient Bulk Heterojunction Solar Cells. ACS

Macro Letters, 1(3), pp.361-365.

169. Jung, J., Liu, F., Russell, T. and Jo, W. (2013). Semi-crystalline random conjugated copolymers

with panchromatic absorption for highly efficient polymer solar cells. Energy & Environmental

Science, 6(11), p.3301.

170. Benson-Smith, J., Goris, L., Vandewal, K., Haenen, K., Manca, J., Vanderzande, D., Bradley,

D. and Nelson, J. (2007). Formation of a Ground-State Charge-Transfer Complex in

Polyfluorene//[6,6]-Phenyl-C61 Butyric Acid Methyl Ester (PCBM) Blend Films and Its Role in

the Function of Polymer/PCBM Solar Cells. Advanced Functional Materials, 17(3), pp.451-457.

171. Zimmermann, B., Würfel, U. and Niggemann, M. (2009). Longterm stability of efficient

inverted P3HT:PCBM solar cells. Solar Energy Materials and Solar Cells, 93(4), pp.491-496.

172. Ameri, T., Min, J., Li, N., Machui, F., Baran, D., Forster, M., Schottler, K., Dolfen, D., Scherf,

U. and Brabec, C. (2012). Performance Enhancement of the P3HT/PCBM Solar Cells through

40

Page 41: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

NIR Sensitization Using a Small-Bandgap Polymer. Advanced Energy Materials, 2(10), pp.1198-

1202.

173. Wienk, M., Turbiez, M., Gilot, J. and Janssen, R. (2008). Narrow‐Bandgap Diketo‐Pyrrolo‐

Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance. Advanced Materials,

20(13), pp.2556-2560.

174. Kniepert, J., Schubert, M., Blakesley, J. and Neher, D. (2011). Photogeneration and

Recombination in P3HT/PCBM Solar Cells Probed by Time-Delayed Collection Field

Experiments. The Journal of Physical Chemistry Letters, 2(7), pp.700-705.

175. Mihailetchi, V., Xie, H., de Boer, B., Koster, L. and Blom, P. (2006). Charge Transport and

Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar

Cells. Advanced Functional Materials, 16(5), pp.699-708.

176. Ballantyne, A., Ferenczi, T., Campoy-Quiles, M., Clarke, T., Maurano, A., Wong, K., Zhang,

W., Stingelin-Stutzmann, N., Kim, J., Bradley, D., Durrant, J., McCulloch, I., Heeney, M.,

Nelson, J., Tierney, S., Duffy, W., Mueller, C. and Smith, P. (2010). Understanding the Influence

of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. Macromolecules, 43(3),

pp.1169-1174.

177. van Bavel, S., Bärenklau, M., de With, G., Hoppe, H. and Loos, J. (2010). P3HT/PCBM Bulk

Heterojunction Solar Cells: Impact of Blend Composition and 3D Morphology on Device

Performance. Advanced Functional Materials, 20(9), pp.1458-1463.

178. Lange, A., Wegener, M., Boeffel, C., Fischer, B., Wedel, A. and Neher, D. (2010). A new

approach to the solvent system for inkjet-printed P3HT:PCBM solar cells and its use in devices

with printed passive and active layers. Solar Energy Materials and Solar Cells, 94(10), pp.1816-

1821.

41

Page 42: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

179. Zhao, G., He, Y. and Li, Y. (2010). 6.5% Efficiency of Polymer Solar Cells Based on poly(3-

hexylthiophene) and Indene-C60 Bisadduct by Device Optimization. Advanced Materials, 22(39),

pp.4355-4358.

180. Chang, C., Wu, C., Chen, S., Cui, C., Cheng, Y., Hsu, C., Wang, Y. and Li, Y. (2011).

Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically

Aligned, Cross-Linked Fullerene Nanorods. Angewandte Chemie International Edition, 50(40),

pp.9386-9390.

181. Yang, Y., Zhang, Z., Bin, H., Chen, S., Gao, L., Xue, L., Yang, C. and Li, Y. (2016). Side-

Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High

Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 138(45), pp.15011-

15018.

182. Zhao, F., Dai, S., Wu, Y., Zhang, Q., Wang, J., Jiang, L., Ling, Q., Wei, Z., Ma, W., You, W.,

Wang, C. and Zhan, X. (2017). Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells

with 12.1% Efficiency. Advanced Materials, 29(18), p.1700144.

183. Yao, H., Yu, R., Shin, T., Zhang, H., Zhang, S., Jang, B., Uddin, M., Woo, H. and Hou, J.

(2016). A Wide Bandgap Polymer with Strong π-π Interaction for Efficient Fullerene-Free

Polymer Solar Cells. Advanced Energy Materials, 6(15), p.1600742.

184. Qin, Y., Uddin, M., Chen, Y., Jang, B., Zhao, K., Zheng, Z., Yu, R., Shin, T., Woo, H. and Hou,

J. (2016). Highly Efficient Fullerene-Free Polymer Solar Cells Fabricated with Polythiophene

Derivative. Advanced Materials, 28(42), pp.9416-9422.

185. Li, W., Roelofs, W., Turbiez, M., Wienk, M. and Janssen, R. (2014). Polymer Solar Cells with

Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron

Acceptor. Advanced Materials, 26(20), pp.3304-3309.

186. Yao, H., Ye, L., Hou, J., Jang, B., Han, G., Cui, Y., Su, G., Wang, C., Gao, B., Yu, R., Zhang,

H., Yi, Y., Woo, H., Ade, H. and Hou, J. (2017). Achieving Highly Efficient Nonfullerene

42

Page 43: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Organic Solar Cells with Improved Intermolecular Interaction and Open-Circuit

Voltage. Advanced Materials, 29(21), p.1700254.

187. Fan, B., Zhang, K., Jiang, X., Ying, L., Huang, F. and Cao, Y. (2017). High-Performance

Nonfullerene Polymer Solar Cells based on Imide-Functionalized Wide-Bandgap

Polymers. Advanced Materials, 29(21), p.1606396.

188. Liu, Y., Zhang, Z., Feng, S., Li, M., Wu, L., Hou, R., Xu, X., Chen, X. and Bo, Z. (2017).

Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance

Fused-Ring Electron Acceptor Used in Polymer Solar Cells. Journal of the American Chemical

Society, 139(9), pp.3356-3359.

189. Kan, B., Feng, H., Wan, X., Liu, F., Ke, X., Wang, Y., Wang, Y., Zhang, H., Li, C., Hou, J. and

Chen, Y. (2017). Small-Molecule Acceptor Based on the Heptacyclic

Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar

Cells. Journal of the American Chemical Society, 139(13), pp.4929-4934.

190. Liu, F., Zhou, Z., Zhang, C., Vergote, T., Fan, H., Liu, F. and Zhu, X. (2016). A Thieno[3,4-

b]thiophene-Based Non-fullerene Electron Acceptor for High-Performance Bulk-Heterojunction

Organic Solar Cells. Journal of the American Chemical Society, 138(48), pp.15523-15526.

191. Xia, D., Wu, Y., Wang, Q., Zhang, A., Li, C., Lin, Y., Colberts, F., van Franeker, J., Janssen, R.,

Zhan, X., Hu, W., Tang, Z., Ma, W. and Li, W. (2016). Effect of Alkyl Side Chains of

Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar

Cells. Macromolecules, 49(17), pp.6445-6454.

192. Yuan, J., Qiu, L., Zhang, Z., Li, Y., Chen, Y. and Zou, Y. (2016). Tetrafluoroquinoxaline based

polymers for non-fullerene polymer solar cells with efficiency over 9%. Nano Energy, 30,

pp.312-320.

43

Page 44: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

193. Chen, S., Liu, Y., Zhang, L., Chow, P., Wang, Z., Zhang, G., Ma, W. and Yan, H. (2017). A

Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a

Small Voltage Loss. Journal of the American Chemical Society, 139(18), pp.6298-6301.

194. An, M., Xie, F., Geng, X., Zhang, J., Jiang, J., Lei, Z., He, D., Xiao, Z. and Ding, L. (2017). A

High-Performance D-A Copolymer Based on Dithieno[3,2-b:2′,3′-d]Pyridin-5(4H)-One Unit

Compatible with Fullerene and Nonfullerene Acceptors in Solar Cells. Advanced Energy

Materials, 7(14), p.1602509.

195. Zhang, H., Li, S., Xu, B., Yao, H., Yang, B. and Hou, J. (2016). Fullerene-free polymer solar

cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5

eV. Journal of Materials Chemistry A, 4(46), pp.18043-18049.

196. Zhang, S., Qin, Y., Uddin, M., Jang, B., Zhao, W., Liu, D., Woo, H. and Hou, J. (2016). A

Fluorinated Polythiophene Derivative with Stabilized Backbone Conformation for Highly

Efficient Fullerene and Non-Fullerene Polymer Solar Cells. Macromolecules, 49(8), pp.2993-

3000.

197. Ye, L., Zhao, W., Li, S., Mukherjee, S., Carpenter, J., Awartani, O., Jiao, X., Hou, J. and Ade,

H. (2016). High-Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect

Complex Multi-Length Scale Morphology and Device Performance. Advanced Energy Materials,

7(7), p.1602000.

198. Li, Y., Qian, D., Zhong, L., Lin, J., Jiang, Z., Zhang, Z., Zhang, Z., Li, Y., Liao, L. and Zhang,

F. (2016). A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells

with small HOMO offset. Nano Energy, 27, pp.430-438.

199. Wang, C., Xu, X., Zhang, W., Bergqvist, J., Xia, Y., Meng, X., Bini, K., Ma, W., Yartsev, A.,

Vandewal, K., Andersson, M., Inganäs, O., Fahlman, M. and Wang, E. (2016). Low Band Gap

Polymer Solar Cells With Minimal Voltage Losses. Advanced Energy Materials, 6(18),

p.1600148.

44

Page 45: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

200. Qiu, N., Zhang, H., Wan, X., Li, C., Ke, X., Feng, H., Kan, B., Zhang, H., Zhang, Q., Lu, Y. and

Chen, Y. (2016). A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for

High-Performance Organic Solar Cells. Advanced Materials, 29(6), p.1604964.

201. Lu, Z., Jiang, B., Zhang, X., Tang, A., Chen, L., Zhan, C. and Yao, J. (2014). Perylene–Diimide

Based Non-Fullerene Solar Cells with 4.34% Efficiency through Engineering Surface

Donor/Acceptor Compositions. Chemistry of Materials, 26(9), pp.2907-2914.

202. Li, Y., Zhong, L., Wu, F., Yuan, Y., Bin, H., Jiang, Z., Zhang, Z., Zhang, Z., Li, Y. and Liao, L.

(2016). Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor

with photovoltaic performance of 8.6%. Energy & Environmental Science, 9(11), pp.3429-3435.

203. Pho, T., Toma, F., Tremolet de Villers, B., Wang, S., Treat, N., Eisenmenger, N., Su, G., Coffin,

R., Douglas, J., Fréchet, J., Bazan, G., Wudl, F. and Chabinyc, M. (2013). Decacyclene

Triimides: Paving the Road to Universal Non-Fullerene Acceptors for Organic

Photovoltaics. Advanced Energy Materials, 4(5), p.1301007.

204. Xiao, B., Tang, A., Zhang, J., Mahmood, A., Wei, Z. and Zhou, E. (2016). Achievement of High

V oc of 1.02 V for P3HT-Based Organic Solar Cell Using a Benzotriazole-Containing Non-

Fullerene Acceptor. Advanced Energy Materials, 7(8), p.1602269.

205. Jung, J. and Jo, W. (2015). Low-Bandgap Small Molecules as Non-Fullerene Electron

Acceptors Composed of Benzothiadiazole and Diketopyrrolopyrrole for All Organic Solar

Cells. Chemistry of Materials, 27(17), pp.6038-6043.

206. Patil, H., Zu, W., Gupta, A., Chellappan, V., Bilic, A., Sonar, P., Rananaware, A., Bhosale, S.

and Bhosale, S. (2014). A non-fullerene electron acceptor based on fluorene and

diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an

impressive open-circuit voltage. Phys. Chem. Chem. Phys., 16(43), pp.23837-23842.

207. Bloking, J., Giovenzana, T., Higgs, A., Ponec, A., Hoke, E., Vandewal, K., Ko, S., Bao, Z.,

Sellinger, A. and McGehee, M. (2014). Comparing the Device Physics and Morphology of

45

Page 46: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors. Advanced Energy

Materials, 4(12), p.1301426.

208. Hartnett, P., Matte, H., Eastham, N., Jackson, N., Wu, Y., Chen, L., Ratner, M., Chang, R.,

Hersam, M., Wasielewski, M. and Marks, T. (2016). Ring-fusion as a perylenediimide dimer

design concept for high-performance non-fullerene organic photovoltaic acceptors. Chemical

Science, 7(6), pp.3543-3555.

209. Rao, P., Gupta, A., Srivani, D., Bhosale, S., Bilic, A., Li, J., Xiang, W., Evans, R. and Bhosale,

S. (2018). An efficient non-fullerene acceptor based on central and peripheral naphthalene

diimides. Chemical Communications, 54(40), pp.5062-5065.

210. Tan, C., Gorman, J., Wadsworth, A., Holliday, S., Subramaniyan, S., Jenekhe, S., Baran, D.,

McCulloch, I. and Durrant, J. (2018). Barbiturate end-capped non-fullerene acceptors for organic

solar cells: tuning acceptor energetics to suppress geminate recombination losses. Chemical

Communications, 54(24), pp.2966-2969.

211. Wen, S., Chen, W., Huang, G., Shen, W., Liu, H., Duan, L., Zhang, J. and Yang, R. (2018). 2D

expanded conjugated polymers with non-fullerene acceptors for efficient polymer solar

cells. Journal of Materials Chemistry C, 6(7), pp.1753-1758.

212. Mishra, R., Regar, R., Singh, V., Panini, P., Singhal, R., Keshtov, M., Sharma, G. and Sankar, J.

(2018). Modulation of the power conversion efficiency of organic solar cells via architectural

variation of a promising non-fullerene acceptor. Journal of Materials Chemistry A, 6(2), pp.574-

582.

213. Zhang, S., Gao, J., Wang, W., Zhan, C., Xiao, S., Shi, Z. and You, W. (2018). Effect of

Replacing Alkyl Side Chains with Triethylene Glycols on Photovoltaic Properties of Easily

Accessible Fluorene-Based Non-Fullerene Molecular Acceptors: Improve or Deteriorate?. ACS

Applied Energy Materials, 1(3), pp.1276-1285.

46

Page 47: ars.els-cdn.com · Web viewKOtBu-Initiated Aryl C–H Iodination: A Powerful Tool for the Synthesis of High Electron Affinity Compounds. Journal of the American Chemical Society,

214. Sun, J., Zhang, Z., Yin, X., Zhou, J., Yang, L., Geng, R., Zhang, F., Zhu, R., Yu, J. and Tang,

W. (2018). High performance non-fullerene polymer solar cells based on PTB7-Th as the electron

donor with 10.42% efficiency. Journal of Materials Chemistry A, 6(6), pp.2549-2554.

215. Xiao, B., Song, J., Guo, B., Zhang, M., Li, W., Zhou, R., Liu, J., Wang, H., Zhang, M., Luo, G.,

Liu, F. and Russell, T. (2018). Improved photocurrent and efficiency of non-fullerene organic

solar cells despite higher charge recombination. Journal of Materials Chemistry A, 6(3), pp.957-

962.

216. Hu, L., Liu, Y., Mao, L., Xiong, S., Sun, L., Zhao, N., Qin, F., Jiang, Y. and Zhou, Y. (2018).

Chemical reaction between an ITIC electron acceptor and an amine-containing interfacial layer in

non-fullerene solar cells. Journal of Materials Chemistry A, 6(5), pp.2273-2278.

217. Zhao, Y., Wang, H., Xia, S., Zhou, F., Luo, Z., Luo, J., He, F. and Yang, C. (2018). 9,9′-

Bifluorenylidene-Core Perylene Diimide Acceptors for As-Cast Non-Fullerene Organic Solar

Cells: The Isomeric Effect on Optoelectronic Properties. Chemistry - A European Journal, 24(16),

pp.4149-4156.

218. Liang, Z., Li, M., Zhang, X., Wang, Q., Jiang, Y., Tian, H. and Geng, Y. (2018). Near-infrared

absorbing non-fullerene acceptors with selenophene as π bridges for efficient organic solar

cells. Journal of Materials Chemistry A, 6(17), pp.8059-8067.

219. Zhou, S., Li, C., Ma, J., Guo, Y., Zhang, J., Wu, Y. and Li, W. (2018). Small bandgap

porphyrin-based polymer acceptors for non-fullerene organic solar cells. Journal of Materials

Chemistry C, 6(4), pp.717-721.

220. Zhang, Z. and Zhu, X. (2018). Dithienosilole-based non-fullerene acceptors for efficient organic

photovoltaics. Journal of Materials Chemistry A, 6(10), pp.4266-4270.

47