arrangement of electrons in atoms - · pdf filepropertiesoflight •...

102
Chapter 4 Arrangement of Electrons in Atoms

Upload: ngoxuyen

Post on 23-Mar-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Chapter  4Arrangement  of  Electrons  in  Atoms

Page 2: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

THE  DEVELOPMENT  OF  A  NEW  ATOMIC  MODEL

The  Rutherford  model  of  the  atom  was  an  improvement  over  previous  models,  but  it  was  incomplete.    It  did  not  explain  how  the  atom’s  nega?vely  charged  electrons  are  distributed  in  the  space  surrounding  its  posi?vely  charged  nucleus.    AAer  all,  it  was  well  known  that  oppositely  charged  par?cles  aCract  each  other.    So  what  prevented  the  nega?ve  electrons  from  being  drawn  into  the  posi?ve  nucleus?  

In  the  early  20th  century,  a  new  atomic  model  evolved  as  a  result  of  inves?ga?ons  into  the  absorp?on  and  emission  of  light  by  maCer.    The  studies  revealed  a  rela?onship  between  light  and  an  atom’s  electrons.    This  new  understanding  led  directly  to  a  revolu?onary  view  of  the  nature  of  energy,  maCer,  and  atomic  structure.

Page 3: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Properties  of  Light• Before  1900,  scien?sts  thought  light  behaved  as  a  wave  • Changed  when  it  was  discovered  that  light  also  had  par?cle-­‐like  characteris?cs  

• Review  of  wavelike  proper?es  will  help  understanding  theory  of  light  as  it  was  at  the  beginning  of  the  20th  century

Page 4: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Visible  light  is  a  kind  of  electromagne+c  radia+on  à form  of  energy  that  exhibits  wavelike  behavior  as  it  travels  through  space  • X-­‐rays,  UV,  infrared,  etc.  

• Together,  all  forms  of  electromagne?c  radia?on  form  the  electromagne+c  spectrum

Page 5: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 6: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Properties  of  EM  Radiation• All  forms  of  EM  radia?on  travel  at  a  constant  speed  (3.0  ×  108  meters  per  second  (m/s))  through  a  vacuum  and  at  slightly  slower  speeds  through  maCer  

• It  has  a  repe??ve  nature,  which  can  be  described  by  the  measurable  proper?es  à  wavelength  and  frequency  

• Wavelength  (λ)  à  the  distance  between  corresponding  points  on  neighboring  waves  

• Frequency  (ν)  à  the  number  of  waves  that  pass  a  given  point  in  a  specific  6me,  usually  one  second

Page 7: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

λ

λ

Page 8: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Frequency  and  Wavelength• Frequency   and   wavelength   are   mathema?cally   related   to  each  other  

• This  rela?onship  is  wriCen  as  follows  

c  =  λν  

• c  is  the  speed  of  light  • λ  is  the  wavelength  of  the  electromagne?c  wave  • ν  is  the  frequency  of  the  electromagne?c  wave  

• Because   c   is   the   same   for   all   electromagne?c   radia?on,   the  product  λν  is  a  constant  

Page 9: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

The  Photoelectric  Effect• Early  1900s,  scien?sts  conducted  two  experiments  involving  rela?ons  of  light  and  maCer  that  could  not  be  explained  by  the  wave  theory  of  light    

• One  experiment  involved  a  phenomenon  known  as  the  photoelectric  effect    

• Photoelectric  effect  à the  emission  of  electrons  from  a  metal  when  light  shines  on  the  metal

Page 10: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

The  Mystery• For   a   given   metal,   no   electrons   were   emiCed   if   the   light’s  frequency  was  below  a  certain  minimum—regardless  of  how  long  the  light  was  shone    

• Light  was  known  to  be  a  form  of  energy,  capable  of  knocking  loose  an  electron  from  a  metal    

• Wave   theory   of   light   predicted   light   of   any   frequency   could  supply  enough  energy  to  eject  an  electron    

• Couldn’t  explain  why    light  had  to  be  a  minimum  frequency  in  order  for  the  photoelectric  effect  to  occur

Page 11: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

The  Particle  Description  of  Light• Explana?on   à 1900,   German   physicist   Max   Planck   was  studying  the  emission  of  light  by  hot  objects    

• Proposed   a   hot   object   does   not   emit   electromagne?c   energy  con?nuously,  as  would  be  expected  if  the  energy  emiCed  were  in  the  form  of  waves    

• Instead,   Planck   suggested   the   object   emits   energy   in   small,  specific  amounts  called  quanta  

• Quantum  à the  minimum  quan6ty  of  energy  that  can  be  lost  or  gained  by  an  atom  

Page 12: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Planck  projected  the  following  rela?onship  between  a  quantum  of  energy  and  the  frequency  of  radia?on  

E  =  hν  

• In  the  equa?on,    • E  is  the  energy,  in  joules,  of  a  quantum  of  radia?on  • ν  is  the  frequency  of  the  radia?on  emiCed  • h  is  a  constant  now  known  as  Planck’s  constant  

• h  =  6.626  ×  10−34  J•  s

Page 13: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

1905  Albert  Einstein• Expanded  on  Planck’s  theory  by  introducing  the  idea  that  electromagne?c  radia?on  has  a  dual  wave-­‐par+cle  nature  

• Light  displays  many  wavelike  proper?es,  it  can  also  be  thought  of  as  a  stream  of  par?cles  

• Einstein  called  these  par?cles  photons    • Photon  à a  par6cle  of  electromagne6c  radia6on  having  zero  mass  and  carrying  a  quantum  of  energy    

• The  energy  of  a  specific  photon  depends  on  the  frequency  of  the  radia?on    

Ephoton  =  hν

Page 14: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

The  Hydrogen-­‐Atom  Line-­‐Emission  

• When  current  is  passed  through  a  gas  at  low  pressure,  the  poten?al  energy  of  some  of  the  gas  atoms  increases  

• The  lowest  energy  state  of  an  atom  is  its  ground  state    

• A  state  in  which  an  atom  has  a  higher  poten6al  energy  than  it  has  in  its  ground  state  is  an  excited  state

Page 15: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Returning  to  Ground  State• When  an  excited  atom  returns  to  its  ground  state,  it  gives  off  the  energy  it  gained  in  the  form  of  electromagne?c  radia?on  

• Example  of  this  Excited   neon   atoms   emit   light   when  falling  back  to  the  ground  state  or  to  a  lower-­‐energy  excited  state.

Page 16: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Line-­‐Emission  Spectrum• Scien?sts  passed  electric  current  through  a  vacuum  tube  containing  hydrogen  gas  at  low    pressure,  they  observed  the  emission  of  a  characteris?c  pinkish  glow    

• EmiCed  light  was  shined  through  a  prism,  it  was  separated  into  a  series  of  specific  frequencies  of  visible  light  

• The  bands  of  light  were  part  of  what  is  known  as  hydrogen’s  line-­‐emission  spectrum

Page 17: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Quantum  Theory• The  hydrogen  atoms  should  be  excited  by  whatever  amount  of  energy  was  added  to  them    

• Scien?sts  expected  to  see  the  emission  of  a  con?nuous  range  of  frequencies  of  electromagne?c  radia?on,  that  is,  a  con+nuous  spectrum    

• Why  had  the  hydrogen  atoms  given  off  only  specific  frequencies  of  light?    

• ACempts  to  explain  this  observa?on  led  to  an  en?rely  new  theory  of  the  atom  called  quantum  theory

Page 18: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Whenever  an  excited  hydrogen  atom  falls  back  from  an  excited  state  to  its  ground  state  or  to  a  lower-­‐energy  excited  state,  it  emits  a  photon  of  radia?on    

• The  energy  of  this  photon  (Ephoton  =  hν)  is  equal  to  the  difference  in  energy  between  the  atom’s  ini?al  state  and  its  final  state

Page 19: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Changes  of  energy  (transi?on  of  an  electron  from  one  orbit  to  another)  is  done  in  isolated  quanta  

• Quanta  are  not  divisible  

• There   is  sudden  movement  from  one  specific  energy   level  to  another,  with  no  smooth  transi?on  

• There  is  no  ``in-­‐between‘‘

Page 20: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Hydrogen  atoms  emit  only  specific  frequencies  of  light  à showed  that  energy  differences  between  the  atoms’  energy  states  were  fixed  

• The  electron  of  a  hydrogen  atom  exists  only  in  very  specific  energy  states

Page 21: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Bohr  Model  of  the  Hydrogen  • Solved  in  1913  by  the  Danish  physicist  Niels  Bohr  • Proposed  a  model  of  the  hydrogen  atom  that  linked  the  atom’s  electron  with  photon  emission  • According  to  the  model,  the  electron  can  circle  the  nucleus  only  in  allowed  paths,  or  orbits

Page 22: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• When  the  electron  is  in  one  of  these  orbits,  the  atom  has  a  definite,  fixed  energy  

• The  electron,  and  therefore  the  hydrogen  atom,  is  in  its  lowest  energy  state  when  it  is  in  the  orbit  closest  to  the  nucleus  

• This  orbit  is  separated  from  the  nucleus  by  a  large  empty  space  where  the  electron  cannot  exist    

• The  energy  of  the  electron  is  higher  when  it  is  in  orbits  farther  from  the  nucleus

Page 23: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

The  Rungs  of  a  Ladder• The  electron  orbits  or  atomic  energy  levels  in  Bohr’s  model  can  be  compared  to  the  rungs  of  a  ladder  

• When  you  are  standing  on  a  ladder,  your  feet  are  on  one  rung  or  another  

• The  amount  of  poten?al  energy  that  you  possess  relates  to  standing  on  the  first  rung,  the  second  rung…  

• Your  energy  cannot  relate  to  standing  between  two  rungs  because  you  cannot  stand  in  midair  

• In  the  same  way,  an  electron  can  be  in  one  orbit  or  another,  but  not  in  between

Page 24: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Moving  up  in  the  Orbit…• Explaining  spectral  lines:  • While  in  a  given  orbit,  electron  isn’t  gaining  or  losing  energy  • Can  move  to  higher-­‐energy  orbit  by  gaining  energy  equal  to  difference  in  energy  between  higher-­‐energy  orbit  and  ini?al  lower-­‐energy  orbit  

• When  hydrogen  is  excited,  electron  is  in  higher-­‐energy  orbit  • When  electron  falls  to  lower  energy  level,  a  photon  is  emiCed  in  process  called  emission

Page 25: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Photon’s  energy  is  equal  to  energy  difference  between  ini?al  high  energy  and  final  lower  energy  level  

• To  move  electron  from  low  energy  to  high  energy  level,  energy  must  be  added  to  atom  in  process  called  absorp6on

Page 26: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• When  a  hydrogen  atom  is  in  an  excited  state,  its  electron  is  in  a  higher-­‐energy  orbit  

• When  the  atom  falls  back  from  the  excited  state,  the  electron  drops  down  to  a  lower-­‐energy  orbit  

• In  the  process,  a  photon  is  emiCed  that  has  an  energy  equal  to  the  energy  difference  between  the  ini?al  higher-­‐energy  orbit  and  the  final  lower-­‐energy  orbit  

Page 27: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Based  on  different  wavelengths  of  H  spectrum,  Bohr  calculated  allowed  energy  levels  for  H  atom  

• Then  related  possible  energy-­‐level  changes  to  lines  in  spectrum  • Lyman  series  shows  result  of  electron  dropping  from  levels  E6,  E5,  E4,  E3,  E2  to  ground  level  E1

Page 28: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Bohr’s  model  explained  spectral  lines  so  well  many  scien?sts  thought  it  could  be  applied  to  all  atoms  

• Did  not  explain  spectra  of  atoms  with  more  than  one  electron  

• Did  not  explain  the  chemical  behavior  of  atoms

Page 29: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

SECTION  2  –  THE  QUANTUM  MODEL  OF  THE  ATOM

To  the  scien?sts  of  the  early  20th  century,  Bohr’s  model  of  the  hydrogen  atom  contradicted  common  sense.    Why  did  hydrogen’s  electron  exist  around  the  nucleus  only  in  certain  allowed  orbits  with  definite  energies?    Why  couldn’t  the  electron  exist  in  a  limitless  number  of  orbits  with  slightly  different  energies?    To  explain  why  atomic  energy  states  are  quan?zed,  scien?sts  had  to  change  the  way  they  viewed  the  nature  of  the  electron.

Page 30: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Electrons  as  Waves• Photoelectric  effect  and  H  spectrum  showed  light  behaving  as  wave  and  par?cle  

• Could  electrons  have  dual  wave-­‐par?cle  nature?  • 1924  Louis  de  Broglie  proposed  answer  that  revolu?onized  our  understanding  of  maCer

Page 31: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• DeBroglie  pointed  out  behavior  of  electrons  in  Bohr’s  orbits  similar  to  known  behavior  of  waves  

• Any  wave  in  limited  space  has  only  certain  frequencies  • Electrons  should  be  considered  as  being  in  limited  space  around  the  nucleus  

• So  electron  waves  could  exist  only  at  specific  frequencies  • According  to  E  =  hv,  frequencies  will  correspond  to  specific  energies  –  the  quan?zed  energies  of  Bohr’s  orbits

Page 32: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Other  parts  of  DeBroglie’s  hypothesis  confirmed  by  experiment  • Electrons,  like  light,  can  be  bent  or  diffracted  • Diffrac6on  is  bending  a  wave  as  it  passes  by  edge  of  object  or  through  small  opening  

• Diffrac?on  experiments  showed  beams  of  electrons  can  interfere  with  each  other  

• Interference  happens  when  waves  overlap  • Overlapping  reduces  energy  in  some  areas  and  increases  in  other  areas

Page 33: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

The  Heisenberg  Uncertainty  

• If  electrons  are  both  par?cles  and  waves,  then  where  are  they  in  the  atom?    

• To  answer  this  ques?on,  it  is  important  to  consider  a  proposal  first  made  in  1927  by  the  German  theore?cal  physicist  Werner  Heisenberg

Page 34: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Heisenberg’s  idea  involved  detec?on  of  electrons  by  interac?on  with  photons  

• Photons  have  about  same  energy  as  electrons  • Trying  to  locate  specific  electron  with  photon  knocks  electron  off  course  

• So  there  is  always  uncertainty  trying  to  locate  an  electron  • Heisenberg  uncertainty  principle  à  states  that  it  is  impossible  to  determine  simultaneously  both  the  posi6on  and  velocity  of  an  electron  or  any  other  par6cle

Page 35: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Schrodinger  Wave  Equation• Used  hypothesis  that  electrons  have  dual  nature  to  develop  equa?on  that  treated  electrons  in  atoms  as  waves  

• Bohr  assumed  quan?za?on  was  fact  • Schrodinger  didn’t  assume  –  it  was  a  natural  result  of  his  equa?on  

• Only  waves  of  specific  energies  (frequencies)  provided  solu?ons  to  equa?on  

• With  Heisenberg  uncertainty,  wave  equa?on  laid  founda?on  for  modern  quantum  theory  

• Quantum  theory  –  describes  mathema6cally  the  wave  proper6es  of  electrons  and  other  small  par6cles

Page 36: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Orbitals• Electrons  do  not  travel  around  the  nucleus  in  neat  orbits  • Instead,  they  exist  in  certain  regions  called  orbitals    • Orbital  à a  three-­‐dimensional  region  around  the  nucleus  that  indicates  the  probable  loca6on  of  an  electron

Page 37: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Atomic  Orbitals  and  Quantum  Numbers• Bohr’s  model  –  electrons  of  increasing  energy  occupy  orbits  farther  and  farther  from  nucleus  

• Schrodinger  equa?on  –  electrons  in  orbitals  have  quan?zed  energies  

• Energy  level  is  not  the  only  characteris?c  of  an  orbital  shown  by  solving  Schrodinger  equa?on

Page 38: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Atomic  Orbitals  and  Quantum  • In  order  to  completely  describe  orbitals,  scien?sts  use  quantum  numbers  

• Quantum  numbers  à specify  the  proper6es  of  atomic  orbitals  and  the  proper6es  of  electrons  in  orbitals  

• First  3  numbers  result  from  solu?ons  to  Schrodinger’s  equa?on  

• Indicate  energy  level,  shape,  and  orienta?on  of  each  orbital

Page 39: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

The  Quantum  Numbers1. Principal  quantum  number  à the  main  energy  level  

occupied  by  the  electron  

2. Angular  momentum  quantum  number  à the  shape  of  the  orbital  

3. Magne+c  quantum  number  à the  orienta?on  of  the  orbital  around  the  nucleus  

4. Spin  quantum  number  à the  two  fundamental  spin  states  of  an  electron  in  an  orbital

Page 40: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Principal  Quantum  Number

• Symbolized  by  n    • Indicates  the  main  energy  level  occupied  by  the  electron  • Values  are  posi?ve  integers  only  • As  n  increases,  the  electron’s  energy  and  its  average  distance  from  the  nucleus  increase

Page 41: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Angular  Momentum  Quantum  

• Except  at  the  first  main  energy  level,  orbitals  of  different  shapes—  known  as  sublevels—exist  for  a  given  value  of  n    

• The  angular  momentum  quantum  number,  symbolized  by  l,  indicates  the  shape  of  the  orbital  

• The  values  of  l  allowed  are  zero  and  all  posi?ve  integers  less  than  or  equal  to  n  −  1  • n  =  2  can  have  one  of  two  shapes  • l  =  0  and  l  =  1

Page 42: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

n  =  1  • l  =  0  only  • For  l  =  0,  the  corresponding  leCer  designa?on  for  the  orbital  shape  is  s  

• Shape  of  s  is  a  sphere  

                                                                                         

Page 43: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

n  =  2• l  =  0  (s),  l  =  1  (p)  • For  l  =  1,  ,  the  corresponding  leCer  designa?on  for  the  orbital  shape  is  p  

• Shape  of  p  is    

                                                   

Page 44: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

n  =  3• l  =  0  (s),  l  =  1  (p),  l  =  2  (d)  • For   l  =  2,  the  corresponding   leCer  designa?on  for  the  orbital  shape  is  d  

• Shape  of  d  is                                                                                                

Page 45: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

n  =  4• l  =  0  (s),1  (p),  2  (d),  3  (f)  • For  l  =  3,  the  corresponding  leCer  designa?on  for  the  orbital  shape  is  f  

• Shape  is  too  complicated  to  picture

Page 46: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Each  atomic  orbital  is  designated  by  the  principal  quantum  number  followed  by  the  leCer  of  the  sublevel    

• For  example,  the  1s  sublevel  is  the  s  orbital  in  the  first  main  energy  level,  while  the  2p  sublevel  is  the  set  of  p  orbitals  in  the  second  main  energy  level

Page 47: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Magnetic  Quantum  Number• Atomic  orbitals  can  have  the  same  shape  but  different  orienta?ons  around  the  nucleus    

• The  magne+c  quantum  number,  symbolized  by    m,  indicates  the  orienta6on  of  an  orbital  around  the  nucleus  

Page 48: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 49: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

S  orbital• Because  an  s  orbital  is  spherical  and  is  centered  around  the  nucleus,  it  has  only  one  possible  orienta?on  

• This  orienta?on  corresponds  to  a  magne?c  quantum  number  of  m  =  0  

• There  is  therefore  only  one  s  orbital  in  each  s  sublevel

Page 50: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

P  orbital• p  orbital  can  extend  along  the  x,  y,  or  z  axis  • There  are  therefore  three  p  orbitals  in  each  p  sublevel,  which  are  designated  as  px,  py  ,  and  pz  orbitals  

• The  three  p  orbitals  occupy  different  regions  of  space  and  correspond,  in  no  par?cular  order,  to  values  of  m  =  −1,  m  =  0,  and  m  =  +1

Page 51: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 52: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

D  orbital• There  are  five  different  d  orbitals  in  each  d  sublevel  

• The  five  different  orienta?ons,  including  one  with  a  different  shape,  correspond  to  values  of  m  =  −2,  m  =  −1,  m  =  0,  m  =  +1,  and  m  =  +2

Page 53: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 54: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Spin  Quantum  Number• An  electron  in  an  orbital  can  be  thought  of  as  spinning  on  an  axis    

• It  spins  in  one  of  two  possible  direc?ons,  or  states  

• The  spin  quantum  number  has  only  two  possible  values  —  +1/2  ,  −1/2  

• Indicate  the  two    fundamental  spin  states  of  an  electron  in  an  orbital  

• ***A  single  orbital  can  hold  a  maximum  of  two  electrons,  which  must  have  opposite  spins***

Page 55: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• You  can  think  of  an  atom  as  a  very  bizarre  house  with  the  nucleus  living  on  the  ground  floor,  and  then  various  rooms  (orbitals)  on  the  higher  floors  occupied  by  the  electrons  

• On  the  first  floor  there  is  only  1  room  (the  1s  orbital)  • On  the  second  floor  there  are  4  rooms  (the  2s,  2px,  2py  and  2pz  orbitals)  

• On  the  third  floor  there  are  9  rooms  (one  3s  orbital,  three  3p  orbitals  and  five  3d  orbitals);  and  so  on  

• But  the  rooms  aren't  very  big  .  .  .  Each  orbital  can  only  hold  2  electrons

Page 56: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 57: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

SECTION  3  –  ELECTRON  CONFIGURATIONS

Page 58: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Quantum  model  of  atom  beCer  than  Bohr  model  b/c  it  describes  the  arrangements  of  electrons  in  atoms  other  than  hydrogen  

• Electron  configura+on  à the  arrangement  of  electrons  in  an  atom  

• b/c  atoms  of  different  elements  have  different  numbers  of  e-­‐,  the  e-­‐  configura?on  for  each  element  is  unique

Page 59: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Electrons  in  atoms  assume  arrangements  that  have  lowest  possible  energies  

• Ground-­‐state  electron  configura+on  à lowest-­‐energy  arrangement  of  electrons  for  each  element  

• Some  rules  combined  with  quantum  numbers  let  us  determine  the  ground-­‐state  e-­‐  configura?ons

Page 60: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Rules  Governing  Electron  

• To  build  up  electron  configura?ons  for  the  ground  state  of  any  par?cular  atom,  first  the  energy  levels  of  the  orbitals  are  determined  

• Then  electrons  are  added  to  the  orbitals  one  by  one  according  to  three  basic  rules  

1. Au{au  principle  2. Pauli  exclusion  principle  3. Hund’s  rule

Page 61: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Aufbau  Principle• The  first  rule  shows  the  order  in  which  electrons  occupy  orbitals  

• According  to  the  AuLau  principle,  an  electron  occupies  the  lowest-­‐energy  orbital  that  can  receive  it

Page 62: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• The  orbital  with  the  lowest  energy  is  the  1s  orbital    

• Ground-­‐state  hydrogen  atom  à  electron  in  this  orbital    

• The  2s  orbital  is  the  next  highest  in  energy,  then  the  2p  orbitals  

• Beginning  with  the  third  main  energy  level,  n  =  3,  the  energies  of  the  sublevels  in  different  main  energy  levels  begin  to  overlap

Page 63: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• The  4s  sublevel  is  lower  in  energy  than  the  3d  sublevel    

• Therefore,  the  4s  orbital  is  filled  before  any  electrons  enter  the  3d  orbitals    

• (Less  energy  is  required  for  two  electrons  to  pair  up  in  the  4s  orbital  than  for  a  single  electron  to  occupy  a  3d  orbital)

Page 64: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Pauli  Exclusion  Principle• The  second  rule  reflects  the  importance  of  the  spin  quantum  number  • According  to  the  Pauli  exclusion  principle,  no  two  electrons  in  the  same  atom  can  have  the  same  set  of  four  quantum  numbers

Page 65: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Hund’s  Rule• The  third  rule  requires  placing  as  many  unpaired  electrons  as  possible  in  separate  orbitals  in  the  same  sublevel  • Electron-­‐electron  repulsion  is  minimized  à  the  electron  arrangements  have  the  lowest  energy  possible  • Hund’s  rule  à  orbitals  of  equal  energy  are  each  occupied  by  one  electron  before  any  orbital  is  occupied  by  a  second  electron,  and  all  electrons  in  singly  occupied  orbitals  must  have  the  same  spin

Page 66: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Orbital  Notation

Page 67: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

H He

C

Page 68: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Electron-­‐Configuration  Notation• Electron-­‐configura?on  nota?on  eliminates  the  lines  and  arrows  of  orbital  nota?on  

• Instead,  the  number  of  electrons  in  a  sublevel  is  shown  by  adding  a  superscript  to  the  sublevel  designa?on  

• The  hydrogen  configura?on  is  represented  by  1s1  

• The   superscript   indicates   that   one   electron   is   present   in  hydrogen’s  1s  orbital

Page 69: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• The  helium  configura?on  is  represented  by  1s2  

• Here   the   superscript   indicates   that   there  are   two  electrons   in  helium’s  1s  orbital

Page 70: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Sample  ProblemThe   electron   configura+on   of   boron   is   1s22s22p1.   How  many  electrons   are   present   in   an   atom   of   boron?   What   is   the  atomic   number   for   boron?   Write   the   orbital   nota+on   for  boron.

Page 71: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 72: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Practice  Problems• The  electron  configura?on  of  nitrogen  is  1s22s22p3.  How  many  electrons  are  present  in  a  nitrogen  atom?  What  is  the  atomic  number  of  nitrogen?  Write  the  orbital  nota?on  for  nitrogen.

Page 73: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Practice  ProblemsThe   electron   configura?on   of   fluorine   is   1s22s22p5.    What  is  the  atomic  number  of  fluorine?  How  many  of  its  p  orbitals  are  filled?  How  many  unpaired  electrons  does  a  fluorine  atom  contain?  

• Answer  • 9  • 2  • 1

Page 74: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 75: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Elements  of  the  Second  Period• According  to  Au{au  principle,  aAer  1s  orbital  is  filled,  the  next  electron  occupies  the  s  sublevel  in  the  second  main  energy  level  

• Lithium,  Li,  has  a  configura?on  of  1s22s1  

• The  electron  occupying  the  2s  level  of  a  lithium  atom  is  in  the  atom’s  highest,  or  outermost,  occupied  level

Page 76: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 77: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• The  highest  occupied  level  à  the  electron-­‐containing  main  energy  level  with  the  highest  principal  quantum  number  

• The  two  electrons  in  the  1s  sublevel  of  lithium  are  no  longer  in  the  outermost  main  energy  level  

• They  have  become  inner-­‐shell  electrons  à  electrons  that  are  not  in  the  highest  occupied  energy  level

Page 78: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• The  fourth  electron  in  an  atom  of  beryllium,  Be,  must  complete  the  pair  in  the  2s  sublevel  because  this  sublevel  is  of  lower  energy  than  the  2p  sublevel  

• With  the  2s  sublevel  filled,  the  2p  sublevel,  which  has  three  vacant  orbitals  of  equal  energy,  can  be  occupied  

• One  of  the  three  p  orbitals  is  occupied  by  a  single  electron  in  an  atom  of  boron,  B  

• Two  of  the  three  p  orbitals  are  occupied  by  unpaired  electrons  in  an  atom  of  carbon,  C  

• And  all  three  p  orbitals  are  occupied  by  unpaired  electrons  in  

Page 79: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 80: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Elements  of  Third  Period• AAer  the  outer  octet  is  filled  in  neon,  the  next  electron  enters  the  s  sublevel  in  the  n  =  3  main  energy  level  

• Atoms  of  sodium,  Na,  have  the  configura?on  1s22s22p63s1  

• Once  past  Neon,  can  use  Noble-­‐gas  nota?on

Page 81: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Noble-­‐Gas  Notation• The  Group  18  elements  (helium,  neon,  argon,  krypton,  xenon,  and  radon)  are  called  the  noble  gases  

• To  simplify  sodium’s  nota?on,  the  symbol  for  neon,  enclosed  in  square  brackets,  is  used  to  represent  the  complete  neon  configura?on:    

[Ne]  =  1s22s22p6  

• This  allows  us  to  write  sodium’s  electron  configura?on  as  [Ne]3s1,  which  is  called  sodium’s  noble-­‐gas  nota?on

Page 82: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 83: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Elements  of  the  Fourth  Period• Period  begins  by  filling  4s  orbital  (empty  orbital  of  lowest  energy)  

• First  element  in  fourth  period  is  potassium,  K  • E-­‐  configura?on  [Ar]4s1  

• Next  element  is  calcium,  Ca  • E-­‐  configura?on  [Ar]4s2

Page 84: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• With  4s  sublevel  filled,  4p  and  3d  sublevels  are  next  available  empty  orbitals  • Diagram  shows  3d  sublevel  is  lower  energy  than  4p  sublevel  

Page 85: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Total  of  10  electrons  can  fill  3d  orbitals  

• These  are  filled  from  element  scandium  (Sc)  to  zinc  (Zn)

Page 86: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Scandium  has  e-­‐  configura?on  [Ar]3d14s2  • Titanium,  Ti,  has  configura?on  [Ar]3d24s2  • Vanadium,  V,  has  configura?on  [Ar]3d34s2  

• Up  to  this  point,  3  e-­‐  with  same  spin  added  to  3  separate  d  orbitals  (required  by  Hund’s  rule)

Page 87: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Chromium,  Cr,  has  configura?on  [Ar]3d54s1  

• We  added  one  electron  to  4th  3d  orbital  • We  also  took  a  4s  electron  and  added  it  to  5th  3d  orbital  • Seems  to  be  against  Au{au  principle  

• In  reality,  [Ar]3d54s1  is  lower  energy  than  [Ar]3d44s2

Page 88: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Having  6  outer  orbitals  with  unpaired  electrons  in  3d  orbital  is  more  stable  than  having  4  unpaired  electrons  in  3d  orbitals  and  forcing  2  electrons  to  pair  in  4s  

• For  tungsten,  W,  (same  group  as  chromium)  having  4  e-­‐  in  5d  orbitals  and  2  e-­‐  paired  in  6s  is  most  stable  arrangement  

• No  easy  explanan?on

Page 89: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• Manganese,  Mn,  has  configura?on  [Ar]3d54s2  • Added  e-­‐  goes  to  4s  orbital,  completely  filling  it  and  leaving  3d  half-­‐filled  

• Star?ng  with  next  element,  e-­‐  con?nue  to  pair  in  d  orbitals  

• So  iron,  Fe,  has  configura?on  [Ar]3d64s2  • Cobalt,  Co,  has  [Ar]3d74s2  • Nickel,  Ni,  has  [Ar]3d84s2

Page 90: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• With  copper,  Cu,  an  electron  from  4s  moves  to  pair  with  e-­‐  in  5th  3d  orbital  

• Configura?on:  [Ar]3d104s1  (most  stable)  

• For  zinc,  Zn,  4s  sublevel  filled  to  give  [Ar]3d104s2  

• For  next  elements,  1  e-­‐  added  to  4p  orbitals  according  to  Hund’s  rule

Page 91: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 92: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Elements  of  Fifth  Period• In  18  elements  of  5th  period,  sublevels  fill  in  similar  way  to  4th  period  elements  

• BUT  they  start  at  5s  level  instead  of  4s  level  

• Fill  5s,  then  4d,  and  finally  5p  

• There  are  excep?ons  just  like  in  4th  period

Page 93: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)
Page 94: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Practice  ProblemWrite  both  the  complete  electron-­‐configura?on  nota?on  and  the  noble-­‐gas  nota?on  for  iron,  Fe.

Page 95: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Write  both  the  complete  electron  configura?on  nota?on  and  the  noble-­‐gas   nota?on   for   iodine,   I.   How   many   inner-­‐shell  electrons  does  an  iodine  atom  contain?  

• 1s2  2s2  2p6  3s2  3p6  4s2  3d10  4p6    5s2  4d10  5p5  • [Kr]  4d10  5s2  5p5  • 46

Page 96: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

How  many  electron-­‐containing  orbitals  are  in  an  atom  of  iodine?  How  many  of  these  orbitals  are  filled?  How  many  unpaired  electrons  are  there  in  an  atom  of  iodine?  

• 27  • 26  • 1

Page 97: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Write  the  noble-­‐gas  nota?on  for  ?n,  Sn.  How  many  unpaired  electrons  are  there  in  an  atom  of  ?n?  

• [Kr]  5s2  4d10  5p2  • 2

Page 98: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Without  consul?ng  the  periodic  table  or  a  table  in  this  chapter,  write  the  complete  electron  configura?on  for  the  element  with  atomic  number  25.  

• 1s2  2s2  2p6  3s2  3p6  4s2  3d5

Page 99: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Elements  of  6th  and  7th  periods• 6th  period  has  32  elements  • To  build  up  e-­‐  configura?ons  for  elements  in  this  period,  e-­‐  first  added  first  to  6s  orbital  in  cesium,  Cs,  and  barium,  Ba  

• Then  in  lanthanum,  La,  e-­‐  added  to  5d  orbital

Page 100: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

• With  next  element,  cerium,  Ce,  4f  orbitals  begin  to  fill  • Ce:  [Xe]4f15d16s2  

• In  next  13  elements,  4f  orbitals  filled  

• Next  5d  orbitals  filled    

• Period  finished  by  filling  6p  orbitals  

• (some  excep?ons  happen)

Page 101: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Practice  ProblemWrite  both  the  complete  electron-­‐configura?on  nota?on  and  the  noble-­‐gas  nota?on  for  a  rubidium  atom.  

• 1s2  2s2  2p6  3s2  3p6  4s2  3d10  4p6  5s1  • [Kr]5s1

Page 102: Arrangement of Electrons in Atoms - · PDF filePropertiesofLight • Before)1900,)scien?sts)thoughtlightbehaved)as)awave ) • Changed)when)itwas)discovered)thatlightalso)had)par?cleLlike)

Write  both  the  complete  electron  configura?on  nota?on  and  the  noble-­‐gas  nota?on  for  a  barium  atom.  

• 1s2  2s2  2p6  3s2  3p6  4s2  3d10  4p6  5s2  4d10  5p6  6s2  • [Xe]6s2