arnaud vande craen (te-msc) 27/02/20131 eucard : esac review – cea saclay

29
HFM Test Station Main Cryostat Arnaud Vande Craen (TE-MSC) 27/02/2013 1 EUCARD : ESAC Review – CEA Saclay

Upload: susan-wright

Post on 04-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

1

HFM Test StationMain Cryostat

Arnaud Vande Craen (TE-MSC)

27/02/2013

EUCARD : ESAC Review – CEA Saclay

2

Summary• Introduction

• Design

• Status

• Conclusion

27/02/2013

3

Introduction

27/02/2013

4

Introduction• Vertical cryostat

• “Claudet bath” principle• Few cryogenic connections

• Installed in a pit• Support structure in the pit

• 4 parts• Vacuum vessel• Helium vessel• Thermal shield• Insert

• Magnet hanging from lambda plate

27/02/2013

5

Integration on ground level• Jumper to valve box

• Exhaust line• DN 300• In a trench• Release outside of SM18

• Current leads• 20 kA for main magnet• 10 kA for insert

• Instrumentation• Magnet• Helium vessel

• Level gauge• Heaters• Temperature sensor

27/02/2013

6

Magnet cooling• 3 Phases

• 300 K – 80 K • 8 hours• Cold gaseous helium

• 80 K – 4.2 K• 8 hours• Liquid helium (1 bar)

• 4.2 K – 1.8 K• 36 hours (1.5 days)• Heat exchanger in cryostat

27/02/2013

7

Cooling from 300 K to 80 K

27/02/2013

Pre cooling valve box

Courtesy M. Bajko

8

Magnet cooling• 3 Phases

• 300 K – 80 K • 8 hours• Cold gaseous helium

• 80 K – 4.2 K• 8 hours• Liquid helium (1 bar)

• 4.2 K – 1.8 K• 36 hours (1.5 days)• Heat exchanger in cryostat

27/02/2013

9

Cooling from 80 K to 4.2 K

27/02/2013

Courtesy M. Bajko

10

Magnet cooling• 3 Phases

• 300 K – 80 K • 8 hours• Cold gaseous helium

• 80 K – 4.2 K• 8 hours• Liquid helium (1 bar)

• 4.2 K – 1.8 K• 36 hours (1.5 days)• Heat exchanger in cryostat

27/02/2013

11

Cooling from 4.2 K to 1.8 K

27/02/2013

Heat in-leak estimation at 1.9KQnom=25W, Qdyn=40W, Qc-d=100W

LHe/LHe heat exchanger, 1.9KCooling power 100W,dT ≈30mK during cool down and dT≈10mK @ nominal condition

Pumping

Filling

LHe/GHe heat exchanger 1.9K Cooling power up to

150W at 2K

Courtesy M. Bajko

12

Design

27/02/2013

13

Vacuum vessel• Dimensions

• 4.6 m height• 2.3 m diameter• 4.8 tons

• Stainless steel (304L)

• Conical cover• Limit deformations due to magnet weight

• 3 supports Isostatic

• Static vacuum• Protection using burst disk

27/02/2013

14

Helium vessel• Max pressure : 5 bar

• Stainless steel (316 L, 316 LN)

• Welded to conical cover

• Neck thermalisation to limit heat in-leak

• Magnet support by lambda plate seat

• Heat exchanger for magnet cooling to 1.8 K

27/02/2013

1.9K

4.2K

300K

15

Helium vessel• Jumper

• Regroup all cryogenic lines• Connection to valve box

• Fixed point• Cryogenic lines• Block lines movement• G10 plate + Collars

27/02/2013

16

Helium vessel• Neck thermalisation

• Copper profile• Brazed to neck (stainless steel)• Part of thermal shield cryogenic line

27/02/2013

Neck

Brazing

Copper profile

17

Helium vessel• Heat exchanger

• Copper tube brazed to stainless steel tube

• U shaped and welded to flange (30 x)

• Saturated helium (18 mbar – 1.8 K) in the tubes

• Cool-down pressurized helium (magnet)

by conduction through copper

• Cooling power ≈ 100 W @ 1.9K

(1.5 day Cool-Down)

27/02/2013

18

Helium vessel• Heat exchanger prototype

27/02/2013

19

Thermal shield• Actively cooled

• Supported from top cover

• Stainless steel structure• Support shield• Rigidity of the assembly

• Copper• Sheet to form shield• Pipe brazed on sheets for cooling

27/02/2013

20

Insert (concept)• Top plate

• Current leads• Instrumentation

• Radiative screens

• Lambda plate• Quench valve (DN150)• Splices• Instrumentation

• Mechanical support• Lambda plate to top plate• Magnet (15 tons) to lambda plate

27/02/2013

21

Status

27/02/2013

22

Vacuum vessel

• Design : Finished

• Construction : In progress• First production meeting : 14th February 2013

• Delivery : June 2013

27/02/2013

23

Helium vessel• Design : Almost finished

• Call for tender : March 2013

• Order : Summer 2013

• Delivery : 6-7 months after order (Early 2014)

27/02/2013

24

Thermal shield and Insert• Thermal Shield

• Design in progress• Construction in the shadow of helium vessel

• Order expected for summer 2013

• Insert• Design in progress• Construction at CERN

27/02/2013

25

Conclusion

27/02/2013

26

Conclusion• Design almost finished

• Construction in progress• All components at CERN early 2014

• Assembly phase to be planned• Assembly of the cryostat• Connection to other components

27/02/2013

27

Acknowledgment• M. Bajko (TE-TF)• V. Benda (TE-CRG)• G. De Rijk (TE)• C. Giloux (TE-TF)• P. Minginette (EN-MME)• V. Parma (TE-MSC)• P. Perret (EN-MME)• P. Viret (TE-TF)• CERN TE-MSC-CMI Section

27/02/2013

28

Thank you for your attention !

27/02/2013