arm-based 32-bit mcu, 150dmips, up to 1 mb … · datasheet − production data ... – lcd...

177
This is information on a product in full production. October 2012 Doc ID 15818 Rev 9 1/177 1 STM32F205xx STM32F207xx ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera Datasheet production data Features Core: ARM 32-bit Cortex™-M3 CPU (120 MHz max) with Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution performance from Flash memory, MPU, 150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1) Memories Up to 1 Mbyte of Flash memory 512 bytes of OTP memory Up to 128 + 4 Kbytes of SRAM Flexible static memory controller that supports Compact Flash, SRAM, PSRAM, NOR and NAND memories LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management From 1.8 to 3.6 V application supply+I/Os POR, PDR, PVD and BOR 4 to 26 MHz crystal oscillator Internal 16 MHz factory-trimmed RC 32 kHz oscillator for RTC with calibration Internal 32 kHz RC with calibration Low power Sleep, Stop and Standby modes V BAT supply for RTC, 20 × 32 bit backup registers, and optional 4 KB backup SRAM 3 × 12-bit, 0.5 μs ADCs with up to 24 channels and up to 6 MSPS in triple interleaved mode 2 × 12-bit D/A converters General-purpose DMA: 16-stream controller with centralized FIFOs and burst support 96-bit unique ID Up to 17 timers Up to twelve 16-bit and two 32-bit timers, up to 120 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input Debug mode: Serial wire debug (SWD), JTAG, and Cortex-M3 Embedded Trace Macrocell™ Up to 140 I/O ports with interrupt capability: Up to 136 fast I/Os up to 60 MHz Up to 138 5 V-tolerant I/Os Up to 15 communication interfaces Up to 3 × I 2 C interfaces (SMBus/PMBus) Up to 4 USARTs and 2 UARTs (7.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control) Up to 3 SPIs (30 Mbit/s), 2 with muxed I 2 S to achieve audio class accuracy via audio PLL or external PLL 2 × CAN interfaces (2.0B Active) SDIO interface Advanced connectivity USB 2.0 full-speed device/host/OTG controller with on-chip PHY USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII 8- to 14-bit parallel camera interface (48 Mbyte/s max) Analog true random number generator Table 1. Device summary Reference Part number STM32F205xx STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG, STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF STM32F205VG, STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG STM32F207xx STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG, STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG, STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) LQFP144 (20 × 20 mm) LQFP176 (24 × 24 mm) FBGA UFBGA176 (10 × 10 mm) WLCSP64+2 (0.400 mm pitch) FBGA www.st.com

Upload: trinhkien

Post on 06-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

This is information on a product in full production.

October 2012 Doc ID 15818 Rev 9 1/177

1

STM32F205xx STM32F207xx

ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera

Datasheet − production data

Features Core: ARM 32-bit Cortex™-M3 CPU (120 MHz

max) with Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution performance from Flash memory, MPU, 150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1)

Memories– Up to 1 Mbyte of Flash memory– 512 bytes of OTP memory– Up to 128 + 4 Kbytes of SRAM– Flexible static memory controller that

supports Compact Flash, SRAM, PSRAM, NOR and NAND memories

– LCD parallel interface, 8080/6800 modes

CRC calculation unit

Clock, reset and supply management– From 1.8 to 3.6 V application supply+I/Os– POR, PDR, PVD and BOR– 4 to 26 MHz crystal oscillator– Internal 16 MHz factory-trimmed RC– 32 kHz oscillator for RTC with calibration– Internal 32 kHz RC with calibration

Low power– Sleep, Stop and Standby modes– VBAT supply for RTC, 20 × 32 bit backup

registers, and optional 4 KB backup SRAM

3 × 12-bit, 0.5 µs ADCs with up to 24 channels and up to 6 MSPS in triple interleaved mode

2 × 12-bit D/A converters

General-purpose DMA: 16-stream controller with centralized FIFOs and burst support

96-bit unique ID

Up to 17 timers– Up to twelve 16-bit and two 32-bit timers,

up to 120 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input

Debug mode: Serial wire debug (SWD), JTAG, and Cortex-M3 Embedded Trace Macrocell™

Up to 140 I/O ports with interrupt capability:– Up to 136 fast I/Os up to 60 MHz– Up to 138 5 V-tolerant I/Os

Up to 15 communication interfaces– Up to 3 × I2C interfaces (SMBus/PMBus)– Up to 4 USARTs and 2 UARTs (7.5 Mbit/s,

ISO 7816 interface, LIN, IrDA, modem control)

– Up to 3 SPIs (30 Mbit/s), 2 with muxed I2S to achieve audio class accuracy via audio PLL or external PLL

– 2 × CAN interfaces (2.0B Active)– SDIO interface

Advanced connectivity– USB 2.0 full-speed device/host/OTG

controller with on-chip PHY– USB 2.0 high-speed/full-speed

device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI

– 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII

8- to 14-bit parallel camera interface (48 Mbyte/s max)

Analog true random number generator

Table 1. Device summary

Reference Part number

STM32F205xx

STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG, STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF STM32F205VG, STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG

STM32F207xx

STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG, STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG, STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG

LQFP64 (10 × 10 mm)LQFP100 (14 × 14 mm)LQFP144 (20 × 20 mm)LQFP176 (24 × 24 mm)

FBGA

UFBGA176 (10 × 10 mm)

WLCSP64+2(0.400 mm pitch)

FBGA

www.st.com

Page 2: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Contents STM32F20xxx

2/177 Doc ID 15818 Rev 9

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 18

2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 18

2.2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 19

2.2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 21

2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.17 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 24

2.2.18 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.21 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.22 Universal synchronous/asynchronous receiver transmitters (UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.23 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.24 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.25 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.26 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 30

2.2.27 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.28 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 31

Page 3: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Contents

Doc ID 15818 Rev 9 3/177

2.2.29 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 31

2.2.30 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.31 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.32 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.33 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.34 ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.35 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.38 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 67

5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 67

5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 68

5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 89

Page 4: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Contents STM32F20xxx

4/177 Doc ID 15818 Rev 9

5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 94

5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.21 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.24 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 141

5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 141

5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.1 Main applications versus package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 Application example with regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.3 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 158

A.4 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 160

A.5 Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.6 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Page 5: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx List of tables

Doc ID 15818 Rev 9 5/177

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Table 2. STM32F205xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Table 3. STM32F207xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Table 5. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Table 6. STM32F20x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Table 7. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Table 8. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Table 9. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Table 10. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Table 11. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Table 12. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Table 13. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 64Table 14. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Table 15. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 67Table 16. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 67Table 17. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 68Table 18. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 70Table 19. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 71Table 20. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 74Table 21. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 76Table 22. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 77Table 23. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 77Table 24. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Table 25. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Table 26. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Table 27. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Table 28. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Table 30. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Table 31. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Table 32. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Table 33. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Table 34. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Table 35. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Table 36. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Table 37. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Table 38. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Table 39. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Table 40. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Table 41. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Table 42. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Table 43. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Table 44. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Table 45. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Table 46. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Page 6: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

List of tables STM32F20xxx

6/177 Doc ID 15818 Rev 9

Table 47. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Table 48. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 101Table 49. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 102Table 50. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Table 51. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Table 52. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Table 53. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Table 54. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Table 55. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Table 56. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Table 57. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Table 58. Clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Table 59. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Table 60. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Table 61. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 113Table 62. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 113Table 63. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 114Table 64. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Table 65. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Table 66. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120Table 67. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122Table 68. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122Table 69. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Table 70. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 124Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 125Table 72. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 126Table 73. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 127Table 74. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 129Table 75. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Table 76. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 131Table 77. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Table 78. Switching characteristics for PC Card/CF read and write cycles in

attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Table 79. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 138Table 80. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Table 81. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 141Table 82. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Table 83. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Table 84. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Table 85. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 144Table 86. WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . 146Table 87. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 147Table 88. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data. . . . . . . . 149Table 89. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data . 151Table 90. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . 153Table 91. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154Table 92. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155Table 93. Main applications versus package for STM32F2xxx microcontrollers . . . . . . . . . . . . . . . 156Table 94. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Page 7: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx List of figures

Doc ID 15818 Rev 9 7/177

List of figures

Figure 1. Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2. Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 4. STM32F20x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 5. Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 6. Startup in regulator OFF: slow VDD slope

- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 7. Startup in regulator OFF: fast VDD slope

- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 24Figure 8. STM32F20x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure 9. STM32F20x WLCSP64+2 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure 10. STM32F20x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Figure 11. STM32F20x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Figure 12. STM32F20x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Figure 13. STM32F20x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Figure 14. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Figure 15. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Figure 16. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Figure 17. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Figure 18. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Figure 19. Number of wait states versus fCPU and VDD range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Figure 20. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Figure 21. Typical current consumption vs temperature, Run mode, code with data

processing running from RAM, and peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Figure 22. Typical current consumption vs temperature, Run mode, code with data

processing running from RAM, and peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Figure 23. Typical current consumption vs temperature, Run mode, code with data

processing running from Flash, ART accelerator OFF, peripherals ON . . . . . . . . . . . . . . . 73Figure 24. Typical current consumption vs temperature, Run mode, code with data

processing running from Flash, ART accelerator OFF, peripherals OFF . . . . . . . . . . . . . . 73Figure 25. Typical current consumption vs temperature in Sleep mode,

peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Figure 26. Typical current consumption vs temperature in Sleep mode,

peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Figure 27. Typical current consumption vs temperature in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 76Figure 28. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Figure 29. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Figure 30. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Figure 31. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Figure 32. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Figure 33. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Figure 34. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Figure 35. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Figure 36. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Figure 37. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Page 8: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

List of figures STM32F20xxx

8/177 Doc ID 15818 Rev 9

Figure 38. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Figure 39. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Figure 40. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Figure 41. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Figure 42. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Figure 43. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Figure 44. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 111Figure 45. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Figure 46. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Figure 47. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Figure 48. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Figure 49. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Figure 50. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Figure 51. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 119Figure 52. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 119Figure 53. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 124Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 125Figure 56. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 126Figure 57. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 127Figure 58. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Figure 59. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Figure 60. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 131Figure 61. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Figure 62. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 133Figure 63. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 134Figure 64. PC Card/CompactFlash controller waveforms for attribute memory read

access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Figure 65. PC Card/CompactFlash controller waveforms for attribute memory write

access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Figure 66. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 136Figure 67. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 137Figure 68. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Figure 69. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Figure 70. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 140Figure 71. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 140Figure 72. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Figure 73. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Figure 74. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 144Figure 75. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Figure 76. WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . 146Figure 77. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 147Figure 78. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Figure 79. LQFP144, 20 x 20 mm, 144-pin low-profile quad

flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Figure 80. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150Figure 81. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline . . . . . . . . 151Figure 82. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline . 153Figure 84. Regulator OFF/internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Figure 85. Regulator OFF/ internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Figure 86. USB OTG FS (full speed) device-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Page 9: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx List of figures

Doc ID 15818 Rev 9 9/177

Figure 87. USB OTG FS (full speed) host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158Figure 88. OTG FS (full speed) connection dual-role with internal PHY . . . . . . . . . . . . . . . . . . . . . . 159Figure 89. OTG HS (high speed) device connection, host and dual-role

in high-speed mode with external PHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160Figure 90. Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Figure 91. Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Figure 92. Audio player solution using PLL, PLLI2S, USB and 1 crystal . . . . . . . . . . . . . . . . . . . . . . 162Figure 93. Audio PLL (PLLI2S) providing accurate I2S clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Figure 94. Master clock (MCK) used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . . . . 163Figure 95. Master clock (MCK) not used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . 163Figure 96. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164Figure 97. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164Figure 98. RMII with a 25 MHz crystal and PHY with PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Page 10: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Introduction STM32F20xxx

10/177 Doc ID 15818 Rev 9

1 Introduction

This datasheet provides the description of the STM32F205xx and STM32F207xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please refer to Section 2.1: Full compatibility throughout the family.

The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices throughout the document.

For information on programming, erasing and protection of the internal Flash memory, please refer to the STM32F20x/STM32F21x Flash programming manual (PM0059).

The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com.

For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

Page 11: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 11/177

2 Description

The STM32F20x family is based on the high-performance ARM® Cortex™-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART Accelerator™) which allows to achieve a performance equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. This performance has been validated using the CoreMark benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true number random generator (RNG). They also feature standard and advanced communication interfaces. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), and a camera interface for CMOS sensors. The devices also feature standard peripherals.

Up to three I2Cs

Three SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external PLL to allow synchronization.

4 USARTs and 2 UARTs

A USB OTG high-speed with full-speed capability (with the ULPI)

A second USB OTG (full-speed)

Two CANs

An SDIO interface

Ethernet and camera interface available on STM32F207xx devices only.

Note: The STM32F205xx and STM32F207xx devices operate in the –40 to +105 °C temperature range from a 1.8 V to 3.6 V power supply. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range and IRROFF is connected to VDD.

A comprehensive set of power-saving modes allow the design of low-power applications.

STM32F205xx and STM32F207xx devices are offered in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.These features make the STM32F205xx and STM32F207xx microcontroller family suitable for a wide range of applications:

Motor drive and application control

Medical equipment

Industrial applications: PLC, inverters, circuit breakers

Printers, and scanners

Alarm systems, video intercom, and HVAC

Home audio appliances

Figure 4 shows the general block diagram of the device family.

Page 12: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Descrip

tion

ST

M32F

20xxx

12/177D

oc ID 15818 R

ev 9

Table 2. STM32F205xx features and peripheral counts

Peripherals STM32F205Rx STM32F205Vx STM32F205Zx

Flash memory in Kbytes 128 256 512 768 1024 128 256 512 768 1024 256 512 768 1024

SRAM in Kbytes

System(SRAM1+SRAM2)

64(48+16)

96(80+16)

128(112+16)

64(48+16)

96(80+16)

128(112+16)

96(80+16)

128 (112+16)

Backup 4 4 4

FSMC memory controller No Yes(1)

Ethernet No

Timers

General-purpose 10

Advanced-control 2

Basic 2

IWDG Yes

WWDG Yes

RTC Yes

Random number generator Yes

Comm. interfaces

SPI/(I2S) 3 (2)(2)

I2C 3

USART UART

42

USB OTG FS Yes

USB OTG HS Yes

CAN 2

Camera interface No

GPIOs 51 82 114

SDIO Yes

12-bit ADC Number of channels

3

16 16 24

12-bit DAC Number of channels

Yes2

Maximum CPU frequency 120 MHz

Operating voltage 1.8 V to 3.6 V(3)

Page 13: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

ST

M32F

20xxxD

escriptio

n

Doc ID

15818 Rev 9

13/177

Operating temperaturesAmbient temperatures: –40 to +85 °C /–40 to +105 °C

Junction temperature: –40 to + 125 °C

Package LQFP64LQFP64

WLCSP64+2

LQFP64

LQFP64WLCSP6

4+2LQFP100 LQFP144

1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

3. VDD minimum value is 1.7 V when the device operates in the 0 to 70 °C temperature range and IRROFF is set to VDD.

Table 2. STM32F205xx features and peripheral counts (continued)

Peripherals STM32F205Rx STM32F205Vx STM32F205Zx

Table 3. STM32F207xx features and peripheral counts

Peripherals STM32F207Vx STM32F207Zx STM32F207Ix

Flash memory in Kbytes 256 512 768 1024 256 512 768 1024 256 512 768 1024

SRAM in Kbytes

System(SRAM1+SRAM2)

128 (112+16)

Backup 4

FSMC memory controller Yes(1)

Ethernet Yes

Timers

General-purpose 10

Advanced-control 2

Basic 2

IWDG Yes

WWDG Yes

RTC Yes

Random number generator Yes

Page 14: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Descrip

tion

ST

M32F

20xxx

14/177D

oc ID 15818 R

ev 9

Comm. interfaces

SPI/(I2S) 3 (2)(2)

I2C 3

USART UART

42

USB OTG FS Yes

USB OTG HS Yes

CAN 2

Camera interface Yes

GPIOs 82 114 140

SDIO Yes

12-bit ADC Number of channels

3

16 24 24

12-bit DAC Number of channels

Yes2

Maximum CPU frequency 120 MHz

Operating voltage 1.8 V to 3.6 V(3)

Operating temperaturesAmbient temperatures: –40 to +85 °C/–40 to +105 °C

Junction temperature: –40 to + 125 °C

Package LQFP100 LQFP144 LQFP176/UFBGA176

1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

3. VDD minimum value is 1.7 V when the device operates in the 0 to 70 °C temperature range and IRROFF is set to VDD.

Table 3. STM32F207xx features and peripheral counts (continued)

Peripherals STM32F207Vx STM32F207Zx STM32F207Ix

Page 15: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 15/177

2.1 Full compatibility throughout the family

The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members are fully pin-to-pin, software and feature compatible, allowing the user to try different memory densities and peripherals for a greater degree of freedom during the development cycle.

The STM32F205xx and STM32F207xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F205xx and STM32F207xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x family remains simple as only a few pins are impacted.

Figure 3 and Figure 1 provide compatible board designs between the STM32F20x and the STM32F10xxx family.

Figure 1. Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package

31

1 1617

323348

64

49 47

VSS

VSS

VSS

VSS

0 Ω resistor or soldering bridgepresent for the STM32F10xxconfiguration, not present in theSTM32F2xx configuration

ai15962b

Page 16: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

16/177 Doc ID 15818 Rev 9

Figure 2. Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package

Figure 3. Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package

1. RFU = reserved for future use.

ai15961c

20

49

1 2526

505175

100

76 73

19

VSS

VSS

VDD

VSS

VSS

VSS

0 Ω resistor or soldering bridgepresent for the STM32F10xxconfiguration, not present in theSTM32F2xx configuration 99 (RFU)

VSSVDD

VSS for STM32F10xxVDD for STM32F2xx

Two 0 Ω resistors connected to: - VSS for the STM32F10xx- VDD, VSS, or NC for the STM32F2xx

ai15960c

31

71

1 3637

7273108

144

109

VSS

0 Ω resistor or soldering bridgepresent for the STM32F10xxconfiguration, not present in theSTM32F2xx configuration

106

VSS

30

Two 0 Ω resistors connected to: VSSVDD

VSS

VSS

143 (RFU)

VSSVDD

- VSS for the STM32F10xx- VDD, VSS, or NC for the STM32F2xx

Page 17: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 17/177

2.2 Device overview

Figure 4. STM32F20x block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 60 MHz.

2. The camera interface and Ethernet are available only in STM32F207xx devices.

GPIO PORT A

AHB/APB2

EXT IT. WKUP140 AF

PA[15:0]

GPIO PORT BPB[15:0]

TIM1 / PWM4 compl. channels (TIM1_CH[1:4]N)4 channels (TIM1_CH[1:4]), ETR,BKIN as AF

TIM8 / PWM

GPIO PORT CPC[15:0]

USART 1RX, TX, CK,CTS, RTS as AF

GPIO PORT DPD[15:0]

GPIO PORT EPE[15:0]

GPIO PORT FPF[15:0]

GPIO PORT GPG[15:0]

SPI1MOSI, MISOSCK, NSS as AF A

PB2

60M

Hz

APB

1 30

MH

z

8 analog inputs commonto the 3 ADCs

8 analog inputs commonto the ADC1 & 2

VDDREF_ADC

8 analog inputs to ADC3

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

4 channels

RX, TX, CK, USART2

RX, TX, CKUSART3

RX, TX as AFUART4

RX, TX as AFUART5

MOSI/DOUT, MISO/DIN, SCK/CKSPI2/I2S2NSS/WS, MCK as AFMOSI/DOUT, MISO/DIN, SCK/CKSPI3/I2S3NSS/WS, MCK as AF

SCL, SDA, SMBA as AFI2C1/SMBUS

SCL, SDA, SMBA as AFI2C2/SMBUS

TX, RXbxCAN1

TX, RXbxCAN2

DAC1_OUTas AF

DAC2_OUTas AF

ITF

WWDG

4 KB BKSPRAM

RTC_AF1

OSC32_IN

OSC_INOSC_OUT

OSC32_OUT

NRSTVDDA, VSSA

VCAP1, VCAP2

USART 6RX, TX, CK,CTS, RTS as AF

smcardirDA

smcardirDA

smcardirDAsmcardirDA

16b

16b

32b

16b

16b

32b

16b

16b

CTS, RTS as AF

CTS, RTS as AF

SDIO / MMCD[7:0]

CMD, CK as AF

VBAT = 1.65 to 3.6 V

DMA1

AHB/APB1

DMA2

SCL, SDA, SMBA as AFI2C3/SMBUS

GPIO PORT HPH[15:0]

GPIO PORT IPI[11:0]

JTAG & SW

D-BUSS-BUS

I-BUS

NVICETMMPU

NJTRST, JTDI,

JTDO/SWDJTDO/TRACESWO

TRACECLKTRACED[3:0]

JTCK/SWCLK

Ethernet MAC DMA/MII or RMII as AFMDIO as AF FIFO10/100

USB DMA/ FIFOOTG HS

DP, DMULPI: CK, D(7:0), DIR, STP, NXT

DMA2 8 StreamsFIFO

DMA1 8 StreamsFIFO

AC

CE

L/C

AC

HE

SRAM 112 KB

SRAM 16 KB

CLK, NE [3:0], A[23:0]D[31:0], OEN, WEN, NBL[3:0], NL, NREGNWAIT/IORDY, CD NIORD, IOWR, INT[2:3]INTN, NIIS16 as AF

SCL, SDA, INTN, ID, VBUS, SOF

Camerainterface

HSYNC, VSYNCPIXCLK, D[13:0]

USB

PH

Y

OTG FSDPDM

FIFO

FIFO

AHB1 120 MHz

PH

Y

FIFO

USART 2MBpsTemperature sensor

ADC1

ADC2

ADC 3IFIF

@VDDA

@VDDA

POR/PDR/

Supply

@VDDA

supervision

PVD

ResetInt

POR

XTAL OSC 4-26 MHz

XTAL 32 kHz

HC

LKx

MANAGT

RTC

RC HS

FCLK

RC LS

Standby

IWDG

@VBAT

@VDDA

@VDD

AWU

Reset &

clockcontrol

PLL1&2

PC

LKx

interface

VDD = 1.8 to 3.6 V

VSS

Voltageregulator

3.3 V to 1.2 V

VDD12Power managmt

@VDD

RTC_AF1Backup register

SCL/SDA, INTN, ID, VBUS, SOF AH

B b

us-m

atrix

8S

7M

APB

2 60

MH

zAHB2 120 MHz

LSLS

2 channels as AF

1 channel as AF

1 channel as AFTIM14

16b

16b

16b

TIM92 channels as AF

TIM101 channel as AF

16b

16b

TIM111 channel as AF16b

BOR

DAC1

DAC2

Flash1 Mbyte

SRAM, PSRAM, NOR Flash,PC Card (ATA), NAND Flash

External memorycontroller (FSMC)

TIM6

TIM7

TIM2

TIM3

TIM4

TIM5

TIM12

TIM13

ai17614c

4 compl. channels (TIM1_CH[1:4]N)4 channels (TIM1_CH[1:4]), ETR,BKIN as AF

FIFO

RNG

ARM Cortex-M3 120 MHz

ART accelerator

AP

B1

30M

Hz

AHB3

Page 18: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

18/177 Doc ID 15818 Rev 9

2.2.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

With its embedded ARM core, the STM32F20x family is compatible with all ARM tools and software.

Figure 4 shows the general block diagram of the STM32F20x family.

2.2.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-standard ARM® Cortex™-M3 processors. It balances the inherent performance advantage of the ARM Cortex-M3 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher operating frequencies.

To release the processor full 150 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz.

2.2.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can

dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.4 Embedded Flash memory

The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes, 512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data.

The devices also feature 512 bytes of OTP memory that can be used to store critical user data such as Ethernet MAC addresses or cryptographic keys.

Page 19: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 19/177

2.2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.2.6 Embedded SRAM

All STM32F20x products embed:

Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0 wait states

4 Kbytes of backup SRAM.

The content of this area is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.2.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 5. Multi-AHB matrix

ARMCortex-M3

GPDMA1

GPDMA2

MACEthernet

USB OTGHS

Bus matrix-S

S0 S1 S2 S3 S4 S5 S6 S7ICODE

DCODE AR

TA

CC

EL. Flash

memory

SRAM 112 Kbyte

SRAM16 Kbyte

AHB1periphAHB2periph

FSMCStatic MemCtl

M0

M1

M2

M3

M4

M5

M6

I-bus

D-b

us

S-b

us

DM

A_P

1

DM

A_M

EM

1

DM

A_M

EM

2

DM

A_P

2

ETH

ER

NE

T_M

US

B_H

S_M

ai15963c

APB1

APB2

Page 20: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

20/177 Doc ID 15818 Rev 9

2.2.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

SPI and I2S

I2C

USART and UART

General-purpose, basic and advanced-control timers TIMx

DAC

SDIO

Camera interface (DCMI)

ADC.

2.2.9 Flexible static memory controller (FSMC)

The FSMC is embedded in all STM32F20x devices. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash.

Functionality overview:

Write FIFO

Code execution from external memory except for NAND Flash and PC Card

Maximum frequency (fHCLK) for external access is 60 MHz

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

Page 21: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 21/177

2.2.10 Nested vectored interrupt controller (NVIC)

The STM32F20x devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex™-M3.

The NVIC main features are the following:

Closely coupled NVIC gives low-latency interrupt processing

Interrupt entry vector table address passed directly to the core

Closely coupled NVIC core interface

Allows early processing of interrupts

Processing of late arriving, higher-priority interrupts

Support tail chaining

Processor state automatically saved

Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

2.2.11 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines.

2.2.12 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

The advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the system clock.

Several prescalers and PLLs allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is 60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.

The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

Page 22: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

22/177 Doc ID 15818 Rev 9

2.2.13 Boot modes

At startup, boot pins are used to select one out of three boot options:

Boot from user Flash

Boot from system memory

Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).

2.2.14 Power supply schemes

VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. On WLCSP package, VDD ranges from 1.7 to 3.6 V.

VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.

VBAT = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and backup registers (through power switch) when VDD is not present.

Refer to Figure 17: Power supply scheme for more details.

2.2.15 Power supply supervisor

The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. On devices in WLCSP package, BOR can be inactivated by setting IRROFF to VDD (see Section 2.2.16: Voltage regulator).

The devices also feature an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.2.16 Voltage regulator

The regulator has five operating modes:

Regulator ON

– Main regulator mode (MR)

– Low power regulator (LPR)

– Power-down

Regulator OFF

– Regulator OFF/internal reset ON

– Regulator OFF/internal reset OFF

Page 23: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 23/177

Regulator ON

The regulator ON modes are activated by default on LQFP packages.On WLCSP66 package, they are activated by connecting both REGOFF and IRROFF pins to VSS, while only REGOFF must be connected to VSS on UFBGA176 package (IRROFF is not available).

VDD minimum value is 1.8 V(a).

There are three regulator ON modes:

MR is used in nominal regulation mode (Run)

LPR is used in Stop mode

Power-down is used in Standby mode:

The regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

Regulator OFF

Regulator OFF/internal reset ON

On WLCSP66 package, this mode is activated by connecting REGOFF pin to VDD and IRROFF pin to VSS. On UFBGA176 package, only REGOFF must be connected to VDD (IRROFF not available).

The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins, in addition to VDD.

The following conditions must be respected:

– VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains.

– If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to reach 1.8 V(a), then PA0 should be connected to the NRST pin (see Figure 6). Otherwise, PA0 should be asserted low externally during POR until VDD reaches 1.8 V (see Figure 7).

In this mode, PA0 cannot be used as a GPIO pin since it allows to reset the part of the 1.2 V logic which is not reset by the NRST pin, when the internal voltage regulator in OFF.

Regulator OFF/internal reset OFF

On WLCSP66 package, this mode activated by connecting REGOFF to VSS and IRROFF to VDD. IRROFF cannot be activated in conjunction with REGOFF. This mode is available only on the WLCSP package. It allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins, in addition to VDD.

The following conditions must be respected:

– VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains (see Figure 6).

– PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach 1.08 V, and until VDD reaches 1.65 V.

– NRST should be controlled by an external reset controller to keep the device under reset when VDD is below 1.65 V (see Figure 7).

a. VDD minimum value is 1.7 V when the device operates in the 0 to 70 °C temperature range and IRROFF is set to VDD.

Page 24: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

24/177 Doc ID 15818 Rev 9

Figure 6. Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization

1. This figure is valid both whatever the internal reset mode (ON or OFF).

Figure 7. Startup in regulator OFF: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization

2.2.17 Real-time clock (RTC), backup SRAM and backup registers

The backup domain of the STM32F20x devices includes:

The real-time clock (RTC)

4 Kbytes of backup SRAM

20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC

VDD

time

1.08 V

PDR=1.8 V

VCAP_1/VCAP_21.2 V

time

PA0 tied to NRST

NRST

VDD

time

1.08 V

PDR=1.8 VVCAP_1/VCAP_21.2 V

time

PA0 asserted externally

NRST

Page 25: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 25/177

has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like area.It can be used to store data which need to be retained in VBAT and standby mode.This memory area is disabled to minimize power consumption (see Section 2.2.18: Low-power modes). It can be enabled by software.

The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 2.2.18: Low-power modes).

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or the VBAT pin.

2.2.18 Low-power modes

The STM32F20x family supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped when the device enters the Stop or Standby mode.

Page 26: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

26/177 Doc ID 15818 Rev 9

2.2.19 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery or an external supercapacitor.

VBAT operation is activated when VDD is not present.

The VBAT pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation.

2.2.20 Timers and watchdogs

The STM32F20x devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Table 4. Timer feature comparison

Timer type TimerCounter

resolutionCounter

typePrescaler

factor

DMA request

generation

Capture/compare channels

Complementary output

Max interface

clock

Max timer clock

Advanced-control

TIM1, TIM8

16-bitUp,

Down, Up/down

Any integer between 1 and 65536

Yes 4 Yes 60 MHz120 MHz

General purpose

TIM2, TIM5

32-bitUp,

Down, Up/down

Any integer between 1 and 65536

Yes 4 No 30 MHz60

MHz

TIM3, TIM4

16-bitUp,

Down, Up/down

Any integer between 1 and 65536

Yes 4 No 30 MHz60

MHz

BasicTIM6, TIM7

16-bit UpAny integer between 1 and 65536

Yes 0 No 30 MHz60

MHz

General purpose

TIM9 16-bit UpAny integer between 1 and 65536

No 2 No 60 MHz120 MHz

TIM10, TIM11

16-bit UpAny integer between 1 and 65536

No 1 No 60 MHz120 MHz

TIM12 16-bit UpAny integer between 1 and 65536

No 2 No 30 MHz60

MHz

TIM13, TIM14

16-bit UpAny integer between 1 and 65536

No 1 No 30 MHz60

MHz

Page 27: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 27/177

Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

Input capture

Output compare

PWM generation (edge- or center-aligned modes)

One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F20x devices (see Table 4 for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode

Page 28: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

28/177 Doc ID 15818 Rev 9

output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

They can also be used as simple time bases.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

A 24-bit downcounter

Autoreload capability

Maskable system interrupt generation when the counter reaches 0

Programmable clock source

2.2.21 Inter-integrated circuit interface (I²C)

Up to three I2C bus interfaces can operate in multimaster and slave modes. They can support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.2.22 Universal synchronous/asynchronous receiver transmitters (UARTs/USARTs)

The STM32F20x devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to

Page 29: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 29/177

communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at up to 3.75 Mbit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

2.2.23 Serial peripheral interface (SPI)

The STM32F20x devices feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

2.2.24 Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, in half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx interfaces can be served by the DMA controller.

Table 5. USART feature comparison

USART name

Standard features

Modem (RTS/CTS)

LINSPI

masterirDA

Smartcard (ISO 7816)

Max. baud rate in Mbit/s

(oversampling by 16)

Max. baud rate in Mbit/s

(oversampling by 8)

APB mapping

USART1 X X X X X X 1.87 7.5APB2 (max.

60 MHz)

USART2 X X X X X X 1.87 3.75APB1 (max.

30 MHz)

USART3 X X X X X X 1.87 3.75APB1 (max.

30 MHz)

UART4 X - X - X - 1.87 3.75APB1 (max.

30 MHz)

UART5 X - X - X - 3.75 3.75APB1 (max.

30 MHz)

USART6 X X X X X X 3.75 7.5APB2 (max.

60 MHz)

Page 30: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

30/177 Doc ID 15818 Rev 9

2.2.25 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.2.26 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Peripheral available only on the STM32F207xx devices.

The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The STM32F207xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) or 50 MHz (RMII) output from the STM32F207xx.

The STM32F207xx includes the following features:

Supports 10 and 100 Mbit/s rates

Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F20x and STM32F21x reference manual for details)

Tagged MAC frame support (VLAN support)

Half-duplex (CSMA/CD) and full-duplex operation

MAC control sublayer (control frames) support

32-bit CRC generation and removal

Several address filtering modes for physical and multicast address (multicast and group addresses)

32-bit status code for each transmitted or received frame

Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total

Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input

Triggers interrupt when system time becomes greater than target time

Page 31: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 31/177

2.2.27 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared with any other peripheral.

2.2.28 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing

Supports the session request protocol (SRP) and host negotiation protocol (HNP)

4 bidirectional endpoints

8 host channels with periodic OUT support

HNP/SNP/IP inside (no need for any external resistor)

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

Internal FS OTG PHY support

2.2.29 Universal serial bus on-the-go high-speed (OTG_HS)

The STM32F20x devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

Combined Rx and Tx FIFO size of 1024× 35 bits with dynamic FIFO sizing

Supports the session request protocol (SRP) and host negotiation protocol (HNP)

6 bidirectional endpoints

12 host channels with periodic OUT support

Internal FS OTG PHY support

External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.

Internal USB DMA

HNP/SNP/IP inside (no need for any external resistor)

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

Page 32: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

32/177 Doc ID 15818 Rev 9

2.2.30 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I2S application. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output).

2.2.31 Digital camera interface (DCMI)

The camera interface is not available in STM32F205xx devices.

STM32F207xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It features:

Programmable polarity for the input pixel clock and synchronization signals

Parallel data communication can be 8-, 10-, 12- or 14-bit

Supports 8-bit progressive video monochrome or raw Bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)

Supports continuous mode or snapshot (a single frame) mode

Capability to automatically crop the image

2.2.32 True random number generator (RNG)

All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers produced by an integrated analog circuit.

Page 33: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Description

Doc ID 15818 Rev 9 33/177

2.2.33 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O alternate function configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to 120 MHz that leads to a maximum I/O toggling speed of 60 MHz.

2.2.34 ADCs (analog-to-digital converters)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

Simultaneous sample and hold

Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.2.35 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

two DAC converters: one for each output channel

8-bit or 12-bit monotonic output

left or right data alignment in 12-bit mode

synchronized update capability

noise-wave generation

triangular-wave generation

dual DAC channel independent or simultaneous conversions

DMA capability for each channel

external triggers for conversion

input voltage reference VREF+

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

Page 34: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Description STM32F20xxx

34/177 Doc ID 15818 Rev 9

2.2.36 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 and 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.2.37 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.2.38 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F20x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

Page 35: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 35/177

3 Pinouts and pin description

Figure 8. STM32F20x LQFP64 pinout

Figure 9. STM32F20x WLCSP64+2 ballout

1. Top view.

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 494847

46 45 44 4342414039383736353433

17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28

123456 7 8 9 1011 12 13141516

VBAT

PC14-OSC32_INPC15-OSC32_OUT

NRSTPC0PC1PC2PC3

VSSAVDDA

PA0-WKUPPA1PA2

VD

D_3

V

SS

_3

PB

9

PB

8

BO

OT0

P

B7

P

B6

P

B5

P

B4

P

B3

P

D2

P

C12

P

C11

P

C10

PA

15

PA14

VDD_2 VCAP_2PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12

PA3

VSS

_4V

DD

_4 PA4

PA5

PA6

PA7

PC

4P

C5

PB0

PB1

PB2

PB

10P

B11

VC

AP

_1V

DD

_1

LQFP64

ai15969b

PC13-RTC_AF1

PH0-OSC_INPH1-OSC_OUT

1 2 3 8

A PA14 PA15 PC12 PB3 PB5 PB7 PB9 VDD_2

B PA13 PC10 PB4 PB6 BOOT0 PB8 PC13

C PA12 VCAP_2 PC11 PD2 IRROFF

D PC9 PA11 PA10 PC2

E PA8 PA9

F PC7 PC8

G PB15 PC6 PC5 PA3 PC3

H PB14 PB13 PB10 PC4

J PB12 PB11 VCAP_1 PB2 PB0 PA7 PA4

ai18470b

4 5 6 7 9

VBAT

VSS_2 PC14

PC15

VSS_3 VDD_3

VDD_4 PA0 NRST PH0- OSC_IN

VSS_4 VREF+ PC1PH1-

OSC_OUT

PC0

PA6 PA5 REGOFF PA1 VSS_5

PB1 PA2

Page 36: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

36/177 Doc ID 15818 Rev 9

Figure 10. STM32F20x LQFP100 pinout

1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.

100

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

12345678910111213141516171819202122232425

75747372717069686766656463626160595857565554535251

PE2PE3PE4PE5PE6

VBAT

PC14-OSC32_INPC15-OSC32_OUT

VSS_5VDD_5

PH0-OSC_IN

NRSTPC0PC1PC2PC3

VDD_12VSSA

VREF+VDDA

PA0-WKUPPA1PA2

VDD_2 VSS_2VCAP_2 PA 13 PA 12 PA 11 PA 10 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12

PA3

VS

S_4

VD

D_4 PA

4PA

5PA

6PA

7P

C4

PC

5P

B0

PB

1P

B2

PE

7P

E8

PE

9P

E10

PE11

PE

12P

E13

PE

14P

E15

PB

10PB

11V

CA

P_1

VD

D_1

RFU

VD

D_3

PE

1

PE

0

PB

9

PB

8

BO

OT0

P

B7

P

B6

P

B5

P

B4

P

B3

P

D7

P

D6

P

D5

P

D4

P

D3

P

D2

P

D1

P

D0

P

C12

P

C11

P

C10

PA

15

PA14

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50ai15970d

LQFP100

PC13-RTC_AF1

PH1-OSC_OUT

Page 37: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 37/177

Figure 11. STM32F20x LQFP144 pinout

1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.

RFU

VD

D_3

PE

1P

E0

PB

9P

B8

BO

OT0

PB

7P

B6

PB

5P

B4

PB

3P

G15

VD

D_1

1V

SS

_11

PG

14P

G13

PG

12P

G11

PG

10P

G9

PD

7P

D6

VD

D_1

0V

SS

_10

PD

5P

D4

PD

3P

D2

PD

1P

D0

PC

12P

C11

PC

10PA

15PA

14

PE2 VDD_2PE3 VSS_2PE4PE5 PA13PE6 PA12

VBAT PA11PC13-RTC_AF1 PA10

PC14-OSC32_IN PA9PC15-OSC32_OUT PA8

PF0 PC9PF1 PC8PF2 PC7PF3 PC6PF4 VDD_9PF5 VSS_9

VSS_5 PG8VDD_5 PG7

PF6 PG6PF7 PG5PF8 PG4PF9 PG3

PF10 PG2PH0-OSC_IN PD15

PH1-OSC_OUT PD14NRST VDD_8

PC0 VSS_8PC1 PD13PC2 PD12PC3 PD11

VSSAPD10VDD_12PD9

VREF+ PD8VDDA PB15

PA0-WKUP PB14PA1 PB13PA2 PB12

PA3

VSS

_4V

DD

_4PA

4PA

5PA

6PA

7P

C4

PC

5P

B0

PB

1P

B2

PF1

1P

F12

VSS

_6V

DD

_6P

F13

PF1

4P

F15

PG

0P

G1

PE

7P

E8

PE

9V

SS_7

VD

D_7

PE10

PE11

PE12

PE13

PE14

PE15

PB10

PB11

VC

AP

_1V

DD

_1

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

109

12345678910111213141516171819202122232425

108107106105104103102101100

99989796959493929190898887868584

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 72

LQFP144

120

119

118

117

116

115

114

113

112

111

110

61 62 63 64 65 66 67 68 69 70 71

2627282930313233343536

8382818079787776757473

ai15971d

VCAP_2

Page 38: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

38/177 Doc ID 15818 Rev 9

Figure 12. STM32F20x LQFP176 pinout

1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.

RFU

VD

D_3

PE

1P

E0

PB

9P

B8

BO

OT0

PB

7P

B6

PB

5P

B4

PB

3P

G15

VD

D_1

1V

SS

_11

PG

14P

G13

PG

12P

G11

PG

10P

G9

PD

7P

D6

VD

D_1

0V

SS

_10

PD

5P

D4

PD

3P

D2

PD

1P

D0

PC

12P

C11

PC

10

PI7

PI6

PE2

VDD_2

PE3

VSS_2

PE4PE5

PA13

PE6

PA12

VBAT

PA11

PI8-RTC_AF2

PA10

PC14-OSC32_IN

PA9

PC15-OSC32_OUT

PA8

PF0PC9

PF1PC8

PF2PC7

PF3PC6

PF4VDD_9

PF5VSS_9

VSS_5PG8

VDD_5PG7

PF6PG6

PF7PG5

PF8PG4

PF9PG3

PF10PG2

PH0-OSC_INPD15

PH1-OSC_OUTPD14

NRSTVDD_8

PC0VSS_8

PC1PD13

PC2PD12

PC3PD11

VSSA

PD10VDD_12 PD9

VREF+

PD8

VDDA

PB15

PA0-WKUPPB14

PA1PB13

PA2PB12

PA3

VS

S_4

VD

D_4

PA4

PA5

PA6

PA7

PC

4P

C5

PB

0P

B1

PB

2P

F11

PF1

2V

SS

_6V

DD

_6P

F13

PF1

4P

F15

PG

0P

G1

PE

7P

E8

PE

9V

SS

_7V

DD

_7P

E10

PE

11P

E12

PE

13P

E14

PE

15P

B10

PB

11V

CA

P_1

VD

D_1

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

157

156

155

154

153

141

12345678910111213141516171819202122232425

132131130129128127126125124123122121120119118117116115114113112111110109108

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 80

LQFP176

152

151

150

149

148

147

146

145

144

143

142

69 70 71 72 73 74 75 76 77 78 79

2627282930313233343536

107106105104103102101100

9998

89

ai15972d

VCAP_2

PI4

PA15

PA14

VD

D_1

5V

SS

_15

PI3

PI2

PI5

140

139

138

137

136

135

134

133

PH

4P

H5

PH

6P

H7

PH

8P

H9

PH

10P

H11

8881 82 83 84 85 86 87

PI1PI0PH15PH14PH13

VDD_14VSS_14PH12

96959493929190

973738394041424344

PC13-RTC_AF1

PI9PI10PI11

VSS_13VDD_13

PH2PH3

Page 39: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 39/177

Figure 13. STM32F20x UFBGA176 ballout

1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.

2. Top view.

1 2 3 9 10 11 12 13 14 15

A PE3 PE2 PE1 PE0 PB8 PB5 PG14 PG13 PB4 PB3 PD7 PC12 PA15 PA14 PA13

B PE4 PE5 PE6 PB9 PB7 PB6 PG15 PG12 PG11 PG10 PD6 PD0 PC11 PC10 PA12

C VBAT PI7 PI6 PI5 RFUVDD_3 VDD_11 VDD_10 VDD_15 PG9 PD5 PD1 PI3 PI2 PA11

D PC13-TAMP1

PI8-TAMP2 PI9 PI4 BOOT0 VSS_11 VSS_10 VSS_15 PD4 PD3 PD2 PH15 PI1 PA10

E PC14-OSC32_IN PF0 PI10 PI11 PH13 PH14 PI0 PA9

F PC15-OSC32_OUT VSS_13 VDD_13 PH2 VSS VSS VSS VSS VSS VSS_2 VCAP2 PC9 PA8

G PH0-OSC_IN VSS_5 VDD_5 PH3 VSS VSS VSS VSS VSS VSS_9 VDD_2 PC8 PC7

H PH1-OSC_OUT PF2 PF1 PH4 VSS VSS VSS VSS VSS VSS_14 VDD_9 PG8 PC6

J NRST PF3 PF4 PH5 VSS VSS VSS VSS VSS VDD_14 VDD_8 PG7 PG6

K PF7 PF6 PF5 VDD_4 VSS VSS VSS VSS VSS PH12 PG5 PG4 PG3

L PF10 PF9 PF8 REGOFF PH11 PH10 PD15 PG2

M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS_6 VSS_7 VCAP1 PH6 PH8 PH9 PD14 PD13

N VREF- PA1PA0-

WKUP PA4 PC4 PF13 PG0 VDD_6 VDD_7 VDD_1 PE13 PH7 PD12 PD11 PD10

P VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8

R VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 PB14 PB15

ai17293b

VSS

43 5 6 7 8

Table 6. STM32F20x pin and ball definitions

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

- - 1 1 1 A2 PE2 I/O FT PE2TRACECLK/ FSMC_A23 /

ETH_MII_TXD3 / EVENTOUT

- - 2 2 2 A1 PE3 I/O FT PE3TRACED0/FSMC_A19/

EVENTOUT

- - 3 3 3 B1 PE4 I/O FT PE4TRACED1/FSMC_A20 / DCMI_D4/ EVENTOUT

- - 4 4 4 B2 PE5 I/O FT PE5TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6/

EVENTOUT

- - 5 5 5 B3 PE6 I/O FT PE6TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7/

EVENTOUT

1 A9 6 6 6 C1 VBAT S VBAT

Page 40: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

40/177 Doc ID 15818 Rev 9

- - - - 7 D2 PI8(4) I/O FT PI8(5) EVENTOUT RTC_AF2

2 B8 7 7 8 D1 PC13(4) I/O FT PC13(5) EVENTOUT RTC_AF1

3 B9 8 8 9 E1 PC14(4)-OSC32_IN(6) I/O FT PC14(5) EVENTOUT OSC32_IN

4 C9 9 9 10 F1PC15(4)-

OSC32_OUT(6) I/O FT PC15(5) EVENTOUT OSC32_OUT

- - - - 11 D3 PI9 I/O FT PI9 CAN1_RX / EVENTOUT

- - - - 12 E3 PI10 I/O FT PI10ETH_MII_RX_ER/

EVENTOUT

- - - - 13 E4 PI11 I/O FT PI11OTG_HS_ULPI_DIR/

EVENTOUT

- - - - 14 F2 VSS_13 S VSS_13

- - - - 15 F3 VDD_13 S VDD_13

- - - 10 16 E2 PF0 I/O FT PF0FSMC_A0 / I2C2_SDA/

EVENTOUT

- - - 11 17 H3 PF1 I/O FT PF1FSMC_A1 / I2C2_SCL/

EVENTOUT

- - - 12 18 H2 PF2 I/O FT PF2FSMC_A2 / I2C2_SMBA/

EVENTOUT

- - - 13 19 J2 PF3(6) I/O FT PF3 FSMC_A3/ EVENTOUT ADC3_IN9

- - - 14 20 J3 PF4(6) I/O FT PF4 FSMC_A4/ EVENTOUT ADC3_IN14

- - - 15 21 K3 PF5(6) I/O FT PF5 FSMC_A5/ EVENTOUT ADC3_IN15

- H9 10 16 22 G2 VSS_5 S VSS_5

- - 11 17 23 G3 VDD_5 S VDD_5

- - - 18 24 K2 PF6(6) I/O FT PF6TIM10_CH1 /

FSMC_NIORD/ EVENTOUT

ADC3_IN4

- - - 19 25 K1 PF7(6) I/O FT PF7TIM11_CH1/FSMC_NREG/

EVENTOUTADC3_IN5

- - - 20 26 L3 PF8(6) I/O FT PF8TIM13_CH1 /

FSMC_NIOWR/ EVENTOUT

ADC3_IN6

- - - 21 27 L2 PF9(6) I/O FT PF9TIM14_CH1 / FSMC_CD/

EVENTOUTADC3_IN7

- - - 22 28 L1 PF10(6) I/O FT PF10 FSMC_INTR/ EVENTOUT ADC3_IN8

5 E9 12 23 29 G1 PH0(6)-OSC_IN I/O FT PH0 EVENTOUT OSC_IN

6 F9 13 24 30 H1 PH1(6)-OSC_OUT I/O FT PH1 EVENTOUT OSC_OUT

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 41: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 41/177

7 E8 14 25 31 J1 NRST I/O NRST

8 G9 15 26 32 M2 PC0(6) I/O FT PC0OTG_HS_ULPI_STP/

EVENTOUTADC123_

IN10

9 F8 16 27 33 M3 PC1(6) I/O FT PC1 ETH_MDC/ EVENTOUTADC123_

IN11

10 D7 17 28 34 M4 PC2(6) I/O FT PC2

SPI2_MISO / OTG_HS_ULPI_DIR /

ETH_MII_TXD2/ EVENTOUT

ADC123_IN12

11 G8 18 29 35 M5 PC3(6) I/O FT PC3

SPI2_MOSI / I2S2_SD / OTG_HS_ULPI_NXT /

ETH_MII_TX_CLK/ EVENTOUT

ADC123_IN13

- - 19 30 36 - VDD_12 S VDD_12

12 - 20 31 37 M1 VSSA S VSSA

- - - - - N1 VREF- S VREF-

- F7 21 32 38 P1 VREF+ S VREF+

13 - 22 33 39 R1 VDDA S VDDA

14 E7 23 34 40 N3 PA0(7)-WKUP(6) I/O FT PA0-WKUP

USART2_CTS/ UART4_TX/ETH_MII_CRS / TIM2_CH1_ETR/

TIM5_CH1 / TIM8_ETR/ EVENTOUT

ADC123_IN0/WKUP

15 H8 24 35 41 N2 PA1(6) I/O FT PA1

USART2_RTS / UART4_RX/

ETH_RMII_REF_CLK / ETH_MII_RX_CLK /

TIM5_CH2 / TIM2_CH2/ EVENTOUT

ADC123_IN1

16 J9 25 36 42 P2 PA2(6) I/O FT PA2USART2_TX/TIM5_CH3 / TIM9_CH1 / TIM2_CH3 / ETH_MDIO/ EVENTOUT

ADC123_IN2

- - - - 43 F4 PH2 I/O FT PH2ETH_MII_CRS/

EVENTOUT

- - - - 44 G4 PH3 I/O FT PH3ETH_MII_COL/

EVENTOUT

- - - - 45 H4 PH4 I/O FT PH4I2C2_SCL /

OTG_HS_ULPI_NXT/ EVENTOUT

- - - - 46 J4 PH5 I/O FT PH5 I2C2_SDA/ EVENTOUT

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 42: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

42/177 Doc ID 15818 Rev 9

17 G7 26 37 47 R2 PA3(6) I/O FT PA3

USART2_RX/TIM5_CH4 / TIM9_CH2 / TIM2_CH4 /

OTG_HS_ULPI_D0 / ETH_MII_COL/

EVENTOUT

ADC123_IN3

18 F1 27 38 48 - VSS_4 S VSS_4

H7 L4 REGOFF I/O REGOFF

19 E1 28 39 49 K4 VDD_4 S VDD_4

20 J8 29 40 50 N4 PA4(6) I/O TT PA4

SPI1_NSS / SPI3_NSS / USART2_CK /

DCMI_HSYNC / OTG_HS_SOF/ I2S3_WS/

EVENTOUT

ADC12_IN4

/DAC_OUT1

21 H6 30 41 51 P4 PA5(6) I/O TT PA5

SPI1_SCK/ OTG_HS_ULPI_CK /

TIM2_CH1_ETR/ TIM8_CHIN/ EVENTOUT

ADC12_IN5/DAC_OUT2

22 H5 31 42 52 P3 PA6(6) I/O FT PA6

SPI1_MISO / TIM8_BKIN/TIM13_CH1 /

DCMI_PIXCLK / TIM3_CH1 / TIM1_BKIN/ EVENTOUT

ADC12_IN6

23 J7 32 43 53 R3 PA7(6) I/O FT PA7

SPI1_MOSI/ TIM8_CH1N / TIM14_CH1TIM3_CH2/

ETH_MII_RX_DV / TIM1_CH1N /

RMII_CRS_DV / EVENTOUT

ADC12_IN7

24 H4 33 44 54 N5 PC4(6) I/O FT PC4ETH_RMII_RX_D0 / ETH_MII_RX_D0/

EVENTOUTADC12_IN14

25 G3 34 45 55 P5 PC5(6) I/O FT PC5ETH_RMII_RX_D1 / ETH_MII_RX_D1 /

EVENTOUTADC12_IN15

26 J6 35 46 56 R5 PB0(6) I/O FT PB0

TIM3_CH3 / TIM8_CH2N/ OTG_HS_ULPI_D1/

ETH_MII_RXD2 / TIM1_CH2N/ EVENTOUT

ADC12_IN8

27 J5 36 47 57 R4 PB1(6) I/O FT PB1

TIM3_CH4 / TIM8_CH3N/ OTG_HS_ULPI_D2/

ETH_MII_RXD3 / TIM1_CH3N/ EVENTOUT

ADC12_IN9

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 43: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 43/177

28 J4 37 48 58 M6 PB2 I/O FT PB2-BOOT1 EVENTOUT

- - - 49 59 R6 PF11 I/O FT PF11 DCMI_12/ EVENTOUT

- - - 50 60 P6 PF12 I/O FT PF12 FSMC_A6/ EVENTOUT

- - - 51 61 M8 VSS_6 S VSS_6

- - - 52 62 N8 VDD_6 S VDD_6

- - - 53 63 N6 PF13 I/O FT PF13 FSMC_A7/ EVENTOUT

- - - 54 64 R7 PF14 I/O FT PF14 FSMC_A8/ EVENTOUT

- - - 55 65 P7 PF15 I/O FT PF15 FSMC_A9/ EVENTOUT

- - - 56 66 N7 PG0 I/O FT PG0 FSMC_A10/ EVENTOUT

- - - 57 67 M7 PG1 I/O FT PG1 FSMC_A11/ EVENTOUT

- - 38 58 68 R8 PE7 I/O FT PE7FSMC_D4/TIM1_ETR/

EVENTOUT

- - 39 59 69 P8 PE8 I/O FT PE8FSMC_D5/TIM1_CH1N/

EVENTOUT

- - 40 60 70 P9 PE9 I/O FT PE9FSMC_D6/TIM1_CH1/

EVENTOUT

- - - 61 71 M9 VSS_7 S VSS_7

- - - 62 72 N9 VDD_7 S VDD_7

- - 41 63 73 R9 PE10 I/O FT PE10FSMC_D7/TIM1_CH2N/

EVENTOUT

- - 42 64 74 P10 PE11 I/O FT PE11FSMC_D8/TIM1_CH2/

EVENTOUT

- - 43 65 75 R10 PE12 I/O FT PE12FSMC_D9/TIM1_CH3N/

EVENTOUT

- - 44 66 76 N11 PE13 I/O FT PE13FSMC_D10/TIM1_CH3/

EVENTOUT

- - 45 67 77 P11 PE14 I/O FT PE14FSMC_D11/TIM1_CH4/

EVENTOUT

- - 46 68 78 R11 PE15 I/O FT PE15FSMC_D12/TIM1_BKIN/

EVENTOUT

29 H3 47 69 79 R12 PB10 I/O FT PB10

SPI2_SCK/ I2S2_SCK/ I2C2_SCL / USART3_TX /

OTG_HS_ULPI_D3 / ETH_MII_RX_ER /

TIM2_CH3/ EVENTOUT

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 44: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

44/177 Doc ID 15818 Rev 9

30 J2 48 70 80 R13 PB11 I/O FT PB11

I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN /

TIM2_CH4/ EVENTOUT

31 J3 49 71 81 M10 VCAP_1 S VCAP_1

32 - 50 72 82 N10 VDD_1 S VDD_1

- - - - 83 M11 PH6 I/O FT PH6I2C2_SMBA / TIM12_CH1 /

ETH_MII_RXD2/ EVENTOUT

- - - - 84 N12 PH7 I/O FT PH7I2C3_SCL /

ETH_MII_RXD3/ EVENTOUT

- - - - 85 M12 PH8 I/O FT PH8I2C3_SDA / DCMI_HSYNC/

EVENTOUT

- - - - 86 M13 PH9 I/O FT PH9I2C3_SMBA / TIM12_CH2/

DCMI_D0/ EVENTOUT

- - - - 87 L13 PH10 I/O FT PH10TIM5_CH1 / DCMI_D1/

EVENTOUT

- - - - 88 L12 PH11 I/O FT PH11TIM5_CH2 / DCMI_D2/

EVENTOUT

- - - - 89 K12 PH12 I/O FT PH12TIM5_CH3 / DCMI_D3/

EVENTOUT

- - - - 90 H12 VSS_14 S VSS_14

- - - - 91 J12 VDD_14 S VDD_14

33 J1 51 73 92 P12 PB12 I/O FT PB12

SPI2_NSS/I2S2_WS/ I2C2_SMBA/

USART3_CK/ TIM1_BKIN / CAN2_RX /

OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/

OTG_HS_ID/ EVENTOUT

34 H2 52 74 93 P13 PB13 I/O FT PB13

SPI2_SCK / I2S2_SCK / USART3_CTS/

TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1/

EVENTOUT

OTG_HS_VBUS

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 45: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 45/177

35 H1 53 75 94 R14 PB14 I/O FT PB14

SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM

USART3_RTS/ TIM8_CH2N/ EVENTOUT

36 G1 54 76 95 R15 PB15 I/O FT PB15

SPI2_MOSI / I2S2_SD / TIM1_CH3N / TIM8_CH3N

/ TIM12_CH2 / OTG_HS_DP / RTC_50Hz/

EVENTOUT

- - 55 77 96 P15 PD8 I/O FT PD8FSMC_D13 / USART3_TX/

EVENTOUT

- - 56 78 97 P14 PD9 I/O FT PD9FSMC_D14 / USART3_RX/

EVENTOUT

- - 57 79 98 N15 PD10 I/O FT PD10FSMC_D15 / USART3_CK/

EVENTOUT

- - 58 80 99 N14 PD11 I/O FT PD11FSMC_A16/USART3_CTS/

EVENTOUT

- - 59 81 100 N13 PD12 I/O FT PD12FSMC_A17/TIM4_CH1 /

USART3_RTS/ EVENTOUT

- - 60 82 101 M15 PD13 I/O FT PD13FSMC_A18/TIM4_CH2/

EVENTOUT

- - - 83 102 - VSS_8 S VSS_8

- - - 84 103 J13 VDD_8 S VDD_8

- - 61 85 104 M14 PD14 I/O FT PD14FSMC_D0/TIM4_CH3/

EVENTOUT

- - 62 86 105 L14 PD15 I/O FT PD15FSMC_D1/TIM4_CH4/

EVENTOUT

- - - 87 106 L15 PG2 I/O FT PG2 FSMC_A12/ EVENTOUT

- - - 88 107 K15 PG3 I/O FT PG3 FSMC_A13/ EVENTOUT

- - - 89 108 K14 PG4 I/O FT PG4 FSMC_A14/ EVENTOUT

- - - 90 109 K13 PG5 I/O FT PG5 FSMC_A15/ EVENTOUT

- - - 91 110 J15 PG6 I/O FT PG6 FSMC_INT2/ EVENTOUT

- - - 92 111 J14 PG7 I/O FT PG7FSMC_INT3 /USART6_CK/

EVENTOUT

- - - 93 112 H14 PG8 I/O FT PG8USART6_RTS / ETH_PPS_OUT/

EVENTOUT

- - - 94 113 G12 VSS_9 S VSS_9

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 46: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

46/177 Doc ID 15818 Rev 9

- - - 95 114 H13 VDD_9 S VDD_9

37 G2 63 96 115 H15 PC6 I/O FT PC6

I2S2_MCK / TIM8_CH1/SDIO_D6 /

USART6_TX / DCMI_D0/TIM3_CH1/

EVENTOUT

38 F2 64 97 116 G15 PC7 I/O FT PC7

I2S3_MCK / TIM8_CH2/SDIO_D7 /

USART6_RX / DCMI_D1/TIM3_CH2/

EVENTOUT

39 F3 65 98 117 G14 PC8 I/O FT PC8TIM8_CH3/SDIO_D0

/TIM3_CH3/ USART6_CK / DCMI_D2/ EVENTOUT

40 D1 66 99 118 F14 PC9 I/O FT PC9

I2S2_CKIN/ I2S3_CKIN/ MCO2 /

TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 / TIM3_CH4/ EVENTOUT

41 E2 67 100 119 F15 PA8 I/O FT PA8

MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/

OTG_FS_SOF/ EVENTOUT

42 E3 68 101 120 E15 PA9 I/O FT PA9USART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0/

EVENTOUT

OTG_FS_VBUS

43 D3 69 102 121 D15 PA10 I/O FT PA10USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1/

EVENTOUT

44 D2 70 103 122 C15 PA11 I/O FT PA11USART1_CTS / CAN1_RX / TIM1_CH4 / OTG_FS_DM/

EVENTOUT

45 C1 71 104 123 B15 PA12 I/O FT PA12USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP/

EVENTOUT

46 B2 72 105 124 A15 PA13 I/O FTJTMS-SWDIO

JTMS-SWDIO/ EVENTOUT

47 C2 73 106 125 F13 VCAP_2 S VCAP_2

- B1 74 107 126 F12 VSS_2 S VSS_2

48 A8 75 108 127 G13 VDD_2 S VDD_2

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 47: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 47/177

- - - - 128 E12 PH13 I/O FT PH13TIM8_CH1N / CAN1_TX/

EVENTOUT

- - - - 129 E13 PH14 I/O FT PH14TIM8_CH2N / DCMI_D4/

EVENTOUT

- - - - 130 D13 PH15 I/O FT PH15TIM8_CH3N / DCMI_D11/

EVENTOUT

- - - - 131 E14 PI0 I/O FT PI0TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13/

EVENTOUT

- - - - 132 D14 PI1 I/O FT PI1SPI2_SCK / I2S2_SCK / DCMI_D8/ EVENTOUT

- - - - 133 C14 PI2 I/O FT PI2TIM8_CH4 /SPI2_MISO / DCMI_D9/ EVENTOUT

- - - - 134 C13 PI3 I/O FT PI3TIM8_ETR / SPI2_MOSI /

I2S2_SD / DCMI_D10/ EVENTOUT

- - - - 135 D9 VSS_15 S VSS_15

- - - - 136 C9 VDD_15 S VDD_15

49 A1 76 109 137 A14 PA14 I/O FTJTCK-

SWCLKJTCK-SWCLK/ EVENTOUT

50 A2 77 110 138 A13 PA15 I/O FT JTDIJTDI/ SPI3_NSS/

I2S3_WS/TIM2_CH1_ETR / SPI1_NSS/ EVENTOUT

51 B3 78 111 139 B14 PC10 I/O FT PC10

SPI3_SCK / I2S3_SCK / UART4_TX / SDIO_D2 / DCMI_D8 / USART3_TX/

EVENTOUT

52 C3 79 112 140 B13 PC11 I/O FT PC11

UART4_RX/ SPI3_MISO / SDIO_D3 /

DCMI_D4/USART3_RX/ EVENTOUT

53 A3 80 113 141 A12 PC12 I/O FT PC12

UART5_TX/SDIO_CK / DCMI_D9 / SPI3_MOSI / I2S3_SD / USART3_CK/

EVENTOUT

- - 81 114 142 B12 PD0 I/O FT PD0FSMC_D2/CAN1_RX/

EVENTOUT

- - 82 115 143 C12 PD1 I/O FT PD1FSMC_D3 / CAN1_TX/

EVENTOUT

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 48: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

48/177 Doc ID 15818 Rev 9

54 C7 83 116 144 D12 PD2 I/O FT PD2TIM3_ETR/UART5_RX

SDIO_CMD / DCMI_D11/ EVENTOUT

- - 84 117 145 D11 PD3 I/O FT PD3FSMC_CLK/USART2_CTS/

EVENTOUT

- - 85 118 146 D10 PD4 I/O FT PD4FSMC_NOE/USART2_RTS

/ EVENTOUT

- - 86 119 147 C11 PD5 I/O FT PD5FSMC_NWE/USART2_TX/

EVENTOUT

- - - 120 148 D8 VSS_10 S VSS_10

- - - 121 149 C8 VDD_10 S VDD_10

- - 87 122 150 B11 PD6 I/O FT PD6FSMC_NWAIT/

USART2_RX/ EVENTOUT

- - 88 123 151 A11 PD7 I/O FT PD7USART2_CK/FSMC_NE1/FSMC_NCE2/ EVENTOUT

- - - 124 152 C10 PG9 I/O FT PG9USART6_RX /

FSMC_NE2/FSMC_NCE3/ EVENTOUT

- - - 125 153 B10 PG10 I/O FT PG10FSMC_NCE4_1/

FSMC_NE3/ EVENTOUT

- - - 126 154 B9 PG11 I/O FT PG11

FSMC_NCE4_2 / ETH_MII_TX_EN /

ETH _RMII_TX_EN/ EVENTOUT

- - - 127 155 B8 PG12 I/O FT PG12FSMC_NE4 /

USART6_RTS/ EVENTOUT

- - - 128 156 A8 PG13 I/O FT PG13

FSMC_A24 / USART6_CTS

/ETH_MII_TXD0/ETH_RMII_TXD0/

EVENTOUT

- - - 129 157 A7 PG14 I/O FT PG14

FSMC_A25 / USART6_TX/ETH_MII_TXD1/ETH_RMII_TXD1/

EVENTOUT

- - - 130 158 D7 VSS_11 S VSS_11

- - - 131 159 C7 VDD_11 S VDD_11

- - - 132 160 B7 PG15 I/O FT PG15USART6_CTS /

DCMI_D13/ EVENTOUT

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 49: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 49/177

55 A4 89 133 161 A10 PB3 I/O FTJTDO/

TRACESWO

JTDO/ TRACESWO/ SPI3_SCK / I2S3_SCK / TIM2_CH2 / SPI1_SCK/

EVENTOUT

56 B4 90 134 162 A9 PB4 I/O FT NJTRSTNJTRST/ SPI3_MISO /

TIM3_CH1 / SPI1_MISO/ EVENTOUT

57 A5 91 135 163 A6 PB5 I/O FT PB5

I2C1_SMBA/ CAN2_RX / OTG_HS_ULPI_D7 /

ETH_PPS_OUT/TIM3_CH2 / SPI1_MOSI/ SPI3_MOSI /

DCMI_D10 / I2S3_SD/ EVENTOUT

58 B5 92 136 164 B6 PB6 I/O FT PB6

I2C1_SCL/ TIM4_CH1 / CAN2_TX /

DCMI_D5/USART1_TX/ EVENTOUT

59 A6 93 137 165 B5 PB7 I/O FT PB7

I2C1_SDA / FSMC_NL(8) / DCMI_VSYNC /

USART1_RX/ TIM4_CH2/ EVENTOUT

60 B6 94 138 166 D6 BOOT0 I BOOT0 VPP

61 B7 95 139 167 A5 PB8 I/O FT PB8

TIM4_CH3/SDIO_D4/ TIM10_CH1 / DCMI_D6 /

ETH_MII_TXD3 / I2C1_SCL/ CAN1_RX/

EVENTOUT

62 A7 96 140 168 B4 PB9 I/O FT PB9

SPI2_NSS/ I2S2_WS/ TIM4_CH4/ TIM11_CH1/ SDIO_D5 / DCMI_D7 / I2C1_SDA / CAN1_TX/

EVENTOUT

- - 97 141 169 A4 PE0 I/O FT PE0TIM4_ETR / FSMC_NBL0 /

DCMI_D2/ EVENTOUT

- - 98 142 170 A3 PE1 I/O FT PE1FSMC_NBL1 / DCMI_D3/

EVENTOUT

- - - - - D5 VSS S VSS

63 D8 - - - - VSS_3 S VSS_3

- - 99 143 171 C6 RFU(9)

64 D9 100 144 172 C5 VDD_3 S VDD_3

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Page 50: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

50/177 Doc ID 15818 Rev 9

- - - - 173 D4 PI4 I/O FT PI4TIM8_BKIN / DCMI_D5/

EVENTOUT

- - - - 174 C4 PI5 I/O FT PI5TIM8_CH1 /

DCMI_VSYNC/ EVENTOUT

- - - - 175 C3 PI6 I/O FT PI6TIM8_CH2 / DCMI_D6/

EVENTOUT

- - - - 176 C2 PI7 I/O FT PI7TIM8_CH3 / DCMI_D7/

EVENTOUT

- C8 - - - - IRROFF I/O IRROFF

1. I = input, O = output, S = supply, HiZ = high impedance.

2. FT = 5 V tolerant; TT = 3.6 V tolerant.

3. Function availability depends on the chosen device.

4. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

5. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

6. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

7. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to VDD (Regulator OFF), then PA0 is used as an internal Reset (active low).

8. FSMC_NL pin is also named FSMC_NADV on memory devices.

9. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.

Table 6. STM32F20x pin and ball definitions (continued)

Pins

Pin name

Typ

e(1)

I / O

Lev

el(2

)

Main function(3)

(after reset)Alternate functions

Other functions

LQ

FP

64

WL

CS

P64

+2

LQ

FP

100

LQ

FP

144

LQ

FP

176

UF

BG

A17

6

Table 7. FSMC pin definition

Pins

FSMC

LQFP100CF

NOR/PSRAM/SRAM

NOR/PSRAM Mux NAND 16 bit

PE2 A23 A23 Yes

PE3 A19 A19 Yes

PE4 A20 A20 Yes

PE5 A21 A21 Yes

PE6 A22 A22 Yes

PF0 A0 A0 -

PF1 A1 A1 -

PF2 A2 A2 -

PF3 A3 A3 -

Page 51: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Pinouts and pin description

Doc ID 15818 Rev 9 51/177

PF4 A4 A4 -

PF5 A5 A5 -

PF6 NIORD -

PF7 NREG -

PF8 NIOWR -

PF9 CD -

PF10 INTR -

PF12 A6 A6 -

PF13 A7 A7 -

PF14 A8 A8 -

PF15 A9 A9 -

PG0 A10 A10 -

PG1 A11 -

PE7 D4 D4 DA4 D4 Yes

PE8 D5 D5 DA5 D5 Yes

PE9 D6 D6 DA6 D6 Yes

PE10 D7 D7 DA7 D7 Yes

PE11 D8 D8 DA8 D8 Yes

PE12 D9 D9 DA9 D9 Yes

PE13 D10 D10 DA10 D10 Yes

PE14 D11 D11 DA11 D11 Yes

PE15 D12 D12 DA12 D12 Yes

PD8 D13 D13 DA13 D13 Yes

PD9 D14 D14 DA14 D14 Yes

PD10 D15 D15 DA15 D15 Yes

PD11 A16 A16 CLE Yes

PD12 A17 A17 ALE Yes

PD13 A18 A18 Yes

PD14 D0 D0 DA0 D0 Yes

PD15 D1 D1 DA1 D1 Yes

PG2 A12 -

PG3 A13 -

PG4 A14 -

Table 7. FSMC pin definition (continued)

Pins

FSMC

LQFP100CF

NOR/PSRAM/SRAM

NOR/PSRAM Mux NAND 16 bit

Page 52: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pinouts and pin description STM32F20xxx

52/177 Doc ID 15818 Rev 9

PG5 A15 -

PG6 INT2 -

PG7 INT3 -

PD0 D2 D2 DA2 D2 Yes

PD1 D3 D3 DA3 D3 Yes

PD3 CLK CLK Yes

PD4 NOE NOE NOE NOE Yes

PD5 NWE NWE NWE NWE Yes

PD6 NWAIT NWAIT NWAIT NWAIT Yes

PD7 NE1 NE1 NCE2 Yes

PG9 NE2 NE2 NCE3 -

PG10 NCE4_1 NE3 NE3 -

PG11 NCE4_2 -

PG12 NE4 NE4 -

PG13 A24 A24 -

PG14 A25 A25 -

PB7 NADV NADV Yes

PE0 NBL0 NBL0 Yes

PE1 NBL1 NBL1 Yes

Table 7. FSMC pin definition (continued)

Pins

FSMC

LQFP100CF

NOR/PSRAM/SRAM

NOR/PSRAM Mux NAND 16 bit

Page 53: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

ST

M32F

20xxxP

ino

uts an

d p

in d

escriptio

n

Doc ID

15818 Rev 9

53/177

Table 8. Alternate function mapping

Port

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13

AF014 AF15SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3

UART4/5/USART6

CAN1/CAN2/TIM12/13/14

OTG_FS/ OTG_HS ETHFSMC/SDIO/

OTG_HSDCMI

PA0-WKUP TIM2_CH1_ETR TIM 5_CH1 TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT

PA1 TIM2_CH2 TIM5_CH2 USART2_RTS UART4_RX ETH_MII _RX_CLK

ETH_RMII _REF_CLK

EVENTOUT

PA2 TIM2_CH3 TIM5_CH3 TIM9_CH1 USART2_TX ETH_MDIO EVENTOUT

PA3 TIM2_CH4 TIM5_CH4 TIM9_CH2 USART2_RX OTG_HS_ULPI_D0 ETH _MII_COL EVENTOUT

PA4 SPI1_NSS SPI3_NSS I2S3_WS

USART2_CK OTG_HS_SOF DCMI_HSYNC EVENTOUT

PA5 TIM2_CH1_ETR TIM8_CH1N SPI1_SCK OTG_HS_ULPI_CK EVENTOUT

PA6 TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO TIM13_CH1 DCMI_PIXCK EVENTOUT

PA7 TIM1_CH1N TIM3_CH2 TIM8_CH1N SPI1_MOSI TIM14_CH1 ETH_MII _RX_DV

ETH_RMII _CRS_DV

EVENTOUT

PA8 MCO1 TIM1_CH1 I2C3_SCL USART1_CK OTG_FS_SOF EVENTOUT

PA9 TIM1_CH2 I2C3_SMBA USART1_TX DCMI_D0 EVENTOUT

PA10 TIM1_CH3 USART1_RX OTG_FS_ID DCMI_D1 EVENTOUT

PA11 TIM1_CH4 USART1_CTS CAN1_RX OTG_FS_DM EVENTOUT

PA12 TIM1_ETR USART1_RTS CAN1_TX OTG_FS_DP EVENTOUT

PA13 JTMS-SWDIO EVENTOUT

PA14 JTCK-SWCLK EVENTOUT

PA15 JTDI TIM 2_CH1 TIM 2_ETR

SPI1_NSS SPI3_NSS I2S3_WS

EVENTOUT

PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N OTG_HS_ULPI_D1 ETH _MII_RXD2 EVENTOUT

PB1 TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_D2 ETH _MII_RXD3 EVENTOUT

PB2 EVENTOUT

PB3JTDO/

TRACESWO TIM2_CH2 SPI1_SCK

SPI3_SCK I2S3_SCK

EVENTOUT

PB4 JTRST TIM3_CH1 SPI1_MISO SPI3_MISO EVENTOUT

PB5 TIM3_CH2 I2C1_SMBA SPI1_MOSI SPI3_MOSI

I2S3_SD CAN2_RX OTG_HS_ULPI_D7 ETH _PPS_OUT DCMI_D10 EVENTOUT

PB6 TIM4_CH1 I2C1_SCL USART1_TX CAN2_TX DCMI_D5 EVENTOUT

PB7 TIM4_CH2 I2C1_SDA USART1_RX FSMC_NL DCMI_VSYNC EVENTOUT

PB8 TIM4_CH3 TIM10_CH1 I2C1_SCL CAN1_RX ETH _MII_TXD3 SDIO_D4 DCMI_D6 EVENTOUT

PB9 TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSSI2S2_WS

CAN1_TX SDIO_D5 DCMI_D7 EVENTOUT

PB10 TIM2_CH3 I2C2_SCL SPI2_SCK I2S2_SCK

USART3_TX OTG_HS_ULPI_D3 ETH_ MII_RX_ER EVENTOUT

PB11 TIM2_CH4 I2C2_SDA USART3_RX OTG_HS_ULPI_D4 ETH _MII_TX_EN

ETH _RMII_TX_EN EVENTOUT

PB12 TIM1_BKIN I2C2_SMBASPI2_NSS I2S2_WS

USART3_CK CAN2_RX OTG_HS_ULPI_D5 ETH _MII_TXD0

ETH _RMII_TXD0OTG_HS_ID EVENTOUT

PB13 TIM1_CH1N SPI2_SCK I2S2_SCK

USART3_CTS CAN2_TX OTG_HS_ULPI_D6 ETH _MII_TXD1

ETH _RMII_TXD1 EVENTOUT

Page 54: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pin

ou

ts and

pin

descrip

tion

ST

M32F

20xxx

54/177D

oc ID 15818 R

ev 9

PB14 TIM1_CH2N TIM8_CH2N SPI2_MISO USART3_RTS TIM12_CH1 OTG_HS_DM EVENTOUT

PB15 RTC_50Hz TIM1_CH3N TIM8_CH3N SPI2_MOSI

I2S2_SD TIM12_CH2 OTG_HS_DP EVENTOUT

PC0 OTG_HS_ULPI_STP EVENTOUT

PC1 ETH_MDC EVENTOUT

PC2 SPI2_MISO OTG_HS_ULPI_DIR ETH _MII_TXD2 EVENTOUT

PC3 SPI2_MOSI OTG_HS_ULPI_NXT ETH _MII_TX_CLK EVENTOUT

PC4ETH_MII_RXD0

ETH_RMII_RXD0EVENTOUT

PC5ETH _MII_RXD1

ETH _RMII_RXD1EVENTOUT

PC6 TIM3_CH1 TIM8_CH1 I2S2_MCK USART6_TX SDIO_D6 DCMI_D0 EVENTOUT

PC7 TIM3_CH2 TIM8_CH2 I2S3_MCK USART6_RX SDIO_D7 DCMI_D1 EVENTOUT

PC8 TIM3_CH3 TIM8_CH3 USART6_CK SDIO_D0 DCMI_D2 EVENTOUT

PC9 MCO2 TIM3_CH4 TIM8_CH4 I2C3_SDA I2S2_CKIN I2S3_CKIN SDIO_D1 DCMI_D3 EVENTOUT

PC10SPI3_SCK I2S3_SCK

USART3_TX UART4_TX SDIO_D2 DCMI_D8 EVENTOUT

PC11 SPI3_MISO USART3_RX UART4_RX SDIO_D3 DCMI_D4 EVENTOUT

PC12SPI3_MOSI

I2S3_SD USART3_CK UART5_TX SDIO_CK DCMI_D9 EVENTOUT

PC13

PC14-OSC32_IN

PC15-OSC32_OUT

PD0 CAN1_RX FSMC_D2 EVENTOUT

PD1 CAN1_TX FSMC_D3 EVENTOUT

PD2 TIM3_ETR UART5_RX SDIO_CMD DCMI_D11 EVENTOUT

PD3 USART2_CTS FSMC_CLK EVENTOUT

PD4 USART2_RTS FSMC_NOE EVENTOUT

PD5 USART2_TX FSMC_NWE EVENTOUT

PD6 USART2_RX FSMC_NWAIT EVENTOUT

PD7 USART2_CK FSMC_NE1/FSMC_NCE2

EVENTOUT

PD8 USART3_TX FSMC_D13 EVENTOUT

PD9 USART3_RX FSMC_D14 EVENTOUT

PD10 USART3_CK FSMC_D15 EVENTOUT

PD11 USART3_CTS FSMC_A16 EVENTOUT

PD12 TIM4_CH1 USART3_RTS FSMC_A17 EVENTOUT

PD13 TIM4_CH2 FSMC_A18 EVENTOUT

Table 8. Alternate function mapping (continued)

Port

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13

AF014 AF15SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3

UART4/5/USART6

CAN1/CAN2/TIM12/13/14

OTG_FS/ OTG_HS ETHFSMC/SDIO/

OTG_HSDCMI

Page 55: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

ST

M32F

20xxxP

ino

uts an

d p

in d

escriptio

n

Doc ID

15818 Rev 9

55/177

PD14 TIM4_CH3 FSMC_D0 EVENTOUT

PD15 TIM4_CH4 FSMC_D1 EVENTOUT

PE0 TIM4_ETR FSMC_NBL0 DCMI_D2 EVENTOUT

PE1 FSMC_BLN1 DCMI_D3 EVENTOUT

PE2 TRACECLK ETH _MII_TXD3 FSMC_A23 EVENTOUT

PE3 TRACED0 FSMC_A19 EVENTOUT

PE4 TRACED1 FSMC_A20 DCMI_D4 EVENTOUT

PE5 TRACED2 TIM9_CH1 FSMC_A21 DCMI_D6 EVENTOUT

PE6 TRACED3 TIM9_CH2 FSMC_A22 DCMI_D7 EVENTOUT

PE7 TIM1_ETR FSMC_D4 EVENTOUT

PE8 TIM1_CH1N FSMC_D5 EVENTOUT

PE9 TIM1_CH1 FSMC_D6 EVENTOUT

PE10 TIM1_CH2N FSMC_D7 EVENTOUT

PE11 TIM1_CH2 FSMC_D8 EVENTOUT

PE12 TIM1_CH3N FSMC_D9 EVENTOUT

PE13 TIM1_CH3 FSMC_D10 EVENTOUT

PE14 TIM1_CH4 FSMC_D11 EVENTOUT

PE15 TIM1_BKIN FSMC_D12 EVENTOUT

PF0 I2C2_SDA FSMC_A0 EVENTOUT

PF1 I2C2_SCL FSMC_A1 EVENTOUT

PF2 I2C2_SMBA FSMC_A2 EVENTOUT

PF3 FSMC_A3 EVENTOUT

PF4 FSMC_A4 EVENTOUT

PF5 FSMC_A5 EVENTOUT

PF6 TIM10_CH1 FSMC_NIORD EVENTOUT

PF7 TIM11_CH1 FSMC_NREG EVENTOUT

PF8 TIM13_CH1 FSMC_NIOWR EVENTOUT

PF9 TIM14_CH1 FSMC_CD EVENTOUT

PF10 FSMC_INTR EVENTOUT

PF11 DCMI_D12 EVENTOUT

PF12 FSMC_A6 EVENTOUT

PF13 FSMC_A7 EVENTOUT

PF14 FSMC_A8 EVENTOUT

Table 8. Alternate function mapping (continued)

Port

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13

AF014 AF15SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3

UART4/5/USART6

CAN1/CAN2/TIM12/13/14

OTG_FS/ OTG_HS ETHFSMC/SDIO/

OTG_HSDCMI

Page 56: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Pin

ou

ts and

pin

descrip

tion

ST

M32F

20xxx

56/177D

oc ID 15818 R

ev 9

PF15 FSMC_A9 EVENTOUT

PG0 FSMC_A10 EVENTOUT

PG1 FSMC_A11 EVENTOUT

PG2 FSMC_A12 EVENTOUT

PG3 FSMC_A13 EVENTOUT

PG4 FSMC_A14 EVENTOUT

PG5 FSMC_A15 EVENTOUT

PG6 FSMC_INT2 EVENTOUT

PG7 USART6_CK FSMC_INT3 EVENTOUT

PG8 USART6_RTS ETH _PPS_OUT EVENTOUT

PG9 USART6_RX FSMC_NE2/FSMC_NCE3

EVENTOUT

PG10FSMC_NCE4_1/

FSMC_NE3 EVENTOUT

PG11ETH _MII_TX_EN

ETH _RMII_TX_ENFSMC_NCE4_2 EVENTOUT

PG12 USART6_RTS FSMC_NE4 EVENTOUT

PG13 UART6_CTS ETH _MII_TXD0

ETH _RMII_TXD0FSMC_A24 EVENTOUT

PG14 USART6_TX ETH _MII_TXD1

ETH _RMII_TXD1 FSMC_A25 EVENTOUT

PG15 USART6_CTS DCMI_D13 EVENTOUT

PH0 - OSC_IN

PH1 - OSC_OUT

PH2 ETH _MII_CRS EVENTOUT

PH3 ETH _MII_COL EVENTOUT

PH4 I2C2_SCL OTG_HS_ULPI_NXT EVENTOUT

PH5 I2C2_SDA EVENTOUT

PH6 I2C2_SMBA TIM12_CH1 ETH _MII_RXD2 EVENTOUT

PH7 I2C3_SCL ETH _MII_RXD3 EVENTOUT

PH8 I2C3_SDA DCMI_HSYNC EVENTOUT

PH9 I2C3_SMBA TIM12_CH2 DCMI_D0 EVENTOUT

PH10 TIM5_CH1 DCMI_D1 EVENTOUT

PH11 TIM5_CH2 DCMI_D2 EVENTOUT

PH12 TIM5_CH3 DCMI_D3 EVENTOUT

PH13 TIM8_CH1N CAN1_TX EVENTOUT

Table 8. Alternate function mapping (continued)

Port

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13

AF014 AF15SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3

UART4/5/USART6

CAN1/CAN2/TIM12/13/14

OTG_FS/ OTG_HS ETHFSMC/SDIO/

OTG_HSDCMI

Page 57: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

ST

M32F

20xxxP

ino

uts an

d p

in d

escriptio

n

Doc ID

15818 Rev 9

57/177

PH14 TIM8_CH2N DCMI_D4 EVENTOUT

PH15 TIM8_CH3N DCMI_D11 EVENTOUT

PI0 TIM5_CH4 SPI2_NSS I2S2_WS

DCMI_D13 EVENTOUT

PI1SPI2_SCK I2S2_SCK

DCMI_D8 EVENTOUT

PI2 TIM8_CH4 SPI2_MISO DCMI_D9 EVENTOUT

PI3 TIM8_ETR SPI2_MOSI

I2S2_SD DCMI_D10 EVENTOUT

PI4 TIM8_BKIN DCMI_D5 EVENTOUT

PI5 TIM8_CH1 DCMI_VSYNC EVENTOUT

PI6 TIM8_CH2 DCMI_D6 EVENTOUT

PI7 TIM8_CH3 DCMI_D7 EVENTOUT

PI8

PI9 CAN1_RX EVENTOUT

PI10 ETH _MII_RX_ER EVENTOUT

PI11 OTG_HS_ULPI_DIR EVENTOUT

Table 8. Alternate function mapping (continued)

Port

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13

AF014 AF15SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2 SPI3/I2S3 USART1/2/3

UART4/5/USART6

CAN1/CAN2/TIM12/13/14

OTG_FS/ OTG_HS ETHFSMC/SDIO/

OTG_HSDCMI

Page 58: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Memory mapping STM32F20xxx

58/177 Doc ID 15818 Rev 9

4 Memory mapping

The memory map is shown in Figure 14.

Page 59: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Memory mapping

Doc ID 15818 Rev 9 59/177

Figure 14. Memory map

512-Mbyte block 7

Cortex-M3'sinternal

peripherals

512-Mbyte block 6Not used

512-Mbyte block 5

FSMC registers

512-Mbyte block 4

FSMC bank 3& bank4

512-Mbyte block 3

FSMC bank1& bank2

512-Mbyte block 2

Peripherals

512-Mbyte block 1SRAM

0x0000 0000

0x1FFF FFFF0x2000 0000

0x3FFF FFFF0x4000 0000

0x5FFF FFFF0x6000 0000

0x7FFF FFFF0x8000 0000

0x9FFF FFFF0xA000 0000

0xBFFF FFFF0xC000 0000

0xDFFF FFFF0xE000 0000

0xFFFF FFFF

512-Mbyte block 0Code

Flash0x0810 0000 - 0x0FFF FFFF0x1FFF 0000 - 0x1FFF 7A0F

0x1FFF C000 - 0x1FFF C007

0x0800 0000 - 0x080F FFFF0x0001 C000 - 0x07FF FFFF

0x0000 0000 - 0x000F FFFF

System memory + OTPReserved

ReservedAliased to Flash, system

memory or SRAM dependingon the BOOT pins

SRAM (16 KB aliasedby bit-banding)

Reserved

0x2000 0000 - 0x2001 BFFF

0x2001 C000 - 0x2001 FFFF

0x2002 0000 - 0x3FFF FFFF

TIM2TIM3

0x4000 0000 - 0x4000 03FF

TIM4TIM5TIM6TIM7

Reserved

0x4000 0400 - 0x4000 07FF0x4000 0800 - 0x4000 0BFF0x4000 0C00 - 0x4000 0FFF0x4000 1000 - 0x4000 13FF

0x4000 2000 - 0x4000 23FF0x4000 2400 - 0x4000 27FF

RTC & BKP registers 0x4000 2800 - 0x4000 2BFFWWDG 0x4000 2C00 - 0x4000 2FFFIWDG 0x4000 3000 - 0x4000 33FF

Reserved 0x4000 3400 - 0x4000 37FFSPI2/I2S2 0x4000 3800 - 0x4000 3BFFSPI3/I2S3 0x4000 3C00 - 0x4000 3FFF

Reserved

0x4000 4000 - 0x4000 43FFUSART2 0x4000 4400 - 0x4000 47FF

0x4000 4800 - 0x4000 4BFFUSART3UART4 0x4000 4C00 - 0x4000 4FFFUART5 0x4000 5000 - 0x4000 53FF

I2C1 0x4000 5400 - 0x4000 57FFI2C2 0x4000 5800 - 0x4000 5BFF

Reserved

0x4000 6C00 - 0x4000 6FFF0x4000 7000 - 0x4000 73FFPWR0x4000 7400 - 0x4000 77FFDAC1/DAC20x4000 7800 - 0x4000 FFFF

TIM1 / PWM1 0x4001 0000 - 0x4001 03FFTIM8 / PWM2 0x4001 0400 - 0x4001 07FF

Port A

USART1 0x4001 1000 - 0x4001 13FF0x4001 1400 - 0x4001 17FF

Port B

0x4001 1800 - 0x4001 1FFF

Port C

0x4001 2000 - 0x4001 23FF

Port D

0x4001 2400 - 0x4001 27FF

Port E

0x4001 2800 - 0x4001 2BFF

Port F

0x4001 2C00 - 0x4001 2FFF

Port G

0x4001 3000 - 0x4001 33FFReserved 0x4001 3400 - 0x4001 37FF

0x4001 3800 - 0x4001 3BFF

0x4001 4000 - 0x4001 43FF0x4001 4400 - 0x4001 47FF

USART6

0x4001 4800 - 0x4001 4BFF

0x4002 0000 - 0x4002 03FF

0x4002 0C00 - 0x4002 0FFF0x4002 1000 - 0x4002 13FF0x4002 1400 - 0x4002 17FF

Reset clock controller (RCC)

0x4002 1800 - 0x4002 1BFFPort H 0x4002 1C00 - 0x4002 1FFF

Flash interface

0x4002 2000 - 0x4002 23FFReserved 0x4002 2400 - 0x4002 2FFF

CRC 0x4002 3000 - 0x4002 33FF

FSMC bank1 NOR/PSRAM 1 0x6000 0000 - 0x63FF FFFFFSMC bank1 NOR/PSRAM 2 0x6400 0000 - 0x67FF FFFFFSMC bank1 NOR/PSRAM 3 0x6800 0000 - 0x6BFF FFFFFSMC bank1 NOR/PSRAM 4 0x6C00 0000 - 0x6FFF FFFFFSMC bank2 NAND (NAND1) 0x7000 0000 - 0x7FFF FFFFFSMC bank3 NAND (NAND2) 0x8000 0000 - 0x8FFF FFFF

FSMC bank4 PC Card 0x9000 0000 - 0x9FFF FFFF

FSMC control register 0xA000 0000 - 0xA000 0FFF0xA000 1000 - 0xBFFF FFFF

ai17615c

Option Bytes

TIM10

SYSCFG

0x4002 0400 - 0x4002 07FF0x4002 0800 - 0x4002 0BFF

SDIO

Reserved

Reserved 0x4001 4C00 - 0x4001 FFFF

EXTI 0x4001 3C00 - 0x4001 3FFF

Reserved

BxCAN2

0x4000 6000 - 0x4000 63FF0x4000 6400 - 0x4000 67FF0x4000 6800 - 0x4000 6BFF

0x5006 1000 - 0x5FFF FFFFReserved

0x5005 0000 - 0x5005 03FFDCMI0x5004 0000 - 0x5004 0FFFReserved0x5000 0000 - 0x5003 FFFFUSB OTG FS0x4002 9400 - 0x4FFF FFFFReserved0x4004 0000 - 0x4007 FFFFUSB OTG HS

Reserved 0x4002 9400 - 0x4003 FFFF0x4002 8000 - 0x4002 93FFETHERNET

Reserved 0x4002 6800 - 0x4002 7FFF0x4002 6400 - 0x4002 67FF0x4002 6000 - 0x4002 63FF

DMA2DMA1

Reserved 0x4002 5000 - 0x4002 5FFF0x4002 4000 - 0x4002 4FFFBKPSRAM0x4002 3C00 - 0x4002 3FFF0x4002 3800 - 0x4002 3BFF

Reserved 0x4002 3400 - 0x4002 37FF

Port I

TIM11

TIM9

SPI1

ADC1 - ADC2 - ADC3Reserved

BxCAN1

0x4000 5C00 - 0x4000 5FFFI2C3

Reserved

TIM12TIM13TIM14

0x4000 1C00 - 0x4000 1FFF0x4000 1800 - 0x4000 1BFF0x4000 1400 - 0x4000 17FF

SRAM (112 KB aliasedby bit-banding)

Reserved 0x1FFF C008 - 0x1FFF FFFF

0x1FFF 7A10 - 0x1FFF 7FFFReserved

Reserved

0x5006 0800 - 0x5006 0FFFRNGReserved 0x5005 0400 - 0x5006 7FFF

0x4001 0800 - 0x4001 0FFF

Reserved

Reserved

Page 60: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

60/177 Doc ID 15818 Rev 9

5 Electrical characteristics

5.1 Parameter conditionsUnless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).

5.1.2 Typical values

Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 15.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 16.

Figure 15. Pin loading conditions Figure 16. Pin input voltage

MS19011V1

C = 50 pF

STM32F pin

OSC_OUT (Hi-Z when using HSE or LSE)

MS19010V1

STM32F pin

VIN OSC_OUT (Hi-Z when using HSE or LSE)

Page 61: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 61/177

5.1.6 Power supply scheme

Figure 17. Power supply scheme

1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

2. To connect REGOFF and IRROFF pins, refer to Section 2.2.16: Voltage regulator.

3. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.

4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.

ai17527e

VDD1/2/...14/15

VBAT

GP I/Os

OUT

IN Kernel logic (CPU, digital

& RAM)

Backup circuitry(OSC32K,RTC,

Backup registers,backup RAM)

Wakeup logic

15 × 100 nF+ 1 × 4.7 μF

1.8-3.6 V

VSS 1/2/...14/15

VDDA

VREF+

VREF-

VSSA

ADC

Leve

l shi

fter

IOLogic

VDD

100 nF+ 1 μF

VREF

100 nF+ 1 μF

VDD

Flash memory

VCAP_1VCAP_22 × 2.2 μF

REGOFFIRROFF

Power switch

AnalogRCs, PLL,

...

Voltageregulator

Page 62: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

62/177 Doc ID 15818 Rev 9

5.1.7 Current consumption measurement

Figure 18. Current consumption measurement scheme

5.2 Absolute maximum ratingsStresses above the absolute maximum ratings listed in Table 9: Voltage characteristics, Table 10: Current characteristics, and Table 11: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ai14126

VBAT

VDD

VDDA

IDD_VBAT

IDD

Table 9. Voltage characteristics

Symbol Ratings Min Max Unit

VDD–VSS External main supply voltage (including VDDA, VDD)(1)

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

–0.3 4.0

VVIN

Input voltage on five-volt tolerant pin(2)

2. VIN maximum value must always be respected. Refer to Table 10 for the values of the maximum allowed injected current.

VSS–0.3 VDD+4

Input voltage on any other pin VSS–0.3 4.0

|ΔVDDx| Variations between different VDD power pins - 50mV

|VSSX − VSS| Variations between all the different ground pins - 50

VESD(HBM) Electrostatic discharge voltage (human body model)

see Section 5.3.14: Absolute maximum ratings (electrical sensitivity)

Page 63: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 63/177

5.3 Operating conditions

5.3.1 General operating conditions

Table 10. Current characteristics

Symbol Ratings Max. Unit

IVDD Total current into VDD power lines (source)(1)

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

120

mA

IVSS Total current out of VSS ground lines (sink)(1) 120

IIOOutput current sunk by any I/O and control pin 25

Output current source by any I/Os and control pin 25

IINJ(PIN) (2)

2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC characteristics.

Injected current on five-volt tolerant I/O(3)

3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 9 for the values of the maximum allowed input voltage.

–5/+0

Injected current on any other pin(4)

4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 9 for the values of the maximum allowed input voltage.

±5

ΣIINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(5)

5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values).

±25

Table 11. Thermal characteristics

Symbol Ratings Value Unit

TSTG Storage temperature range –65 to +150 °C

TJ Maximum junction temperature 125 °C

Table 12. General operating conditions

Symbol Parameter Conditions Min Max Unit

fHCLK Internal AHB clock frequency 0 120

MHzfPCLK1 Internal APB1 clock frequency 0 30

fPCLK2 Internal APB2 clock frequency 0 60

VDD Standard operating voltage 1.8(1) 3.6 V

VDDA(2)

Analog operating voltage (ADC limited to 1 M samples)

Must be the same potential as VDD(3)

1.8(1) 3.6

VAnalog operating voltage (ADC limited to 2 M samples)

2.4 3.6

VBAT Backup operating voltage 1.65 3.6 V

Page 64: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

64/177 Doc ID 15818 Rev 9

VCAP1 Internal core voltage to be supplied externally in REGOFF mode

1.1 1.3 VVCAP2

PDPower dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(4)

LQFP64 - 444

mW

WLCSP66 - 392

LQFP100 - 434

LQFP144 - 500

LQFP176 - 526

UFBGA176 - 513

TA

Ambient temperature for 6 suffix version

Maximum power dissipation –40 85°C

Low power dissipation(5) –40 105

Ambient temperature for 7 suffix version

Maximum power dissipation –40 105°C

Low power dissipation(5) –40 125

TJ Junction temperature range6 suffix version –40 105

°C7 suffix version –40 125

1. IRROFF is set to VDD, this value can be lowered to 1.7 V when the device operates in the 0 to 70 °C temperature range.

a reduced temperature range.

2. When the ADC is used, refer to Table 64: ADC characteristics.

3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and power-down operation.

4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.

5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.

Table 12. General operating conditions (continued)

Symbol Parameter Conditions Min Max Unit

Table 13. Limitations depending on the operating power supply range

Operating power supply range

ADC operation

Maximum Flash

memory access

frequency (fFlashmax)

Number of wait states at

maximum CPU frequency (fCPUmax=

120 MHz)(1)

I/O operation

FSMC_CLK frequency for synchronous

accesses

Possible Flash

memory operations

VDD =1.8 to 2.1 V(2)

Conversion time up to

1 Msps

16 MHz with no Flash

memory wait state

7(3)

– Degraded speed performance

– No I/O compensation

up to 30 MHz

8-bit erase and program operations only

VDD = 2.1 to 2.4 V

Conversion time up to

1 Msps

18 MHz with no Flash

memory wait state

6(3)

– Degraded speed performance

– No I/O compensation

up to 30 MHz16-bit erase and program operations

Page 65: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 65/177

VDD = 2.4 to 2.7 V

Conversion time up to

2 Msps

24 MHz with no Flash

memory wait state

4(3)

– Degraded speed performance

– I/O compensation works

up to 48 MHz16-bit erase and program operations

VDD = 2.7 to 3.6 V(4)

Conversion time up to

2 Msps

30 MHz with no Flash

memory wait state

3(3)

– Full-speed operation

– I/O compensation works

– up to 60 MHz when VDD = 3.0 to 3.6 V

– up to 48 MHz when VDD = 2.7 to 3.0 V

32-bit erase and program operations

1. The number of wait states can be reduced by reducing the CPU frequency (see Figure 19).

2. If IRROFF is set to VDD, this value can be lowered to 1.7 V when the device operates in the 0 to 70 °C temperature range.

3. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

4. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

Table 13. Limitations depending on the operating power supply range

Operating power supply range

ADC operation

Maximum Flash

memory access

frequency (fFlashmax)

Number of wait states at

maximum CPU frequency (fCPUmax=

120 MHz)(1)

I/O operation

FSMC_CLK frequency for synchronous

accesses

Possible Flash

memory operations

Page 66: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

66/177 Doc ID 15818 Rev 9

Figure 19. Number of wait states versus fCPU and VDD range

1. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range and IRROFF is set to VDD.

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor to the VCAP1/VCAP2 pins. CEXT is specified in Table 14.

Figure 20. External capacitor CEXT

1. Legend: ESR is the equivalent series resistance.

ai18748b

0

1

2

3

4

5

6

7

8

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

104

108

112

116

120

Num

ber

of W

ait

stat

es

Fcpu (MHz)

Wait states vs Fcpu and VDD range

1.8 to 2.1V

2.1 to 2.4V

2.4 to 2.7V

2.7 to 3.6V

Table 14. VCAP1/VCAP2 operating conditions(1)

1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

Symbol Parameter Conditions

CEXT Capacitance of external capacitor 2.2 µF

ESR ESR of external capacitor < 2 Ω

MS19044V1

ESR

R Leak

C

Page 67: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 67/177

5.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for TA.

Table 15. Operating conditions at power-up / power-down (regulator ON)

5.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for TA.

Table 16. Operating conditions at power-up / power-down (regulator OFF)

Symbol Parameter Min Max Unit

tVDD

VDD rise time rate 20 ∞µs/V

VDD fall time rate 20 ∞

Symbol Parameter Conditions Min Max Unit

tVDD

VDD rise time rate Power-up 20 ∞

µs/V

VDD fall time rate Power-down 20 ∞

tVCAP

VCAP_1 and VCAP_2 rise time rate

Power-up 20 ∞

VCAP_1 and VCAP_2 fall time rate

Power-down 20 ∞

Page 68: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

68/177 Doc ID 15818 Rev 9

5.3.5 Embedded reset and power control block characteristics

The parameters given in Table 17 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 12.

Table 17. Embedded reset and power control block characteristics

Symbol Parameter Conditions Min Typ Max Unit

VPVDProgrammable voltage detector level selection

PLS[2:0]=000 (rising edge)

2.09 2.14 2.19 V

PLS[2:0]=000 (falling edge)

1.98 2.04 2.08 V

PLS[2:0]=001 (rising edge)

2.23 2.30 2.37 V

PLS[2:0]=001 (falling edge)

2.13 2.19 2.25 V

PLS[2:0]=010 (rising edge)

2.39 2.45 2.51 V

PLS[2:0]=010 (falling edge)

2.29 2.35 2.39 V

PLS[2:0]=011 (rising edge)

2.54 2.60 2.65 V

PLS[2:0]=011 (falling edge)

2.44 2.51 2.56 V

PLS[2:0]=100 (rising edge)

2.70 2.76 2.82 V

PLS[2:0]=100 (falling edge)

2.59 2.66 2.71 V

PLS[2:0]=101 (rising edge)

2.86 2.93 2.99 V

PLS[2:0]=101 (falling edge)

2.65 2.84 3.02 V

PLS[2:0]=110 (rising edge)

2.96 3.03 3.10 V

PLS[2:0]=110 (falling edge)

2.85 2.93 2.99 V

PLS[2:0]=111 (rising edge)

3.07 3.14 3.21 V

PLS[2:0]=111 (falling edge)

2.95 3.03 3.09 V

VPVDhyst(2) PVD hysteresis - 100 - mV

VPOR/PDRPower-on/power-down reset threshold

Falling edge 1.60(1) 1.68 1.76 V

Rising edge 1.64 1.72 1.80 V

VPDRhyst(2) PDR hysteresis - 40 - mV

Page 69: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 69/177

5.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 18: Current consumption measurement scheme. All Run mode current consumption measurements given in this section are performed using CoreMark code.

VBOR1Brownout level 1 threshold

Falling edge 2.13 2.19 2.24 V

Rising edge 2.23 2.29 2.33 V

VBOR2Brownout level 2 threshold

Falling edge 2.44 2.50 2.56 V

Rising edge 2.53 2.59 2.63 V

VBOR3Brownout level 3 threshold

Falling edge 2.75 2.83 2.88 V

Rising edge 2.85 2.92 2.97

VBORhyst(2) BOR hysteresis - 100 - mV

TRSTTEMPO(2)(3) Reset temporization 0.5 1.5 3.0 ms

IRUSH(2)

InRush current on voltage regulator power-on (POR or wakeup from Standby)

- 160 200 mA

ERUSH(2)

InRush energy on voltage regulator power-on (POR or wakeup from Standby)

VDD = 1.8 V, TA = 105 °C, IRUSH = 171 mA for 31 µs

- - 5.4 µC

1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.

2. Guaranteed by design, not tested in production.

3. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first instruction is read by the user application code.

Table 17. Embedded reset and power control block characteristics (continued)

Symbol Parameter Conditions Min Typ Max Unit

Page 70: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

70/177 Doc ID 15818 Rev 9

Typical and maximum current consumption

The MCU is placed under the following conditions:

At startup, all I/O pins are configured as analog inputs by firmware.

All peripherals are disabled except if it is explicitly mentioned.

The Flash memory access time is adjusted to fHCLK frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait states from 90 to 120 MHz).

When the peripherals are enabled HCLK is the system clock, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2, except is explicitly mentioned.

The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.

Table 18. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

Symbol Parameter Conditions fHCLK

Typ Max(1)

UnitTA = 25 °C TA = 85 °C TA = 105 °C

IDDSupply current in Run mode

External clock(2), all peripherals enabled(3)

120 MHz 61 81 93

mA

90 MHz 48 68 80

60 MHz 33 53 65

30 MHz 18 38 50

25 MHz 14 34 46

16 MHz(4) 10 30 42

8 MHz 6 26 38

4 MHz 4 24 36

2 MHz 3 23 35

External clock(2), all peripherals disabled

120 MHz 33 54 66

90 MHz 27 47 59

60 MHz 19 39 51

30 MHz 11 31 43

25 MHz 8 28 41

16 MHz(4) 6 26 38

8 MHz 4 24 36

4 MHz 3 23 35

2 MHz 2 23 34

1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.

3. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. In this case HCLK = system clock/2.

Page 71: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 71/177

Table 19. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM (1)

Symbol Parameter Conditions fHCLK

Typ Max(2)

UnitTA = 25 °C

TA = 85 °C

TA = 105 °C

IDDSupply current in Run mode

External clock(3), all peripherals enabled(4)

120 MHz 49 63 72

mA

90 MHz 38 51 61

60 MHz 26 39 49

30 MHz 14 27 37

25 MHz 11 24 34

16 MHz(5) 8 21 30

8 MHz 5 17 27

4 MHz 3 16 26

2 MHz 2 15 25

External clock(3), all peripherals disabled

120 MHz 21 34 44

90 MHz 17 30 40

60 MHz 12 25 35

30 MHz 7 20 30

25 MHz 5 18 28

16 MHz(5) 4.0 17.0 27.0

8 MHz 2.5 15.5 25.5

4 MHz 2.0 14.7 24.8

2 MHz 1.6 14.5 24.6

1. Code and data processing running from SRAM1 using boot pins.

2. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.

3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.

4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. In this case HCLK = system clock/2.

Page 72: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

72/177 Doc ID 15818 Rev 9

Figure 21. Typical current consumption vs temperature, Run mode, code with data processing running from RAM, and peripherals ON

Figure 22. Typical current consumption vs temperature, Run mode, code with data processing running from RAM, and peripherals OFF

MS19014V1

0

10

20

30

40

50

60

0 20 40 60 80 100 120

CPU frequnecy (MHz)

105°C

85°C

70°C

55°C

30°C

0°C

-45°C

I DD

(RU

N) (m

A)

MS19015V1

0

5

10

15

20

25

30

0 20 40 60 80 100 120CPU Frequency (MHz)

105°C

85°C

70°C

55°C

30°C

0°C

-45°C

I DD

(RU

N) (m

A)

Page 73: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 73/177

Figure 23. Typical current consumption vs temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals ON

Figure 24. Typical current consumption vs temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals OFF

MS19016V1

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0 20 40 60 80 100 120

105

85

30°C

-45°CI DD

(RU

N) (m

A)

CPU frequnecy (MHz)

MS19017V1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0CPU Frequency (MHz)

105

85

30°C

-45°C

I DD

(RU

N) (m

A)

Page 74: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

74/177 Doc ID 15818 Rev 9

Table 20. Typical and maximum current consumption in Sleep mode

Symbol Parameter Conditions fHCLK

Typ Max(1)

UnitTA = 25 °C TA = 85 °C

TA = 105 °C

IDDSupply current in Sleep mode

External clock(2), all peripherals enabled(3)

120 MHz 38 51 61

mA

90 MHz 30 43 53

60 MHz 20 33 43

30 MHz 11 25 35

25 MHz 8 21 31

16 MHz 6 19 29

8 MHz 3.6 17.0 27.0

4 MHz 2.4 15.4 25.3

2 MHz 1.9 14.9 24.7

External clock(2), all peripherals disabled

120 MHz 8 21 31

90 MHz 7 20 30

60 MHz 5 18 28

30 MHz 3.5 16.0 26.0

25 MHz 2.5 16.0 25.0

16 MHz 2.1 15.1 25.0

8 MHz 1.7 15.0 25.0

4 MHz 1.5 14.6 24.6

2 MHz 1.4 14.2 24.3

1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

Page 75: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 75/177

Figure 25. Typical current consumption vs temperature in Sleep mode, peripherals ON

Figure 26. Typical current consumption vs temperature in Sleep mode, peripherals OFF

MS19018V1

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

105°C

85°C

70°C

55°C

30°C

0°C

-45°C

IDD

(SLE

EP

) (mA

)

CPU Frequency (MHz)

MS19019V1

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

105°C

85°C

70°C

55°C

30°C

0°C

-45°C

CPU Frequency (MHz)

IDD

(SLE

EP

) (mA

)

Page 76: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

76/177 Doc ID 15818 Rev 9

Figure 27. Typical current consumption vs temperature in Stop mode

1. All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect these changes

Table 21. Typical and maximum current consumptions in Stop mode(1)

Symbol Parameter Conditions

Typ Max

UnitTA = 25 °C

TA = 25 °C

TA = 85 °C

TA = 105 °C

IDD_STOP

Supply current in Stop mode with main regulator in Run mode

Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)

0.55 1.2 11.00 20.00

mA

Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)

0.50 1.2 11.00 20.00

Supply current in Stop mode with main regulator in Low Power mode

Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)

0.35 1.1 8.00 15.00

Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)

0.30 1.1 8.00 15.00

1. All typical and maximum values will be further reduced by up to 50% as part of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect these changes.

MS19020V1

0.01

0.1

1

10

-45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105

Temperature (°C)

Idd_stop_mr_flhstop

Idd_stop_mr_flhdeep

Idd_stop_lp_flhstop

Idd_stop_lp_flhdeep

I DD

(STO

P) (m

A)

Page 77: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 77/177

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in Table 24. The MCU is placed under the following conditions:

Table 22. Typical and maximum current consumptions in Standby mode

Symbol Parameter Conditions

Typ Max(1)

UnitTA = 25 °C TA = 85 °C TA = 105 °C

VDD = 1.8 V

VDD= 2.4 V

VDD = 3.3 V

VDD = 3.6 V

IDD_STBY

Supply current in Standby mode

Backup SRAM ON, low-speed oscillator and RTC ON

3.0 3.4 4.0 15.1 25.8

µABackup SRAM OFF, low-speed oscillator and RTC ON

2.4 2.7 3.3 12.4 20.5

Backup SRAM ON, RTC OFF 2.4 2.6 3.0 12.5 24.8

Backup SRAM OFF, RTC OFF 1.7 1.9 2.2 9.8 19.2

1. Based on characterization, not tested in production.

Table 23. Typical and maximum current consumptions in VBAT mode

Symbol Parameter Conditions

Typ Max(1)

UnitTA = 25 °C TA = 85 °C

TA = 105 °C

VDD = 1.8 V

VDD= 2.4 V

VDD = 3.3 V

VDD = 3.6 V

IDD_VBAT

Backup domain supply current

Backup SRAM ON, low-speed oscillator and RTC ON

1.29 1.42 1.68 12 19

µABackup SRAM OFF, low-speed oscillator and RTC ON

0.62 0.73 0.96 8 10

Backup SRAM ON, RTC OFF 0.79 0.81 0.86 9 16

Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 5 7

1. Based on characterization, not tested in production.

Page 78: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

78/177 Doc ID 15818 Rev 9

At startup, all I/O pins are configured as analog inputs by firmware.

All peripherals are disabled unless otherwise mentioned

The given value is calculated by measuring the current consumption

– with all peripherals clocked off

– with one peripheral clocked on (with only the clock applied)

The code is running from Flash memory and the Flash memory access time is equal to 3 wait states at 120 MHz

Prefetch and Cache ON

When the peripherals are enabled, HCLK = 120MHz, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2

The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise specified.

Table 24. Peripheral current consumption

Peripheral(1) Typical consumption at 25 °C Unit

AHB1

GPIO A 0.45

mA

GPIO B 0.43

GPIO C 0.46

GPIO D 0.44

GPIO E 0.44

GPIO F 0.42

GPIO G 0.44

GPIO H 0.42

GPIO I 0.43

OTG_HS + ULPI 3.64

CRC 1.17

BKPSRAM 0.21

DMA1 2.76

DMA2 2.85

ETH_MAC +

ETH_MAC_TX

ETH_MAC_RXETH_MAC_PTP

2.99

AHB2OTG_FS 3.16

DCMI 0.60

AHB3 FSMC 1.74

Page 79: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 79/177

APB1

TIM2 0.61

mA

TIM3 0.49

TIM4 0.54

TIM5 0.62

TIM6 0.20

TIM7 0.20

TIM12 0.36

TIM13 0.28

TIM14 0.25

USART2 0.25

USART3 0.25

UART4 0.25

UART5 0.26

I2C1 0.25

I2C2 0.25

I2C3 0.25

SPI2 0.20/0.10

SPI3 0.18/0.09

CAN1 0.31

CAN2 0.30

DAC channel 1(2) 1.11

DAC channel 1(3) 1.11

PWR 0.15

WWDG 0.15

Table 24. Peripheral current consumption (continued)

Peripheral(1) Typical consumption at 25 °C Unit

Page 80: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

80/177 Doc ID 15818 Rev 9

5.3.7 Wakeup time from low-power mode

The wakeup times given in Table 25 is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

Stop or Standby mode: the clock source is the RC oscillator

Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 12.

APB2

SDIO 0.69

mA

TIM1 1.06

TIM8 1.03

TIM9 0.58

TIM10 0.37

TIM11 0.39

ADC1(4) 2.13

ADC2(4) 2.04

ADC3(4) 2.12

SPI1 1.20

USART1 0.38

USART6 0.37

1. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on.

2. EN1 bit is set in DAC_CR register.

3. EN2 bit is set in DAC_CR register.

4. fADC = fPCLK2/2, ADON bit set in ADC_CR2 register.

Table 24. Peripheral current consumption (continued)

Peripheral(1) Typical consumption at 25 °C Unit

Table 25. Low-power mode wakeup timings

Symbol Parameter Min(1) Typ(1) Max(1) Unit

tWUSLEEP(2) Wakeup from Sleep mode - 1 - µs

tWUSTOP(2)

Wakeup from Stop mode (regulator in Run mode) - 13 -

µsWakeup from Stop mode (regulator in low power mode) - 17 40

Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode)

- 110 -

tWUSTDBY(2)(3) Wakeup from Standby mode 260 375 480 µs

1. Based on characterization, not tested in production.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.

Page 81: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 81/177

5.3.8 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in Table 26 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 12.

Low-speed external user clock generated from an external source

The characteristics given in Table 27 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 12.

Table 26. High-speed external user clock characteristics

Symbol Parameter Conditions Min Typ Max Unit

fHSE_extExternal user clock source frequency(1) 1 - 26 MHz

VHSEH OSC_IN input pin high level voltage 0.7VDD - VDDV

VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD

tw(HSE)tw(HSE)

OSC_IN high or low time(1)

1. Guaranteed by design, not tested in production.

5 - -

nstr(HSE)tf(HSE)

OSC_IN rise or fall time(1) - - 20

Cin(HSE) OSC_IN input capacitance(1) - 5 - pF

DuCy(HSE) Duty cycle 45 - 55 %

IL OSC_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 µA

Table 27. Low-speed external user clock characteristics

Symbol Parameter Conditions Min Typ Max Unit

fLSE_extUser External clock source frequency(1)

1. Guaranteed by design, not tested in production.

- 32.768 1000 kHz

VLSEHOSC32_IN input pin high level voltage

0.7VDD - VDD

V

VLSELOSC32_IN input pin low level voltage

VSS - 0.3VDD

tw(LSE)tf(LSE)

OSC32_IN high or low time(1) 450 - -

nstr(LSE)tf(LSE)

OSC32_IN rise or fall time(1) - - 50

Cin(LSE) OSC32_IN input capacitance(1) - 5 - pF

DuCy(LSE) Duty cycle 30 - 70 %

IL OSC32_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 µA

Page 82: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

82/177 Doc ID 15818 Rev 9

Figure 28. High-speed external clock source AC timing diagram

Figure 29. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 28. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

ai17528

OSC_INExternal

STM32F

clock source

VHSEH

tf(HSE) tW(HSE)

IL

90%

10%

THSE

ttr(HSE)tW(HSE)

fHSE_ext

VHSEL

ai17529

OSC32_INExternal

STM32F

clock source

VLSEH

tf(LSE) tW(LSE)

IL

90%

10%

TLSE

ttr(LSE)tW(LSE)

fLSE_ext

VLSEL

Page 83: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 83/177

For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 30). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2.

Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com.

Figure 30. Typical application with an 8 MHz crystal

1. REXT value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 29. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 28. HSE 4-26 MHz oscillator characteristics(1) (2)

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Based on characterization, not tested in production.

Symbol Parameter Conditions Min Typ Max Unit

fOSC_IN Oscillator frequency 4 - 26 MHz

RF Feedback resistor - 200 - kΩ

IDD HSE current consumption

VDD=3.3 V, ESR= 30 Ω,

CL=5 pF@25 MHz- 449 -

µAVDD=3.3 V, ESR= 30 Ω,

CL=10 pF@25 MHz- 532 -

gm Oscillator transconductance Startup 5 - - mA/V

tSU(HSE(3)

3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Startup time VDD is stabilized - 2 - ms

ai17530OSC_OUT

OSC_IN fHSECL1

RF

STM32F

8 MHzresonator

Resonator withintegrated capacitors

Bias controlled

gain

REXT(1) CL2

Page 84: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

84/177 Doc ID 15818 Rev 9

Note: For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 31). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com.

Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Figure 31. Typical application with a 32.768 kHz crystal

Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)

1. Guaranteed by design, not tested in production.

Symbol Parameter Conditions Min Typ Max Unit

RF Feedback resistor - 18.4 - MΩ

IDD LSE current consumption - - 1 µA

gm Oscillator Transconductance 2.8 - - µA/V

tSU(LSE)(2)

2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

startup time VDD is stabilized - 2 - s

ai17531

OSC32_OUT

OSC32_IN fLSECL1

RF

STM32F

32.768 kHzresonator

Resonator withintegrated capacitors

Bias controlled

gain

CL2

Page 85: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 85/177

5.3.9 Internal clock source characteristics

The parameters given in Table 30 and Table 31 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 12.

High-speed internal (HSI) RC oscillator

Figure 32. ACCHSI versus temperature

Table 30. HSI oscillator characteristics (1)

1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.

Symbol Parameter Conditions Min Typ Max Unit

fHSI Frequency - 16 - MHz

ACCHSIAccuracy of the HSI oscillator

User-trimmed with the RCC_CR register(2)

2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com.

- - 1 %

Factory-calibrated

TA = –40 to 105 °C –8 - 4.5 %

TA = –10 to 85 °C –4 - 4 %

TA = 25 °C –1 - 1 %

tsu(HSI)(3)

3. Guaranteed by design, not tested in production.

HSI oscillator startup time

- 2.2 4 µs

IDD(HSI)HSI oscillator power consumption

- 60 80 µA

MS19012V2

-8

-6

-4

-2

0

2

4

6

-45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125

Nor

mal

ized

devi

atio

n (%

)

Temperature (°C)

max

avg

min

Page 86: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

86/177 Doc ID 15818 Rev 9

Low-speed internal (LSI) RC oscillator

Figure 33. ACCLSI versus temperature

5.3.10 PLL characteristics

The parameters given in Table 32 and Table 33 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 12.

Table 31. LSI oscillator characteristics (1)

1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.

Symbol Parameter Min Typ Max Unit

fLSI(2)

2. Based on characterization, not tested in production.

Frequency 17 32 47 kHz

tsu(LSI)(3)

3. Guaranteed by design, not tested in production.

LSI oscillator startup time - 15 40 µs

IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA

MS19013V1

-40

-30

-20

-10

0

10

20

30

40

50

-45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105

Nor

mal

ized

devi

atio

n (%

)

Temperature (°C)

max

avg

min

Table 32. Main PLL characteristics

Symbol Parameter Conditions Min Typ Max Unit

fPLL_IN PLL input clock(1) 0.95(2) 1 2.10(2) MHz

fPLL_OUT PLL multiplier output clock 24 - 120 MHz

fPLL48_OUT48 MHz PLL multiplier output clock

- - 48 MHz

fVCO_OUT PLL VCO output 192 - 432 MHz

Page 87: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 87/177

tLOCK PLL lock timeVCO freq = 192 MHz 75 - 200

µsVCO freq = 432 MHz 100 - 300

Jitter(3)

Cycle-to-cycle jitter

System clock 120 MHz

RMS - 25 -

ps

peak to peak

- ±150 -

Period Jitter

RMS - 15 -

peak to peak

- ±200 -

Main clock output (MCO) for RMII Ethernet

Cycle to cycle at 50 MHz on 1000 samples

- 32 -

Main clock output (MCO) for MII Ethernet

Cycle to cycle at 25 MHz on 1000 samples

- 40 -

Bit Time CAN jitterCycle to cycle at 1 MHz on 1000 samples

- 330 -

IDD(PLL)(4) PLL power consumption on VDD

VCO freq = 192 MHz

VCO freq = 432 MHz

0.15

0.45-

0.40

0.75mA

IDDA(PLL)(4) PLL power consumption on

VDDAVCO freq = 192 MHz

VCO freq = 432 MHz

0.30

0.55-

0.40

0.85mA

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design, not tested in production.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Based on characterization, not tested in production.

Table 32. Main PLL characteristics (continued)

Symbol Parameter Conditions Min Typ Max Unit

Table 33. PLLI2S (audio PLL) characteristics

Symbol Parameter Conditions Min Typ Max Unit

fPLLI2S_IN PLLI2S input clock(1) 0.95(2) 1 2.10(2) MHz

fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz

fVCO_OUT PLLI2S VCO output 192 - 432 MHz

tLOCK PLLI2S lock timeVCO freq = 192 MHz 75 - 200

µsVCO freq = 432 MHz 100 - 300

Page 88: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

88/177 Doc ID 15818 Rev 9

Jitter(3)

Master I2S clock jitter

Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5

RMS - 90 -

peak to

peak- ±280 - ps

Average frequency of 12.288 MHz

N=432, R=5on 1000 samples

- 90 - ps

WS I2S clock jitterCycle to cycle at 48 KHzon 1000 samples

- 400 - ps

IDD(PLLI2S)(4) PLLI2S power consumption on

VDD

VCO freq = 192 MHzVCO freq = 432 MHz

0.150.45

-0.400.75

mA

IDDA(PLLI2S)(4) PLLI2S power consumption on

VDDA

VCO freq = 192 MHz

VCO freq = 432 MHz

0.30

0.55-

0.40

0.85mA

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design, not tested in production.

3. Value given with main PLL running.

4. Based on characterization, not tested in production.

Table 33. PLLI2S (audio PLL) characteristics (continued)

Symbol Parameter Conditions Min Typ Max Unit

Page 89: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 89/177

5.3.11 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 40: EMI characteristics). It is available only on the main PLL.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

fPLL_IN and fMod must be expressed in Hz.

As an example:

If fPLL_IN = 1 MHz and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation 1:

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

fVCO_OUT must be expressed in MHz.

With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

As a result:

Table 34. SSCG parameters constraint

Symbol Parameter Min Typ Max(1) Unit

fMod Modulation frequency - - 10 KHz

md Peak modulation depth 0.25 - 2 %

MODEPER * INCSTEP - - 215−1 -

1. Guaranteed by design, not tested in production.

MODEPER round fPLL_IN 4 fMod×( )⁄[ ]=

MODEPER round 106 4 103×( )⁄[ ] 250= =

INCSTEP round 215 1–( ) md PLLN××( ) 100 5× MODEPER×( )⁄[ ]=

INCSTEP round 215 1–( ) 2 240××( ) 100 5× 250×( )⁄[ ] 126md(quantitazed)%= =

mdquantized% MODEPER INCSTEP× 100× 5×( ) 215 1–( ) PLLN×( )⁄=

mdquantized% 250 126× 100× 5×( ) 215 1–( ) 240×( )⁄ 2.0002%(peak)= =

Page 90: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

90/177 Doc ID 15818 Rev 9

Figure 34 and Figure 35 show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is fPLL_OUT nominal.

Tmode is the modulation period.

md is the modulation depth.

Figure 34. PLL output clock waveforms in center spread mode

Figure 35. PLL output clock waveforms in down spread mode

5.3.12 Memory characteristics

Flash memory

The characteristics are given at TA = –40 to 105 °C unless otherwise specified.

Frequency (PLL_OUT)

Time

F0

tmode 2*tmode

md

ai17291

md

Frequency (PLL_OUT)

Time

F0

tmode 2*tmode

2*md

ai17292

Table 35. Flash memory characteristics

Symbol Parameter Conditions Min Typ Max Unit

IDD Supply current

Write / Erase 8-bit mode VDD = 1.8 V

- 5 -

mAWrite / Erase 16-bit mode VDD = 2.1 V

- 8 -

Write / Erase 32-bit mode VDD = 3.3 V

- 12 -

Page 91: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 91/177

Table 36. Flash memory programming

Symbol Parameter Conditions Min(1) Typ Max(1)

1. Based on characterization, not tested in production.

Unit

tprog Word programming timeProgram/erase parallelism (PSIZE) = x 8/16/32

- 16 100(2)

2. The maximum programming time is measured after 100K erase operations.

µs

tERASE16KB Sector (16 KB) erase time

Program/erase parallelism (PSIZE) = x 8

- 400 800

msProgram/erase parallelism (PSIZE) = x 16

- 300 600

Program/erase parallelism (PSIZE) = x 32

- 250 500

tERASE64KB Sector (64 KB) erase time

Program/erase parallelism (PSIZE) = x 8

- 1200 2400

msProgram/erase parallelism (PSIZE) = x 16

- 700 1400

Program/erase parallelism (PSIZE) = x 32

- 550 1100

tERASE128KB Sector (128 KB) erase time

Program/erase parallelism (PSIZE) = x 8

- 2 4

sProgram/erase parallelism (PSIZE) = x 16

- 1.3 2.6

Program/erase parallelism (PSIZE) = x 32

- 1 2

tME Mass erase time

Program/erase parallelism (PSIZE) = x 8

- 16 32

sProgram/erase parallelism (PSIZE) = x 16

- 11 22

Program/erase parallelism (PSIZE) = x 32

- 8 16

Vprog Programming voltage

32-bit program operation 2.7 - 3.6 V

16-bit program operation 2.1 - 3.6 V

8-bit program operation 1.8 - 3.6 V

Table 37. Flash memory programming with VPP

Symbol Parameter Conditions Min(1) Typ Max(1) Unit

tprog Double word programming

TA = 0 to +40 °C

VDD = 3.3 VVPP = 8.5 V

- 16 100(2) µs

tERASE16KB Sector (16 KB) erase time - 230 -

mstERASE64KB Sector (64 KB) erase time - 490 -

tERASE128KB Sector (128 KB) erase time - 875 -

tME Mass erase time - 6.9 - s

Vprog Programming voltage 2.7 - 3.6 V

Page 92: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

92/177 Doc ID 15818 Rev 9

Table 38. Flash memory endurance and data retention

5.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.

FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in Table 39. They are based on the EMS levels and classes defined in application note AN1709.

VPP VPP voltage range 7 - 9 V

IPPMinimum current sunk on the VPP pin

10 - - mA

tVPP(3) Cumulative time during

which VPP is applied- - 1 hour

1. Guaranteed by design, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

3. VPP should only be connected during programming/erasing.

Symbol Parameter ConditionsValue

UnitMin(1)

1. Based on characterization, not tested in production.

NEND EnduranceTA = –40 to +85 °C (6 suffix versions)TA = –40 to +105 °C (7 suffix versions)

10 kcycles

tRET Data retention

1 kcycle(2) at TA = 85 °C

2. Cycling performed over the whole temperature range.

30

Years1 kcycle(2) at TA = 105 °C 10

10 kcycles(2) at TA = 55 °C 20

Table 37. Flash memory programming with VPP (continued)

Symbol Parameter Conditions Min(1) Typ Max(1) Unit

Page 93: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 93/177

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

Corrupted program counter

Unexpected reset

Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC® code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Table 39. EMS characteristics

Symbol Parameter ConditionsLevel/Class

VFESDVoltage limits to be applied on any I/O pin to induce a functional disturbance

VDD = 3.3 V, LQFP100, TA = +25 °C, fHCLK = 75 MHz, conforms to IEC 61000-4-2

2B

VEFTB

Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance

VDD = 3.3 V, LQFP100, TA = +25 °C, fHCLK = 75 MHz, conforms to IEC 61000-4-2

4A

Page 94: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

94/177 Doc ID 15818 Rev 9

5.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

A supply overvoltage is applied to each power supply pin

A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 40. EMI characteristics

Symbol Parameter ConditionsMonitored

frequency band

Max vs. [fHSE/fCPU]

Unit

8/120 MHz

SEMI Peak level

VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running with ART enabled

0.1 to 30 MHz 21

dBµV30 to 130 MHz 28

130 MHz to 1GHz 31

SAE EMI Level 4 -

VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running with ART enabled, PLL spread spectrum enabled

0.1 to 30 MHz 21

dBµV30 to 130 MHz 15

130 MHz to 1GHz 14

SAE EMI level 3.5 -

Table 41. ESD absolute maximum ratings

Symbol Ratings Conditions ClassMaximum value(1) Unit

VESD(HBM)

Electrostatic discharge voltage (human body model)

TA = +25 °C conforming to JESD22-A114 2 2000(2)

V

VESD(CDM)

Electrostatic discharge voltage (charge device model)

TA = +25 °C conforming to JESD22-C101 II 500

1. Based on characterization results, not tested in production.

2. On VBAT pin, VESD(HBM) is limited to 1000 V.

Page 95: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 95/177

5.3.15 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 43.

Table 42. Electrical sensitivities

Symbol Parameter Conditions Class

LU Static latch-up class TA = +105 °C conforming to JESD78A II level A

Table 43. I/O current injection susceptibility

Symbol Description

Functional susceptibility

UnitNegative injection

Positive injection

IINJ

Injected current on all FT pins –5 +0mA

Injected current on any other pin –5 +5

Page 96: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

96/177 Doc ID 15818 Rev 9

5.3.16 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in Table 44 are derived from tests performed under the conditions summarized in Table 12. All I/Os are CMOS and TTL compliant.

Table 44. I/O static characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIL Input low level voltageTTL ports

2.7 V ≤ VDD ≤ 3.6 V

VSS–0.3 - 0.8

V

VIH(1)

TT(2) I/O input high level voltage 2.0 - VDD+0.3

FT(3) I/O input high level voltage 2.0 - 5.5

VIL Input low level voltageCMOS ports

1.8 V ≤ VDD ≤ 3.6 V

VSS–0.3 - 0.3VDD

VIH(1)

TT I/O input high level voltage

0.7VDD

- 3.6(4)

FT I/O input high level voltage

- 5.2(4)

CMOS ports

2.0 V ≤ VDD ≤ 3.6 V - 5.5(4)

Vhys

I/O Schmitt trigger voltage hysteresis(5) - 200 -

mVIO FT Schmitt trigger voltage hysteresis(5) 5% VDD

(4) - -

Ilkg

I/O input leakage current (6) VSS ≤ VIN ≤ VDD - - ±1µA

I/O FT input leakage current (6) VIN = 5 V - - 3

RPUWeak pull-up equivalent resistor(7)

All pins except for PA10 and PB12 VIN = VSS

30 40 50

PA10 and PB12

8 11 15

RPDWeak pull-down equivalent resistor

All pins except for PA10 and PB12 VIN = VDD

30 40 50

PA10 and PB12

8 11 15

CIO(8) I/O pin capacitance 5 pF

1. If VIH maximum value cannot be respected, the injection current must be limited externally to IINJ(PIN) maximum value.

2. TT = 3.6 V tolerant.

3. FT = 5 V tolerant.

4. With a minimum of 100 mV.

5. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

6. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.

7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

8. Guaranteed by design, not tested in production.

Page 97: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 97/177

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:

The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 10).

The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 10).

Output voltage levels

Unless otherwise specified, the parameters given in Table 45 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 12. All I/Os are CMOS and TTL compliant.

Table 45. Output voltage characteristics(1)

1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

Symbol Parameter Conditions Min Max Unit

VOL(2)

2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 10 and the sum of IIO (I/O ports and control pins) must not exceed IVSS.

Output low level voltage for an I/O pin when 8 pins are sunk at same time CMOS ports

IIO = +8 mA2.7 V < VDD < 3.6 V

- 0.4

V

VOH(3)

3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 10 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.

Output high level voltage for an I/O pin when 8 pins are sourced at same time

VDD–0.4 -

VOL (2) Output low level voltage for an I/O pin

when 8 pins are sunk at same time TTL ports

IIO =+ 8mA

2.7 V < VDD < 3.6 V

- 0.4

V

VOH (3) Output high level voltage for an I/O pin

when 8 pins are sourced at same time2.4 -

VOL(2)(4) Output low level voltage for an I/O pin

when 8 pins are sunk at same time IIO = +20 mA

2.7 V < VDD < 3.6 V

- 1.3

V

VOH(3)(4) Output high level voltage for an I/O pin

when 8 pins are sourced at same timeVDD–1.3 -

VOL(2)(4) Output low level voltage for an I/O pin

when 8 pins are sunk at same time IIO = +6 mA

2 V < VDD < 2.7 V

- 0.4

V

VOH(3)(4) Output high level voltage for an I/O pin

when 8 pins are sourced at same timeVDD–0.4 -

Page 98: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

98/177 Doc ID 15818 Rev 9

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Figure 36 and Table 46, respectively.

Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 12.

4. Based on characterization data, not tested in production.

Table 46. I/O AC characteristics(1)(2)

OSPEEDRy[1:0] bit value(1)

Symbol Parameter Conditions Min Typ Max Unit

00

fmax(IO)out Maximum frequency(3)

CL = 50 pF, VDD > 2.70 V - - 2

MHzCL = 50 pF, VDD > 1.8 V - - 2

CL = 10 pF, VDD > 2.70 V - - TBD

CL = 10 pF, VDD > 1.8 V - - TBD

tf(IO)outOutput high to low level fall time CL = 50 pF, VDD = 1.8 V to

3.6 V

- - TBD

ns

tr(IO)outOutput low to high level rise time

- - TBD

01

fmax(IO)out Maximum frequency(3)

CL = 50 pF, VDD > 2.70 V - - 25

MHzCL = 50 pF, VDD > 1.8 V - - 12.5(4)

CL = 10 pF, VDD > 2.70 V - - 50(4)

CL = 10 pF, VDD > 1.8 V - - TBD

tf(IO)outOutput high to low level fall time

CL = 50 pF, VDD < 2.7 V - - TBD

nsCL = 10 pF, VDD > 2.7 V - - TBD

tr(IO)outOutput low to high level rise time

CL = 50 pF, VDD < 2.7 V - - TBD

CL = 10 pF, VDD > 2.7 V - - TBD

10

fmax(IO)out Maximum frequency(3)

CL = 40 pF, VDD > 2.70 V - - 50(4)

MHzCL = 40 pF, VDD > 1.8 V - - 25

CL = 10 pF, VDD > 2.70 V - - 100(4)

CL = 10 pF, VDD > 1.8 V - - TBD

tf(IO)outOutput high to low level fall time

CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD

nsCL = 10 pF, VDD > 2.7 V - - TBD

tr(IO)outOutput low to high level rise time

CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD

CL = 10 pF, VDD > 2.7 V - - TBD

Page 99: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 99/177

Figure 36. I/O AC characteristics definition

11

Fmax(IO)out Maximum frequency(3)

CL = 30 pF, VDD > 2.70 V - - 100(4)

MHzCL = 30 pF, VDD > 1.8 V - - 50(4)

CL = 10 pF, VDD > 2.70 V - - 200(4)

CL = 10 pF, VDD > 1.8 V - - TBD

tf(IO)outOutput high to low level fall time

CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD

nsCL = 10 pF, VDD > 2.7 V - - TBD

tr(IO)outOutput low to high level rise time

CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD

CL = 10 pF, VDD > 2.7 V - - TBD

- tEXTIpw

Pulse width of external signals detected by the EXTI controller

10 - - ns

1. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

2. TBD stands for “to be defined”.

3. The maximum frequency is defined in Figure 36.

4. For maximum frequencies above 50 MHz, the compensation cell should be used.

Table 46. I/O AC characteristics(1)(2) (continued)

OSPEEDRy[1:0] bit value(1)

Symbol Parameter Conditions Min Typ Max Unit

ai14131

10%

90%

50%

tr(IO)outOUTPUTEXTERNAL

ON 50pF

Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%)

10%

50%90%

when loaded by 50pF

T

tr(IO)out

Page 100: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

100/177 Doc ID 15818 Rev 9

5.3.17 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 44).

Unless otherwise specified, the parameters given in Table 47 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 12.

Figure 37. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 47. Otherwise the reset is not taken into account by the device.

Table 47. NRST pin characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIL(NRST)(1) NRST input low level voltage TTL ports

2.7 V ≤ VDD ≤ 3.6 V

VSS−0.3 - 0.8V

VIH(NRST)(1) NRST input high level voltage 2 - VDD+0.3

VIL(NRST)(1) NRST input low level voltage CMOS ports

1.8 V ≤ VDD ≤ 3.6 V

VSS−0.3 - 0.3VDDV

VIH(NRST)(1) NRST input high level voltage 0.7VDD - VDD+0.3

Vhys(NRST)NRST Schmitt trigger voltage hysteresis

- 200 - mV

RPU Weak pull-up equivalent resistor(2) VIN = VSS 30 40 50 kΩ

VF(NRST)(1) NRST Input filtered pulse - - 100 ns

VNF(NRST)(1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns

TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - µs

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

ai14132c

STM32Fxxx

RPUNRST(2)

VDD

Filter

Internal Reset

0.1 μF

Externalreset circuit(1)

Page 101: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 101/177

5.3.18 TIM timer characteristics

The parameters given in Table 48 and Table 49 are guaranteed by design.

Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 48. Characteristics of TIMx connected to the APB1 domain(1)

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

Symbol Parameter Conditions Min Max Unit

tres(TIM) Timer resolution time

AHB/APB1 prescaler distinct from 1, fTIMxCLK = 60 MHz

1 - tTIMxCLK

16.7 - ns

AHB/APB1 prescaler = 1, fTIMxCLK = 30 MHz

1 - tTIMxCLK

33.3 - ns

fEXTTimer external clock frequency on CH1 to CH4

fTIMxCLK = 60 MHz

APB1= 30 MHz

0 fTIMxCLK/2 MHz

0 30 MHz

ResTIM Timer resolution - 16/32 bit

tCOUNTER

16-bit counter clock period when internal clock is selected

1 65536 tTIMxCLK

0.0167 1092 µs

32-bit counter clock period when internal clock is selected

1 - tTIMxCLK

0.0167 71582788 µs

tMAX_COUNT Maximum possible count- 65536 × 65536 tTIMxCLK

- 71.6 s

Page 102: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

102/177 Doc ID 15818 Rev 9

5.3.19 Communications interfaces

I2C interface characteristics

Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 12.

STM32F205xx and STM32F207xx I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present.

The I2C characteristics are described in Table 50. Refer also to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Table 49. Characteristics of TIMx connected to the APB2 domain(1)

1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

Symbol Parameter Conditions Min Max Unit

tres(TIM) Timer resolution time

AHB/APB2 prescaler distinct from 1, fTIMxCLK = 120 MHz

1 - tTIMxCLK

8.3 - ns

AHB/APB2 prescaler = 1, fTIMxCLK = 60 MHz

1 - tTIMxCLK

16.7 - ns

fEXTTimer external clock frequency on CH1 to CH4

fTIMxCLK = 120 MHz

APB2 = 60 MHz

0 fTIMxCLK/2 MHz

0 60 MHz

ResTIM Timer resolution - 16 bit

tCOUNTER

16-bit counter clock period when internal clock is selected

1 65536 tTIMxCLK

0.0083 546 µs

tMAX_COUNT Maximum possible count- 65536 × 65536 tTIMxCLK

- 35.79 s

Page 103: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 103/177

Table 50. I2C characteristics

Symbol ParameterStandard mode I2C(1)

1. Guaranteed by design, not tested in production.

Fast mode I2C(1)(2)

2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.

UnitMin Max Min Max

tw(SCLL) SCL clock low time 4.7 - 1.3 -µs

tw(SCLH) SCL clock high time 4.0 - 0.6 -

tsu(SDA) SDA setup time 250 - 100 -

ns

th(SDA) SDA data hold time 0 - 0 900(3)

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of the SCL signal.

tr(SDA)tr(SCL)

SDA and SCL rise time - 1000 20 + 0.1Cb 300

tf(SDA)tf(SCL)

SDA and SCL fall time - 300 - 300

th(STA) Start condition hold time 4.0 - 0.6 -

µstsu(STA)

Repeated Start condition setup time

4.7 - 0.6 -

tsu(STO) Stop condition setup time 4.0 - 0.6 - μs

tw(STO:STA)Stop to Start condition time (bus free)

4.7 - 1.3 - μs

CbCapacitive load for each bus line

- 400 - 400 pF

Page 104: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

104/177 Doc ID 15818 Rev 9

Figure 38. I2C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

Table 51. SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V)(1)(2)

1. RP = External pull-up resistance, fSCL = I2C speed,

2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

fSCL (kHz)I2C_CCR value

RP = 4.7 kΩ

400 0x8019

300 0x8021

200 0x8032

100 0x0096

50 0x012C

20 0x02EE

ai14979b

START

SDA

100 Ω4.7kΩ

I²C bus

4.7kΩ

100 Ω

VDDVDD

STM32Fxx

SDA

SCL

tf(SDA) tr(SDA)

SCL

th(STA)

tw(SCLH)

tw(SCLL)

tsu(SDA)

tr(SCL) tf(SCL)

th(SDA)

START REPEATED

STARTtsu(STA)

tsu(STO)

STOP tw(STO:STA)

Page 105: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 105/177

I2S - SPI interface characteristics

Unless otherwise specified, the parameters given in Table 52 for SPI or in Table 53 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 12.

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).

Table 52. SPI characteristics

Symbol Parameter Conditions Min Max Unit

fSCK1/tc(SCK)

SPI clock frequencySPI1 master/slave mode - 30

MHzSPI2/SPI3 master/slave mode - 15

tr(SCL)tf(SCL)

SPI clock rise and fall time

Capacitive load: C = 30 pF,

fPCLK = 30 MHz- 8 ns

DuCy(SCK)SPI slave input clock duty cycle

Slave mode 30 70 %

tsu(NSS)(1)

1. Based on characterization, not tested in production.

NSS setup time Slave mode 4tPCLK -

ns

th(NSS)(1) NSS hold time Slave mode 2tPCLK -

tw(SCLH)(1)

tw(SCLL)(1) SCK high and low time

Master mode, fPCLK = 30 MHz, presc = 2

tPCLK-3 tPCLK+3

tsu(MI) (1)

tsu(SI)(1) Data input setup time

Master mode 5 -

Slave mode 5 -

th(MI) (1)

th(SI)(1) Data input hold time

Master mode 5 -

Slave mode 4 -

ta(SO)(1)(2)

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

Data output access time

Slave mode, fPCLK = 30 MHz 0 3tPCLK

tdis(SO)(1)(3)

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Data output disable time

Slave mode 2 10

tv(SO) (1) Data output valid time Slave mode (after enable edge) - 25

tv(MO)(1) Data output valid time Master mode (after enable edge) - 5

th(SO)(1)

Data output hold timeSlave mode (after enable edge) 15 -

th(MO)(1) Master mode (after enable edge) 2 -

Page 106: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

106/177 Doc ID 15818 Rev 9

Figure 39. SPI timing diagram - slave mode and CPHA = 0

Figure 40. SPI timing diagram - slave mode and CPHA = 1

ai14134c

SC

K In

put CPHA=0

MOSI

INPUT

MISOOUT PUT

CPHA=0

MSB O UT

M SB IN

BIT6 OUT

LSB IN

LSB OUT

CPOL=0

CPOL=1

BIT1 IN

NSS input

tSU(NSS)

tc(SCK)

th(NSS)

ta(SO)

tw(SCKH)tw(SCKL)

tv(SO) th(SO) tr(SCK)tf(SCK)

tdis(SO)

tsu(SI)

th(SI)

ai14135

SC

K In

put CPHA=1

MOSI

INPUT

MISOOUT PUT

CPHA=1

MSB O UT

M SB IN

BIT6 OUT

LSB IN

LSB OUT

CPOL=0

CPOL=1

BIT1 IN

tSU(NSS) tc(SCK) th(NSS)

ta(SO)

tw(SCKH)tw(SCKL)

tv(SO) th(SO)tr(SCK)tf(SCK)

tdis(SO)

tsu(SI) th(SI)

NSS input

Page 107: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 107/177

Figure 41. SPI timing diagram - master mode

ai14136

SC

K In

put CPHA=0

MOSI

OUTUT

MISOINPUT

CPHA=0

MSBIN

M SB OUT

BIT6 IN

LSB OUT

LSB IN

CPOL=0

CPOL=1

BIT1 OUT

NSS input

tc(SCK)

tw(SCKH)tw(SCKL)

tr(SCK)tf(SCK)

th(MI)

High

SC

K In

put CPHA=1

CPHA=1

CPOL=0

CPOL=1

tsu(MI)

tv(MO) th(MO)

Page 108: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

108/177 Doc ID 15818 Rev 9

Table 53. I2S characteristics

Symbol Parameter Conditions Min Max Unit

fCK 1/tc(CK)

I2S clock frequency

Master, 16-bit data, audio frequency = 48 kHz, main clock disabled

1.23 1.24MHz

Slave 0 64FS(1)

tr(CK) tf(CK)

I2S clock rise and fall time capacitive load CL = 50 pF - (2)

ns

tv(WS) (3) WS valid time Master 0.3 -

th(WS) (3) WS hold time Master 0 -

tsu(WS) (3) WS setup time Slave 3 -

th(WS) (3) WS hold time Slave 0 -

tw(CKH) (3)

tw(CKL) (3) CK high and low time Master fPCLK= 30 MHz 396 -

tsu(SD_MR) (3)

tsu(SD_SR) (3) Data input setup time

Master receiver Slave receiver

450

-

th(SD_MR)(3)(4)

th(SD_SR) (3)(4) Data input hold time

Master receiver: fPCLK= 30 MHz, Slave receiver: fPCLK= 30 MHz

130

-

tv(SD_ST) (3)(4) Data output valid time

Slave transmitter (after enable edge)

- 30

th(SD_ST) (3) Data output hold time

Slave transmitter (after enable edge)

10 -

tv(SD_MT) (3)(4) Data output valid time

Master transmitter (after enable edge)

- 6

th(SD_MT) (3) Data output hold time

Master transmitter (after enable edge)

0 -

1. FS is the sampling frequency. Refer to the I2S section of the STM32F20xxx/21xxx reference manual for more details. fCK values reflect only the digital peripheral behavior which leads to a minimum of (I2SDIV/(2*I2SDIV+ODD), a maximum of (I2SDIV+ODD)/(2*I2SDIV+ODD) and FS maximum values for each mode/condition.

2. Refer to Table 46: I/O AC characteristics.

3. Based on design simulation and/or characterization results, not tested in production.

4. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.

Page 109: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 109/177

Figure 42. I2S slave timing diagram (Philips protocol)(1)

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 43. I2S master timing diagram (Philips protocol)(1)

1. Based on characterization, not tested in production.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

CK

Inpu

t CPOL = 0

CPOL = 1

tc(CK)

WS input

SDtransmit

SDreceive

tw(CKH) tw(CKL)

tsu(WS) tv(SD_ST) th(SD_ST)

th(WS)

tsu(SD_SR) th(SD_SR)

MSB receive Bitn receive LSB receive

MSB transmit Bitn transmit LSB transmit

ai14881b

LSB receive(2)

LSB transmit(2)

CK

out

put CPOL = 0

CPOL = 1

tc(CK)

WS output

SDreceive

SDtransmit

tw(CKH)

tw(CKL)

tsu(SD_MR)

tv(SD_MT) th(SD_MT)

th(WS)

th(SD_MR)

MSB receive Bitn receive LSB receive

MSB transmit Bitn transmit LSB transmit

ai14884b

tf(CK) tr(CK)

tv(WS)

LSB receive(2)

LSB transmit(2)

Page 110: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

110/177 Doc ID 15818 Rev 9

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.

Table 54. USB OTG FS startup time

Symbol Parameter Max Unit

tSTARTUP(1)

1. Guaranteed by design, not tested in production.

USB OTG FS transceiver startup time 1 µs

Table 55. USB OTG FS DC electrical characteristics

Symbol Parameter Conditions Min.(1)

1. All the voltages are measured from the local ground potential.

Typ. Max.(1) Unit

Input levels

VDDUSB OTG FS operating voltage

3.0(2)

2. The STM32F205xx and STM32F207xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.

- 3.6 V

VDI(3)

3. Guaranteed by design, not tested in production.

Differential input sensitivityI(USB_FS_DP/DM, USB_HS_DP/DM)

0.2 - -

VVCM(3) Differential common mode

rangeIncludes VDI range 0.8 - 2.5

VSE(3) Single ended receiver

threshold1.3 - 2.0

Output levels

VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)

4. RL is the load connected on the USB OTG FS drivers

- - 0.3V

VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6

RPD

PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)

VIN = VDD

17 21 24

PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)

0.65 1.1 2.0

RPU

PA12, PB15 (USB_FS_DP, USB_HS_DP)

VIN = VSS 1.5 1.8 2.1

PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)

VIN = VSS 0.25 0.37 0.55

Page 111: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 111/177

Figure 44. USB OTG FS timings: definition of data signal rise and fall time

USB HS characteristics

Table 57 shows the USB HS operating voltage.

Table 56. USB OTG FS electrical characteristics(1)

1. Guaranteed by design, not tested in production.

Driver characteristics

Symbol Parameter Conditions Min Max Unit

tr Rise time(2)

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

CL = 50 pF 4 20 ns

tf Fall time(2) CL = 50 pF 4 20 ns

trfm Rise/ fall time matching tr/tf 90 110 %

VCRS Output signal crossover voltage 1.3 2.0 V

Table 57. USB HS DC electrical characteristics

Symbol Parameter Min.(1)

1. All the voltages are measured from the local ground potential.

Max.(1) Unit

Input level VDD USB OTG HS operating voltage 2.7 3.6 V

Table 58. Clock timing parameters

Parameter(1)

1. Guaranteed by design, not tested in production.

Symbol Min Nominal Max Unit

Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz

Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz

Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 %

Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 %

Time to reach the steady state frequency and duty cycle after the first transition

TSTEADY - - 1.4 ms

Clock startup time after the de-assertion of SuspendM

Peripheral TSTART_DEV - - 5.6ms

Host TSTART_HOST - - -

PHY preparation time after the first transition of the input clock

TPREP - - - µs

ai14137tf

Differen tialdata lines

VSS

VCRS

tr

Crossoverpoints

Page 112: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

112/177 Doc ID 15818 Rev 9

Figure 45. ULPI timing diagram

Ethernet characteristics

Table 60 shows the Ethernet operating voltage.

Table 61 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 46 shows the corresponding timing diagram.

Table 59. ULPI timing

Symbol ParameterValue(1)

1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.

UnitMin. Max.

tSC

Control in (ULPI_DIR) setup time - 2.0

ns

Control in (ULPI_NXT) setup time - 1.5

tHC Control in (ULPI_DIR, ULPI_NXT) hold time 0 -

tSD Data in setup time - 2.0

tHD Data in hold time 0 -

tDC Control out (ULPI_STP) setup time and hold time - 9.2

tDD Data out available from clock rising edge - 10.7

Table 60. Ethernet DC electrical characteristics

Symbol Parameter Min.(1)

1. All the voltages are measured from the local ground potential.

Max.(1) Unit

Input level VDD Ethernet operating voltage 2.7 3.6 V

Clock

Control In(ULPI_DIR,ULPI_NXT)

data In(8-bit)

Control out(ULPI_STP)

data out(8-bit)

tDD

tDC

tHDtSD

tHCtSC

ai17361c

tDC

Page 113: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 113/177

Figure 46. Ethernet SMI timing diagram

Table 62 gives the list of Ethernet MAC signals for the RMII and Figure 47 shows the corresponding timing diagram.

Figure 47. Ethernet RMII timing diagram

Table 61. Dynamics characteristics: Ethernet MAC signals for SMI

Symbol Rating Min Typ Max Unit

tMDC MDC cycle time (2.38 MHz) 411 420 425 ns

td(MDIO) MDIO write data valid time 6 10 13 ns

tsu(MDIO) Read data setup time 12 - - ns

th(MDIO) Read data hold time 0 - - ns

Table 62. Dynamics characteristics: Ethernet MAC signals for RMII

Symbol Rating Min Typ Max Unit

tsu(RXD) Receive data setup time 1 - -

ns

tih(RXD) Receive data hold time 1.5 - -

tsu(CRS) Carrier sense set-up time 0 - -

tih(CRS) Carrier sense hold time 2 - -

td(TXEN) Transmit enable valid delay time 9 11 13

td(TXD) Transmit data valid delay time 9 11.5 14

ETH_MDC

ETH_MDIO(O)

ETH_MDIO(I)

tMDC

td(MDIO)

tsu(MDIO) th(MDIO)

ai15666d

RMII_REF_CLK

RMII_TX_ENRMII_TXD[1:0]

RMII_RXD[1:0]RMII_CRS_DV

td(TXEN)td(TXD)

tsu(RXD)tsu(CRS)

tih(RXD)tih(CRS)

ai15667

Page 114: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

114/177 Doc ID 15818 Rev 9

Table 63 gives the list of Ethernet MAC signals for MII and Figure 47 shows the corresponding timing diagram.

Figure 48. Ethernet MII timing diagram

CAN (controller area network) interface

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

Table 63. Dynamics characteristics: Ethernet MAC signals for MII

Symbol Rating Min Typ Max Unit

tsu(RXD) Receive data setup time 7.5 - - ns

tih(RXD) Receive data hold time 1 - - ns

tsu(DV) Data valid setup time 4 - - ns

tih(DV) Data valid hold time 0 - - ns

tsu(ER) Error setup time 3.5 - - ns

tih(ER) Error hold time 0 - - ns

td(TXEN) Transmit enable valid delay time - 11 14 ns

td(TXD) Transmit data valid delay time - 11 14 ns

MII_RX_CLK

MII_RXD[3:0]MII_RX_DVMII_RX_ER

td(TXEN)td(TXD)

tsu(RXD)tsu(ER)tsu(DV)

tih(RXD)tih(ER)tih(DV)

ai15668

MII_TX_CLK

MII_TX_ENMII_TXD[3:0]

Page 115: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 115/177

5.3.20 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Table 64 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 12.

Table 64. ADC characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDA Power supply 1.8(1) - 3.6 V

VREF+ Positive reference voltage 1.8(1)(2) - VDDA V

fADC ADC clock frequencyVDDA = 1.8(1) to 2.4 V 0.6 - 15 MHz

VDDA = 2.4 to 3.6 V 0.6 - 30 MHz

fTRIG(3) External trigger frequency

fADC = 30 MHz with 12-bit resolution

- - 1764 kHz

- - 17 1/fADC

VAIN Conversion voltage range(4) 0 (VSSA or VREF- tied to ground)

- VREF+ V

RAIN(3) External input impedance

See Equation 1 for details

- - 50 kΩ

RADC(3)(5) Sampling switch resistance 1.5 - 6 kΩ

CADC(3) Internal sample and hold

capacitor - 4 - pF

tlat(3) Injection trigger conversion

latency

fADC = 30 MHz - - 0.100 µs

- - 3(6) 1/fADC

tlatr(3) Regular trigger conversion latency

fADC = 30 MHz - - 0.067 µs

- - 2(6) 1/fADC

tS(3) Sampling time

fADC = 30 MHz 0.100 - 16 µs

3 - 480 1/fADC

tSTAB(3) Power-up time - 2 3 µs

tCONV(3) Total conversion time (including

sampling time)

fADC = 30 MHz

12-bit resolution0.5 - 16.40 µs

fADC = 30 MHz

10-bit resolution0.43 - 16.34 µs

fADC = 30 MHz8-bit resolution

0.37 - 16.27 µs

fADC = 30 MHz

6-bit resolution0.3 - 16.20 µs

9 to 492 (tS for sampling +n-bit resolution for successive approximation)

1/fADC

Page 116: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

116/177 Doc ID 15818 Rev 9

Equation 1: RAIN max formula

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

fS(3)

Sampling rate

(fADC = 30 MHz)

12-bit resolutionSingle ADC

- - 2 Msps

12-bit resolution

Interleave Dual ADC mode

- - 3.75 Msps

12-bit resolution

Interleave Triple ADC mode

- - 6 Msps

IVREF+(3) ADC VREF DC current

consumption in conversion mode

fADC = 30 MHz

3 sampling time

12-bit resolution

- 300 500 µA

fADC = 30 MHz480 sampling time

12-bit resolution

- - 16 µA

IVDDA(3) ADC VDDA DC current

consumption in conversion mode

fADC = 30 MHz

3 sampling time

12-bit resolution

- 1.6 1.8 mA

fADC = 30 MHz480 sampling time

12-bit resolution

- - 60 µA

1. If IRROFF is set to VDD, this value can be lowered to 1.7 V when the device operates in the 0 to 70 °C temperature range.

2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.

3. Based on characterization, not tested in production.

4. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.

5. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.

6. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 64.

Table 64. ADC characteristics (continued)

Symbol Parameter Conditions Min Typ Max Unit

RAINk 0.5–( )

fADC CADC 2N 2+( )ln××

-------------------------------------------------------------- RADC–=

Page 117: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 117/177

a

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.16 does not affect the ADC accuracy.

Figure 49. ADC accuracy characteristics

1. Example of an actual transfer curve.

2. Ideal transfer curve.

3. End point correlation line.

4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Table 65. ADC accuracy (1)

1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.

Symbol Parameter Test conditions Typ Max(2)

2. Based on characterization, not tested in production.

Unit

ET Total unadjusted error

fPCLK2 = 60 MHz, fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 1.8(3) to 3.6 V

3. If IRROFF is set to VDD, this value can be lowered to 1.7 V when the device operates in the 0 to 70 °C temperature range.

±2 ±5

LSB

EO Offset error ±1.5 ±2.5

EG Gain error ±1.5 ±3

ED Differential linearity error ±1 ±2

EL Integral linearity error ±1.5 ±3

EO

EG

1L SBIDEAL

4095

4094

4093

5

4

3

2

1

0

7

6

1 2 3 456 7 4093 4094 4095 4096

(1)

(2)ET

ED

EL

(3)

VDDAVSSA

ai14395c

VREF+4096

(or depending on package)]VDDA4096

[1LSBIDEAL =

Page 118: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

118/177 Doc ID 15818 Rev 9

Figure 50. Typical connection diagram using the ADC

1. Refer to Table 64 for the values of RAIN, RADC and CADC.

2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced.

ai17534

STM32FVDD

AINx

IL±1 µA

0.6 VVT

RAIN(1)

CparasiticVAIN

0.6 VVT

RADC(1)

CADC(1)

12-bitconverter

Sample and hold ADCconverter

Page 119: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 119/177

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 51 or Figure 52, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 51. Power supply and reference decoupling (VREF+ not connected to VDDA)

1. VREF+ and VREF– inputs are both available on UFBGA176 package. VREF+ is also available on all packages except for LQFP64. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.

Figure 52. Power supply and reference decoupling (VREF+ connected to VDDA)

1. VREF+ and VREF– inputs are both available on UFBGA176 package. VREF+ is also available on all packages except for LQFP64. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.

VREF+

STM32F

VDDA

VSSA/V REF-

1 µF // 10 nF

1 µF // 10 nF

ai17535

(See note 1)

(See note 1)

VREF+/VDDA

STM32F

1 µF // 10 nF

VREF–/VSSA

ai17536

(See note 1)

(See note 1)

Page 120: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

120/177 Doc ID 15818 Rev 9

5.3.21 DAC electrical characteristics

Table 66. DAC characteristics

Symbol Parameter Min Typ Max Unit Comments

VDDA Analog supply voltage 1.8(1) - 3.6 V

VREF+ Reference supply voltage 1.8(1) - 3.6 V VREF+ ≤ VDDA

VSSA Ground 0 - 0 V

RLOAD(2) Resistive load with buffer ON 5 - - kΩ

RO(2) Impedance output with buffer

OFF- - 15 kΩ

When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ

CLOAD(2) Capacitive load - - 50 pF

Maximum capacitive load at DAC_OUT pin (when the buffer is ON).

DAC_OUT min(2)

Lower DAC_OUT voltage with buffer ON

0.2 - - V

It gives the maximum output excursion of the DAC.It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x1C7) to (0xE38) at VREF+ = 1.8 V

DAC_OUT max(2)

Higher DAC_OUT voltage with buffer ON

- - VDDA – 0.2 V

DAC_OUT min(2)

Lower DAC_OUT voltage with buffer OFF

- 0.5 - mVIt gives the maximum output excursion of the DAC.DAC_OUT

max(2)Higher DAC_OUT voltage with buffer OFF

- - VREF+ – 1LSB V

IVREF+(4)

DAC DC VREF current consumption in quiescent mode (Standby mode)

- 170 240

µA

With no load, worst code (0x800) at VREF+ = 3.6 V in terms of DC consumption on the inputs

- 50 75With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs

IDDA(4)

DAC DC VDDA current consumption in quiescent mode(3)

- 280 380 µAWith no load, middle code (0x800) on the inputs

- 475 625 µAWith no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs

DNL(4)Differential non linearity Difference between two consecutive code-1LSB)

- - ±0.5 LSBGiven for the DAC in 10-bit configuration.

- - ±2 LSBGiven for the DAC in 12-bit configuration.

Page 121: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 121/177

INL(4)

Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)

- - ±1 LSBGiven for the DAC in 10-bit configuration.

- - ±4 LSBGiven for the DAC in 12-bit configuration.

Offset(4)

Offset error

(difference between measured value at Code (0x800) and the ideal value = VREF+/2)

- - ±10 mVGiven for the DAC in 12-bit configuration

- - ±3 LSBGiven for the DAC in 10-bit at VREF+ = 3.6 V

- - ±12 LSBGiven for the DAC in 12-bit at VREF+ = 3.6 V

Gain error(4) Gain error - - ±0.5 %

Given for the DAC in 12-bit configuration

tSETTLING(4)

Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB

- 3 6 µsCLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ

THD(4) Total Harmonic Distortion

Buffer ON- - - dB

CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ

Update rate(2)

Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)

- - 1 MS/sCLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ

tWAKEUP(4)

Wakeup time from off state (Setting the ENx bit in the DAC Control register)

- 6.5 10 µsCLOAD ≤ 50 pF, RLOAD ≥ 5 kΩinput code between lowest and highest possible ones.

PSRR+ (2)Power supply rejection ratio (to VDDA) (static DC measurement)

- –67 –40 dB No RLOAD, CLOAD = 50 pF

1. If IRROFF is set to VDD, this value can be lowered to 1.7 V when the device operates in the 0 to 70 °C temperature range.

2. Guaranteed by design, not tested in production.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization, not tested in production.

Table 66. DAC characteristics (continued)

Symbol Parameter Min Typ Max Unit Comments

Page 122: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

122/177 Doc ID 15818 Rev 9

Figure 53. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.22 Temperature sensor characteristics

5.3.23 VBAT monitoring characteristics

R LOAD

C LOAD

Buffered/Non-buffered DAC

DACx_OUT

Buffer(1)

12-bit digital to analog converter

ai17157

Table 67. TS characteristics

Symbol Parameter Min Typ Max Unit

TL(1)

1. Based on characterization, not tested in production.

VSENSE linearity with temperature - ±1 ±2 °C

Avg_Slope(1) Average slope - 2.5 mV/°C

V25(1) Voltage at 25 °C - 0.76 V

tSTART(2)

2. Guaranteed by design, not tested in production.

Startup time - 6 10 µs

TS_temp(3)(2)

3. Shortest sampling time can be determined in the application by multiple iterations.

ADC sampling time when reading the temperature

1°C accuracy10 - - µs

Table 68. VBAT monitoring characteristics

Symbol Parameter Min Typ Max Unit

R Resistor bridge for VBAT - 50 - KΩ

Q Ratio on VBAT measurement - 2 -

Er(1)

1. Guaranteed by design, not tested in production.

Error on Q –1 - +1 %

TS_vbat(2)(2)

2. Shortest sampling time can be determined in the application by multiple iterations.

ADC sampling time when reading the VBAT

1mV accuracy 5 - - µs

Page 123: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 123/177

5.3.24 Embedded reference voltage

The parameters given in Table 69 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 12.

5.3.25 FSMC characteristics

Asynchronous waveforms and timings

Figure 54 through Figure 57 represent asynchronous waveforms and Table 70 through Table 73 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

AddressSetupTime = 1

AddressHoldTime = 1

DataSetupTime = 1

BusTurnAroundDuration = 0x0

In all timing tables, the THCLK is the HCLK clock period.

Table 69. Embedded internal reference voltage

Symbol Parameter Conditions Min Typ Max Unit

VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V

TS_vrefint(1)

1. Shortest sampling time can be determined in the application by multiple iterations.

ADC sampling time when reading the internal reference voltage

10 - - µs

VRERINT_s(2)

2. Guaranteed by design, not tested in production.

Internal reference voltage spread over the temperature range

VDD = 3 V - 3 5 mV

TCoeff(2) Temperature coefficient - 30 50 ppm/°C

tSTART(2) Startup time - 6 10 µs

Page 124: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

124/177 Doc ID 15818 Rev 9

Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 70. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(NE) FSMC_NE low time 2THCLK– 0.5 2THCLK+0.5 ns

tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 2.5 ns

tw(NOE) FSMC_NOE low time 2THCLK- 1 2THCLK+ 0.5 ns

th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns

tv(A_NE) FSMC_NEx low to FSMC_A valid - 4 ns

th(A_NOE) Address hold time after FSMC_NOE high 0 - ns

tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns

th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns

tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+ 0.5 - ns

tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK+ 2.5 - ns

th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns

th(Data_NE) Data hold time after FSMC_NEx high 0 - ns

tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2.5 ns

tw(NADV) FSMC_NADV low time - THCLK– 0.5 ns

Data

FSMC_NE

FSMC_NBL[1:0]

FSMC_D[15:0]

tv(BL_NE)

t h(Data_NE)

FSMC_NOE

AddressFSMC_A[25:0]

tv(A_NE)

FSMC_NWE

tsu(Data_NE)

tw(NE)

ai14991c

w(NOE)ttv(NOE_NE) t h(NE_NOE)

th(Data_NOE)

t h(A_NOE)

t h(BL_NOE)

tsu(Data_NOE)

FSMC_NADV(1)

t v(NADV_NE)

tw(NADV)

Page 125: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 125/177

Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(NE) FSMC_NE low time 3THCLK 3THCLK+ 4 ns

tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK– 0.5 THCLK+ 0.5 ns

tw(NWE) FSMC_NWE low time THCLK– 0.5 THCLK+ 3 ns

th(NE_NWE)FSMC_NWE high to FSMC_NE high hold time

THCLK - ns

tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns

th(A_NWE) Address hold time after FSMC_NWE high THCLK- 3 - ns

tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns

th(BL_NWE)FSMC_BL hold time after FSMC_NWE high

THCLK– 1 - ns

tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK+ 5 ns

th(Data_NWE) Data hold time after FSMC_NWE high THCLK+0.5 - ns

tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns

tw(NADV) FSMC_NADV low time - THCLK+ 1.5 ns

NBL

Data

FSMC_NEx

FSMC_NBL[1:0]

FSMC_D[15:0]

tv(BL_NE)

th(Data_NWE)

FSMC_NOE

AddressFSMC_A[25:0]

tv(A_NE)

tw(NWE)

FSMC_NWE

tv(NWE_NE) t h(NE_NWE)

th(A_NWE)

th(BL_NWE)

tv(Data_NE)

tw(NE)

ai14990

FSMC_NADV(1)

t v(NADV_NE)

tw(NADV)

Page 126: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

126/177 Doc ID 15818 Rev 9

Figure 56. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 72. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(NE) FSMC_NE low time 3THCLK-1 3THCLK+1 ns

tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK 2THCLK+0.5 ns

tw(NOE) FSMC_NOE low time THCLK-1 THCLK+1 ns

th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns

tv(A_NE) FSMC_NEx low to FSMC_A valid - 2 ns

tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2.5 ns

tw(NADV) FSMC_NADV low time THCLK– 1.5 THCLK ns

th(AD_NADV)FSMC_AD(adress) valid hold time after FSMC_NADV high)

THCLK - ns

th(A_NOE) Address hold time after FSMC_NOE high THCLK - ns

th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns

tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1 ns

tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+ 2 - ns

tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK+ 3 - ns

th(Data_NE) Data hold time after FSMC_NEx high 0 - ns

th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns

NBL

Data

FSMC_NBL[1:0]

FSMC_AD[15:0]

tv(BL_NE)

th(Data_NE)

AddressFSMC_A[25:16]

tv(A_NE)

FSMC_NWE

t v(A_NE)

ai14892b

Address

FSMC_NADV

t v(NADV_NE)

tw(NADV)

tsu(Data_NE)

th(AD_NADV)

FSMC_NE

FSMC_NOE

tw(NE)

tw(NOE)

tv(NOE_NE) t h(NE_NOE)

th(A_NOE)

th(BL_NOE)

tsu(Data_NOE) th(Data_NOE)

Page 127: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 127/177

Figure 57. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 73. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(NE) FSMC_NE low time 4THCLK-1 4THCLK+1 ns

tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK- 1 THCLK ns

tw(NWE) FSMC_NWE low tim e 2THCLK 2THCLK+1 ns

th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK- 1 - ns

tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns

tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns

tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+ 2 ns

th(AD_NADV)FSMC_AD(adress) valid hold time after FSMC_NADV high)

THCLK - ns

th(A_NWE) Address hold time after FSMC_NWE high THCLK– 0.5 - ns

th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK- 1 - ns

tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 ns

tv(Data_NADV) FSMC_NADV high to Data valid - THCLK+2 ns

th(Data_NWE) Data hold time after FSMC_NWE high THCLK– 0.5 - ns

NBL

Data

FSMC_NEx

FSMC_NBL[1:0]

FSMC_AD[15:0]

tv(BL_NE)

th(Data_NWE)

FSMC_NOE

AddressFSMC_A[25:16]

tv(A_NE)

tw(NWE)

FSMC_NWE

tv(NWE_NE) t h(NE_NWE)

th(A_NWE)

th(BL_NWE)

t v(A_NE)

tw(NE)

ai14891B

Address

FSMC_NADV

t v(NADV_NE)

tw(NADV)

t v(Data_NADV)

th(AD_NADV)

Page 128: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

128/177 Doc ID 15818 Rev 9

Synchronous waveforms and timings

Figure 58 through Figure 61 represent synchronous waveforms and Table 75 through Table 77 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

BurstAccessMode = FSMC_BurstAccessMode_Enable;

MemoryType = FSMC_MemoryType_CRAM;

WriteBurst = FSMC_WriteBurst_Enable;

CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual)

DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the THCLK is the HCLK clock period.

Figure 58. Synchronous multiplexed NOR/PSRAM read timings

FSMC_CLK

FSMC_NEx

FSMC_NADV

FSMC_A[25:16]

FSMC_NOE

FSMC_AD[15:0] AD[15:0] D1 D2

FSMC_NWAIT(WAITCFG = 1b, WAITPOL + 0b)

FSMC_NWAIT(WAITCFG = 0b, WAITPOL + 0b)

tw(CLK) tw(CLK)

Data latency = 0

BUSTURN = 0

td(CLKL-NExL) td(CLKL-NExH)

td(CLKL-NADVL)

td(CLKL-AV)

td(CLKL-NADVH)

td(CLKL-AIV)

td(CLKH-NOEL) td(CLKL-NOEH)

td(CLKL-ADV)

td(CLKL-ADIV)tsu(ADV-CLKH)

th(CLKH-ADV)tsu(ADV-CLKH) th(CLKH-ADV)

tsu(NWAITV-CLKH) th(CLKH-NWAITV)

tsu(NWAITV-CLKH) th(CLKH-NWAITV)

tsu(NWAITV-CLKH) th(CLKH-NWAITV)ai14893h

Page 129: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 129/177

Table 74. Synchronous multiplexed NOR/PSRAM read timings(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(CLK) FSMC_CLK period 2THCLK - ns

td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns

td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns

td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1.5 ns

td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2.5 - ns

td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns

td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns

td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns

td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1 - ns

td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3 ns

td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns

tsu(ADV-CLKH)FSMC_A/D[15:0] valid data before FSMC_CLK high

5 - ns

th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns

Page 130: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

130/177 Doc ID 15818 Rev 9

Figure 59. Synchronous multiplexed PSRAM write timings

Table 75. Synchronous multiplexed PSRAM write timings(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(CLK) FSMC_CLK period 2THCLK- 1 - ns

td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns

td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns

td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns

td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns

td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns

td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 7 - ns

td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns

td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns

td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns

td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 2 ns

td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0.5 - ns

FSMC_CLK

FSMC_NEx

FSMC_NADV

FSMC_A[25:16]

FSMC_NWE

FSMC_AD[15:0] AD[15:0] D1 D2

FSMC_NWAIT(WAITCFG = 0b, WAITPOL + 0b)

tw(CLK) tw(CLK)

Data latency = 0

BUSTURN = 0

td(CLKL-NExL) td(CLKL-NExH)

td(CLKL-NADVL)

td(CLKL-AV)

td(CLKL-NADVH)

td(CLKL-AIV)

td(CLKL-NWEH)td(CLKL-NWEL)

td(CLKL-NBLH)

td(CLKL-ADV)

td(CLKL-ADIV) td(CLKL-Data)

tsu(NWAITV-CLKH) th(CLKH-NWAITV)

ai14992g

td(CLKL-Data)

FSMC_NBL

Page 131: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 131/177

Figure 60. Synchronous non-multiplexed NOR/PSRAM read timings

Table 76. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(CLK) FSMC_CLK period 2THCLK - ns

td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns

td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns

td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2.5 ns

td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 4 - ns

td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns

td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 3 - ns

td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low - 1 ns

td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns

tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 8 - ns

th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3.5 - ns

FSMC_CLK

FSMC_NEx

FSMC_A[25:0]

FSMC_NOE

FSMC_D[15:0] D1 D2

FSMC_NWAIT(WAITCFG = 1b, WAITPOL + 0b)

FSMC_NWAIT(WAITCFG = 0b, WAITPOL + 0b)

tw(CLK) tw(CLK)

Data latency = 0

BUSTURN = 0

td(CLKL-NExL) td(CLKL-NExH)

td(CLKL-AV) td(CLKL-AIV)

td(CLKH-NOEL) td(CLKL-NOEH)

tsu(DV-CLKH) th(CLKH-DV)tsu(DV-CLKH) th(CLKH-DV)

tsu(NWAITV-CLKH) th(CLKH-NWAITV)

tsu(NWAITV-CLKH) t h(CLKH-NWAITV)

tsu(NWAITV-CLKH) th(CLKH-NWAITV)

ai14894g

FSMC_NADV

td(CLKL-NADVL) td(CLKL-NADVH)

Page 132: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

132/177 Doc ID 15818 Rev 9

Figure 61. Synchronous non-multiplexed PSRAM write timings

Table 77. Synchronous non-multiplexed PSRAM write timings(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(CLK) FSMC_CLK period 2THCLK- 1 - ns

td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns

td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns

td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 5 ns

td(CLKL-

NADVH)FSMC_CLK low to FSMC_NADV high 6 - ns

td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns

td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns

td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns

td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 1 - ns

td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 2 ns

td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 2 - ns

FSMC_CLK

FSMC_NEx

FSMC_A[25:0]

FSMC_NWE

FSMC_D[15:0] D1 D2

FSMC_NWAIT(WAITCFG = 0b, WAITPOL + 0b)

tw(CLK) tw(CLK)

Data latency = 0

BUSTURN = 0

td(CLKL-NExL) td(CLKL-NExH)

td(CLKL-AV) td(CLKL-AIV)

td(CLKL-NWEH)td(CLKL-NWEL)

td(CLKL-Data)

tsu(NWAITV-CLKH)

th(CLKH-NWAITV)

ai14993g

FSMC_NADV

td(CLKL-NADVL) td(CLKL-NADVH)

td(CLKL-Data)

FSMC_NBL

td(CLKL-NBLH)

Page 133: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 133/177

PC Card/CompactFlash controller waveforms and timings

Figure 62 through Figure 67 represent synchronous waveforms together with Table 78 and Table 79 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

COM.FSMC_SetupTime = 0x04;

COM.FSMC_WaitSetupTime = 0x07;

COM.FSMC_HoldSetupTime = 0x04;

COM.FSMC_HiZSetupTime = 0x00;

ATT.FSMC_SetupTime = 0x04;

ATT.FSMC_WaitSetupTime = 0x07;

ATT.FSMC_HoldSetupTime = 0x04;

ATT.FSMC_HiZSetupTime = 0x00;

IO.FSMC_SetupTime = 0x04;

IO.FSMC_WaitSetupTime = 0x07;

IO.FSMC_HoldSetupTime = 0x04;

IO.FSMC_HiZSetupTime = 0x00;

TCLRSetupTime = 0;

TARSetupTime = 0;

In all timing tables, the THCLK is the HCLK clock period.

Figure 62. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

FSMC_NWE

tw(NOE)FSMC_NOE

FSMC_D[15:0]

FSMC_A[10:0]

FSMC_NCE4_2(1)

FSMC_NCE4_1

FSMC_NREGFSMC_NIOWRFSMC_NIORD

td(NCE4_1-NOE)

tsu(D-NOE) th(NOE-D)

tv(NCEx-A)

td(NREG-NCEx)td(NIORD-NCEx)

th(NCEx-AI)

th(NCEx-NREG) th(NCEx-NIORD)th(NCEx-NIOWR)

ai14895b

Page 134: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

134/177 Doc ID 15818 Rev 9

Figure 63. PC Card/CompactFlash controller waveforms for common memory write access

td(NCE4_1-NWE) tw(NWE)

th(NWE-D)

tv(NCE4_1-A)

td(NREG-NCE4_1)td(NIORD-NCE4_1)

th(NCE4_1-AI)

MEMxHIZ =1

tv(NWE-D)

th(NCE4_1-NREG)th(NCE4_1-NIORD)th(NCE4_1-NIOWR)

ai14896b

FSMC_NWE

FSMC_NOE

FSMC_D[15:0]

FSMC_A[10:0]

FSMC_NCE4_1

FSMC_NREGFSMC_NIOWRFSMC_NIORD

td(NWE-NCE4_1)

td(D-NWE)

FSMC_NCE4_2 High

Page 135: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 135/177

Figure 64. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

td(NCE4_1-NOE) tw(NOE)

tsu(D-NOE) th(NOE-D)

tv(NCE4_1-A) th(NCE4_1-AI)

td(NREG-NCE4_1) th(NCE4_1-NREG)

ai14897b

FSMC_NWE

FSMC_NOE

FSMC_D[15:0](1)

FSMC_A[10:0]

FSMC_NCE4_2

FSMC_NCE4_1

FSMC_NREG

FSMC_NIOWRFSMC_NIORD

td(NOE-NCE4_1)

High

Page 136: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

136/177 Doc ID 15818 Rev 9

Figure 65. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).

Figure 66. PC Card/CompactFlash controller waveforms for I/O space read access

tw(NWE)

tv(NCE4_1-A)

td(NREG-NCE4_1)

th(NCE4_1-AI)

th(NCE4_1-NREG)

tv(NWE-D)

ai14898b

FSMC_NWE

FSMC_NOE

FSMC_D[7:0](1)

FSMC_A[10:0]

FSMC_NCE4_2

FSMC_NCE4_1

FSMC_NREG

FSMC_NIOWRFSMC_NIORD

td(NWE-NCE4_1)

High

td(NCE4_1-NWE)

td(NIORD-NCE4_1) tw(NIORD)

tsu(D-NIORD) td(NIORD-D)

tv(NCEx-A) th(NCE4_1-AI)

ai14899B

FSMC_NWEFSMC_NOE

FSMC_D[15:0]

FSMC_A[10:0]

FSMC_NCE4_2

FSMC_NCE4_1

FSMC_NREG

FSMC_NIOWR

FSMC_NIORD

Page 137: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 137/177

Figure 67. PC Card/CompactFlash controller waveforms for I/O space write access

td(NCE4_1-NIOWR) tw(NIOWR)

tv(NCEx-A) th(NCE4_1-AI)

th(NIOWR-D)

ATTxHIZ =1

tv(NIOWR-D)

ai14900c

FSMC_NWEFSMC_NOE

FSMC_D[15:0]

FSMC_A[10:0]

FSMC_NCE4_2FSMC_NCE4_1

FSMC_NREG

FSMC_NIOWR

FSMC_NIORD

Table 78. Switching characteristics for PC Card/CF read and write cycles in attribute/common space(1)(2)

Symbol Parameter Min Max Unit

tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns

th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns

td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns

th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+ 4 - ns

td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns

td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK ns

tw(NOE) FSMC_NOE low width 8THCLK– 0.5 8THCLK+ 1 ns

td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+ 2.5 - ns

tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4 - ns

th (N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 2 - ns

tw(NWE) FSMC_NWE low width 8THCLK- 1 8THCLK+ 4 ns

td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK+ 1.5 ns

td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5HCLK+ 1 ns

tv (NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns

th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8 THCLK - ns

td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK - ns

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Page 138: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

138/177 Doc ID 15818 Rev 9

NAND controller waveforms and timings

Figure 68 through Figure 71 represent synchronous waveforms, together with Table 80 and Table 81 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

COM.FSMC_SetupTime = 0x01;

COM.FSMC_WaitSetupTime = 0x03;

COM.FSMC_HoldSetupTime = 0x02;

COM.FSMC_HiZSetupTime = 0x01;

ATT.FSMC_SetupTime = 0x01;

ATT.FSMC_WaitSetupTime = 0x03;

ATT.FSMC_HoldSetupTime = 0x02;

ATT.FSMC_HiZSetupTime = 0x01;

Bank = FSMC_Bank_NAND;

MemoryDataWidth = FSMC_MemoryDataWidth_16b;

ECC = FSMC_ECC_Enable;

ECCPageSize = FSMC_ECCPageSize_512Bytes;

TCLRSetupTime = 0;

TARSetupTime = 0;

In all timing tables, the THCLK is the HCLK clock period.

Table 79. Switching characteristics for PC Card/CF read and write cycles in I/O space(1)(2)

Symbol Parameter Min Max Unit

tw(NIOWR) FSMC_NIOWR low width 8THCLK - 0.5 - ns

tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK- 1 ns

th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK- 3 - ns

td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 1.5 ns

th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK - ns

td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 1 ns

th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 0.5 - ns

tw(NIORD) FSMC_NIORD low width 8THCLK+ 1 - ns

tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high

9.5 ns

td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 ns

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Page 139: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 139/177

Figure 68. NAND controller waveforms for read access

Figure 69. NAND controller waveforms for write access

FSMC_NWE

FSMC_NOE (NRE)

FSMC_D[15:0]

tsu(D-NOE) th(NOE-D)

ai14901c

ALE (FSMC_A17)CLE (FSMC_A16)

FSMC_NCEx

td(ALE-NOE) th(NOE-ALE)

th(NWE-D)tv(NWE-D)

ai14902c

FSMC_NWE

FSMC_NOE (NRE)

FSMC_D[15:0]

ALE (FSMC_A17)CLE (FSMC_A16)

FSMC_NCEx

td(ALE-NWE) th(NWE-ALE)

Page 140: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

140/177 Doc ID 15818 Rev 9

Figure 70. NAND controller waveforms for common memory read access

Figure 71. NAND controller waveforms for common memory write access

Table 80. Switching characteristics for NAND Flash read cycles(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(N0E) FSMC_NOE low width 4THCLK- 1 4THCLK+ 2 ns

tsu(D-NOE)FSMC_D[15-0] valid data before FSMC_NOE high

9 - ns

th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 3 - ns

td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns

th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK+ 2 - ns

FSMC_NWE

FSMC_NOE

FSMC_D[15:0]

tw(NOE)

tsu(D-NOE) th(NOE-D)

ai14912c

ALE (FSMC_A17)CLE (FSMC_A16)

FSMC_NCEx

td(ALE-NOE) th(NOE-ALE)

tw(NWE)

th(NWE-D)tv(NWE-D)

ai14913c

FSMC_NWE

FSMC_NOE

FSMC_D[15:0]

td(D-NWE)

ALE (FSMC_A17)CLE (FSMC_A16)

FSMC_NCEx

td(ALE-NOE) th(NOE-ALE)

Page 141: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Electrical characteristics

Doc ID 15818 Rev 9 141/177

5.3.26 Camera interface (DCMI) timing specifications

5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in Table 83 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 12.

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

Figure 72. SDIO high-speed mode

Table 81. Switching characteristics for NAND Flash write cycles(1)(2)

1. CL = 30 pF.

2. Based on characterization, not tested in production.

Symbol Parameter Min Max Unit

tw(NWE) FSMC_NWE low width 4THCLK- 1 4THCLK+ 3 ns

tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns

th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK - ns

td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK - ns

td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK+ 2 ns

th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK- 2 - ns

Table 82. DCMI characteristics

Symbol Parameter Conditions Min Max

Frequency ratio DCMI_PIXCLK/fHCLK

DCMI_PIXCLK= 48 MHz 0.4

tW(CKH)

CK

D, CMD(output)

D, CMD(input)

tC

tW(CKL)

tOV tOH

tISU tIH

tf tr

ai14887

Page 142: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Electrical characteristics STM32F20xxx

142/177 Doc ID 15818 Rev 9

Figure 73. SD default mode

5.3.28 RTC characteristics

Table 83. SD / MMC characteristics

Symbol Parameter Conditions Min Max Unit

fPPClock frequency in data transfer mode

CL ≤ 30 pF 0 48 MHz

- SDIO_CK/fPCLK2 frequency ratio - - 8/3 -

tW(CKL) Clock low time, fPP = 16 MHz CL ≤ 30 pF 32

nstW(CKH) Clock high time, fPP = 16 MHz CL ≤ 30 pF 31

tr Clock rise time CL ≤ 30 pF 3.5

tf Clock fall time CL ≤ 30 pF 5

CMD, D inputs (referenced to CK)

tISU Input setup time CL ≤ 30 pF 2ns

tIH Input hold time CL ≤ 30 pF 0

CMD, D outputs (referenced to CK) in MMC and SD HS mode

tOV Output valid time CL ≤ 30 pF 6ns

tOH Output hold time CL ≤ 30 pF 0.3

CMD, D outputs (referenced to CK) in SD default mode(1)

1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.

tOVD Output valid default time CL ≤ 30 pF 7ns

tOHD Output hold default time CL ≤ 30 pF 0.5

ai14888

CK

D, CMD(output)

tOVD tOHD

Table 84. RTC characteristics

Symbol Parameter Conditions Min Max

- fPCLK1/RTCCLK frequency ratioAny read/write operation from/to an RTC register

4 -

Page 143: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Package characteristics

Doc ID 15818 Rev 9 143/177

6 Package characteristics

6.1 Package mechanical dataIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Page 144: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Package characteristics STM32F20xxx

144/177 Doc ID 15818 Rev 9

Figure 74. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline

1. Drawing is not to scale.

A

A2

A1

cL1

L

E E1

D

D1

e

b

ai14398b

Table 85. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

Symbolmillimeters inches(1)

Min Typ Max Min Typ Max

A 1.600 0.0630

A1 0.050 0.150 0.0020 0.0059

A2 1.350 1.400 1.450 0.0531 0.0551 0.0571

b 0.170 0.220 0.270 0.0067 0.0087 0.0106

c 0.090 0.200 0.0035 0.0079

D 12.000 0.4724

D1 10.000 0.3937

E 12.000 0.4724

E1 10.000 0.3937

e 0.500 0.0197

θ 0° 3.5° 7° 0° 3.5° 7°

L 0.450 0.600 0.750 0.0177 0.0236 0.0295

L1 1.000 0.0394

NNumber of pins

64

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Page 145: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Package characteristics

Doc ID 15818 Rev 9 145/177

Figure 75. Recommended footprint

1. Drawing is not to scale.

2. Dimensions are in millimeters.

48

3249

64 17

1 16

1.2

0.3

33

10.312.7

10.3

0.5

7.8

12.7

ai14909

Page 146: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Package characteristics STM32F20xxx

146/177 Doc ID 15818 Rev 9

Figure 76. WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline

1. Drawing is not to scale.

Bump sideSide view

Detail A

Wafer back side

A1 ball location

A1

Detail Arotated by 90 °C

eee

D

A0FX_ME

Seating plane

A2

A

b

E

e

e1

e

G

F

e1

Table 86. WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data

Symbolmillimeters inches

Min Typ Max Min Typ Max

A 0.520 0.570 0.600 0.0205 0.0224 0.0236

A1 0.170 0.190 0.210 0.0067 0.0075 0.0083

A2 0.350 0.380 0.410 0.0138 0.0150 0.0161

b 0.245 0.270 0.295 0.0096 0.0106 0.0116

D 3.619 3.639 3.659 0.1425 0.1433 0.1441

E 3.951 3.971 3.991 0.1556 0.1563 0.1571

e 0.400 0.0157

e1 3.218 0.1267

F 0.220 0.0087

G 0.386 0.0152

eee 0.050 0.0020

Page 147: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Package characteristics

Doc ID 15818 Rev 9 147/177

Figure 77. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

D

D1

D3

75 51

5076

100 26

1 25

E3 E1 E

e

b

Pin 1identification

SEATING PLANE

GAGE PLANE

C

A

A2

A1

Cccc

0.25 mm

0.10 inch

L

L1

k

C

1L_ME

Table 87. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data

Symbolmillimeters inches(1)

Min Typ Max Min Typ Max

A 1.600 0.0630

A1 0.050 0.150 0.0020 0.0059

A2 1.350 1.400 1.450 0.0531 0.0551 0.0571

b 0.170 0.220 0.270 0.0067 0.0087 0.0106

c 0.090 0.200 0.0035 0.0079

D 15.800 16.000 16.200 0.6220 0.6299 0.6378

D1 13.800 14.000 14.200 0.5433 0.5512 0.5591

D3 12.000 0.4724

E 15.80v 16.000 16.200 0.6220 0.6299 0.6378

E1 13.800 14.000 14.200 0.5433 0.5512 0.5591

E3 12.000 0.4724

e 0.500 0.0197

L 0.450 0.600 0.750 0.0177 0.0236 0.0295

L1 1.000 0.0394

k 0° 3.5° 7° 0° 3.5° 7°

ccc 0.080 0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Page 148: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Package characteristics STM32F20xxx

148/177 Doc ID 15818 Rev 9

Figure 78. Recommended footprint

1. Drawing is not to scale.

2. Dimensions are in millimeters.

75 51

50760.5

0.3

16.7 14.3

100 26

12.3

25

1.2

16.7

1

ai14906

Page 149: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Package characteristics

Doc ID 15818 Rev 9 149/177

Figure 79. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline

1. Drawing is not to scale.

D1

D3

D

E1

E3

E

e

Pin 1identification

73

72

37

36

109

144

108

1

A A2 A1b c

A1 L

L1

k

Seating plane

C

ccc C0.25 mm

gage plane

ME_1A

Table 88. LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data

Symbolmillimeters inches(1)

Min Typ Max Min Typ Max

A 1.600 0.0630

A1 0.050 0.150 0.0020 0.0059

A2 1.350 1.400 1.450 0.0531 0.0551 0.0571

b 0.170 0.220 0.270 0.0067 0.0087 0.0106

c 0.090 0.200 0.0035 0.0079

D 21.800 22.000 22.200 0.8583 0.8661 0.874

D1 19.800 20.000 20.200 0.7795 0.7874 0.7953

D3 17.500 0.689

E 21.800 22.000 22.200 0.8583 0.8661 0.8740

E1 19.800 20.000 20.200 0.7795 0.7874 0.7953

E3 17.500 0.6890

e 0.500 0.0197

L 0.450 0.600 0.750 0.0177 0.0236 0.0295

L1 1.000 0.0394

k 0° 3.5° 7° 0° 3.5° 7°

ccc 0.080 0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Page 150: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Package characteristics STM32F20xxx

150/177 Doc ID 15818 Rev 9

Figure 80. Recommended footprint

1. Drawing is not to scale.

2. Dimensions are in millimeters.

0.5

0.35

19.917.85

22.6

1.35

22.6

19.9

ai14905c

1 36

37

72

73108

109

144

Page 151: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Package characteristics

Doc ID 15818 Rev 9 151/177

Figure 81. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline

1. Drawing is not to scale.

ccc C

Seating planeC

A A2

A1 c

0.25 mmgauge plane

HD

D

A1L

L1

k

89

88

E HE

45

44

e

1

176

Pin 1identification

b

133

132

1T_ME

ZD

ZE

Table 89. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data

Symbolmillimeters inches(1)

Min Typ Max Min Typ Max

A 1.600 0.0630

A1 0.050 0.150 0.0020 0.0059

A2 1.350 1.450 0.0531 0.0571

b 0.170 0.270 0.0067 0.0106

c 0.090 0.200 0.0035 0.0079

D 23.900 24.100 0.9409 0.9488

E 23.900 24.100 0.9409 0.9488

e 0.500 0.0197

HD 25.900 26.100 1.0197 1.0276

HE 25.900 26.100 1.0197 1.0276

L(2) 0.450 0.750 0.0177 0.0295

L1 1.000 0.0394

ZD 1.250 0.0492

ZE 1.250 0.0492

k 0° 7° 0° 7°

ccc 0.080 0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

Page 152: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Package characteristics STM32F20xxx

152/177 Doc ID 15818 Rev 9

Figure 82. LQFP176 recommended footprint

1. Dimensions are expressed in millimeters.

1T_FP_V1

133132

1.2

0.3

0.5

8988

1.2

4445

21.8

26.7

1176

26.7

21.8

Page 153: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Package characteristics

Doc ID 15818 Rev 9 153/177

Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline

1. Drawing is not to scale.

Seating planeCA2

A4

A3

Cddd

A1 A

e F

F

e

R

A0E7_ME_V2

A

15 1BOTTOM VIEW

Ball A1

D

E

Ball A1

TOP VIEW

Table 90. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data

Symbolmillimeters inches(1)

Min Typ Max Min Typ Max

A 0.460 0.530 0.600 0.0181 0.0209 0.0236

A1 0.050 0.080 0.110 0.002 0.0031 0.0043

A2 0.400 0.450 0.500 0.0157 0.0177 0.0197

A3 0.130 0.0051

A4 0.270 0.320 0.370 0.0106 0.0126 0.0146

b 0.230 0.280 0.330 0.0091 0.0110 0.0130

D 9.950 10.000 10.050 0.3740 0.3937 0.3957

E 9.950 10.000 10.050 0.3740 0.3937 0.3957

e 0.600 0.650 0.700 0.0236 0.0256 0.0276

F 0.400 0.450 0.500 0.0157 0.0177 0.0197

ddd 0.080 0.0031

eee 0.150 0.0059

fff 0.080 0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Page 154: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Package characteristics STM32F20xxx

154/177 Doc ID 15818 Rev 9

6.2 Thermal characteristicsThe maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation:

TJ max = TA max + (PD max x ΘJA)

Where:

TA max is the maximum ambient temperature in °C,

ΘJA is the package junction-to-ambient thermal resistance, in °C/W,

PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),

PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power.

PI/O max represents the maximum power dissipation on output pins where:

PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),

taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application.

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

Table 91. Package thermal characteristics

Symbol Parameter Value Unit

ΘJA

Thermal resistance junction-ambient LQFP 64 - 10 × 10 mm / 0.5 mm pitch

45

°C/W

Thermal resistance junction-ambient WLCSP64+2 - 0.400 mm pitch

51

Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch

46

Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch

40

Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch

38

Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.5 mm pitch

39

Page 155: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Part numbering

Doc ID 15818 Rev 9 155/177

7 Part numbering

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 92. Ordering information schemeExample: STM32 F 205 R E T 6 V xxx

Device familySTM32 = ARM-based 32-bit microcontroller

Product typeF = general-purpose

Device subfamily205 = STM32F20x, connectivity, 207= STM32F20x, connectivity, camera interface, Ethernet

Pin countR = 64 pins or 66 pins(1)

V = 100 pinsZ = 144 pinsI = 176 pins

Flash memory sizeB = 128 Kbytes of Flash memoryC = 256 Kbytes of Flash memoryE = 512 Kbytes of Flash memoryF = 768 Kbytes of Flash memoryG = 1024 Kbytes of Flash memory

PackageT = LQFPH = UFBGAY = WLCSP

Temperature range6 = Industrial temperature range, –40 to 85 °C.7 = Industrial temperature range, –40 to 105 °C.

Software optionInternal code or Blank

Optionsxxx = programmed partsTR = tape and reel

1. The 66 pins is available on WLCSP package only.

Page 156: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Application block diagrams STM32F20xxx

156/177 Doc ID 15818 Rev 9

Appendix A Application block diagrams

A.1 Main applications versus packageTable 93 gives examples of configurations for each package.

Table 93. Main applications versus package for STM32F2xxx microcontrollers

64 pins(1) 100 pins 144 pins 176 pins

Config 1

Config 2

Config 3

Config 1

Config2

Config3

Config 4

Config1

Config 2

Config3

Config4

Config1

Config2

USB OTG FS

OTG FS

- - - X X X - X - X - X -

FS - - - X X X X X X X X X -

USB OTG HS

HS ULPI

X - X X - - - X X - - X X

OTG FS

X X X X - - - X X - - X X

FS X X X X X X X X X X X X X

Ethernet(2)

MII - - - - - X X - - X X X X

RMII - - - - X X X X X X X X X

SPI/I2S2SPI/I2S3

- X - - X X X X X X X X X

SDIO SDIO X X -

SDIO or

DCMI

SDIO or

DCMI

SDIO or

DCMI

X

SDIO or

DCMI

X

SDIO or

DCMI

X X X

DCMI(2)

8-bit Data

- - - X X X X X

10-bit Data

- - - X X X X X

12-bit Data

- - - X X X X X

14-bit Data

- - - - - - - - X - X X X

FSMC

NOR/ RAM Muxed

- - - X X X X X X X X X X

NOR/ RAM

- - - X X X X X X

NAND - - - X X X X X X X X X X

CF - - - - - - - X X X X X X

CAN - X X - X X X - - X X - X

1. Not available on STM32F2x7xx.

2. Not available on STM32F2x5xx.

Page 157: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Application block diagrams

Doc ID 15818 Rev 9 157/177

A.2 Application example with regulator OFF

Figure 84. Regulator OFF/internal reset ON

1. This mode is available only on UFBGA176 and WLCSP64+2 packages.

2. In regulator bypass mode, PA0 is used as power-on reset. The connection between PA0 and NRST can consequently prevent debug connection. If the debug connection under reset or pre-reset is required, the user must manage the reset and the power-on reset separately.

Figure 85. Regulator OFF/ internal reset OFF

1. This mode is available only on WLCSP64+2 package.

REGOFF

VCAP_1

ai18476

VCAP_2

PA0 NRST

Application reset signal (optional)

1.2 V

VDD (1.8 to 3.6 V)

Power-down reset risen after VCAP_1/VCAP_2 stabilization

REGOFF

VCAP_1

VCAP_2

PA0

1.2 V

VDD (1.8 to 3.6 V)

Power-down reset risen before VCAP_1/VCAP_2 stabilization

NRST

IRROFF

VDD VDD

Application reset signal (optional)

VCAP_1/2 monitoringExt. reset controller activewhen VCAP_1/2 < 1.08 V

REGOFF

VCAP_1

ai18477

VCAP_2

NRST

1.2 V

IRROFF

VDD (1.65 to 3.6 V)

VDD

1.2 VVDD

VDD/VCAP_1/2 monitoringExt. reset controller activewhen VDD < 1.65 V and VCAP_1/2 < 1.08 V

VDD

Page 158: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Application block diagrams STM32F20xxx

158/177 Doc ID 15818 Rev 9

A.3 USB OTG full speed (FS) interface solutions

Figure 86. USB OTG FS (full speed) device-only connection

1. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Figure 87. USB OTG FS (full speed) host-only connection

1. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

STM32F20xxx

5V to VDDVolatge regulator (1)

VDD

VBUS

DP

VSS

PA9

PA12

PA11

US

B S

td-B

con

nect

or

DM

OSC_IN

OSC_OUT

ai17295

STM32F20xx

VDD

VBUS

DP

VSS

PA9

PA12

PA11

US

B S

td-A

con

nect

orDM

GPIO+IRQ

GPIOEN

Overcurrent5 V Pwr

OSC_IN

OSC_OUT

ai17296c

Current limiter power switch(1)

Page 159: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Application block diagrams

Doc ID 15818 Rev 9 159/177

Figure 88. OTG FS (full speed) connection dual-role with internal PHY

1. External voltage regulator only needed when building a VBUS powered device.

2. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board.

3. The ID pin is required in dual role only.

4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

STM32F20xxx

VDD

VBUS

DP

VSS

PA9

PA12

PA11

US

B mic

ro-A

B co

nnec

tor

DM

GPIO+IRQ

GPIOEN

Overcurrent

5 V Pwr

5 V to VDDvoltage regulator (1)

VDD

ID(3) PA10

OSC_IN

OSC_OUT

ai17294c

Current limiter power switch(2)

Page 160: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Application block diagrams STM32F20xxx

160/177 Doc ID 15818 Rev 9

A.4 USB OTG high speed (HS) interface solutions

Figure 89. OTG HS (high speed) device connection, host and dual-role in high-speed mode with external PHY

1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F20x with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

2. The ID pin is required in dual role only.

DP

STM32F20xxx

DM

VBUS

VSS

DMDP

ID(2)USB

USB HSOTG Ctrl

FS PHY

ULPI

High speedOTG PHY

ULPI_CLK

ULPI_D[7:0]

ULPI_DIRULPI_STP

ULPI_NXT

not connected

connector

MCO1 or MCO2

24 or 26 MHz XT(1) PLL

XT1

XI

ai16036c

Page 161: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Application block diagrams

Doc ID 15818 Rev 9 161/177

A.5 Complete audio player solutionsTwo solutions are offered, illustrated in Figure 90 and Figure 91.

Figure 90 shows storage media to audio DAC/amplifier streaming using a software Codec. This solution implements an audio crystal to provide audio class I2S accuracy on the master clock (0.5% error maximum, see the Serial peripheral interface section in the reference manual for details).

Figure 90. Complete audio player solution 1

Figure 91 shows storage media to audio Codec/amplifier streaming with SOF synchronization of input/output audio streaming using a hardware Codec.

Figure 91. Complete audio player solution 2

1. SOF = start of frame.

Cortex-M3 coreup to 120 MHz

OTG (host

mode) + PHY

SPI/FSMC

SPI

GPIO

I2S

XTAL 25 MHz

or 14.7456 MHz

USBMass-storage

device

MMC/SDCard

LCDtouchscreen

Controlbuttons

DAC + Audio ampli

File System

Program memory

Audio CODEC

User application

ai16039c

Cortex-M3 coreup to 120 MHz

OTG+

PHY

SPI/FSMC

SPI/FSMC

GPIO

I2SUSB

Mass-storage device

MMC/SDCard

LCDtouchscreen

Controlbuttons

Audio ampli

File System

Program memory

Audio PLL +DAC

User application

ai16040c

SOF

SOF synchronization of input/outputaudio streaming

XTAL 25 MHz

or 14.7456 MHz

Page 162: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Application block diagrams STM32F20xxx

162/177 Doc ID 15818 Rev 9

Figure 92. Audio player solution using PLL, PLLI2S, USB and 1 crystal

Figure 93. Audio PLL (PLLI2S) providing accurate I2S clock

OTG48 MHz

PHY

XTAL 25 MHz

or 14.7456 MHz

ai18412b

I2S<0.04%

accuracy)

DAC + Audio ampli

MCLK outSCLK

MCO1/MCO2

PLLI2Sx N2

PLLx N1O

SC Div

by MDiv by P

Div by Q

up to 120 MHz Cortex-M3 core

up to 120 MHz

Div by R

MCLKin

MCO1PREMCO2PRE

I2S CTL

I2S_MCK = 256 × FSAUDIO

11.2896 MHz for 44.1 kHz12.2880 MHz for 48.0 kHz

I2S_MCK

PLLI2S

/M

M=1,2,3,..,64

1 MHz 192 to 432 MHz

N=192,194,..,432 I2SCOM_CK

PhaseCVCO

/N

/R

CLKIN

Phase lock detector

R=2,3,4,5,6,7I2SD=2,3,4.. 129

ai16041b

Page 163: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Application block diagrams

Doc ID 15818 Rev 9 163/177

Figure 94. Master clock (MCK) used to drive the external audio DAC

1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).

Figure 95. Master clock (MCK) not used to drive the external audio DAC

1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).

I2S_CKI2S controller

I2S_MCK = 256 × FSAUDIO = 11.2896 MHz for FSAUDIO = 44.1 kHz= 12.2880 MHz for FSAUDIO = 48.0 kHz

/(2 x 16)/8

/I2SD

FSAUDIO

I2S_SCK(1) = I2S_MCK/8 for 16-bit stereo

for 16-bit stereo

/(2 x 32)/4

for 32-bit stereo

FSAUDIO

2,3,4,..,129

= I2S_MCK/4 for 32-bit stereo

ai16042

I2SCOM_CK

I2S controller

/(2 x 16)/I2SD FSAUDIO

I2S_SCK(1)

for 16-bit stereo

/(2 x 32)

for 32-bit stereo

FSAUDIO

ai16042

Page 164: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Application block diagrams STM32F20xxx

164/177 Doc ID 15818 Rev 9

A.6 Ethernet interface solutions

Figure 96. MII mode using a 25 MHz crystal

1. fHCLK must be greater than 25 MHz.

2. Pulse per second when using IEEE1588 PTP optional signal.

Figure 97. RMII with a 50 MHz oscillator

1. fHCLK must be greater than 25 MHz.

MCUEthernetMAC 10/100

EthernetPHY 10/100

PLL HCLK

XT1PHY_CLK 25 MHz

MII_RX_CLKMII_RXD[3:0]MII_RX_DVMII_RX_ER

MII_TX_CLKMII_TX_ENMII_TXD[3:0]MII_CRSMII_COL

MDIOMDC

HCLK(1)

PPS_OUT(2)

XTAL25 MHz

STM32

OSC

TIM2 Timestampcomparator

Timer input trigger

IEEE1588 PTP

MII = 15 pins

MII + MDC = 17 pins

MS19968V1

MCO1/MCO2

MCUEthernetMAC 10/100

EthernetPHY 10/100

PLL HCLK

XT1 50MHz

RMII_RXD[1:0]RMII_CRX_DVRMII_REF_CLK

RMII_TX_EN

RMII_TXD[1:0]

MDIOMDC

HCLK(1)

STM32

OSC50 MHz

TIM2 Timestampcomparator

Timer input trigger

IEEE1588 PTP

RMII= 7 pins

RMII + MDC = 9 pins

MS19971V1

/2 or /20synchronous2.5 or 25 MHz 50 MHz

50 MHz

XTAL OSC

Page 165: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Application block diagrams

Doc ID 15818 Rev 9 165/177

Figure 98. RMII with a 25 MHz crystal and PHY with PLL

1. fHCLK must be greater than 25 MHz.

2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.

MCUEthernetMAC 10/100

EthernetPHY 10/100

PLL HCLKXT1PHY_CLK 25 MHz

RMII_RXD[1:0]RMII_CRX_DVRMII_REF_CLK

RMII_TX_EN

RMII_TXD[1:0]

MDIOMDC

HCLK(1)

STM32F

TIM2 Timestampcomparator

Timer input trigger

IEEE1588 PTP

RMII= 7 pins

RMII + MDC = 9 pins

MS19970V1

/2 or /20synchronous2.5 or 25 MHz 50 MHz

XTAL25 MHz OSC

PLL

REF_CLK

MCO1/MC02

Page 166: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Revision history STM32F20xxx

166/177 Doc ID 15818 Rev 9

8 Revision history

Table 94. Document revision history

Date Revision Changes

05-Jun-2009 1 Initial release.

09-Oct-2009 2

Document status promoted from Target specification to Preliminary data.

In Table 6: STM32F20x pin and ball definitions:– Note 4 updated

– VDD_SA and VDD_3 pins inverted (Figure 10: STM32F20x LQFP100 pinout, Figure 11: STM32F20x LQFP144 pinout and Figure 12: STM32F20x LQFP176 pinout corrected accordingly).

Section 6.1: Package mechanical data changed to LQFP with no exposed pad.

01-Feb-2010 3

LFBGA144 package removed. STM32F203xx part numbers removed. Part numbers with 128 and 256 Kbyte Flash densities added.Encryption features removed.

PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPER-RTC renamed to PI8-RTC_AF2.

13-Jul-2010 4

Renamed high-speed SRAM, system SRAM.Removed combination: 128 KBytes Flash memory in LQFP144.

Added UFBGA176 package. Added note 1 related to LQFP176 package in Table 2, Figure 12, and Table 92.

Added information on ART accelerator and audio PLL (PLLI2S).

Added Table 5: USART feature comparison.Several updates on Table 6: STM32F20x pin and ball definitions and Table 8: Alternate function mapping. ADC, DAC, oscillator, RTC_AF, WKUP and VBUS signals removed from alternate functions and moved to the “other functions” column in Table 6: STM32F20x pin and ball definitions.TRACESWO added in Figure 4: STM32F20x block diagram, Table 6: STM32F20x pin and ball definitions, and Table 8: Alternate function mapping.

XTAL oscillator frequency updated on cover page, in Figure 4: STM32F20x block diagram and in Section 2.2.11: External interrupt/event controller (EXTI).

Updated list of peripherals used for boot mode in Section 2.2.13: Boot modes.

Added Regulator bypass mode in Section 2.2.16: Voltage regulator, and Section 5.3.4: Operating conditions at power-up / power-down (regulator OFF).Updated Section 2.2.17: Real-time clock (RTC), backup SRAM and backup registers. Added Note Note: in Section 2.2.18: Low-power modes.

Added SPI TI protocol in Section 2.2.23: Serial peripheral interface (SPI).

Page 167: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Revision history

Doc ID 15818 Rev 9 167/177

13-Jul-20104

(continued)

Added USB OTG_FS features in Section 2.2.28: Universal serial bus on-the-go full-speed (OTG_FS).Updated VCAP_1 and VCAP_2 capacitor value to 2.2 µF in Figure 17: Power supply scheme. Removed DAC, modified ADC limitations, and updated I/O compensation for 1.8 to 2.1 V range in Table 13: Limitations depending on the operating power supply range.

Added VBORL, VBORM, VBORH and IRUSH in Table 17: Embedded reset and power control block characteristics.

Removed table Typical current consumption in Sleep mode with Flash memory in Deep power down mode. Merged typical and maximum current consumption sections and added Table 18: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled), Table 19: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM, Table 20: Typical and maximum current consumption in Sleep mode, Table 21: Typical and maximum current consumptions in Stop mode, Table 22: Typical and maximum current consumptions in Standby mode, and Table 23: Typical and maximum current consumptions in VBAT mode.Update Table 32: Main PLL characteristics and added Section 5.3.11: PLL spread spectrum clock generation (SSCG) characteristics.Added Note 8 for CIO in Table 44: I/O static characteristics.

Updated Section 5.3.18: TIM timer characteristics.

Added TNRST_OUT in Table 47: NRST pin characteristics.Updated Table 50: I2C characteristics.

Removed 8-bit data in and data out waveforms from Figure 45: ULPI timing diagram.

Removed note related to ADC calibration in Table 65. Section 5.3.20: 12-bit ADC characteristics: ADC characteristics tables merged into one single table; tables ADC conversion time and ADC accuracy removed.Updated Table 66: DAC characteristics.

Updated Section 5.3.22: Temperature sensor characteristics and Section 5.3.23: VBAT monitoring characteristics.

Update Section 5.3.26: Camera interface (DCMI) timing specifications.

Added Section 5.3.27: SD/SDIO MMC card host interface (SDIO) characteristics, and Section 5.3.28: RTC characteristics.

Added Section 6.2: Thermal characteristics. Updated Table 89: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data and Figure 81: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline.Changed tape and reel code to TX in Table 92: Ordering information scheme.Added Table 93: Main applications versus package for STM32F2xxx microcontrollers. Updated figures in Appendix A.3: USB OTG full speed (FS) interface solutions and A.4: USB OTG high speed (HS) interface solutions. Updated Figure 92: Audio player solution using PLL, PLLI2S, USB and 1 crystal and Figure 93: Audio PLL (PLLI2S) providing accurate I2S clock.

Table 94. Document revision history (continued)

Date Revision Changes

Page 168: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Revision history STM32F20xxx

168/177 Doc ID 15818 Rev 9

25-Nov-2010 5

Update I/Os in Section : Features.

Added WLCSP66(64+2) package. Added note 1 related to LQFP176 on cover page.

Added trademark for ART accelerator. Updated Section 2.2.2: Adaptive real-time memory accelerator (ART Accelerator™).

Updated Figure 5: Multi-AHB matrix.

Added case of BOR inactivation using IRROFF on WLCSP devices in Section 2.2.15: Power supply supervisor.

Reworked Section 2.2.16: Voltage regulator to clarify regulator off modes. Renamed PDROFF, IRROFF in the whole document.

Added Section 2.2.19: VBAT operation.Updated LIN and IrDA features for UART4/5 in Table 5: USART feature comparison.Table 6: STM32F20x pin and ball definitions: Modified VDD_3 pin, and added note related to the FSMC_NL pin; renamed BYPASS-REG REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5. USART4 pins renamed UART4.Changed VSS_SA to VSS, and VDD_SA pin reserved for future use.

Updated maximum HSE crystal frequency to 26 MHz.

Section 5.2: Absolute maximum ratings: Updated VIN minimum and maximum values and note related to five-volt tolerant inputs in Table 9: Voltage characteristics. Updated IINJ(PIN) maximum values and related notes in Table 10: Current characteristics. Updated VDDA minimum value in Table 12: General operating conditions.Added Note 2 and updated Maximum CPU frequency in Table 13: Limitations depending on the operating power supply range, and added Figure 19: Number of wait states versus fCPU and VDD range.

Added brownout level 1, 2, and 3 thresholds in Table 17: Embedded reset and power control block characteristics.

Changed fOSC_IN maximum value in Table 28: HSE 4-26 MHz oscillator characteristics.

Changed fPLL_IN maximum value in Table 32: Main PLL characteristics, and updated jitter parameters in Table 33: PLLI2S (audio PLL) characteristics.

Section 5.3.16: I/O port characteristics: updated VIH and VIL in Table 44: I/O static characteristics.

Added Note 1 below Table 45: Output voltage characteristics.

Updated RPD and RPU parameter description in Table 55: USB OTG FS DC electrical characteristics.

Updated VREF+ minimum value in Table 64: ADC characteristics.Updated Table 69: Embedded internal reference voltage.

Removed Ethernet and USB2 for 64-pin devices in Table 93: Main applications versus package for STM32F2xxx microcontrollers.

Added A.2: Application example with regulator OFF, removed “OTG FS connection with external PHY” figure, updated Figure 87, Figure 88, and Figure 90 to add STULPI01B.

Table 94. Document revision history (continued)

Date Revision Changes

Page 169: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Revision history

Doc ID 15818 Rev 9 169/177

22-Apr-2011 6

Changed datasheet status to “Full Datasheet”.

Introduced concept of SRAM1 and SRAM2.

LQFP176 package now in production and offered only for 256 Kbyte and 1 Mbyte devices. Availability of WLCSP64+2 package limited to 512 Kbyte and 1 Mbyte devices.

Updated Figure 3: Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package and Figure 2: Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package.

Added camera interface for STM32F207Vx devices in Table 2: STM32F205xx features and peripheral counts.

Removed 16 MHz internal RC oscillator accuracy in Section 2.2.12: Clocks and startup.

Updated Section 2.2.16: Voltage regulator.Modified I2S sampling frequency range in Section 2.2.12: Clocks and startup, Section 2.2.24: Inter-integrated sound (I2S), and Section 2.2.30: Audio PLL (PLLI2S).

Updated Section 2.2.17: Real-time clock (RTC), backup SRAM and backup registers and description of TIM2 and TIM5 in Section : General-purpose timers (TIMx).Modified maximum baud rate (oversampling by 16) for USART1 in Table 5: USART feature comparison.Updated note related to RFU pin below Figure 10: STM32F20x LQFP100 pinout, Figure 11: STM32F20x LQFP144 pinout, Figure 12: STM32F20x LQFP176 pinout, Figure 13: STM32F20x UFBGA176 ballout, and Table 6: STM32F20x pin and ball definitions.

In Table 6: STM32F20x pin and ball definitions,:changed I2S2_CK and I2S3_CK to I2S2_SCK and I2S3_SCK, respectively; added PA15 and TT (3.6 V tolerant I/O).Added RTC_50Hz as PB15 alternate function in Table 6: STM32F20x pin and ball definitions and Table 8: Alternate function mapping.Removed ETH _RMII_TX_CLK for PC3/AF11 in Table 8: Alternate function mapping.Updated Table 9: Voltage characteristics and Table 10: Current characteristics. TSTG updated to –65 to +150 in Table 11: Thermal characteristics.

Added CEXT, ESL, and ESR in Table 12: General operating conditions as well as Section 5.3.2: VCAP1/VCAP2 external capacitor.

Modified Note 4 in Table 13: Limitations depending on the operating power supply range.

Updated Table 15: Operating conditions at power-up / power-down (regulator ON), and Table 16: Operating conditions at power-up / power-down (regulator OFF).Added OSC_OUT pin in Figure 15: Pin loading conditions. and Figure 16: Pin input voltage.Updated Figure 17: Power supply scheme to add IRROFF and REGOFF pins and modified notes.Updated VPVD, VBOR1, VBOR2, VBOR3, TRSTTEMPO typical value, and IRUSH, added ERUSH and Note 3 in Table 17: Embedded reset and power control block characteristics.

Table 94. Document revision history (continued)

Date Revision Changes

Page 170: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Revision history STM32F20xxx

170/177 Doc ID 15818 Rev 9

22-Apr-20116

(continued)

Updated Typical and maximum current consumption conditions, as well as Table 18: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) and Table 19: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM. Added Figure 21, Figure 22, Figure 23, and Figure 24.

Updated Table 20: Typical and maximum current consumption in Sleep mode, and added Figure 25 and Figure 26.

Updated Table 21: Typical and maximum current consumptions in Stop mode. Added Figure 27: Typical current consumption vs temperature in Stop mode.Updated Table 22: Typical and maximum current consumptions in Standby mode and Table 23: Typical and maximum current consumptions in VBAT mode.

Updated On-chip peripheral current consumption conditions and Table 24: Peripheral current consumption.

Updated tWUSTDBY and tWUSTOP, and added Note 3 in Table 25: Low-power mode wakeup timings.

Maximum fHSE_ext and minimum tw(HSE) values updated in Table 26: High-speed external user clock characteristics.

Updated C and gm in Table 28: HSE 4-26 MHz oscillator characteristics. Updated RF, I2, gm, and tsu(LSE) in Table 29: LSE oscillator characteristics (fLSE = 32.768 kHz).Added Note 1 and updated ACCHSI, IDD(HSI, and tsu(HSI) in Table 30: HSI oscillator characteristics. Added Figure 32: ACCHSI versus temperature.

Updated fLSI, tsu(LSI) and IDD(LSI) in Table 31: LSI oscillator characteristics. Added Figure 33: ACCLSI versus temperature

Table 32: Main PLL characteristics: removed note 1, updated tLOCK, jitter, IDD(PLL) and IDDA(PLL), added Note 2 for fPLL_IN minimum and maximum values.

Table 33: PLLI2S (audio PLL) characteristics: removed note 1, updated tLOCK, jitter, IDD(PLLI2S) and IDDA(PLLI2S), added Note 2 for fPLLI2S_IN minimum and maximum values.Added Note 1 in Table 34: SSCG parameters constraint.

Updated Table 35: Flash memory characteristics. Modified Table 36: Flash memory programming and added Note 2 for tprog. Updated tprog and added Note 1 in Table 37: Flash memory programming with VPP.Modified Figure 37: Recommended NRST pin protection.

Updated Table 40: EMI characteristics and EMI monitoring conditions in Section : Electromagnetic Interference (EMI). Added Note 2 related to VESD(HBM)in Table 41: ESD absolute maximum ratings.Updated Table 44: I/O static characteristics.

Added Section 5.3.15: I/O current injection characteristics.

Modified maximum frequency values and conditions in Table 46: I/O AC characteristics.

Updated tres(TIM) in Table 48: Characteristics of TIMx connected to the APB1 domain. Modified tres(TIM) and fEXT Table 49: Characteristics of TIMx connected to the APB2 domain.

Table 94. Document revision history (continued)

Date Revision Changes

Page 171: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Revision history

Doc ID 15818 Rev 9 171/177

22-Apr-20116

(continued)

Changed tw(SCKH) to tw(SCLH), tw(SCKL) to tw(SCLL), tr(SCK) to tr(SCL), and tf(SCK) to tf(SCL) in Table 50: I2C characteristics and in Figure 38: I2C bus AC waveforms and measurement circuit.

Added Table 55: USB OTG FS DC electrical characteristics and updated Table 56: USB OTG FS electrical characteristics.

Updated VDD minimum value in Table 60: Ethernet DC electrical characteristics.

Updated Table 64: ADC characteristics and RAIN equation.Updated RAIN equation. Updated Table 66: DAC characteristics.

Updated tSTART in Table 67: TS characteristics.

Updated R typical value in Table 68: VBAT monitoring characteristics.Updated Table 69: Embedded internal reference voltage.

Modified FSMC_NOE waveform in Figure 54: Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms. Shifted end of FSMC_NEx/NADV/addresses/NWE/NOE/NWAIT of a half FSMC_CLK period, changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKL-

AIV), td(CLKH-NOEH) to td(CLKL-NOEH), and td(CLKH-NWEH) to td(CLKL-

NWEH), and updated data latency from 1 to 0 in Figure 58: Synchronous multiplexed NOR/PSRAM read timings, Figure 59: Synchronous multiplexed PSRAM write timings, Figure 60: Synchronous non-multiplexed NOR/PSRAM read timings, and Figure 61: Synchronous non-multiplexed PSRAM write timings,

Changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKL-AIV), td(CLKH-NOEH) to td(CLKL-NOEH), td(CLKH-NWEH) to td(CLKL-NWEH), and modified tw(CLK) minimum value in Table 74, Table 75, Table 76, and Table 77.

Updated note 2 in Table 70, Table 71, Table 72, Table 73, Table 74, Table 75, Table 76, and Table 77.

Modified th(NIOWR-D) in Figure 67: PC Card/CompactFlash controller waveforms for I/O space write access.

Modified FSMC_NCEx signal in Figure 68: NAND controller waveforms for read access, Figure 69: NAND controller waveforms for write access, Figure 70: NAND controller waveforms for common memory read access, and Figure 71: NAND controller waveforms for common memory write access

Specified Full speed (FS) mode for Figure 89: USB OTG HS peripheral-only connection in FS mode and Figure 90: USB OTG HS host-only connection in FS mode.

Table 94. Document revision history (continued)

Date Revision Changes

Page 172: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Revision history STM32F20xxx

172/177 Doc ID 15818 Rev 9

14-Jun-2011 7

Added SDIO in Table 2: STM32F205xx features and peripheral counts.

Updated VIN for 5V tolerant pins in Table 9: Voltage characteristics.

Updated jitter parameters description in Table 32: Main PLL characteristics.

Remove jitter values for system clock in Table 33: PLLI2S (audio PLL) characteristics.

Updated Table 40: EMI characteristics.Update Note 2 in Table 50: I2C characteristics.

Updated Avg_Slope typical value and TS_temp minimum value in Table 67: TS characteristics.

Updated TS_vbat minimum value in Table 68: VBAT monitoring characteristics.

Updated TS_vrefint mimimum value in Table 69: Embedded internal reference voltage.

Added Software option in Section 7: Part numbering.

In Table 93: Main applications versus package for STM32F2xxx microcontrollers, renamed USB1 and USB2, USB OTG FS and USB OTG HS, respectively; and removed USB OTG FS and camera interface for 64-pin package; added USB OTG HS on 64-pin package; added Note 1 and Note 2.

20-Dec-2011 8

Updated SDIO register addresses in Figure 14: Memory map.Updated Figure 3: Compatible board design between STM32F10xx and STM32F2xx for LQFP144 package, Figure 2: Compatible board design between STM32F10xx and STM32F2xx for LQFP100 package, Figure 1: Compatible board design between STM32F10xx and STM32F2xx for LQFP64 package, and added Figure 4: Compatible board design between STM32F10xx and STM32F2xx for LQFP176 package.

Updated Section 2.2.3: Memory protection unit.

Updated Section 2.2.6: Embedded SRAM.Updated Section 2.2.28: Universal serial bus on-the-go full-speed (OTG_FS) to remove external FS OTG PHY support.In Table 6: STM32F20x pin and ball definitions: changed SPI2_MCK and SPI3_MCK to I2S2_MCK and I2S3_MCK, respectively. Added ETH _RMII_TX_EN atlternate function to PG11. Added EVENTOUT in the list of alternate functions for I/O pin/balls. Removed OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate functions.

In Table 8: Alternate function mapping: changed I2S3_SCK to I2S3_MCK for PC7/AF6, added FSMC_NCE3 for PG9, FSMC_NE3 for PG10, and FSMC_NCE2 for PD7. Removed OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate functions. Changed I2S3_SCK into I2S3_MCK for PC7/AF6. Updated peripherals corresponding to AF12.

Removed CEXT and ESR from Table 12: General operating conditions.

Table 94. Document revision history (continued)

Date Revision Changes

Page 173: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Revision history

Doc ID 15818 Rev 9 173/177

20-Dec-20118

(continued)

Added maximum power consumption at TA=25 °C in Table 21: Typical and maximum current consumptions in Stop mode.Updated md minimum value in Table 34: SSCG parameters constraint.

Added examples in Section 5.3.11: PLL spread spectrum clock generation (SSCG) characteristics.

Updated Table 52: SPI characteristics and Table 53: I2S characteristics.

Updated Figure 45: ULPI timing diagram and Table 59: ULPI timing.

Updated Table 61: Dynamics characteristics: Ethernet MAC signals for SMI, Table 62: Dynamics characteristics: Ethernet MAC signals for RMII, and Table 63: Dynamics characteristics: Ethernet MAC signals for MII.Section 5.3.25: FSMC characteristics: updated Table 70 toTable 81, changed CL value to 30 pF, and modified FSMC configuration for asynchronous timings and waveforms. Updated Figure 59: Synchronous multiplexed PSRAM write timings. UpdatedTable 82: DCMI characteristics.

Updated Table 90: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data.

Updated Table 92: Ordering information scheme.

Appendix A.3: USB OTG full speed (FS) interface solutions: updated Figure 87: USB OTG FS (full speed) host-only connection and added Note 2 , updated Figure 88: OTG FS (full speed) connection dual-role with internal PHY and added Note 3 and Note 4, modified Figure 89: OTG HS (high speed) device connection, host and dual-role in high-speed mode with external PHY and added Note 2.

Appendix A.4: USB OTG high speed (HS) interface solutions:

removed figures USB OTG HS device-only connection in FS mode and USB OTG HS host-only connection in FS mode,updated Figure 89: OTG HS (high speed) device connection, host and dual-role in high-speed mode with external PHY.Added Appendix A.6: Ethernet interface solutions.

Updated disclaimer on last page.

24-Apr-2012 9

Updated VDD minimum value in Section 2: Description.

Updated number of USB OTG HS and FS, modified packages for STM32F207Ix part numbers, added Note 1 related to FSMC and Note 2 related to SPI/I2S, and updated Note 3 in Table 2: STM32F205xx features and peripheral counts and Table 3: STM32F207xx features and peripheral counts.

Added Note 2 and update TIM5 in Figure 4: STM32F20x block diagram.

Updated maximum number of maskable interrupts in Section 2.2.10: Nested vectored interrupt controller (NVIC).

Updated VDD minimum value in Section 2.2.14: Power supply schemes.

Updated Note a in Section : Regulator ON.

Removed STM32F205xx in Section 2.2.28: Universal serial bus on-the-go full-speed (OTG_FS).

Table 94. Document revision history (continued)

Date Revision Changes

Page 174: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Revision history STM32F20xxx

174/177 Doc ID 15818 Rev 9

24-Apr-20129

(continued)

Removed support of I2C for OTG PHY in Section 2.2.29: Universal serial bus on-the-go high-speed (OTG_HS).Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 6: STM32F20x pin and ball definitions and Table 8: Alternate function mapping.

Renamed PH10 alternate function into TIM5_CH1 in Table 8: Alternate function mapping.

Added Table 7: FSMC pin definition.Updated Note 1 in Table 12: General operating conditions, Note 2 in Table 13: Limitations depending on the operating power supply range, and Note 1 below Figure 19: Number of wait states versus fCPU and VDD range.

Updated VPOR/PDR in Table 17: Embedded reset and power control block characteristics.

Updated typical values in Table 22: Typical and maximum current consumptions in Standby mode and Table 23: Typical and maximum current consumptions in VBAT mode.

Updated Table 28: HSE 4-26 MHz oscillator characteristics and Table 29: LSE oscillator characteristics (fLSE = 32.768 kHz).

Updated Table 35: Flash memory characteristics, Table 36: Flash memory programming, and Table 37: Flash memory programming with VPP.

Updated Section : Output driving current.

Updated Note 3 and removed note related to minimum hold time value in Table 50: I2C characteristics.

Updated Table 62: Dynamics characteristics: Ethernet MAC signals for RMII.

Updated Note 1, CADC, IVREF+, and IVDDA in Table 64: ADC characteristics.

Updated Note 3 and note concerning ADC accuracy vs. negative injection current in Table 65: ADC accuracy.

Updated Note 1 in Table 66: DAC characteristics.Updated Section Figure 83.: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline.Appendix A.1: Main applications versus package: removed number of address lines for FSMC/NAND in Table 93: Main applications versus package for STM32F2xxx microcontrollers.

Appendix A.5: Complete audio player solutions: updated Figure 90: Complete audio player solution 1 and Figure 91: Complete audio player solution 2.

Table 94. Document revision history (continued)

Date Revision Changes

Page 175: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx Revision history

Doc ID 15818 Rev 9 175/177

29-Oct-2012 10

Changed minimum supply voltage from 1.65 to 1.8 V.

Updated number of AHB buses in Section 2: Description and Section 2.2.12: Clocks and startup.

Removed Figure 4. Compatible board design between STM32F10xx and STM32F2xx for LQFP176 package.

Updated Note 2 below Figure 4: STM32F20x block diagram.

Changed System memory to System memory + OTP in Figure 14: Memory map.

Added Note 1 below Table 14: VCAP1/VCAP2 operating conditions.Updated VDDA and VREF+ decouping capacitor in Figure 17: Power supply scheme and updated Note 3.Changed simplex mode into half-duplex mode in Section 2.2.24: Inter-integrated sound (I2S).Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and DAC_OUT2, respectively.Changed TIM2_CH1/TIM2_ETR into TIM2_CH1_ETR for PA0 and PA5 in Table 8: Alternate function mapping.Updated note applying to IDD (external clock and all peripheral disabled) in Table 18: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled). Updated Note 3 below Table 20: Typical and maximum current consumption in Sleep mode.Removed fHSE_ext typical value in Table 26: High-speed external user clock characteristics.Updated master I2S clock jitter conditions and vlaues in Table 33: PLLI2S (audio PLL) characteristics.Updated equations in Section 5.3.11: PLL spread spectrum clock generation (SSCG) characteristics.Swapped TTL and CMOS port conditions for VOL and VOH in Table 45: Output voltage characteristics.Updated VIL(NRST) and VIH(NRST) in Table 47: NRST pin characteristics.

Updated Table 52: SPI characteristics and Table 53: I2S characteristics. Removed note 1 related to measurement points below Figure 40: SPI timing diagram - slave mode and CPHA = 1, Figure 41: SPI timing diagram - master mode, and Figure 42: I2S slave timing diagram (Philips protocol)(1).

Updated tHC in Table 59: ULPI timing.

Updated Figure 46: Ethernet SMI timing diagram, Table 61: Dynamics characteristics: Ethernet MAC signals for SMI and Table 63: Dynamics characteristics: Ethernet MAC signals for MII.

Update fTRIG in Table 64: ADC characteristics.

Updated IDDA description in Table 66: DAC characteristics.Updated note below Figure 51: Power supply and reference decoupling (VREF+ not connected to VDDA) and Figure 52: Power supply and reference decoupling (VREF+ connected to VDDA).

Table 94. Document revision history (continued)

Date Revision Changes

Page 176: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

Revision history STM32F20xxx

176/177 Doc ID 15818 Rev 9

29-Oct-201210

(continued)

Replaced td(CLKL-NOEL) by td(CLKH-NOEL) in Table 74: Synchronous multiplexed NOR/PSRAM read timings, Table 76: Synchronous non-multiplexed NOR/PSRAM read timings, Figure 58: Synchronous multiplexed NOR/PSRAM read timings and Figure 60: Synchronous non-multiplexed NOR/PSRAM read timings.Added Figure 82: LQFP176 recommended footprint.

Added Note 2 below Figure 84: Regulator OFF/internal reset ON.

Updated device subfamily in Table 92: Ordering information scheme.Remove reference to note 2 for USB IOTG FS in Table 93: Main applications versus package for STM32F2xxx microcontrollers.

Table 94. Document revision history (continued)

Date Revision Changes

Page 177: ARM-based 32-bit MCU, 150DMIPs, up to 1 MB … · Datasheet − production data ... – LCD parallel interface, 8080/6800 modes CRC calculation unit Clock, reset and supply management

STM32F20xxx

Doc ID 15818 Rev 9 177/177

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOTRECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAININGAPPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com