ari sihvola aalto university -...

47
1 Wave-material Interaction in Electromagnetics: Effects of homogenization of mixtures and classification of complex media responses Ari Sihvola Aalto University Department of Radio Science and Engineering Finland IAS Program HKUST Institute of Advanced Study 6 November 2012 Topics to be discussed… Basics of electromagnetics • Wave interaction with materials Homogenization principles and mixing formulas • Complex material responses: anisotropy, magnetoelectric coupling, bianisotropy • Metamaterials concepts

Upload: others

Post on 22-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Wave-material Interaction in Electromagnetics:

    Effects of homogenization of mixtures and classification of complex media responses

    Ari SihvolaAalto University

    Department of Radio Science and Engineering

    Finland

    IAS Program HKUST Institute of Advanced Study6 November 2012

    Topics to be discussed…

    • Basics of electromagnetics• Wave interaction with materials• Homogenization principles and mixing

    formulas• Complex material responses:

    anisotropy, magnetoelectric coupling, bianisotropy

    • Metamaterials concepts

  • 2

    Introduction: principles of wave-material interaction, basic dispersion models

    Maxwell equations(time-harmonic waves; exp(j t))

    0

    jj

    BD

    DJHBE

    more connections?

  • 3

    Constitutive relations:

    or more complex?

    HE

    BD

    F

    HBED

    Dielectric models for dispersion

  • 4

    Debye model

    j1

    )(''j)(')(

    s

    Debye modelj1

    )( s

    10-2 10-1 100 101 1020

    10

    20

    30

    40

    50

    60

    70

    80

    90

    '''

  • 5

    Lorentz model

    j)(

    220

    2p

    Lorentz model

    10-1 100 101-0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    / 0

    j)(

    220

    2p

  • 6

    Drude model

    j)(

    2

    2p

    Drude model

    10-1 100 101-10

    -5

    0

    5

    10

    / p

    j)(

    2

    2p

  • 7

    Kramers-Kronig relations

    'd'

    )'('PV2)(''

    'd'

    )'('''PV2)('

    ''j');(1)(

    022

    022

    Homogenization principles and mixing formulas for structurally non-uniform

    media

  • 8

    Maxwell Garnett mixing formula

    )(23

    eiei

    eieeeff f

    f e

    eff

    i

  • 9

    2i

    10i 100i

    Maxwell Garnett

    ei

    ei

    eeff

    eeff

    22f

    Bruggeman (symmetric)

    022

    )1(effi

    effi

    effe

    effe ff

  • 10

    Maxwell Garnett

    Bruggeman

    Maxwell Garnett Bruggeman

    10j2i

    100j2i

  • 11

    MG and inverse MG

    Raisin pudding Swiss cheese

    1

    MG and inverse-MG as bounds

    Hashin–Shtrikman bounds

  • 12

    Bounds in the complex plane

    116j2

    e

    i

  • 13

    Aligned ellipsoids

    )()1( eieei

    eeeff,x

    x Nff e

    eff

    depolarization factor !

    i

    Randomly oriented ellipsoids

    zyxj j

    j

    zyxj j

    NNf

    Nf

    ,, eie

    eie

    ,, eie

    ei

    eeeff

    )()(

    3

    )(3

    e

    i

    eff(isotropic!)

  • 14

    zNtN

    axis ratio = at /az

    Maxwell Garnett

    spheres needles disks

  • 15

    Lord Rayleigh mixing formula

    Plasmonic mixtures?

    predictions differ strongly• Maxwell Garnett: a singularity• Rayleigh: two singularities• Bruggeman: complex-valued effective

    permittivity

    0'j

  • 16

    Singularity/complexity map

    Plasmonic inclusions: volume fraction 30%, regular lattice- computational comparison (Comsol Multiphysics)

  • 17

    Anisotropic, bi-anisotropic, and extreme-parameter

    materials

    material constitutive

    relations

    D = E

    B = H

  • 18

    chiral

    PEMC

    Perspectives into complexelectromagnetic materials/surfaces

    • Classification in terms of– sign– magnitude– magnetoelectric cross-coupling– anisotropy– boundary/volume relation

  • 19

    Anisotropy from geometry

    Constitutive relations: bi-anisotropic media

    HE

    BD

  • 20

    ISOTROPIC MEDIA, (2)

    ANISOTROPIC MEDIA, (18)

    BI-ISOTROPIC MEDIA

    , , , (4)

    BIANISOTROPIC MEDIA

    , , , (36)

    Bianisotropy: the word

  • 21

    Bianisotropy

    Bianisotropic constitutive relations

    HEBHED

    jj TT

    arbitary,0)j(j :Reciprocalreal,)j(j :Lossless

    TTTT

    *TTTT*

  • 22

    Classification of bi-anisotropic materials

    Symmetric part:6 parameters

    (RECIPROCAL)

    Dielectric crystal

    Magnetic medium

    Chiral medium

    Cr2O3

    Anti-symmetric part3 parameters

    (NON-RECIPROCAL)

    Magneto-plasma

    Biased ferrite

    Omega medium

    Moving medium

    A. Sihvola, I.V. Lindell (2008), Perfect electromagnetic conductor medium, Ann. der Physik, 17(9-10), 787-802

    Optical activity from geometry

  • 23

    E pe pm

    H pe pm

  • 24

    Chiral slab

    0

    Chiral (handed) media

    chirality parameter (Pasteur parameter)

    HE

    BD

    jj

  • 25

    Tellegen (NRBI) material

    Constitutive relations: bi-isotropic magnetoelectric media

    chirality parameter (Pasteur)

    non-reciprocity parameter (Tellegen)

    = - j

    = + j

    HE

    BD

  • 26

    HANDEDNESS IN MATTER:

    geometry and structure

    Hegstrom & Kondepundi

    Scientific American, Jan. 1990

  • 27

    Giant frog shell

    Marlinspike

    Australian trumpet shell

    Busycon perversum

    Classification of bi-anisotropic materials

    Symmetric part:6 parameters

    (RECIPROCAL)

    Dielectric crystal

    Magnetic medium

    Chiral medium

    Cr2O3

    Anti-symmetric part3 parameters

    (NON-RECIPROCAL)

    Magneto-plasma

    Biased ferrite

    Omega medium

    Moving medium

  • 28

    Chirality dyadic (symmetric)

    + +

    y

    z

    00000000

    j

    y

    xz

    0000000

    j

    Omega medium

  • 29

    RECIPROCITY ?

    Ja JbEaEb

    dVdV ab?

    ba JEJE

    isotropic chiral slab

    Optical activity

    Jb

    Ja

    dVdV abba JEJE

    :reciprocal mediumPasteur

  • 30

    Faraday rotation

    dVdV abba JEJE

    :reciprocal-non smaMagnetopla

    Jb

    Ja

    Igj:typermittivi cAnisotropi

    symm

    B0

    Bi-isotropic media

    chirality parameter (Pasteur)

    non-reciprocity parameter (Tellegen)

    = - j

    = + j

    HE

    BD

    jj

  • 31

    refractive index & propagation factorin a bi-isotropic medium

    2n

    Bi-isotropy:instead of DPS, DNG,…

    positive-definite, negative-definite,

    non-definite materials

    (cf. anisotropy)

  • 32

    FW, FWBW,

    BW

    BW, FW

    FW, BW

    material matrix

    positive definite

    jj

    negative definite

    non-definite

    (indefinite)

    non-definite

    (indefinite)

    NIM handedness

    • non-reciprocal, non-chiral• (Tellegen)

    • reciprocal, chiral• (Pasteur)

    • non-reciprocal, chiral• (general bi-isotropic)

    • reciprocal, non-chiral• (”ordinary” isotropic)

    0,0

    0,00,0

    0,0

    NIM

    (no anisotropy)

  • 33

    znk0-je

    rr

    22

    n

    nn

    nihility! chiral0,0,0

    :EXAMPLEn

    plane wave propagation point of view: bi-isotropic media

    AXION-only: PEMC material

    EHBD MM ,

    HE

    BD

    Function

    ?

  • 34

    Magnetoelectric relations:

    H1EB&)HE(DM

    qMq

    qM

    Mq

    HE

    HE

    BD

    /111

    EH&BD MM

    PEMC material

    PEC:

    000

    BE

    000

    DH

    PMC:

    0M0M BDEH

  • 35

    Reflection from PEMC boundary:

    rrr

    iii

    PS

    PS

    EEE

    EEE

    0EH tantan MBoundary condition:

    Another definition of the PEMC parameter: angle

    PMC2/PEC0

    cotM

  • 36

    i

    i

    i

    i

    r

    r

    MMMM

    M

    P

    S

    P

    S2

    2

    2P

    S

    EE

    2cos2sin2sin2cos

    EE

    1221

    11

    EE

    Reflected components as functions of incident components

    Normal incidence

    incident

    reflected

    rotation angle of the electric field polarization:

    2 arctan M

  • 37

    Materialization of the PEMC surface

    PEC

    Gyrotropically uniaxial layer

    RPEMC

    is

    ip

    sssp

    psppis

    ip

    rs

    rp

    EE

    RRRR

    EE

    EE

    R

    Gyrotropically uniaxial layer:waveguiding (large axial permittivity and

    permavility)non-reciprocal (e.g. ferrite)

    Performance of the PEMC materialization (1)

    t

    z

    t

    z

    101001000

  • 38

    Performance of the PEMC materialization (2)

    t

    z

    t

    z ,

    101001000

    Extreme-parameter materials

  • 39

    DPSENG

    MNGDNG

    MNZ media

    EN

    Z m

    edia

    log

    log

    ”ordinary materials”

    EV

    L m

    edia

    MVL media

  • 40

    nlog

    log

    ”ordinary materials”ZIM

    IZM

    IIM

    ZZM

    MNZ media

    EN

    Z m

    edia

    log

    log

    ”ordinary materials”

    PEC

    ZIM

    EV

    L m

    edia

    MVL mediaIZM IIM

    ZZM?

  • 41

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    0.2

    0.4

    0.6

    0.8

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    0.2

    0.4

    0.6

    0.8

    )}(Re{ 01 rka

    66 10,10

    PEC

    1,1060.0 0.5 1.0 1.5 2.0 2.5 3.0

    0.2

    0.4

    0.6

    0.8

    Scattering by a sphere: the first Mie coefficient

    1,)j1.01( c 1, cc PEC

    Scattering efficiency of spheresmall sphere, ka= 0.1

    resonant sphere, ka = 2

  • 42

    Philosophy of metamaterials

    Metamaterials?

    • Qualitatively new properties, not present in the constituent components

    • Caused by the structure and interactions• More is different—quantity becomes

    quality• Emergence, or at least supervenience• On the other hand: More is less...

    (reductionism)

  • 43

    1 + 1 > 2 or 1 + 1 < 2 ?emergence or reductionism ?

    A. Sihvola (2003): Electromagnetic emergence in metamaterials, in Advances in Electomagnetics of Complex Media and Metamaterials, (S. Zouhdi et al., eds), NATO Science Series, 89, 1-17.

    Metamaterial terminology

    • DNG (double negative media)• NIM (negative index media)• Backward-wave media• NPV (negative-phase-velocity

    media)• Veselago media• Left-handed media

  • 44

    What’s in a name? That which we call a rose by any other word would smell as sweet.

    Vector directions

    < 0:

    (E,H,k) left-handed

    (E,B,k) right-handed

    HBEkBE j

  • 45

    E

    H

    Sk

    E

    H

    Sk

    ”RHM” ”LHM”

    Handedness can be associated with

    • vector triplet of electric field, magnetic field, wave vector

    • polarization of the propagating wave

    • geometrical structure of the medium

  • 46

    Circular / Elliptical polarization

    k

    E(t)

    Handedness of circular polarization

    temporally RCP, spatially LCP !

    http://www.tkk.fi/Yksikot/Sahkomagnetiikka/kurssit/animaatiot/ymppolar.html

  • 47

    Handedness in matter: geometry and structure:

    chirality

    References• A. Sihvola: Electromagnetic mixing formulas and applications, IEE

    Publishing, London, 1999• I.V. Lindell, A.H. Sihvola: Realization of the PEMC boundary. IEEE Trans.

    Ant. Propagation, 53(9), pp. 3012-3018, September 2005• I.V. Lindell, A.H. Sihvola: Electromagnetic boundary and its realization with

    anisotropic metamaterial, Physical Review E, 79, 026604, 2009• A. Sihvola, I.V. Lindell: Perfect electromagnetic conductor medium. Annalen

    der Physik (Berlin), 17(9–10), pp. 787-802, 2008• A. Sihvola: Electromagnetic emergence in metamaterials. In (S. Zouhdi, A.

    Sihvola, M. Arsalane, editors). NATO Science Series: II, 89, pp. 1-17, Kluwer, Dordrecht, 2003

    • A. Sihvola: Metamaterials in electromagnetics. Metamaterials, 1, pp. 2–11, 2007

    • A. Sihvola: Metamaterials: a personal view. Radioengineering, 18(2), Part I, pp. 90-94, June 2009

    • A. Sihvola, I.V. Lindell, H.Wallén, P. Ylä-Oijala: Material realizations of Perfect Electric Conductor objects. ACES Journal, 25(12), 1007-1016, 2010