area moment of inertia

5
1 x y ΔA = = ydA k kydA R Consider a beam of uniform cross- section 1 ΔF=kyΔA = = dA y k dA ky M 2 2 Moment of Inertia of an Area •Geometrical property and depends on its reference axis. Î the smallest value occurs at the axis passing 2 Î the smallest value occurs at the axis passing through the centroid. •It measures the ability to resist bending. Î the larger the moment of inertia the less bending will occur z Moment of Inertia of an Area dA y I A x = 2 dA x I A y = 2 Moment of Inertia: 3 y x y r x dA r J A z = 2 Polar Moment of Inertia: dA y x J A z + = ) ( 2 2 y I x I z J + = y x dy dx Moment of Inertia of an Area by integration y x y dy dA=ydx y 4 x y dA y dI x 2 = dA x dI y 2 = x dA x dI y 2 = dx dA y dI x 2 = x y dy dA=(a-x)dy x a y Calculating I x : Find the moment of inertia about the x axis of the following figure: 5 bdy dA = bd dI 2 Area Moment of Inertia (Rectangular Area) y 6 bdy y x dI 2 = 3 3 1 2 0 bh dy y h b x I = = b x dy h y

Upload: czar-manuel-m-rosuello

Post on 27-Apr-2015

1.313 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Area Moment of Inertia

1

x

yΔA

∫ ∫== ydAkkydAR

Consider a beam of uniform cross-section

1

ΔF=kyΔA ∫ ∫== dAykdAkyM 22

Moment of Inertia of an Area

•Geometrical property and depends on its reference axis.

the smallest value occurs at the axis passing

2

the smallest value occurs at the axis passing through the centroid.

•It measures the ability to resist bending.the larger the moment of inertia the less

bending will occur

z

Moment of Inertia of an Area

dAyIA

x ∫= 2

dAxIA

y ∫= 2

Moment of Inertia:

3

y

x

y

rx dArJ

Az ∫= 2

Polar Moment of Inertia:

dAyxJA

z ∫ += )( 22

yIxIzJ +=

y

x dydx

Moment of Inertia of an Area• by integration

y

xy

dy

dA=ydx

y

4

x

y

dAydI x2=

dAxdI y2=

x

dAxdI y2=

dx

dAydI x2=

x

y

dy

dA=(a-x)dy

x

a

Calculating Ix:

Find the moment of inertia about the x axis of the following figure:

5

bdydA =

bddI 2

Area Moment of Inertia (Rectangular Area)

y

6

bdyyxdI 2=

3312

0 bhdyyh bxI =∫=

b

x

dyh

y

Page 2: Area Moment of Inertia

2

Moment of Inertia (Circular Area)y

du

xO

ur

ududA π2=

dAudJO2=

7

∫ ∫ ∫=== r r duuuduuodJoJ0 0

32)2(2 ππ

ududA π2=

4

2rJO

π=

The distance kx is referred to as the radius of gyration of the area with respect to the x-axis.

2y A

Radius of Gyration

8

AIk

AkI

xx

xx

=

= 2

x

kx

y A

AkI 2

The distance ky is referred to as the radius of gyration of the area with respect to the y-axis.

Radius of Gyration

9

x

ky

AI

k

AkI

yy

yy

=

= 2 AkJ 2

The distance ko is referred to as the radius of gyration of the area with respect to the x-axis.

Radius of Gyration

y

A

10

AJk

AkJ

OO

OO

=

=

xko

Find the moment of inertia of the h d d

y

100 mm

y2 = 100x

Example A

11

shaded area about the x-axis.x

100 mm

dAyIA

x ∫= 2

dyxyIx )100(100100

2 −= ∫−

dyI )100(2

100 2

y

y

y2 = 100x

Solution

12

dyyyIx )100

100(100100

2 −= ∫−

461067.26 mmxIx =ANSWER:

x

Page 3: Area Moment of Inertia

3

Find the moment of inertia of the h d d

y

75 mm

Example B

13

shaded area about the y-axis.

x

x2 = 25y

dAxIA

y ∫= 2

dxyxIy )225(750

2 −= ∫

x 2

yx

Solution

14

dyxxIy )25

225(750

2 −= ∫

461066.12 mmxIy =ANSWER:x

x2 = 25y

Determine the moment of inertia of the

y

Example C

15

shaded area about the x-axis.

x

100 mm

y2 = 100 - x

dAyIA

x ∫= 2

dyyyIx

2100

2∫=

y

Solution

16

dyyIx ∫= 100

4

431020 mmxIx =ANSWER:x

yy2 = 100 - x

Find the moment of inertia of the shaded

y

y = 2 sin x

Assignment:

17

inertia of the shaded area about its vertical centroidal axis.

x0 π

Moments of Inertia of Common Areas

18

Page 4: Area Moment of Inertia

4

Parallel Axis Theoremy’

yx’

a

dAx

19

x’

x

b y’

C

d

r

z’

dAy

x

z

Inertia of the shaded area about the x’ axis isdAyI

AX ∫= 2

' )'(

Since y’ = y + b, thendAbyI

AX ∫ += 2

' )(

∫∫∫ ++=AAAdAbydAbdAy 22 2

20

2' AbII XX +=

In a similar manner, it can be shown that2

' AaII yy +=

Since thenIIJ yxz ,''' +=)()( 22

' baAIIJ yxz +++=2' AdJJz z +=

It follows the same concept used in composite figures for First Moments!!!

Moment of Inertia (Composite Area)

21

∑=+++=n

iiTotalAxisSpecified IIIII ...321)(

• The moment of inertia of a composite area A about a given axis is obtained by adding the moments of inertia of the component areas A1, A2, A3, ... , with respect to the same axis.

Find the moment of inertia of the

0.9 m

Example D

22

of inertia of the composite area about the x-axis.

x

1.5 m

1.8 m

Components:

21 xxx III +=2

iixixi dAII +=where0.9 m

Solution

23

22

222 dAII xx +=

12

111 dAII xx +=PARALLEL AXIS THEOREM1.5 m

1.8 m

423

1 66085.22

)8.1)(9.0)(8.1(36

)9.0)(8.1( mIx =+=

23

1 )8.1(236bhbhI x +=

21 xxx III +=Solution

24468585.4 mIx =ANSWER:

423

2 025.2)75.0)(5.1)(8.1(12

)5.1)(8.1( mIx =+=

23

2 )75.0(12

bhbhI x +=

Page 5: Area Moment of Inertia

5

Determine the radius of gyration of the shaded

y

100 mm

Example E

25

of the shaded area with respect to y-axis.

100 mm

100 mm

21 yyyT III +=2

iiyiyi dAII +=where100 mm

y

100 mm

Solution

26

Components:

623

1 1067.163

100236

xbhbhI y =⎟⎠⎞

⎜⎝⎛+=

PARALLEL AXIS THEOREM

64

2 1027.398

)100( xI y ==π

2111 dAII yy +=

yy II =2

1

2

21 yyyT III += 61094.55 xIyT =

21 AAAT +=T

yTAI

yk =Radius of Gyration

32

107125)100()100)(200( xA =+=π

Solution

27

1071.2522

xAT =+=

mmxxky 65.461071.251094.55

3

6==

ANSWER: mmky 65.46=

Obtain the moment of inertia of the composite area

y

75 mm

50 mm

150 mm

Example F

28

composite area about the y-axis100 mm

60 mm

321 yyyyT IIII −+=2

iiyiyi dAII +=where

PARALLEL AXIS THEOREM

y

75 mm

50 mm

100 mm

150 mm Solution

29

Components:

PARALLEL AXIS THEOREM

1

2

3

2111 dAII yy +=

yy II =2

2111

311

1 12dhbhbI y +=

2222

322

2 12dhbhbI y +=

23

24

3 28drrI y

ππ+=2

333 dAII yy +=

60 mm

623

1 1075.168)75)(150)(150(12

)150)(150( xIy =+=

623

2 101875.267)5.187)(100)(75(12

)75)(100( xIy =+=

Solution

30

6224

3 10447.25)60(2

)60(8

)60( xIy =+=ππ

46321 105.410 mmxIIII yyyyT =−+=

ANSWER:46105.410 mmxI yT =