arabs real time physics

Upload: joe-nahhas

Post on 29-May-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Arabs Real Time Physics

    1/61

    Arabs real time physics(I/O) 0 = 0 + [(I O)/O] 0Quantum = classical + relativistic

    [email protected]

    I am the greatest physicist of all time since July 4 th 1973

    Page 1

    mailto:[email protected]:[email protected]
  • 8/9/2019 Arabs Real Time Physics

    2/61

    Chapter One

    Arabs Real time physics: We can not see or measure something that had nothappened. We can only see and measure something that had happened. What wesee and measure in not what happened. We measure in present time an eventthat happened in past time. That is we measure past events in present timePresent time = present timePresent time = past time + [present time past time]Present time = past time + time difference

    Real time = event time + time delayReal time physics = Event time physics + time delays physicsTime dependent measurements = time independent measurements +[Time dependent measurements time independent measurements]

    Relative = absolute + [relative absolute]Measured = actual + [measured actual]

    In common Terms: Image = object + [Image object]I = O + (I O)I/O = O/O + (I O)/OI/O = 1 + (I O)/O

    In mathematical terms:

    Real time scaleReal time = event time + [real time event time] = t + ( t)/t = t/t + ( t)/t/t = 1 + ( t)/t

    Real time distance scale

    Measured distance = actual distance + [measured distance actual distance]Or, r = r0 + (r r0)And r/r0 = r0/r0 +(r r0)/r0And r/r0 = 1+(r r0)/r0And (r/r0) 0= 0+ [(r r0)/r0] 0

    Page 2

  • 8/9/2019 Arabs Real Time Physics

    3/61

    Real time Velocity Scale v

    With r = r0 + (r r0)Divide by t

    Then r/t = r0/t+ (r/t r0/t)And v = v0 + (v v0)

    Real time Angular velocity scale

    With v = v0 + (v v0)Divide by r0

    Then v/ r0 = v0/r0 + (v/r0 v0/ r0)And = 0 + ( 0)

    In 1969 there was a man on the moon. In 1969 I finished 5th grade. In1969 I knew all need to be known about circles in 5 th grade arithmetic.

    I knew that the circumference of a circle C = 2 r0 where r0 is the radius.In 1969 I knew about circular speed v0 = 2 r0/T where T0 is the period ofrotation. Also, in 1969 I knew about angular speed 0 = 2 /T0 = (v0/ r0).

    Or C = 2 r0; v0 = 2 r0/T0; 0 = 2 /T0 = (v0/ r0)

    Angular velocity is 0 = 2 /T0 = (v0/r0)In arc second per century 0 = (v0/r0) (180/ ) [36526/T0 (days)] (3600)

    .Page 3

  • 8/9/2019 Arabs Real Time Physics

    4/61

    If 1= 1

    2 = 23 = 3

    Then we can write anything that is equal to itself as equal to itself like:Visual = VisualActual = actual

    - Actual = - actual----------------------- Add

    Visual = Actual + (Visual actual)

    Divide by actual

    Visual/actual = Actual/actual + (Visual actual)/actual

    Or

    Visual/actual = 1 + (Visual actual)/actualImage/object = 1 + (Image object)/object

    I/O = 1+ (I O)/O

    We do not see object O but we see Image I. If we to look at planet Mercuryfrom Earth and not from the Sun, then we are not looking at 0 = 2 /T =(v0/r0) but we are looking:

    At 0 I/O = 1 0+ [(I O)/O] 0Or 0 I/O = 0+ [(I O)/O] 0

    The visual illusion and Modern Physicists confusion is: [(I O)/O] 0Where I is Mercury Sun distance = 58,200,000 kilometers = r mAnd O is Earth Sun distance = 149,600,000 kilometers = r e

    Page 4

    Planet

    r

    Sun

  • 8/9/2019 Arabs Real Time Physics

    5/61

    The Visual Illusions and modern Physicists confusion of Planet Mercury is:[(I O)/O] 0 = [(r m r e)/ r e] 0

    Multiplying by (t/t) = 1[(I O)/O] 0 = [(r m/t r e/t)/ r e/t] 0

    Then [(I O)/O] 0 = [(v m v e)/ v e] 0

    [(I O)/O] 0 = [(r m r e)/ r e] 0 = [(r m r e)/ r e](v0/r0)[(I O)/O] 0 = [(v m v e)/ v e] 0 = [(v m v e)/ v e](v0/r0)With v0 = v mAnd r0 = r mCopernicus Illusion[(I O)/O] 0 = [(r m r e)/ r e](v m/r m) [(180/) (3600) (26526/T m)]Or Galileo Illusion; r m = v m T m; r e = v e T e[(I O)/O] 0 = [(v m T m v e T e)/ v e T e](v m/r m) [(180/) (3600) (26526/T m

    Tyco Brahe: [(r m r e)/ r e]=[(r m /t) (r e/ t)]/ (r e/t) = (v m v e)/ v e[(I O)/O] 0 = [(v m v e)/ v e](v m/r m) [(180/) (3600) (26526/T m)]

    Johannes Kepler: Keplers law:

    Of: a/T = k = constantOr, a1/ T1 = a2/ T2

    Or, a1/ a2 = (T1/ T2)2/3

    And (a1 - a2)/ a2 = (T1/ T2)2/3 1Or (am a e)/ a e = (Tm/ Te) 2/3 1[(I O)/O] 0 = [(r m r e)/ r e](v m/r m) [(180/) (3600) (26526/T m)]Or[(I O)/O] 0 = [(v m T m v e T e)/ v e T e](v m/r m) [(180/) (3600) (26526/T mOr[(I O)/O] 0 = [(v m v e)/ v e](v m/r m) [(180/) (3600) (26526/T m)]Or[(I O)/O] 0 = [(Tm/ Te) 2/3 1] (v m/r m) [(180/) (3600) (26526/T m)]

    Then Urbain Jean Joseph Le Verrier cameThe angular velocity of Mercury around the Sun is: m' = v m /r mAnd 0 = (v m /r m) (180/) (3600) (26526/Tm); Tm = 88 days

    Page 5

  • 8/9/2019 Arabs Real Time Physics

    6/61

    If it is measured for planet Mercury from the sun thenThen it is m' = v m /r m

    If planet Mercury around the sun measured from earth then =Then m' (Earth) = (v m + v e)/r m

    And m' (Earth) = v m /r m + v e /r mAnd not v m /r m

    Le Verrier [1] mistake is: v e /r mThe angular speed delay is: v*e /r mOr, [(v e/v m) (v m /r m)]Taking into account Earth rotation v eLeverrier mistake: Then the angular speed delay:

    Is: v e /r m = [v* e /r m +/- v e /r m]

    In arc second per century multiplying by [(180/) (3600) (26526/T)][(I O)/O] 0= [(v* e +/- v e) /r m] [(180/) (3600) (26526/T)][(I O)/O] 0= [(v* e +/- v e) /v m) (v m /r m)] [(180/) (3600) (26526/T)]

    Page 6

    SM

    E

  • 8/9/2019 Arabs Real Time Physics

    7/61

    [(I O)/O] 0 = [(r m r e)/ r e](v m/r m) [(180/) (3600) (26526/T m)]Or[(I O)/O] 0 = [(v m T m v e T e)/ v e T e](v m/r m) [(180/) (3600) (26526/T mOr[(I O)/O] 0 = [(v m v e)/ v e](v m/r m) [(180/) (3600) (26526/T m)]Or[(I O)/O] 0 = [(Tm/ Te) 2/3 1] (v m/r m) [(180/) (3600) (26526/T m)]Or[(I O)/O] 0= [(v* e +/- v e) /v m) (v m /r m)] [(180/) (3600) (26526/Tm)]

    When Newton came with F = - GmM/rPhysicists calculated: ' c m = v c m/r;Angular velocity with respect to center of massAnd Astronomers observed: ' s = v s/rAngular velocity with to the sun

    And v c m = [GM/ (m + M) a]And v s = (GM/a)And (' cm - ' s) /' s = [(2 /T c m) - (2 /T s)]/ (2 /T s)

    = (T c m/T s) - 1 = (v s/v c m) 1

    = [ (GM/a)] x { [(m + M) a/ GM]} - 1= [(m + M)/M] - 1= [1 + (m/M)] - 1 1 + (m/2 M) 1 m/2 M

    And (' cm - ' s) /' s (m/2 M)And (' cm - ' s) / ' s = (2 /T s) (m/2 M)And [(' cm - ' s) ] T s = (m/ M)Multiplying by [(180/) (3600) (26526/T m)][(I O)/O] 0 = ( m/M) [(180/) (3600) (26526/T m)]Nicoklaus CopernicusDistance Illusion[(I O)/O] 0 = [(r m r e)/ r e](v m/r m) [(180/) (3600) (26526/T m)]Or GalileosVelocity Illusion[(I O)/O] 0 = [(v m T m v e T e)/ v e T e](v m/r m) [(180/) (3600) (26526/T mOr Tyco Brahes[(I O)/O] 0 = [(v m v e)/ v e](v m/r m) [(180/) (3600) (26526/T m)]Johannes Kepler Period Illusion[(Tm/ Te) 2/3 1] (v m/r m) [(180/) (3600) (26526/T m)]Or Le Verrier Frame Illusions[(I O)/O] 0= [(v* e +/- v e) /r m) [(180/) (3600) (26526/T m)]Or Newtons Inverse Square force mass Illusion[(I O)/O] 0 = ( m/M) [(180/) (3600) (26526/T m)]

    Page 7

  • 8/9/2019 Arabs Real Time Physics

    8/61

    Newton said there is gravity Force F = -GmM/r whose solution is this

    Fig. 1. Newtons gravitational law

    And r (, t) = [a (1-)/ (1+ cosine )]

    Newton equation is a solved wrong for 350 years

    Newton's Gravitational Equation is: F = -GmM/rWith d (m r)/dt - (m r) ' = -GmM/r (1)And d (mr')/d t = 0 (2)

    The solution is notAnd r (, t) = [a (1-)/ (1+cos)]But this solution

    Real time solution is: r (, t) = [a (1-)/ (1+ cosine )] [ (r)+ (r)] t

    "Apparent advance of perihelion"

    [(I O)/O] 0 = (-720x36526x3600/T) {[ (1- )]/ (1-) } x[(v+ v*)/c] arc second per century

    Proof: All there is in the Universe is objects of mass m moving in space (x, y, z) at alocation r = r (x, y, z) = r [length, width, height].The state of any object in the Universe can be expressed as the product

    S= m

    r; State = mass x location:

    P = d S/d t = m (d r/d t) + (dm/d t) r = Total moment= change of location + change of mass= m v + m' r; v = velocity = d r/d t; m' = mass change rate

    Page 8

    Planet

    r

    Sun

  • 8/9/2019 Arabs Real Time Physics

    9/61

    F = d P/d t = dS/dt = Total force

    = m (dr/dt) +2(dm/d t) (d r/d t) + (dm/dt) r

    = m + 2m'v +m" r; = acceleration; m'' = mass acceleration rate

    In polar coordinates system

    Location = r = r r (1)

    Velocity = v = r' r (1) + r ' (1)

    Acceleration = = (r" - r') r (1) + (2r'' + r ") (1)

    F = m + 2m'v +m" r

    F = m [(r"-r') r (1) + (2r'' + r ") (1)]+2m'[r' r (1) + r ' (1)] ++ (m" r) r (1)

    F = [d (m r)/dt - (m r) '] r (1)

    + (1/mr) [d (mr')/d t] (1)

    F = F1 + F2

    F1 = [d (m r)/dt - (m r) '] r (1)

    F2 = (1/mr) [d (mr')/d t] (1)

    Newtons force law is F1 = [-GmM/r] r (1)

    Kepler's force law is:

    F2 = (1/mr) [d (mr)/d t] (1) = 0

    If m is constant then d (mr)/d t = 0; and d (r)/d t = 0

    Or, r = h = 2 a b/T; a = mean distance from sun and is called semimajor axis and b is the semi minor axis.

    Page 9

  • 8/9/2019 Arabs Real Time Physics

    10/61

    And the motion of a planet m around the Sun M measured in real time is a rotating ellips

    Page 10

    r

    Sun

    Mercury

    M

    m

  • 8/9/2019 Arabs Real Time Physics

    11/61

    Tyco Brahe Logged observational Data of Planets P motion around the Sun S andthen Kepler stated the areal velocity law: If Planet p observed from the sun then trajectory of planet p will cut equal areas in equal times.

    Page 11

    A

    AA

    A

    S

    A

    A

    A

    S

    T

    T

    TTT

    T

    T

    P

    P

  • 8/9/2019 Arabs Real Time Physics

    12/61

    When the areas size A are sliced equally it was found that the times spent byplanets orbiting around the Sun and making areas A each are equal also.Or, r (0) ' (0) = r (1) ' (1) = r (2) ' (2) = r (3) ' (3) = --

    = location x [angular speed] = constant= Areal velocity

    If r '= hThen differentiating with respect to timeThen d (r ')/ d t= d h/ d tAnd 2 r r + r = 0Or 2 (r /r) = - (/)

    The r = r0 e t

    And = 0 e 2 t

    With r = r0 e t

    In real time r (n) = r (0) e t

    With r (0) ' (0) = r (1) ' (1)Then ' (1) = [r (0)/ r (1)]' (0)

    And ' (1) = {[e 2 t] ' (0)And (1) = {[cosine 2 t + sine 2 t] 1} ' (0) (1) = (x) + (y)

    = [cosine 2 t + sine 2 t] ' (0) (x) = [cosine 2 t] ' (0) (x) = [1 2 sine t] ' (0)

    (x) - ' (0) = - 2' (0) sine t

    W = (x) - ' (0) = - 2' (0) sine t= -2(2) [ (1-)]/T (1-) ] sine tAnd ' (0) = h/r (0) = 2 a b/T a = 2 (1-)]/T (1-)

    W = - 4 ) [ (1-)]/T (1-) ] sine t

    If this apsidal motion is to be found as visual effects, thenWith, v = spin velocity; v* = orbital velocityAnd v/c = (v* + v)/c = tan t

    W = -4 [ (1-)]/T (1-) ] sine {Inverse tan [(v* + v)/c]} radians

    Multiplication by 180/ to change to degrees

    W = (-720/T) {[ (1-)]/ (1-) } sine {Inverse tan [(v* + v)/c]} DegreeAnd multiplication by 1 century = 36526 days and using T in days

    Page 12

  • 8/9/2019 Arabs Real Time Physics

    13/61

    W (ob) = (-720x36526/Tdays) {[ (1-)]/ (1-) } xsine {Inverse tan [(v* + v)/c]} degrees/100 years

    ApproximationsWith v

  • 8/9/2019 Arabs Real Time Physics

    14/61

    Where v* (p) = [G M / (m + M) a (1-/4)] [GM/a (1-/4)];m

  • 8/9/2019 Arabs Real Time Physics

    15/61

    These two equations give an axial rotation rate:One: = (m/ M) (180) [36526/T] [3600] arc second/100 years

    = 43.0344 seconds of arc / century for MercuryTwo: ' = - 720 [36526/T] (3600) (1 - )/ T (1 - ) (v/c) arcsecond/100 years

    = 43.0" seconds of arc /century for Mercury

    Solution:With m = constantThen d r/dt - 'r = - k/ r (1)And d (r')/d t = 0 (2)From (2) d (r')/d t = 0; r' = hFrom (1), ' d r/ d - 'r = - k/ mrAnd ' [d r/ d - r] = - k/ mrAnd d r/ d - r = - (k/mh) r

    And d r/ d - r [1 - (k/mh)] = 0And r (, 0) = r (0, 0) e { [1 - (k/mh)]}

    From (2) d (r')/d t = 0; r' = hThen 2rr'' + r'' = 0Dividing by r'

    We get 2 (r'/r) + (''/') = 0And 2 (r'/r) = - ''/' = 2 t

    And r = r (0, 0) e { [1 - (k/mh)]}e t

    And ' = ' (, 0) e- 2 tOr r = r (0, 0) e { [1 - (k/mh)]}+ t

    And ' = ' (0, 0) e-2 [{ [1 - (k/mh)]} + t]

    And ' = ' (0, 0) e-2 [{ [1 - (k/mh)]} + t]And ' = (' (0, 0) {cosine 2 [{ [1 - (k/mh)]} + t]

    - sine 2 [{ [1 - (k/mh)]} + t]}

    And ' - ' (0, 0) = - 2 ' (0, 0) sine [{ [1 - (k/mh)]} + t]And ' = - 2 ' (0, 0) sine [{ [1 - (k/mh)]} + t]If k = Gm M (1 - ); h = 2 a b/T

    Then: k/mh = Gm M a (1 - )/m 4 a b/TAnd k/mh = GM T (1 - )/4 a b; multiply by (a/a)Then [a (1 - )/ b] [GM T/4 a] = [GM T/4 a]

    Then ' = - 2 ' (0, 0)] sine [{ [1 - (GM T/4 a)]} + t]Taking Kepler's: GM T/4a = 1

    Page 15

  • 8/9/2019 Arabs Real Time Physics

    16/61

    Then ' = - 2 ' (0, 0) sine tAnd ' (0, 0) = h/r = 2ab/Ta (1 - )

    = 2a (1 - )/Ta (1 - ) = 2 (1 - )/T (1 - ) And ' = - 4 (1 - )/ T (1 - ) sine tWith T = arc tan v/c

  • 8/9/2019 Arabs Real Time Physics

    17/61

    Chapter two

    Nuclear Gravity F = (-GmM/r) ek/r

    With d (m r)/dt (m r) ' = [-GmM/r] e k/ r Nuclear gravity Equation (1)And (mr')/d t = 0 Kepler's Areal Velocity (2)

    (2): d (mr')/d t = 0Then mr' = constant; if m is taken as constant then r' = h

    And (1): d r/dt - r ' = [-GmM/r] ek/rLet m r =1/uThen d r/d t = -u'/u

    = - (1/u) (') d u/d = (- '/u) d u/d = - h d u/d

    And d r/dt = -h'du/d= - hu [du/d]

    With d (m r)/dt - (m r) ' = [-GmM/r] ek/r Nuclear Gravity (1)

    With ek/r

    1+ k/r; k/r

  • 8/9/2019 Arabs Real Time Physics

    18/61

    Then, r = 1/u = (GM/ h) + A cosine If, T/ a = 4/ G (M +m) NewtonsThen, [1 GMk/h] = (GMT/4a) = [M/ (M + m)]= 1/ [1 + (m/M)] 1/ [1 + (m/2M)] = 1 (m/ 2M)And [1 GMk/h]/ (M/ h)]/ {1 + cosine { [1 - GMk/h]}

    = a (1- )/ [1 + cosine { [1 (GMk/h)]} = a (1- )/ {[1 + cosine [(1 m/2M) ]}= a (1- )/ [1 + cosine ( )]And 2 = 2 (m/ 2M) = (m/M)If Newtons law were to be F = - Gm (M + m)/rThe 2 = 2 [m/ 2(M + m)] = [m/ (m + M)]

    Frequency GamesWhat is the accumulated value of 2 f per century for planet mercury seenfrom Earth?The angular frequency is = 2 f

    How I would see of planet mercury turning around the sun from earth?The answer is there will be a frequency change ofW = 2 f [v* m - v*e]/v* e; radians per secondWhere v*e = Earth orbital velocity around the Sun = 29.8 km/secAnd v e = Earth spin speed = 0.465 km/secAnd v* m = Mercury orbital velocity around the Sun = 47.9 km/secWith f = 1/T; f = frequency; T = Period = 88 daysIf W is wanted in degrees multiply by: 180/If W is wanted in degree per century multiply by (180/) x (36526 days/ T)If W is wanted in arc second per century multiply by

    (180/) x (36526 days/ T) x 3600W = [2 f [(v* m - v*e)/v* e] x (180/) x [36526 days/ (T days)] x 3600With f = 1/T (seconds)W = [360 x 3600 x (36526/T (days)] [1/T (seconds)] [(v* m - v*e)/v* e]

    W = [360 x 3600 x (36526/T (days)] [1/ 24 x 3600 x T (days)] [(v* m - v*e)/v* e]W = 15 x (36526/T (days)] [(v* m - v*e)/v* e][(I O)/O] 0 =15 x (36526/T (days)] [(v* m - v*e)/v* e]For MercuryW = 15 x [36526/ (88)] [(47.9 29.8)/29.8] = 43.0 arc second per century

    The conclusion isWith = 2 f = 2 /T angular frequency in event timeAnd (real time) = (event time) + = (real time) - (event time)= 2 f [(v* m - v*e)/v* e]= 2 f Z; Z = [(v* m - v*e)/v* e]

    = red shiftPage 18

  • 8/9/2019 Arabs Real Time Physics

    19/61

    And = 2 f (1 + Z)The Advance of Planet Mercury Perihelion is2 f Z = 2 Z/ T = (2 /T) [(v* m - v*e)/v* e]In arc seconds per century: Multiply by: (180/) [36526/T (days)] (3600)And = [2 / T (seconds)][(v* m - v*e)/v* e] x

    (180/) [36526/T (days)] (3600);T (seconds) = T days x 24x 3600 = [2 / T days x 24x 3600][(v* m - v*e)/v* e] x

    (180/) [36526/T (days)] (3600) = [15 x 36526 / T (days)] [(v* m - v*e)/v* e]

    Visual force: F = - Gm M/r - Gm Mk/r

    With m [d r/dt - 'r] = - Gm M/r - Gm Mk/r Visual Gravitational law (1)And d (r')/d t = 0 Kepler's Areal Velocity Equation (2)

    Gives an axial rotation rate ofW = 15 x (36526/T (days)] [(v* m - v*e)/v* e]

    Nuclear Gravity (-GmM/r) e (m / M r)

    Abstract: Yukawa Gravity (-GmM/r) e (m / M r) or the nuclear gravityforce is the crudely approximated Newtonian gravity force (-GmM/r)explains planetary motion around the sun as a rotating ellipse with arotation rate = [ m/(m + M)](180/)(36526/T)(3600) = 43.03 secondsof an arc per century for the most talked about planet of mercury; m = 3.2x 1024 kg; M = 2x1030 kg; T = 88days

    With d (m r)/dt (m r) ' = (-GmM/r) e (m / M r) Gravity Force (1)And d (mr')/d t = 0 Kepler's Areal Velocity (2)

    Then mr' = constant; if m is taken as constant then r' = hAnd (1): d r/dt - r ' = -GmM/r + Gm/r

    Let m r =1/uThen d r/d t = -u'/u = - (1/u) (') d u/d = (- '/u) d u/d = - h d u/d And d r/dt = -h'du/d = - hu [du/d]

    -hu [du/d] - (1/u) (hu) = -G M u [1 ( m /M) u]; m /M r

  • 8/9/2019 Arabs Real Time Physics

    20/61

    = [1 Gm/h]/M/ h]/ {1 + cosine { [1 - Gm/h]}

    Where [1 Gm/h]/GM/h = a (1 )And [1 Gm/h] = (GM/h) a (1-)

    If = a (1 ), the h = G (m + M) a (1- )Then Gm/h = G ma (1 - ) /G (m + M) a (1- )

    = m/ (m + M)With r (, 0) = [1 Gm/h]/M/ h]/ {1 + cosine { [1 Gm/h]} Then r (, 0) = a (1 )/ {1 + cosine { [1 Gm/h]}

    And r (, 0) = a (1 )/ {1 + cosine { [1 m/ (m + M)]} And m

  • 8/9/2019 Arabs Real Time Physics

    21/61

    Boundary value LawWith d (m r)/dt - (m r) ' = - k/ r Inverse square Gravitational (1)And d (mr')/d t = 0 Kepler's law (2)At Perihelion: d r/d t - r ' = - GM/r = - r '; d r/d t = 0Then r ' = GM/rA quick answer by Newton would be: First ' = [GM/r]And = [GM/r] [(v* m - v*e)/v* e]

    In arc sec / centuryThen = {[GM/r]} 1/2 [(v* m - v*e)/v* e] [(180/) (3600) (36526/Tm)

    = 43"/century[(I O)/O] 0= {[GM/r]} 1/2 [(v* m - v*e)/v* e] [(180/) (3600) (36526/Tm)

    Constant force law

    Or, r 1 ' 1= r 2 '2= constantOr, ' 1= {[r 2/ r 1]} ' 2And ' 1 - ' 2= {[ (r 2/ r 1)] - 1} ' 2 ' = {[ (r 2/ r 1)] - 1} ' 2This is the angular time delay and will be seen as angular visual IllusionThe angular speed is ' = v/rFor Mercury: ' = v/r = (47.9km/sec)/58,200,000 km = 0.000000843radians/secIf you want the accumulation value in arc sec /century W", then

    And W" = (v/r) (180/) (3600) (26526/T) = angular velocity in arc sec percentury. If it is measured for planet Mercury thenW" = (47.9/58,200,000) (180/) (3600) (26526/88)W"= 70.29 arc second per centuryOr, W" = {[ (r 2/ r 1)] - 1} W" (2)What is the angular visual Illusion for planet Mercury that would be seenwhen measured from Earth with Earth location r (1) = Earth = 149.6 x 106

    And r (2) = Mercury = 58.2 x 106

    And W" (2) = - 70.29 arc sec /century

    W" = {[ (r 2/ r 1)] - 1} W" (2) W" = {{ [149.6/58.2]} - 1} [-70.29] = 43.0" arc per century

    [(I O)/O] 0 ={{[r e/ r m]} - 1} (v m /r m)] [(180/) (3600) (26526/T)

    Page 21

  • 8/9/2019 Arabs Real Time Physics

    22/61

    Constant Areal velocity Law

    Or, r 1 '1= r 2 '2 = location x speed = constant = Areal velocity

    Or, r 1 v 1= r 2 v2

    Or, ' 1= (r 2/ r 1) ' 2And ' 1 - ' 2= [(r 2/ r 1) - 1] ' 2

    ' = ' 1 - ' 2= [(r 2/ r 1) - 1] ' 2 ' = [(v 1/ v 2) - 1] ' 2

    This is the angular time delay and will be seen as angular visual IllusionThe angular speed is ' = v/rFor Mercury: ' = v/r = (47.9km/sec)/58,200,000 km = 0.000000843radians/sec

    If you want the accumulation value in arc sec /century W", thenAnd W" = (v/r) (180/) (3600) (26526/T) = angular velocity in arc sec percentury. If it is measured for planet Mercury thenW" = (47.9/58,200,000) (180/) (3600) (26526/88)W"= 70.29 arc second per century

    Or, W" = [(v 1/ v 2) - 1] W" (2)

    What is the angular visual Illusion for planet Mercury that would be seen

    when measured from Earth with Earth location r (1) = Earth = 149.6 x 106

    And r (2) = Mercury = 58.2 x 106

    And W" (2) = - 70.29 arc sec /century

    W" = [(v 1/ v 2) - 1] W" (2)

    W" = [(v 1/ v 2) - 1] (v m /r m)] [(180/) (3600) (26526/T)

    W" = [(29.8/ 47.9) - 1] [-70.75] = 43.0" arc per century

    [(I O)/O] 0

    = [(v e/ v m) - 1] (v m /r m)] [(180/) (3600) (26526/T)

    Page 22

  • 8/9/2019 Arabs Real Time Physics

    23/61

    No Force solutionNewton said there is gravity Force F = -GmM/r whose solution is this

    Fig. 1. Newtons gravitational law

    With m [d r/dt - 'r] = 0 Zero force lawequation (1)And d (r')/d t = 0 Kepler's Areal Velocity Equation (2)

    Equation (2) r = r0 e t; '= '0 e- 2 t

    Equation (1) - h d / d u - h u = 0Or d / d u + u = 0

    Then u = u0 e - And r0 = r0 (0) e + Or, r = r0 (0) e ( + t) [h/ '0] e ( + t)

    And '= '0 e- 2 t

    ' = - 2 '0 sine t= - 2[2/T] x [180/ ] [38526/T] [3600] sine t= - 2 [2/88 x 24 x 3600] x [180/ ] [38526/T] [3600] sine t= - 141.5 sine t

    And t = arc tan [(r m - r e)/ (r m + r e)]

    = arc tan [(149.6 58.2)/ (149.6 + 58.2)] ' = - 141.5 sine arc tan [(149.6 58.2)/ (149.6 + 58.2)]

    = 43 arc seconds per century

    Or t = arc tan [(a - c)/ (a + c)]

    =arc tan [(1 )/ (1 + )]

    [(I O)/O] 0 = - 2 '0 sine t= -2 sine {arc tan [(r m - r e)/ (r m + r e)] } x(v m /r m)] [(180/) (3600) (26526/T)[(I O)/O] 0 = - 2 '0 sine t= -2 sine {arc tan arc tan [(1 )/ (1 + )]

    } x(v m /r m)] [(180/) (3600) (26526/T)

    Page 23

    Planet

    r

    Sun

  • 8/9/2019 Arabs Real Time Physics

    24/61

    Newtons mathematically wrong [(I O)/O] 0 =(-720x36526x3600/88) (1.552) (48.14/300,000) arc sec per century

    = 43This particular equation structure is the basis of stars studying. Originally, Iderived it from Arabic real time physics literature. A visual Illusion alongthe line of sight is constructed as follows:Instead of seeing r0 we see r0 cosine arc tan (v/c) and perpendicular tothe line of sight we see r0 sine arc tan (v/c)Or r = r0 [cosine arc tan (v/c) + sine arc tan (v/c)]

    Or r = r0 e arc tan (v/c)

    Or r = r0 e tAnd areal velocity law gives the same resultsIf r '= hThen differentiating with respect to timeThen d (r ')/ d t= d h/ d tAnd 2 r r + r = 0Or 2 (r /r) = - (/)

    The r = r0 e t

    And = 0 e 2 t

    With r = r0 e t

    In real time r (n) = r (0) e tWith r (0) ' (0) = r (1) ' (1)Then ' (1) = [r (0)/ r (1)]' (0)

    And ' (1) = {[e 2 t] ' (0)And (1) = {[cosine 2 t + sine 2 t] 1} ' (0)

    Page 24

    Planet Distance rX 106km

    PlanetOrbit T

    Orbitspeed vinkm/sec

    LessEarthspeed

    Spinspeedkm/sec

    Angular velocity;v/rarc sec/ century

    Mercury 58.2 88 47.9 18.1 .002 70.75Venus 108.2 224.7 35.05 5.7 6.52 10.86Earth 149.6 365.26 29.8 .46511 4.1Mars 227.936 687 24.14 0.2411Jupiter 778.412 4333 13.06 12.6Saturn 1,426.725 10760 9.65 9.87Uranus 2,870.97 30690 6.80 2.59Neptune 4,498 60180 5.43 2.68Pluto 5906.4 90730 4.74

  • 8/9/2019 Arabs Real Time Physics

    25/61

    (1) = (x) + (y)= [cosine 2 t + sine 2 t] ' (0)

    (x) = [cosine 2 t] ' (0) (x) = [1 2 sine t] ' (0) (x) - ' (0) = - 2' (0) sine t

    W = (x) - ' (0) = - 2' (0) sine t= -2(2) [ (1-)]/T (1-) ] sine t

    And ' (0) = h/r (0) = 2 a b/T a = 2 (1-)]/T (1-) W = - 4 ) [ (1-)]/T (1-) ] sine tIf this apsidal motion is to be found as visual effects, thenWith, v = spin velocity; v* = orbital velocityAnd v/c = (v* + v)/c = tan t W = -4 [ (1-)]/T (1-) ] sine {Inverse tan [(v* + v)/c]} radiansMultiplication by 180/ to change to degrees W = (-720/T) {[ (1-)]/ (1-) } sine {Inverse tan [(v* + v)/c]} Degree

    And multiplication by 1 century = 36526 days and using T in daysW (ob) = (-720x36526/Tdays) {[ (1-)]/ (1-) } xsine {Inverse tan [(v* + v)/c]} degrees/100 years

    Abstract: light measurements are done along the line of sight and we measurelight projections to our eye. Meaning, that we do not measure distance r but wemeasure r cosine arc tan (v/c) when light is used and as a consequence insteaof measuring time T we measure T cosine arc tan (v/c) and here is theexperimental proof of it.

    Your eyes

    A000 0

    0000 00 0 0 0 00 0 0 0 00 0 0 0 00 0 (2) 0 0 00 (1) 0 0 (3) 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0B------------------------- 0 --------------- 0 ------------- 0

    1 2 3

    The projections of light is what we measure and the projectionof 1 and 2 and 3 is AB

    Page 25

  • 8/9/2019 Arabs Real Time Physics

    26/61

    If the angle between ray 1 and AB is (1)If the angle between ray 1 and AB is (2)If the angle between ray 1 and AB is (3)

    Then C (1) cosine (1) = C (2) cosine (2) = C (3) cosine (3) = c = ABYou want experimental proof?Here is my iron clad proof of my theory: This is using the lightprojections to be equal c then the advance of perihelion andstars to solve mercury Venus and DI Herculis binary stars betterthan all isIf an object at location A sends light signals in all directions at time at t = 0where B1 is;And B1 is moving to B2 then the projection of AB2 of AB1 is measured.AB1 is theorized and AB2 is measured; or AB2 = AB1 cosine

    And = arc tan (v/c)B1B2 /AB1 = sine ; AB2/AB1 = cosine ; B1B2/AB2 = tan Instead of measuring time t we theorize time t and we measure time = t

    cosine

    A Light V E L O C I T Y B2O O O O O O O O O O

    O C OO O

    O O

    O V OO OO O

    O OO O

    OB1

    = t cosine arc tan (v/c) = t {1- 2 sine {[arc tan (v/c)]/2}} - t = - 2 t sine {[arc tan (v/c)]/2}With r2 = h and I/T= / = - 2r/r = 2/tOr T = t/2 or the time measurements changes are twice period changes

    Or ( t)/2 = - t sine {[arc tan (v/c)]/2} is the time delays for periodsWith t = 1 century and t in arc seconds is 15 times time seconds then( t)/2 = - 15 T sine {[arc tan (v/c)]/2}; T = One centuryWith v = 47.9 (mercury) 29.8 (Earth) =18.1 km/sec( t)/2 = - 15 (36526) sine {[arc tan (18.1/300,000)]/2] = 43

    Page 26

  • 8/9/2019 Arabs Real Time Physics

    27/61

    Nicoklaus CopernicusDistance Illusion

    [(I O)/O] 0 = [(r m r e)/ r e](v m/r m) [(180/) (3600) (26526/T m)] = 43

    M r Copernicus you are wrong

    Or GalileosVelocity Illusion

    [(I O)/O] 0 = [(v m T m v e T e)/ v e T e](v m/r m) [(180/) (3600) (26526/T m)] = 43

    M r Galileo you are wrong

    Page 27

  • 8/9/2019 Arabs Real Time Physics

    28/61

    Or Tyco Brahes[(I O)/O] 0 = [(v m v e)/ v e](v m/r m) [(180/) (3600) (26526/T m)] = 43

    M r Tyco Brahe you are ok but not good enough

    Or Johannes Kepler Period Illusion[(Tm/ Te) 2/3 1] (v m/r m) [(180/) (3600) (26526/T m)] = 43

    M r Kepler you are OK but not good enoughPage 28

  • 8/9/2019 Arabs Real Time Physics

    29/61

    Or Le Verrier Frame Illusions[(I O)/O] 0= [(v* e +/- v e) /r m) [(180/) (3600) (26526/T m)] = 43

    IdiotPage 29

  • 8/9/2019 Arabs Real Time Physics

    30/61

    Or Newtons Inverse Square force mass Illusion[(I O)/O] 0 = ( m/M) [(180/) (3600) (26526/T m)] = 43

    Mr Newton you are not a physicist

    Or Laplaces wrong [(I O)/O] 0 =-720x36526x3600/T) {[ (1-]/ (1-) } [(v*m + v m)/c] seconds of arc per centur

    43

    Mr Newton you are not a good mathematician either

    Page 30

  • 8/9/2019 Arabs Real Time Physics

    31/61

    Or Yukawas:[(I O)/O] 0 Mr Yukawa I am definitely not talking about you and time travel is not physics

    = 15 x (36526/T (days)] [(r m r e)/ r e] = 43= 15 x (36526/T (days)] [(v m T m v e T e)/ v e T e] = 43= 15 x (36526/T (days)] [(v m v e)/ v e] = 43= 15 x (36526/T (days)] [(Tm/ Te) 2/3 1] = 43Or, Center of massgravity equation

    [(I O)/O] 0 = [ m/ (m + M)] (180/ ) (36526/ T m) (3600)] = 43

    M r Pierre LaplaceThe solution to F = -GmM/r is notr = [a (1-)/ (1+ cosine )] and it is time you get corrected

    Real time solution is: r (, t) = [a (1-)/ (1+ cosine )] [ (r)+ (r)] t

    "Apparent advance of perihelion"Page 31

  • 8/9/2019 Arabs Real Time Physics

    32/61

    Or, Boundary value law[(I O)/O] 0 == {[GM/r]} 1/2 [(r m r e)/ r e] [(180/ ) (3600) (36526/ T m) = 43= {[GM/r]} 1/2 [(v m v e)/ v e] [(180/ ) (3600) (36526/ T m) = 43= {[GM/r]} 1/2 [(Tm/ Te) 2/3 1] [(180/) (3600) (26526/T m)] = 43

    = {[GM/r]} 1/2 [(v m T m v e T e)/ v e T e][(180/) (3600) (26526/T m) = 43

    Or, Constant Fore law[(I O)/O] 0 =

    {{[r e/ r m]} - 1} (v m /r m)] [(180/) (3600) (26526/T) = 43

    Or, constant areal velocity law[(I O)/O] 0

    = [(v e/ v m) - 1] (v m /r m)] [(180/) (3600) (26526/T) = 43Or, No force law one[(I O)/O] 0 = - 2 '0 sine t

    = -2 '0sine {arc tan [(r m - r e)/ (r m + r e)] } x(v m /r m)] [(180/) (3600) (26526/T) = 43

    Or, No force law two[(I O)/O] 0 = - 2 '0 sine t= -2 sine {arc tan arc tan [(v m T m v e T e)/ (v m T m + v e T e)] } x

    (v m /r m)] [(180/) (3600) (26526/T) = 43

    Or, No force law three[(I O)/O] 0 = - 2 '0 sine t

    = -2 sine {arc tan arc tan [(1 )/ (1 + )] } x(v m /r m)] [(180/) (3600) (26526/T) = 43

    With Newtons mathematically wrong

    [(I O)/O] 0 =(-720x36526x3600/T) {[ (1-]/ (1-) } (v*m + v m/c) Seconds of arc per centuryTime: ( t)/2 = - 15 T sine {[arc tan (v/c)]/2}For v

  • 8/9/2019 Arabs Real Time Physics

    33/61

    Chapter three

    Arabs real time physics in outer Space

    Apparent apsidal motion of binary (two) stars

    The wrong solutions of Newtons equation have/had led to stupidity calledmodern physics. Newtons equation was solved wrong and modified to fitexperimental data here and there but the correct solution of Newtonsequation deletes the modifications and the incorrect solution and theincorrect conclusions and explains planetary motions with unprecedentedaccuracy including Apsidal motion of binary stars that no one can solve andGPS systems and interplanetary telecommunications systems of wrongShapiros time delays.A- This is the solution to the 150 years apsidal motion puzzle that is not

    solvable by space-time physics or any said or published physics including500 years of Modern physics and 500,000 modern physicists. Binary starsapsidal motion or "Apparent" rate of orbital axial rotation is a visual effectalong the line of sight of moving objects applied to the angular velocity atApses. From the thousands of close binary stars astronomers picked adozen sets of binary stars systems that would be a good test of relativitytheory and modern physics collected data for all of past century andrelativity theory failed every one of them. This rate of "apparent" axialrotation is given by this new equationW (ob) = (-720x36526/T) {[ (1-)]/ (1-) ]} (v* + v/c)

    degrees/100 yearsT = period; = eccentricity; v = spin velocity effect; v*= orbital velocity effectsThe simplest problem in physics that all 500 years modern physicsand 500,000 modern physicists could not solve by any physics:1 As Camelopardalis; 2 DI Herculis; 3 V1143 Cygni; 4 V 541 Cygni5 - AI Hydra; 6 - V 731 Cephei; 7 - SW Canis Majoris; 8 - NV Canis Majoris9 - GG Orion; 10- CM Draconis; 11- VV PYX; 12 EW Oriomis13- V1147 Sagittari; 14 PSR 1913 + 16; 12 PSR 0737 3039Solution: Location r = r r (1) ; Velocity v = r' r (1) + r ' (1)Acceleration = (r" - r') r (1) + (2r'' + r ") (1)S = m r; State = mass x distance

    P = d S/ d t = d (m r)/d t = m (d r/d t) + (d m/d t) rVelocity = v = (d r/d t); mass rate change = m' = (d m/d t)P = m v + m' r; Momentum = change of state = change in location orchange in massF =d P/d t = d S/d t = d [m (d r/d t) + (d m/d t)]/d t

    = m d r/d t + (d m/d t) (d r/d t) + (d m/d t) (d r/d t) + (d m/d t) rPage 33

  • 8/9/2019 Arabs Real Time Physics

    34/61

    F = m d r/d t + 2 (d m/d t) (d r/d t) + (d m/d t) rForce = Change of momentumF = m a + 2 m ' v + m" rF = - GmM/rOr, Newton's Kepler's equation: F = - GmM/r

    ThenWith d (m r)/dt - (m r) ' = -GmM/r Newton's Gravitational Equation (1)And d (mr')/d t = 0 Kepler's force law (2)With m = constant, then m can be taken out from both equations (1) and (2)With d r/d t - r ' = - GM/r Newton's Gravitational Equation (1)And d (r') /d t = 0 Kepler's force law (2)From 2: With m = constant; then d (mr')/d t = 0And m d (r')/d t = 0And d (r')/d t = 0And r' = hWith (1): d (m r)/dt - (m r) ' = -GmM/rWith m = constantThen m [d r/ d t - r '] = - Gm M/ rAnd [d r/ d t - r '] = - G M/ rLet r =1/uThen d r/d t = -u'/u = - (1/u) (') d u/d = (- '/u) d u/d = - h d u/d And d r /d t = - h 'du/d = - h u [du/d]And - h u [du/d] - (1/u) (hu) = - G MuOr, [du/ d] + u = G M/ h u = G M/ h + A cosine And r = 1/u = 1/ [G M / h + A cosine ]

    = (h/ G M)/ [1 + (Ah/ GM) cosine ]= (h/GM)/ (1 + cosine )

    Then r (, 0) = a (1-)/ (1+ cosine )This is Newton's Classical Equation solution of two body problem. Wesolved this equation and we got the motion equation:Is: r (, t) = [a (1-)/ (1+ cosine )] which is the equation of an ellipsewith eccentricity and semi - major axis a, and a semi- minor axis whosevalue is b = a [1 - ] and two foci one equals to c = a, and the otherfoci location equals to - c = - a. Or the motion of one ball around theother ball should be an ellipse with the other ball at one of the foci +/- a,

    of the ellipse with semi major axes (- a, a) on x-axis and semi minor axes(-b, b) on y- axis and foci (- c, c) on x- axis again with angle of rotation .If this law to work on two planets instead of two balls like planetary motionaround the sun, then Astronomers should see this motion of a planetmoving around the sun in an ellipse with the sun at one of its foci.

    Page 34

  • 8/9/2019 Arabs Real Time Physics

    35/61

    What astronomers saw was not an ellipse but a rotating ellipse like theellipse below wth rotating angle

    Page 35

    M

    m

    M

    m

  • 8/9/2019 Arabs Real Time Physics

    36/61

    When the areas size A are sliced equally it was found that the times spent byplanets orbiting around the Sun and making areas A each are equal also.Or, r (0) ' (0) = r (1) ' (1) = r (2) ' (2) = r (3) ' (3) = --

    = location x [angular speed] = constant= Areal velocity

    If r '= hThen differentiating with respect to timeThen d (r ')/ d t= d h/ d tAnd 2 r r + r = 0Or 2 (r /r) = - (/)

    The r = r0 e t

    And = 0 e 2 t

    With r = r0 e t

    In real time r (n) = r (0) e t

    With r (0) ' (0) = r (1) ' (1)Then ' (1) = [r (0)/ r (1)]' (0)

    And ' (1) = {[e 2 t] ' (0)And (1) = {[cosine 2 t + sine 2 t] 1} ' (0) (1) = (x) + (y)

    = [cosine 2 t + sine 2 t] ' (0) (x) = [cosine 2 t] ' (0) (x) = [1 2 sine t] ' (0)

    (x) - ' (0) = - 2' (0) sine t

    W = (x) - ' (0) = - 2' (0) sine t= -2(2) [ (1-)]/T (1-) ] sine tAnd ' (0) = h/r (0) = 2 a b/T a = 2 (1-)]/T (1-)

    W = - 4 ) [ (1-)]/T (1-) ] sine t

    If this apsidal motion is to be found as visual effects, thenWith, v = spin velocity; v* = orbital velocityAnd v/c = (v* + v)/c = tan t

    W = -4 [ (1-)]/T (1-) ] sine {Inverse tan [(v* + v)/c]} radians

    Multiplication by 180/ to change to degrees

    W = (-720/T) {[ (1-)]/ (1-) } sine {Inverse tan [(v* + v)/c]} DegreeAnd multiplication by 1 century = 36526 days and using T in days

    Page 36

  • 8/9/2019 Arabs Real Time Physics

    37/61

    W (ob) = (-720x36526/Tdays) {[ (1-)]/ (1-) } xsine {Inverse tan [(v* + v)/c]} degrees/100 years

    Astronomy re - written

    W (calculated) = (-720x36526/T) {[ (1- )]/ (1- ) ]} [(v + v*)/cdegrees/100 years

    1- As Cameloppardalis: Binary stars SystemAS Cam Data T=3.431; r (m) =0.1499; m=3.3 M (0); M=2.5 M (0)R (m) =2.57 R (0); [v (m), v (M)] = [40, 30]; = 0.1695; 1- = 00.8305R (M) = 2.5 R (0); r (M) =0.1111;m + M=5.8 M (0); G=6.673x10-11

    M (0) = 2 x 1030 kg; R (0) = 0.696x109m;The circumference of an ellipse: 2a (1 - /4 + 3/16()- --.) 2a (1-/4); R =a (1-/4)

    Finding orbital velocitiesFrom Newton's inverse square law of an ellipse motion applied to a circularorbit gives the following: m v/ r (cm) = GmM/rPlanet --- r (cm) ----- Center of mass ------- r (CM) --------- Mother SunPlanet ------------------- r -------------------------------------- Mother SunCenter of mass law m r (cm) = M r (CM); m = planet mass; M = sun massAnd r (cm) = distance of planet to the center of mass

    Page 37

    Primary Secondary

    v(p) v* (p) v (p) v* (p) v (p) v* (p) v (p) V* (p)

    v(s) v* (s) Spin=[,][,]=orbit

    [,][,] [,][,] [,][,]

    Spin results v(p) + v(s) v(p) + v(s) - v(p) + v(s) -v(p) + v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v* (p) + v*(s) -v* (p) + v* (s)Examples AS CAMv (s) v* (s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) + v(s) v(p) + v(s) -v(p) + v(s) -v(p) + v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)

    Examplesv (p) v*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v*(p) + v*(s) -v* (p) + v* (s)Examples AS CAM

    v (s) V*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)Examples AS CAM

  • 8/9/2019 Arabs Real Time Physics

    38/61

    And r (CM) = distance of sun to center of massAnd r (cm) + r (CM) = r = distance between sun and planetSolving to get: r (cm) = [M/ (m + M)] rAnd r (CM) = [m/ (m + M)] rThen v = [GM r (cm)/ r] = GM/ (m + M) r

    And v = [GM/ (m + M) r = a (1-/4)]Planet orbital velocity or primary velocity:

    And v* (m) = v (m) = [GM/ (m + M) a (1-/4)]R =a (1-/4)

    Calculations: (1- /4) = 0.9928[ (1-)]/ (1-) = 1.43With a = [R (m)/r (m)]= (2.57/0.1499) (0.696x109) = 11.9327x109

    And v* (m) = [GM/ (m + M) a (1- /4)] = 110km/sec

    = [6.673x10-11

    (2.5) (2 x 1030

    )

    / (5.8) 11.932x109

    (0.9928)] = 110.178km/sec

    And v* (M) = [GM/ (m + M) a (1- /4)]= [6.673x10-11 (3.3) (2 x 1030) / (5.8) 11.932x109 (0.9928)] = 145.435km/sec

    Spin: v = 40 + 30=70km/secAnd v* (e) = v* Earth = 29.8 km/secAnd v (e) = 0.465 km/secThen v* + v = v* (m) + v* (M) + v* (e) + v (m) + v (M) + v (e)

    = 110.178 + 145.435 + 70 + 29.8 0.465 = 355 m/sec

    [ (1-)]/ (1-) = 1.43; T = 3.431days

    W= (-720x36526/T) x { [(1-)] (1-) } {[v* + v]/c}

    W= (-720x36526/3.431) x (1.43) (355/ 300,000) = 15.0/centuryDr Guinan and DR Maloney 1989: W= 15/century 1989DR Khailullin and Dr Kozyreva: 1983 W = 14.6 /centuryEinstein: 44.3/ century

    2 - Binary stars System: DI Her Apsidal Motion SolutionDI Her Apsidal motion solution:Data: T=10.55days r(m) = 0.0621 m=5.15M(0) R(m)=2.68R(0)[v(m),v(M)]=[45,45]And = 0.4882; r (M) = 0.0574 M=4.52 M (0) R (M) =2.48; m +

    M=9.67 M (0)L = 2000 +/- 200 Ly

    Page 38

  • 8/9/2019 Arabs Real Time Physics

    39/61

    Calculations1- = 0.5118; (1-/4) = 0.94; [ (1-)] / (1-) = 3.33181; 1 + =1.4882; G=6.673x10-11; M (0) = 1.98892x19^30kg; R (0) = 0.696x109mV* (p) = [GM/ (m + M) a (1-/4)] = 99.88 km/secV* (s) = [Gm/ (m + M) a (1-/4)] = 113.8km/sec

    A- Apsidal motion is given by this formula:W (cal) = (-720x36526/T) {[ (1-)]/ (1-) ]} [(v + v*)/c] degrees/100 yearsAnd v = - 45 km/s - 45 km/sec = 90km/secNow let us calculate v* (cm) = m v/m = 106.38km/secWith v* = 2 v*(cm) = 212.76 km/secAnd v = -90 km/secThen v* + v = 212.76 - 90 = 122.76 km/sec andW (cal) = (-720x36526/T) {[ (1-)]/ (1-) } sine [Inverse tan122.76/300,000]

    = (-720x36526/10.55) (3.33181) (122.76/300,000)W (cal) = 1.39/centuryWith = { [v* - v* (cm)] /2}

    = {[106.36 - 99.88]/2 + [106.36 - 113.8]/2} = 6.975 km/secThen W (cal) = 1.39/century +/- 0.16Observed 2004: 1.39 +/- 0.3/century; Relativity: 4.27/century

    B - W (cal) = (-720x36526/T) {[ (1-)]/ (1-) ]} [(v + v*)/c] degrees/100 years

    With v = - 45 km/s + 45 km/sec = 0 km/secAnd v* = v* (cm) = m v/m = 106.38km/secW (cal) = (-720x36526/10.55) (106.38.300, 000) degrees/100 yearsW (cal) = 1.044 degrees/centuryC - V* (p) = [GM/ (m + M) a (1-/4)] = 99.88 km/secWith v* x (1-/4)/ (1-) = 99.88 (.94)/ (0.5118) = 135.36And v* x (1-/4)/ (1+ ) = 99.88 (.94)/ (1.4882) = 79.38K (A) = [(135.36 + 79.38)/2] = 107.37 km/secV* (s) = [Gm/ (m + M) a (1-/4)] = 113.8 km/secWith v* x (1-/4)/ (1-) = 113.8 (.94)/ (0.5118) = 154.2254

    km/secAnd v* x (1-/4)/ (1+ ) = 113.8 (.94)/ (1.4882) = 90.44312km/secK (B) = 122.3342 km/secV* = [m K (A) + M K (B)]/ (m + M) = 114.3646 km/secOr v* = [K (A) + K (B)]/2 = 114. 85 km/sec; with v* = 114.85

    Page 39

  • 8/9/2019 Arabs Real Time Physics

    40/61

    W (cal) = (-720x36526/T) {[ (1-)]/ (1-) } sine [Inverse tan114.85/300,000]

    = (-720x36526/10.55) (3.33181) (114.85/300,000)= 1.22 degrees/ century

    Observed: 1.24 degree/century +/- 0.05

    References: Go to Smithsonian/NASA website SAO/NASA and type:1- Apsidal motion of DI Her: Dr Edward Guinan and Dr Frank Maloney;1985.2- New Apsidal Motion of DI Her: Dr Edward Guinan and Dr Frank Maloney;1994.3- D. YA. Martynov; and KH. F. Khaliulullin 19804- Petrie et al.19675- Petrova - Ovlav Apsidal motion catalogue6- Riazi 20037- Maloney Guinan 2004

    3 - V1143 Cgyni Apsidal Motion Solution

    V1143 Cgyni dataT= 7.641days; r (m) = 0.059; m =1.391 M (0);R (1) =1.346R (0); = 0.54And [v (m), v (M)] = [18, 28]; r (M) = 0.058; M=1.347 M (0)Distance [38 +/- 2 parsec] = 123.956 +/- 6.524 Ly

    CalculationsWe have 1- = 0.46 1- /4=0.9721 R (0) = 0.696x109m

    With a = [R (1)/r (m)] R (0) = 15.87823729x10^9m; 1+ = 1.54With v (p -perihelion) = [GM/ (m + M) a (1- )] = 110 km/secAnd v (p- aphelion) = [GM/ (m + M) a (1+)] = 60 km/secK (A) = (110 + 60)/2 = 170/2 = 85km/secWith v (s - perihelion) = [Gm/ (m + M) a (1-)] = 113.6 km/secAnd v (s - aphelion) = [Gm/ (m + M) a (1+)] = 62 km/secK (B) = (113.6 + 62)/2 = 175.6/2 = 87.8km/sec

    With v (1) = [GM/ (m + M) a] = 74.632 km/secAnd v (2) = [Gm/ (m + M) a] = 77.0699 km/secWhen spinning on opposite directions

    1- With v [21, 28] = 28 - 21 = 72- With v [18, 28] = 28 - 18 = 103- Taking average 10 + 7/2 = 8.5With v (m) = [GM/ (m + M) a (1-/4)] = 77.5126 km/sAnd v (M) = [Gm/ (m + M) a (1-/4)] = 80.00448 km/sAlso, [ (1-)]/ (1-) = 3.977622971

    Page 40

  • 8/9/2019 Arabs Real Time Physics

    41/61

    Now:With 1- v + v* = 157.51648km/sec - 10 km/sec = 147.51648km/secAnd 2- v + v* = 157.51648km/sec - 8.5 km/sec = 149.01648km/secAnd 3- v + v* = 157.51648km/sec - 7 km/sec = 150.51648km/sec

    W (obo) = (-720x36526/T) x {[ (1-)]/ (1-) } {[v* + v]/c}

    1- W/century= (-720x36526/7.641) (3.977622951)(147.51648/300,000)=3.31/century2- W/century= (-720x36526/7.641) (3.977622951)(149.01/300,000)=3.3778/century3- W/century= (-720x36526/7.641) (3.977622951)(150.51648/300,000) = 3.44614561/century

    With v* = 2 v* (cm) = 157.4770 km/secAnd v = v (p) - v (s) = 21 - 28 = -7 km/secThen v* + v (p) = 157.477 - 7 = 150.477 km/sec

    W /century= (-720x36526/7.641) (3.977622951)(150.477/300,000)=3.44/centuryObserved values are: W = 3.393987698/century; W = =3.489592985Average observed: 3.44/ century

    References:1-Geminez and Margrave, 1985

    [0.00071/cycle] = [1 century = 36526days/7.641days] = 3.393987698/century2- Anderson and Nordstrom and Garcia and Geminez 1987: 0.00073/cycle

    [0.00073/cycle] = [1 century = 36526days/7.641days] =3.489592985/century

    Relativity theory: 4.254435283/ century = 0.00089/cycle

    4- V541Solution: Apsidal motion catalogue

    W (cal) = (-720x36526/T) {[ (1-)]/ (1-) } [(v+ v*)/c] degrees/100 yearsT = 15.3379days r(m)=0.0440 m = 2.4M(0) R(m)=1.88R(0)[v(m),v(M)]=[242,242]And = 0.479 r (M) =0.0425 M=2.4 M (0) R (M) =1.79 R (0)With 1- = 0.521 1-/4=0.94263975; [ (1-)]/ (1-) = 3.2339

  • 8/9/2019 Arabs Real Time Physics

    42/61

    Page 41

    And a = [R (m)/r (m)] R (0) = (1.88/0.0440)0.696x10^9m =29.73818182x10^9mThen a (1-/4) = 28.03x10^9mAnd v (m) = [GM/ (m + M) a (1-/4)] = 75.5883km/sec; v (m) =24And v (M) = [Gm/a (m + M) (1-/4)] = 75.883km/sec; v (M) =24With v=24 + 24= 44km/secAnd v* = 151.1766km/secWith v* + v= 151.1766 - 48 = 103.1766km/secW (ob) = (-720x36526/T) {[ (1-)]/ (1-) ]} {[v* + v]/c} W (ob) = (- 720 x 365226/15.3379) (3.2339) (103.1766/300,000)W (ob) = 0.65Notice: [v (m), v (M)] = [24 2, 24 2]If v (m) = v (M) = 24 + 2 = 26Then v* + v= 151.1766 - 52 = 99.1766km/secAnd W (ob) = (- 720 x 365226/15.3379) (3.2339) (99.1766/300,000)W (ob) = 0.60/centuryObserved is W= 0.60 +/ -0.1/century Lacy = [0.5; 0.7]

    Relativity: W = 0.97/century

    1- Apsidal motion of V541Cgyni Lacy 19895 - AI Hydra apsidal motion puzzle solution

    W (cal) = (-720x36526/T) {[ (1-)]/ (1-) } [(v+ v*)/c] degrees/100 yearsAI Hydra Apsidal motion solution:Data: T=8.29days r(m) = 0.1418 m=2.15M(0) R(m)=3.92R(0)[v(m),v(M)]=[28,27]; and = 0.0.23; r (M) = 0.1002 M=1.98 M (0) R(M) =2.77(0); m + M=4.13 M (0); L = 575 +/- 15 Ly

    Calculations1- = 0.77; (1-/4) = 0.986775; [ (1-)] / (1-) = 1.6414G=6.673x10^-11; M (0) = 1.98892x19^30kg; R (0) = 0.696x10^9mThen a = [R (m)/ r (m)] = 19.24062059 x 10 ^ 9 m

    V (m) = [GM/ (m + M) a (1-/4)] = 81.11439578 km/secV (M) = [Gm/ (m + M) a (1-/4)] = 88.11km/sec

  • 8/9/2019 Arabs Real Time Physics

    43/61

    Apsidal motion is given by this formula:

    W (ob) = (-720x36526/T) {[ (1-)]/ (1-) ]} [(v + v*)/c] degrees/100 years

    Page 42

    With v* = v (m) + v (M) = 81.11439578km/sec + 88.11km/sec =169.2243958km/secAnd v = v (m) + v (M) = 28 + 27 = 55 km/sec

    Then (v* + v) = 224.2243958 km/secW (ob) = (-720x36526/T) {[ (1-)]/ (1-) } sine [Inverse tan224.2243958/300,000]

    = (-720x36526/8.29) (1.6414) (224.2243958/300,000)= 2.90/ century

    W (observed) = 2.90/century as measuredObserved is 2.90/century

    Space-Time Relativity theory 6.8 / centuryNow let us calculate v* (cm) = m v/m

    = 2.15 x 81.11439578 + 1.98 x88.11=

    84.46822 km/secWith v* = 2 v*(cm) = 168.936411 km/secAnd v = 55 km/secThen v* + v = 223.9364411 km/sec andW (observed) = (-720x36526/T) {[ (1-)]/ (1-) } sine [Inverse tan223. 936/300,000]= (-720x36526/10.55) (3.33181) (223.9364411/300,000)W (observed) = 2.90/centuryWith = { [v* - v* (cm)] /2}

    = {[88.11 -84.46822]/2 + [81.11439578 - 84.46822]/2}

    = {[3.64178]/2 + [3.35382422]/2} = 3.5 km/secThen W (ob) = 2.90/century; observed is W = 2.9/per centuryAnd Einstein's 100,000 space-timers 6.8 / century

    References: Go to Smithsonian/NASA website SAO/NASA and type:1- Apsidal motion of AI Hydra Popper 19852- KH. F. Khaliulullin and V.S Kozyreva 19883- Petrova - Ovlav Apsidal motion catalogue 1999

  • 8/9/2019 Arabs Real Time Physics

    44/61

    6 - V731Cehpei Apsidal Motion Solution

    Next the same equation will be used to find the advance of Periastron or"apparent" apsidal motion of V731 binary stars system.

    V731Cehpei Apsidal Motion SolutionW (ob) = (-720x36526/T) {[ (1-)]/ (1-) } [(v+ v*)/c] degrees/100 years

    V731data [see below]T= 6.068567days; m= 2.577 M (0); M = 2.577 M (0); [v (m), v (M)] =[19+/-3, 18+/-3]; = 0.0165; a = 23.27x R (0)Calculations: M + m = 2.738; 1-=0.9835 1-/4=0.9999 R (0) = .696x10^9mWith v [21, 28] = [19 +/- 3] + [18 +/- 3] = 37 +/- 6With v* (p) = [GM/ (m + M) a (1-/4)] = 85.6111965km/secAnd v* (M) = [Gm/ (m + M) a (1-/4)] = 109.38km/secAlso, [ (1-)]/ (1-) = 1.033694356With v* (cm) = 2m v/m = 96.46688km/sec; 2 v* (cm) = 192.9337619And = { [v*-v* (cm)] /2} = {[96.46688 - 85.6] /2} +

    {[109.38 - 96.46688] /2} = 11.9288422 km/secWith v* (p) = 85.6111965km/sec +/- 11.9288422 km/secAnd v* (s) = 109.38km/sec +/- 11.9288422 km/secThen v* (p) + v* (s) = [192.9337619 +/-] x 2 = 23.8567844 km/secThen v* + v = 229.9288422km/sec +/- 29.8567844 km/secNow: Taking the upper limitThen v* + v = 229.9288422km/sec + 29.8567844 km/sec =259.7856266 km/sec

    Primary Secondary

    v(p) v* (p) v (p) v* (p) v (p) v* (p) v (p) V* (p)

    v(s) v* (s) Spin=[,][,]=orbit

    [,][,] [,][,] [,][,]

    Spin results v(p) + v(s) v(p) + v(s) - v(p) + v(s) -v(p) + v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v* (p) + v*(s) -v* (p) + v* (s)Examples V731Cepheiv (s) v* (s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) + v(s) v(p) + v(s) -v(p) + v(s) -v(p) + v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)Examplesv (p) v*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)

    Orbit results v*(p) + v*(s) -v*(p) + v*(s) v*(p) + v*(s) -v* (p) + v* (s)Examplesv (s) V*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)

    Examples V731Cephei

  • 8/9/2019 Arabs Real Time Physics

    45/61

    Page 44W (obo) = (-720x36526/T) x {[ (1-)]/ (1-) } {[v* + v]/c} W/century= (-720x36526/6.068567) (1.033694356)(259.7856266 /300,000)=2.91/centuryW/century = 3.35914177/century = 0.0335914177/year

    U = 360/0.0335914177 = 10717 yearsObserved values are U = 10000 +/- 2500

    References: 1- Absolute dimensional and apsidal motion of V731CepV. Batkis; M.Zejda; I. Bulut; M.Wolf; S. Bilir; H. Bakis; O.Demircan:J.w.Lee: M.Slechta: B. Kucerova. 2008

    8 - NV CMa apsidal motion solution:

    Data: T=1.885159 days; = 0; v* (p) = 128.55 km/sec; v* (s) = 130.87km/sec[ (1-)] / (1-) = 3.33181; v (p) = 51.7 km/sec and v (s) = 52.4km/secApsidal motion is given by this formula:W (ob) = (-720x36526/T) {[ (1-)]/ (1-) ]} [(v + v*)/c] degrees/100 yearsWith v* = v* (p) + v*(s) = 259.42 km/sec and v= v (p) + v (s) = 104.1And v* + v = 363.52 km/sec

    W (observed) = (-720x36526/T) {[ (1-)]/ (1-) }sine [Inverse tan 363.52/300,000]

    = (-720x36526/1.885159) (1) (363.52/300,000)= 20.48333818/century = 0.2048333818/year

    U = 360/0.2048333818/year;

    U = 1757. 5 years

    References: Go to Smithsonian/NASA website SAO/NASA and type:Absolute dimensions NV CMa; Kaluzny, J; Pych, W; Rucinski, S. M;Thompson, I.B

    Page 45

  • 8/9/2019 Arabs Real Time Physics

    46/61

    Relativity theory coffin nail # 8 SW Canis Majoris

    W (cal) = (-720x36526/T) {[ (1-)]/ (1-) ]} [(v + v*)/c] degrees/100 years

    T = period = 10.09 days; = eccentricity = 0.3179

    And v = spin velocity effect = v (p) + v(s) = 57km/sec

    And v*= orbital velocity effect = v*(p) + v* (s)= 80.5 + 87.8 = 168.3 km/sec

    For SW Canis Majoris: v* + v = 225.3km/sec

    W (observed) = 2.99565967/century = 0.0299565967

    U = 360/ 0.0299565967= 12017years

    U (observed) = 12,000 yearsEinstein and space-timers 14,000 yearsSW Canis Majoris Binary stars

    Primary

    Secondary

    v(p) v* (p) v (p) v* (p) v (p) v* (p) v (p) V* (p)

    v(s) v* (s) Spin=[,][,]=orbit

    [,][,] [,][,] [,][,]

    Spin results v(p) + v(s) v(p) + v(s) - v(p) + v(s) -v(p) + v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v* (p) + v*(s) -v* (p) + v* (s)Examples Sw Canis Majorisv (s) v* (s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) + v(s) v(p) + v(s) -v(p) + v(s) -v(p) + v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)Examplesv (p) v*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v*(p) + v*(s) -v* (p) + v* (s)Examplesv (s) V*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)Examples SW Canis majoris

  • 8/9/2019 Arabs Real Time Physics

    47/61

    Page 46

    SW CMa apsidal motion solution:Data: T=10.09 days; r (m) = 0.0942; m = 2.22 M (0); R (m) = 3.01R (0); =0.3179

    And r (M)= N/A M = 2.03 M (0) R (M) =2.46 R (0); m + M = 4.25 M (0)And[v (m), v (M)] = [30+/-2, 27+/-3]K (1) = 80.5; K (2) = 87.8Calculations

    1- = 0.6821; (1-/4) = 0.974734898[ (1-)] / (1-) = 2.037835646

    G=6.673x10^-11; M (0) = 1.98892x19^30kg; R (0) = 0.696x10^9mThen a = [R (m)/ r (m)] = 22.23949045 x 10 ^ 9 m

    V* (p) = [GM/ (m + M) a (1-/4)] = 77.26298km/sec

    V* (s) = [Gm/ (m + M) a (1-/4)] = 84.4944913km/sec

    And v* = v* (p) + v* (s) = 161.7574713 km/secWith v = v (p) + v (s) = 30 + 27 = 57 km/sec

    And, v* + v = 218.7574713km/sec

    Apsidal motion is given by this formula:

    W (ob) = (-720x36526/T) {[ (1-)]/ (1-) ]} [(v + v*)/c] degrees/100 years

    W (ob) = (-720x36526/T) {[ (1-)]/ (1-) } sine [Inverse tan218.7574713/300,000]

    = (-720x36526/10.09) (2.037835646) (218.7574713/300,000)= 2.8242/ century = 0.026242/yr

    U = 360/ 0.026242 = 12747 yearsTaking: v* + v = 80.5 + 87.8 +57 = 225.3 km/secW (ob) = (-720x36526/T) {[ (1-)]/ (1-) }

    Sine [Inverse tan 225.3 /300,000]= (-720x36526/10.09) (2.037835646) (218.7574713/300,000)= 2.995659677/ century = 0.0299565967/yr

    U = 360/ 0.0299565967 = 12017 years NahhasU (observed) = 12,000 yearsReferences: Go to Smithsonian/NASA website SAO/NASA and type:1- Lacy Apsidal motion Canis Majoris 1997

  • 8/9/2019 Arabs Real Time Physics

    48/61

    47

    9 - GG Orion Apsidal motion puzzle solution

    Data: T=6.6314948; m = 2.342 M (0); M = 0.2338 M (0); R (1) =1.852 R (0); R (2) =1.830 = 0.2218; 1 - = 0.7782; r (1) = 0.0746; r (2) =.988 r (1); m + M = 4.68 M (0)And [v (p); v (s)] = [16 +/- 1; 16 +/- 1]; [v (p); v (s)] = [25 +/- 3; 24 +/-

    U = 10700 +/- 4500 yearsCalculations(1-/4) = 0.9877; [ (1-)] / (1-) = 1.57G=6.673x10^-11; M (0) = 1.98892x19^30kg; R (0) = 0.696x10^9mCalculationsWith v* (p) = [GM/ (m + M) a (1-/4)] = 95.6 km/secAnd v* (s) = [Gm/ (m + M) a (1-/4)] = 95.735 km/secAnd v (p) = 16 km/sec; v (s) = 16 km/secThen v* (p) + v* (s) + v (p) + v (s) = 223.335 km/secW (ob) = (-720x36526/6.6314948) (1.57) [223.335/300,000] degrees/100 years

    W (ob) = 3.45/century = 0.0345/yearU [years] = 360/[0.0345/year]U = 10,432 years NahhasU (observed) = 10700+/-4500years

    References: Absolute dimensions and apsidal motion of eclipsing binary GG OrionDr Lacy; Dr Torres; Dr Claret; Dr Sabby: 2000

    Primary

    Secondary

    v(p) v* (p) v (p) v* (p) v (p) v* (p) v (p) V* (p)

    v(s) v* (s) Spin=[,][,]=orbit [,][,] [,][,] [,][,]Spin results v(p) + v(s) v(p) + v(s) - v(p) + v(s) -v(p) + v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v* (p) + v*(s) -v* (p) + v* (s)Examples GG Orionv (s) v* (s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) + v(s) v(p) + v(s) -v(p) + v(s) -v(p) + v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)Examples

    v (p) v*(s) [,][,] [,][,] [,][,] [,][,]

    Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v*(p) + v*(s) -v* (p) + v* (s)Examples

    v (s) V*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)Examples GG Orion

  • 8/9/2019 Arabs Real Time Physics

    49/61

    The time has come to send relativity theories and all four-dimensionalspace-time confusion of physics to the...

    Page 48

    Chapter four

    Arabs real time physics in outer Space IIA- Arabs Binary stars and Binary Pulsar apsidal motion

    B- Arabs GPS or Global positioning systemsC- Arabs Interplanetary Telecommunications systems

    2009 total collapse of general relativity theory; CD Draconis Binary stars

    10 2009 CD Draconis apsidal motion Table:Data: T=1.268389985days; m = 0.231 M (0); M = 0.2141 M (0); a =3.7634R (0); = 0.0051And [v (p); v (s)] = [9.5 +/- 1; 10.0 +/- 1]Einstein and space timers: W = 1.91x10-3/day

    Calculationsm + M = 0.4451 M (0)1- = 0.9949; (1-/4) = 0.99993498; [ (1-)] / (1-) = 1.01G=6.673x10-11; M (0) = 1.98892x1030kg; R (0) = 0.696x10 9mCalculationsWith v* (p) = [GM/ (m + M) a (1-/4)] = 72.436 km/secAnd v* (s) = [Gm/ (m + M) a (1-/4)] = 78.153 km/sec

    Primary Secondary

    v(p) v* (p) v (p) v* (p) v (p) v* (p) v (p) V* (p)

    v(s) v* (s) Spin=[,][,]=orbit

    [,][,] [,][,] [,][,]

    Spin results v(p) + v(s) v(p) + v(s) - v(p) + v(s) -v(p) + v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v* (p) + v*(s) -v* (p) + v* (s)Examples CD Draconisv (s) v* (s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) + v(s) v(p) + v(s) -v(p) + v(s) -v(p) + v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)Examplesv (p) v*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) + v*(s) -v*(p) + v*(s) v*(p) + v*(s) -v* (p) + v* (s)Examples

    v (s) V*(s) [,][,] [,][,] [,][,] [,][,]Spin results v(p) - v(s) v(p) - v(s) -v(p) - v(s) -v(p) - v(s)Orbit results v*(p) - v*(s) -v*(p) - v*(s) v*(p) - v*(s) -v* (p) - v* (s)Examples CD Draconis

  • 8/9/2019 Arabs Real Time Physics

    50/61

    And v (p) = 9.5 km/sec; v (s) = 10 km/secThen v* (p) + v* (s) + v (p) + v (s) = 170.117 km/sec

    Page 49Apsidal motion is given by this formula:

    W (ob) = (-720x36526/T) {[ (1-)]/ (1-) ]} [(v + v*)/c] degrees/100 years

    W (ob) = (-720x36526/1.238389985) (1.01) [170.09/300,000] degrees/100 yearsW (ob) = 6.731598944/century = 0.06731598944/year

    U [years] = 360/[0.06731598944/year]

    U = 5348 years Nahhas

    U (observed) = 5400+/-3200yearsEinstein's and space-timers U = 360/ [0.00191x365.26] = 516 yearsCan it get any better?It is not just about dumping relativity it is dumping relativity and AlfredNobel institution with it.

    References: Absolute properties of the low-mass eclipsing binary CMDraconis; 2009By : Juan Carlos Morales; Ignasi ribas; carme jordi; Guillermo Toress; Jose

    Gallardo; Edward F. Guinan; David Chardonneau; Marek wolf; Davidw.latham; Guillem Angalada Escude; David H.Bradstreet; Mark E.Everett;Francis T. O, Donavan; Georgi Mandushev; Robert D. Mathieu and other 15

    11 - V 1147 Sagittari

    V 1147 Sagittari: Data: U = 592.5 +/- 6 yearsWith K (p) = 117.4 km/sec; K(s) = 130.8 km/secGiving v* (p) = 117.4 + 29.8 - 0.465 = 146.735 km/secAnd v* (s) = 130.8 + 29.8 0.465 =160.135 km/sec

    Orbital speed of earth = 29.8 km/sec; spin speed of earth is 0.465 km/secAnd v (p) = 80 + 29.88 0.465 km/sec = 109.335 km/secAnd v(s) =75 + 29.88 0.465 km/sec = 104.335 km/secThen v* + v = 146.735 + 160.135 + 109.335 + 104.335 = 520.54km/sec[ (1- )] (1-) = 2.62W (cal) = (-720x36526/3.28) x (2.62) (520.541/300,000)= 63/centuryU = [63/100]-1x 360 = 570 years.Observed values; 592.5

  • 8/9/2019 Arabs Real Time Physics

    51/61

    ReferencesAbsolute dimensions of solar-type eclipsing binaries V 1147SagittariJ. Anderson, A. Gimenez 1985

    Page 50

    12- EW OrionisEW Orionis: Data: U =16300 +/- 3900With K (p) = 73.18km/sec; K(s) = 75.46 km/secGiving v* (p) = 73.18 + 29.8 - 0.465 = 102.515 km/secAnd v* (s) = 75.46 + 29.8 0.465 =104.795 km/secAnd v (p) = 9 + 29.8 - 0.465 = 102.515 km/secAnd v (s) = 73.18 - 29.8 + 0.465 = 102.515 km/sec

    Orbital speed of earth = 29.8 km/sec; spin speed of earth is 0.465 km/secAnd v (p) = 9km/sec; v(s) =8.8km/secThen v* + v = 102.515 + 104.795 +9.0 + 8.8 =225.11km/sec

    [ (1- )] (1-) = 1.167

    W (cal) = (-720x36526/6.93) x (1.167) (225.11/300,000)= 2.1367/centuryU = [2.1367/100]-1x 360 = 16848 years.

    13 - The Apsidal motion of VV PYX

    Data: T = 4.596 days; m = 2.098 M (0); M = 2.098 M (0)With r (p) = 0.1156 and r (s) = 0.1156 and R (m) = 2.167 R (0) and R (M)= 2.167 R (0)

    And = 0.0956; 1 - = .9044; U = 3200 +/- 1000And [v (p); v (s)] = [23; 23]V = 381.03095km/sec

    Calculations

    With m + M = 4.196 M (0)And (1-/4) = 0.99771516; [ (1-)] / (1-) = 1.216984877G=6.673x10^-11; M (0) = 1.98892x19^30kg; R (0) = 0.696x10^9mAnd a = [R (m)/r (m)] = [2.06/ 0.097] R (0) = [2.167/ 0.1156][0.696x10^9m]Then a = 13.04698962 x10^9mAnd a (1-/4) = [13.04698962 x10^9m] [0.99771516] = 13.01717934 x109mK (A) = { [GM/ (m + M) a (1- )] + GM/ (m + M) a (1+ )]}/2K (A) = { [6.673x2.098x2x10-19/ (4.196) 13.04698962x10^9x0.9044]

    + [6.673x2.098x2x10-19/ (4.196)13.04698962x10^9x1.0956]}/2

    = [108.85 + 98.96511511]/2 = 103.9km/sec

  • 8/9/2019 Arabs Real Time Physics

    52/61

    K (B) = { [Gm/ (m + M) a (1- )] + Gm/ (m + M) a (1+ )]}/2= 103.9km/sec

    Page 51With v* (m) = [GM/ (m + M) a (1-/4)] = 103.70 km/sec

    And v* (M) = [Gm/ (m + M) a (1-/4)] = 103.70 km/secAnd v* (cm) = [m v* (p) + M v* (s)]/ (m + M) = 103.70 km/sec

    And v (p) = 23vkm/sec; v (s) = 23 km/sec

    W (ob) = (-720x36526/T) {[ (1-)]/ (1-) ]} (v* + v/c) degrees/100 years

    T = period; = eccentricity; v = spin velocity effect; v*= orbital velocityeffects

    With v* (m) = [GM/ (m + M) a (1-/4)] = 103.70 km/secPrimary orbital speed contribution to apsidal motion

    Is v* (m) = 103.7 + 29.8 0.465 = 133 km/secAnd v* (M) = [Gm/ (m + M) a (1-/4)] = 103.70 km/sec

    Secondary orbital speed contribution to apsidal motionIs v* (M) = 103.7 + 29.8 0.465 = 133 km/secAnd v (m) = 23 km/sec

    Primary spin speed contribution to apsidal motionIs v (m) = 23 + 29.8 0.465 = 52.335 km/secAnd v (M) = 23 km/sec

    Secondary spin speed contribution to apsidal motionIs v (m) = 23 + 29.8 0.465 = 52.335 km/secThen v * + v = 370.67

    With = 0.17; T = 4.596 days[ (1-)] / (1-) = 1.216984877

    W (cal) = (-720x36526/4.596) (1.216984877) [370.67/300,000] U = 3386 years Nahhas'U (observed) = 3200 +/- 1000years

    ReferencesAbsolute dimensions of solar-type eclipsing binaries EW OrionisJ.V. Clausen, H. Bruntt, E.H. Olsen, B.E. Helt, and A. Claret 2009

  • 8/9/2019 Arabs Real Time Physics

    53/61

    Page 52

    14 - 1993 Nobel Prize Winner Dr Joseph H. Taylor

    Binary Pulsar 1913 + 16For PSR 1913 + 16Data: Joseph Taylor and Joel M. Weisberg 2004With a =2.3417725 R (0); R (0) = 0.696 x 10 9metersAnd = 0.6171338T = 0.322997448930

    And ' = 4.226595 /yearWith mass m = 1.4414 M (0) and M = 1.3867 M (0); M (0) = 2 x 1030 kgV* (p) = [GM/ (m + M) a] = 235.9574664 km/sec

    V* (s) = [Gm/ (m + M) a] = 245.2640841km/secW (cal) = (-720x365.26/Tdays) xsine [Inverse tan (v/c)] degrees/100 years

    = (-720x365.26/0.329974489) x sine [Inverse tan (481.22/300, 00)]deg/100 years

    W = 4.2/year

    15- PSR J0737 3039

    Data: U =21.3 years

    With m = 1.34 M (0); M = 1.25 M (0); M (0) = 2 x 1030And = 0.0878; [v (p), v (s)] = [22.7 km/sec, 2km/sec]With G = 6.673 x 10 11; T =2.4 hours; a = 1.145 x 0.069 x 109

    With K (p) = v* (p) = [GM/ (m + M) a (1-/4)] = 303 km/secAnd K(s) = v* (m) = [Gm/ (m + M) a (1-/4)] = 325 km/secGiving v* (p) = 303 + 29.8 - 0.465 = 332.335 km/secAnd v* (s) = 325+ 29.8 0.465 =354.335 km/secAnd v (p) = 22.7 + 29.8 - 0.465 km/secAnd v (s) = 2 - 29.8 + 0.465 km/secOrbital speed of earth = 29.8 km/sec; spin speed of earth is 0.465 km/sec

    Then v* + v = 332.335 + 354.335 +22.7 + 2 =711.37km/sec[ (1- )] (1-) = 1.197

    W (cal) = (-720x36526/6.93) x (1.197) (711/300,000)= 1770/centuryU = [1770/100]-1x 360 = 20.3389 years.ReferencesThe Double pulsar PSR J0737 - 3039

  • 8/9/2019 Arabs Real Time Physics

    54/61

    Burgay, M; DAmico,N.; A.Manchester,R.N; Lyne, A.G.; Kramer, M; Mclaughlin, M.A;Lorimer, D.R; Carmilo, F.; Stairs, I.H: Freire, P.C.C; Joshi,

    Page 53B- Arabs real time Global Positioning System: GPS

    Abstract: The Global Positioning System or GPS 45 micro seconds per daytime delays have nothing to do with Einstein's relativity theory time travelsconfusions of physics and they are a consequence of Satellite orbital speedand Earth rotational speed given by this formula below. Even if Einstein'sformulas were correct for all practical purposes they are insignificant to theperformance to the GPS system. Earth - Satellite distance is a variable thatEngineers account for and the tiny "relativistic" effect has no significancewhatsoever because distance adjustment is far more than any relativisticadjustment. For the president of the United States President to ask forInnovations like that in an AAAS meeting is a sign of a bankrupt scientificcommunity and for those who knew the facts must have laughed to theirteeth at the president.

    NASA's and AAAS laughing at the president requires a reply with laugh atAAAS and NASA and all other including the person who wrote the speechfor the president

    GPS time delays of 45 micro seconds per day have nothing to do withrelativity theory or Einstein or AAAS or NASA or silly time travel physics orany theory. This time delay is due to Earth rotation and satellite orbital

    speed that Scientists turn their heads away from because without Einstein'ssilly magic sock of time travel physics, Physicists will have less tricks thatallows them to say anything publish anything based on nothing for jobsmoney prestige Nobel Prizes and silly physics.

    W" (ob) = (-720x3600x15) [(v +/- v*)/c] arc sec /day

    T = period; = eccentricity; v = spin velocity of earth; v*= orbitalvelocity of satelliteAnd v* = 14000km/hr = 3.88888888889 km/s; = 0; T = 0.5 days and v= 0.465km/s

    U = W" x (24/360) = 45.016microsecond per dayNahhas'Relativity theory silly professor of time travel accounted for 38 Microseconds and blamed the other 7 Micro seconds on weather

  • 8/9/2019 Arabs Real Time Physics

    55/61

    1 ArabsGlobal Positioning Systems in arc second per century:W" (calculated) = [-720x36526x3600/T] {[ (1 - )]/ (1 - ) } (v/c) arc sec/ century

    Page 542 ArabsGlobal Positioning Systems in arc degree /century

    W" (calculated) = [-720x36528/T] {[ (1 - )]/ (1 - ) } (v/c) arc sec/ century

    3 Arabs Global Positioning Systems in arc second per year:W" (calculated) = [-720x365.26x3600/T] {[ (1 - )]/ (1 - ) } (v/c) arc sec/ century

    4- Arabs Global Positioning Systems in arc degree per year:W" (calculated) = [-720x365.26/T] {[ (1 - )]/ (1 - ) } (v/c) arc sec/ century

    5 - Arabs Global Positioning Systems delays in arc degree per cycle:W" (calculated) = [-720/T] {[ (1 - )]/ (1 - ) } (v/c) arc sec/ century

    6 Arabs Global Positioning Systems delays in arc second per cycle:W" (calculated) = [-720x3600/T] {[ (1 - )]/ (1 - ) } (v/c) arc sec/ century

    7- Arabs Global Positioning Systems delays in arc second per day:W" (calculated) = [-720x3600] {[ (1 - )]/ (1 - ) } (v/c) arc sec/ century

    8- Arabs Global Positioning Systems delays in second per cycle:W" (calculated) = [24/360] [-720x3600/T] {[ (1 - )]/ (1 - ) } (v/c) arc sec/ century

    9 - Arabs Global Positioning Systems delays in second per day:U (seconds/day) = [-720x 3600/15] {[ (1 - )]/ (1 - ) } (v/c) sec/day

    10 - Arabs Global Positioning System Circular Satellite Orbits time delays in seconds/dayU (seconds/day) = [-720x 3600/15] (v/c) sec/day

    Application of Arabs Global positioning system

    GPS Data: T = 0.5 days satellite orbital Period; = 0And v = 0.465km/sec Earth spin speed;And v* = 14,000 km/hr = 35/9 km/secondThen v* +/- v = 35/9 = 3.88888889km/sec - 0.465km/secondWe subtracted because satellite and motion and spin orientations are

    oppositeGPS time delays are given by this formula per day in seconds of an arcW" (ob) = (-720x3600/T) {[ (1-)]/ (1-) ]} [(v +/- v*)/c] seconds/dayW" (ob) = (-720x36/0.5) (1) [3.423888889/300,000] seconds of arc /1day

  • 8/9/2019 Arabs Real Time Physics

    56/61

    W" (ob) = 0.000675246 arc seconds per day to get this answer in secondsdivide by 24hours/360degress = 15U [seconds] = 0.000675246 x [24/360] seconds/dayU = 0.000045016 seconds/day = 45 micro seconds /day

    Page 55

    C - Interplanetary telecommunications around the sun

    Harvard Irwin Shapiro historical mistake

    The stupidity of Harvard Physics department

    Universal Constant 0 =16GM/C= 247.597s

    Abstract: Interplanetary time delays around the moving sun derived fromthree dimensional time-dependent Newton - Kepler's equations solutiongives a solar round trip time delay rate of:= 16GM/c [1 + (v/v)] = 0 [1 + (v/v)] 0 = 16GM/c= 247.597sG = Gravitational constant; M=Sun mass; a=mean distance from Sun. Andeccentricity; c = light speed; a = mean distance

  • 8/9/2019 Arabs Real Time Physics

    57/61

    And v = Planet speed; v= Sum/Difference in spin between Earth andplanets. When applied to actual data it gives extremely accurate resultsbetter than Shapiro's Space-time-delay analysis and without space-timefictional forces or space-time fiction.

    Page 56W (ob) = (-720x36526/Tdays) {[ (1-)]/ (1-) } x [(v + v*)/c] degrees/100 years

    The circumference of an ellipse: 2a (1 - /4 + 3/16()- --.) 2a (1-/4); R =a (1-/4)

    Where v (m) = [GM/ (m + M) a (1-/4)]And v (M) = [Gm / (m + M) a (1-/4)]

    Then W (ob) = -4 [ (1-)]/T (1-) sine [ (m) t + (r) t] = T W (ob) = - 4 {[ (1-) ]/ (1-) } (v + v*/c) } radians; andwith = 0

    = - 4 (v + v*/c) Sun-Photon; and with v = 0 = -4 (v*/c) Sun-Photon: 0 = [Sun - Photon] [Earth - Mars] = 0.2075The circumference of an ellipse: 2a (1 - /4 + 3/16()---) 2 a (1-/4); R =a (1-/4)v= [Gm M/ (m + M) a (1-/4)] [GM/a (1-/4)]; m

  • 8/9/2019 Arabs Real Time Physics

    58/61

    Page 57

    These data compared to Shapiro's time delay from NASA 1977 Vikings 6, 7Earth - Mars Telecommunications mission are more accurate because the

    actual value is 250s and the value published by Doctor Irwin Shapiro ofHarvard is 247.597sAlthough this formula works the correct formula is = -4 [(v + v*)/c] Sun-Photon; and with v 0v = [GM/a] = 24.1 km/sec; v = 0.46511 0.241 = 0.224 km/sec = 2 arc length/c = 2[ ] d/c= 16GM/c [1 + (v/v)] = 247.597 x [1 + 0.224/24.1)] = 250 s For Mars; 0.4651 = Earth rotation; 0.241 = mars rotation; v= mars speed

    Planet Distant Planet-Earth

    Planet+Earth

    Eccentricity 1-/4 0 s

    Mercury 57,910 91,690 207,510 0.441858224

    0.951190328

    247.5974607

    260.3

    Venus 108,200 41,400 257,800 0.160589604

    0.993552745

    247.5794607

    249.2

    Earth 149,600 0 299,200 0 1 247.5794607

    247.597

    Mars 227,940 78,340 377,540 0.207501192

    0.989235814

    247.5794607

    250.273

    Jupiter 778,330 628,730 927,930 0.677561885

    0.885227473

    247.5794607

    279.6789

  • 8/9/2019 Arabs Real Time Physics

    59/61

    Harvard is where physics changed from science to stupidityPage 58

    Physics in a capitalist country is a business and physics is notnecessarily science or scientific and if it is a western invention it

    is to be at least 88.88 % fraud

    After World War II and the emergence of USA as a global superpower andthe shift of power from traditional old empires to the new worldsuperpower American Universities rushed for gold and gold is reputablephysics department that can say anything publish anything based onnothing and nothing is Robert Pound and Glen Rebka confusion of anexperiment

    Harvard strikes again with fraud Robert Pound and Glen Rebka (top)

  • 8/9/2019 Arabs Real Time Physics

    60/61

    22.5 meters apart

    To start with gravity is a spin effect of a planet with atmosphereThe gravitational and electric and magnetic constants all are derived fromtwo constants p and T which are air density and Earth spin

    Page 59

    If we took a look at the most famous physics fundamental constant G from

    Newton's 350 years old Equation F = - GmM/r, or, Coulomb electric forceequation F = - Qq/4 0, one can see that, for example, Gs value has unitdimension of [G] = [1/ T]; is density and T is time rotational period. If wecan show that the gravitational constant G = G (, T) is a variable air densityand Earth rotational period dependent then we can say what Earth is sayingthat the most famous physics fundamental constants are not so universalconstants because all three fundamental constant are air density and Earth spindependent.

  • 8/9/2019 Arabs Real Time Physics

    61/61