april 2009 - interwest · castel products can be supplied with different connections. in particular...

170

Upload: others

Post on 18-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

2

April 2009

3

Expansion • thermostatic expansion valves with interchangeable orifice assembly 16valves • PWM solenoid expansion valves with interchangeable orifice 26

Solenoid • valves for refrigerating systems 32valves • coils 40

• permanent magnet 43• connectors 44• valves for different fluids 44

Safety devices • safety valves 3030 50• safety valves 3060 57• ball shut-off valves 59• changeover devices 60• unions 62• fusible plugs 63

Check valves 65

Water regulating valves 71

Liquid indicatorsMoisture – liquid indicators 77

Dehydrators • dehydration of refrigerants 83• anti-acid solid core filter driers 85• solid core filter driers with sight glass 94• solid core bi-flow filter driers 97• filter driers with replaceable anti-acid solid core 100• mechanical filters with replaceable filtering block 105• strainers 110

Oi105

Valves • hermetic valves 112• receiver valves 114• stop valves 116• diaphragm valves 118• rotalock valves 120• capped valves 122• globe valves 124• ball valves 126• gauge mounting valves 129• line piercing valve 130

Threaded brass fittings 131

Solder copper fittings 141

Access fittings 153

Spare parts 159

Index

4

The techical data in this handbook are indicative. Castel reserves theright to modify the same at any time without any previous notice.

The products listed in this handbook are protected according to the law

5

From quality our naturaldevelopment

After more than forty years in the industry of Refrigeration and

Air Conditioning components, Castel Quality Range of Products

is well known and highly appreciated all over the world.

Quality is the main issue of our Company and it has a special

priority, in every step, all along the production cycle.

We produce on high tech machinery and updated automatic

production lines, operating in conformity with the safety and

environment standards currently enforced.

Castel offers to the Market and to Manufacturers fully tested

products suitable with HCFC and HFC Refrigerants currently

used in the Refrigeration & Air Conditioning Industry.

UNI EN ISO 9001:2008 issued by ICIM certifies the Quality System

of the Factory.

Moreover Castel Products count a number of certifications in

conformity with the EEC Directives and with European and

American Quality Approvals.

6

Application of Directive 97/23/EC of the European Parliamentand of the Council, of 29 May 1997, concerning pressureequipment towards Castel refrigeration products

– Maximum / minimum allowabletemperature (TS):the maximum/minimum temperatures forwhich the equipment is designed, asspecified by the manufacturer

– Volume (V): the internal volume of achamber, including the volume of nozzles tothe first connection or weld and excludingthe volume of permanent internal parts.

– Nominal size (DN): numerical designationof size, which is common to all componentsin a piping system.

– Fluids: gases, liquids and vapours in purephase as well as mixture thereof.

Pressure equipments referred to in Article 3 areclassified by categories in accordance withAnnex II, according to ascending level ofhazard, on the basis of: – State of the fluid– Danger classification of the fluid– Type of equipment– Dimensions and energetic potential:

V, DN, PS, PS x V, PS x DNand must satisfy the Essential SafetyRequirement set out in Annex I of PED.Pressure equipments below or equal to thelimits in Article 3, sections 1.1, 1.2 and 1.3and section 2, must not satisfy the EssentialSafety Requirement set out in Annex I. Theymust be designed and manufactured inaccordance with the sound engineering practiceof a Member State in order to ensure safe use(Article 3, Section 3).In the tables of general characteristics,collected in this Handbook, it’s showed the riskcategory in which every product is classified.

In Article 9 of PED the fluids are classified,according to their hazard, into two groups:

The Directive 97/23/EC (PED) applies to the design, manufacture and conformityassessment of pressure equipment and assemblies with a maximum allowablepressure “PS” greater than 0,5 bar with the exception of the possibilities listed in Article 1, Section 3 of the same Directive.Since 30 May 2002 the Directive has become mandatory and,in the Member States of European Community,it has been possible to place on the market only pressure equipments CE marked according to PED.

For the purposes of the Directive see thefollowing definitions, used in this Handbooktoo:– Pressure equipment: vessels, piping,

safety accessories, and pressureaccessories

– Vessel: a housing designed and built tocontain fluids under pressure.

– Piping: piping components intended for thetransport of fluids, when connected togetherfor integration into a pressure system.

– Safety accessories: devices designed toprotect pressure equipment against theallowable limits being exceeded.

– Pressure accessories: devices with anoperational function and having pressure-bearing housing. For example: solenoidvalves, valves, indicators.

– Assemblies: several pieces of pressureequipment assembled by a manufacturer toconstitute an integrated and functionalwhole.

– Maximum allowable pressure (PS):the maximum pressure for which theequipment is designed, as specified by themanufacturer.

7

– Group I comprises dangerous fluids. Adangerous fluid is a substance orpreparation covered by the definitions inArticle 2 of Council Directive 67/548/EECof 27 June 1967 and followingamendments, relating to the classification,packaging and labeling of dangeroussubstance. Group I comprises fluids definedas: explosive, extremely flammable, highlyflammable, flammable, very toxic, toxic,oxidizing.

– Group II comprises all the others fluids notreferred to in group I.

Castel products are suitable for using withrefrigerant fluids proper to the Group II.These refrigerant fluids are listed andclassified A1 in Annex E of standard EN 378-1:2008, plus fluids R30, R123,R141b and R245fa that are classified inother safety groups.

EXTERNAL LEAKAGE

All the products illustrated in this Handbook aresubmitted, one by one, to tightness testsbesides to functional tests.Allowable external leakage, measurable duringthe test, agrees to the definition given in theStandard EN 12284 : 2003, Par. 9.4:“During the test, no bubbles shall form over aperiod of at least one minute when thespecimen is immersed in water with lowsurface tension, …”.

PRESSURE CONTAINMENT

All the products illustrated in this Handbook, ifsubmitted to hydrostatic test, guarantee apressure strenght at least equal to 1,43 x PS incompliance with the Directive 97/23/EC.

All the products illustrated in this Handbook, ifsubmitted to burst test, guarantee a pressurestrength at least equal to 3 x PS according toto the EN 378-2:2008 Standard. A greatnumber of products illustrated in the Handbookcan guarantee an higher pressure strength,equal to 5 x PS according to the Standard UL207 : 2004. (for detailed information aboutthese products please contact Castel TechnicalDepartment).

WEIGHTS

The weights of the items listed in thisHandbook include packaging and are notbinding for the Company.

Application of Directive 2002/95/EC of the European Parliament andof the Council, of 27 January 2003, on the restriction of the use ofcertain hazardous substances in electrical and electronic equipment

listed in the Annex of the same Directive;among these applications the followingexceptions are particularly interesting in airconditioning / refrigerating systems:

– Lead as an alloying element in steelcontaining up to 0,35% lead by weight,aluminium containing up to 0,4% lead byweight and as a copper alloy containing up to4% lead by weight

– Hexavalent chromium as an anti-corrosion ofthe carbon steel cooling system in absorptionrefrigerators

The Member States of European Community hadto adopt the two Directives 2002/95/EC and2002/96/EC, with the next updating2003/108/EC, before 13 August 2004, unlessdelays granted by the European Parliament.For a long time Castel Company has started acareful inquiry, together with its suppliers, toidentify the presence or not of the above-mentioned hazardous substances, either in itsown products or in its own production processes,and to remove them progressively.At the end of this wide examination CastelCompany may declare that its products:1. Do not contain mercury, cadmium,

polybrominated biphenyls (PBB),polybrominated diphenyl ethers (PBDE)

2. Do not contain hexavalent chromium, used forthe surface treatments (yellow zinc plating) ofsteel parts. Castel Company has removed theyellow zinc plating treatments from all itsproducts, before the end of 2005, and haschosen:– other surface treatments containing trivalent

chromium instead of hexavalent chromium.– where possible, other materials which don’t

need surface treatments.3. Contain lead as an alloying element in steel,

aluminium and copper alloys within theaccepted limits according to the Annex ofRoHS Directive.

The purpose of Directive 2002/95/EC (RoHSDirective) is to prevent or restrict the use ofhazardous substances in electrical andelectronic equipment and to contribute to theenvironmentally sound recovery and disposal ofwaste electrical and electronic equipment.RoHS Directive shall apply to electrical andelectronic equipment falling under the categories1, 2, 3, 4, 5, 6, 7 and 10 set out in Annex 1A toDirective 2002/96/EC (WEEE – Waste electricaland electronic equipment) and to electric lightbulbs and luminaries in households.The equipment proper to the first category,“Large household appliances”, and to the10th category, “Automatic dispensers”, ofAnnex 1A in WEEE Directive, are specified inAnnex 1B in the same Directive; this list ofproducts shows:– Large cooling appliance– Refrigerators– Freezers– Other large appliances used for refrigeration,

conservation and storage of food– Air conditioner appliances– Other fanning, exhaust ventilation and

conditioning equipment– Automatic dispenser for hot or cold bottles

and cans

Article 10 of WEEE Directive establishes that,from 13 August 2005, new electrical andelectronic equipment put on the market areappropriately identified as waste subject toseparate collection, by means of the propersymbol shown in Annex IV of the same Directive.

Article 4 of RoHS Directive establishes that, from1 July 2006, new electrical and electronicequipment put on the market does not containthe following substances:– Lead– Mercury– Cadmium– Hexavalent chromium– Polybrominated biphenyls (PBB)– Polybrominated diphenyl ethers (PBDE)

The restriction of use of these hazardoussubstances shall not apply to the applications

8

CONNECTIONS OF CASTEL PRODUCTS

Castel products can be supplied with differentconnections.

In particular Castel products are producedeither with threaded connections or solderconnections.Table 1 shows the equivalence between Castelcodes and dimensions in inches. These codesare commonly used in the international market.Table 2 shows the equivalence between Castelcodes and dimensions in millimeters.

CASTELcode

Dimension[in]

TABLE 1 - Equivalence between Castel code and dimension in inches

CASTELcode

Dimension[mm]

. …/M6

. …/M10

. …/M12

. …/M15

. …/M18

. …/M22

. …/M28

. …/M42

. …/M64

. …/M80

6

10

12

15

18

22

28

42

64

80

TABLE 2: Equivalence between Castel code and dimension in millimeters

1/8"

1/4"

3/8"

1/2"

5/8"

3/4"

7/8"

1"

1" 1/8

1" 3/8

1" 5/8

2" 1/8

2" 5/8

3"

3" 1/8

3" 1/2

3" 5/8

4" 1/8

4" 1/4

. …/1

. …/2

. …/3

. …/4

. …/5

. …/6

. …/7

. …/8

. …/9

. …/11

. …/13

. …/17

. …/21

. …/24

. …/25

. …/28

. …/29

. …/33

. …/34

F.e. 1098/7 – solenoid valve with solder connection

with Ø = 7/8”

F.e. 4411/M42A – filter drier with replaceable anti-acid

solid core with solder connection with Ø = 42 mm.

9

10

1) THREADED CONNECTIONS

They can be of three different types:

FLAREStraight threaded connection (according to SAEJ513-92; ASME B1.1-89) for junction to acopper pipe with a suitable flared end, using aright nut (see Table 3).

NPTTaper threaded connection (according to ASMEB1.20.1-92) to joint fittings, valves, safetyvalves to vessel or steel pipes.

FPTStraight threaded connection (according to UNIISO 228/1) used in the hydraulic system tojoint fittings or valves to vessel or steel pipes.F.e.: solenoid valves for water or air.

2) SOLDER CONNECTIONS

They can be of four different types and can fitpipes with diameter both in inches and inmillimeters:

ODS (or ODF)Female solder connection for copper tubes. The indicated size corresponds to the outerdiameter of the copper tube which to joint.F.e.: 1/2" ODS solder connection suitable to receive

inside a copper pipe with a 1/2" outer diameter.

ODMMale solder connection for copper tubes. The indicated size corresponds to the outerdiameter of the copper tube which to joint.F.e.: 16 ODM solder connection suitable to joint a

copper pipe with a 16 mm outer diameter, by means of

an M16 female/female copper sleeve (in this case the

type Castel 7700/M16).

IDSMale solder connection for copper tube. The indicated size corresponds to the innerdiameter of the copper tube which to joint.F.e.: 10 IDS solder connection suitable to receive

outside a copper pipe with an 10 mm inner diameter).

WSolder connection for steel pipes. The indicated size corresponds to the externaldiameter of the steel pipe which to joint.F.e.: 76,1 W solder connection suitable to connect a

steel pipe with a 76,1 mm external diameter, by means

of butt welding.

FLARE Suitable forCopper tube thread

1/4"

5/16"

3/8"

1/2"

5/8"

3/4"

7/8"

1"

Ø 1/4"

Ø 5/16"

Ø 3/8"

Ø 1/2"

Ø 5/8"

Ø 3/4"

Ø 7/8"

Ø 1"

7/16" - 20 UNF

1/2" - 20 UNF

5/8" - 18 UNF

3/4" - 16 UNF

7/8" - 14 UNF

1.1/16" - 14 UNS

1.1/4" - 12 UNF

1.3/8" - 12 UNF

TABLE 3: Flare connections

Description of connections that are currently used for Castelproducts.

11

THE Kv FACTOR

«Table 1» shows refrigeration capacity valueswith unit Kv related to the nominal workingconditions specified in «Table 2».

Appropriate corrective coefficients may becalculated taking the values shown from Table3 to Table 8 as a basis; this will make itpossible to predict actual working conditions.

As a result:

– Liquid line:Q = Kv · Q1 · L1 · L2

– Suction lineQ = Kv · Q1 · S1 · S2

– Hot gas lineQ = Kv · Q1 · H1 · H2

since:

Q = required refrigeration capacity [kW];Kv = characteristic valve coefficient [m3/h];Q1 = reference refrigeration capacity [kW]

(Table 1).

L1 S1 H1 = are correction factors of therefrigeration capacity in the presence ofoperating temperatures different from referenceconditions.

L2 S2 H2 = are correction factors of therefrigeration capacity for pressure dropsdifferent from reference conditions.

The correct sizing of tubes and components ofa refrigerating system is of the utmostimportance for all kinds of plants; oversizingand undersizing are both to be avoided sincethey are equally hazardous for the correctoperation of the system.

The correct selection of a component is basedon the knowledge of the relationship betweencapacity and pressure drop through thatcomponent. For this purpose, EN 60534-1,EN 60534-2-1 and EN 60534-2-3 standardsrequire manufacturers to specify the Kvcoefficient for every product.

The Kv factor is defined as the cold waterflow (volumic mass r = 1000 kg/m3) inm3/h resulting in a 1 bar pressure dropwith a completely open valve.

This definition applies to all products describedin this handbook.

The merely physical meaning, this coefficientprecisely defines the fluid-dynamic andconstruction characteristics of the product, sothat, with the addition of other parametersmore closely related to the nature andconditions of the fluid under consideration, thecapacity/pressure drop ratio may be preciselydetermined.

Castel provides appropriate tables for the mostcommonly used refrigerants in typical plantworking conditions in order to help engineers inthe correct selection of its products.

TABLE 1

KvFactor[m3/h]

R134a

Liquid Vapour Hot Gas

Refrigeration Capacity [kW]

1 16,85

R22

18,00

R404A

11,90

R407C

18,74

R410A

19,04

R507

11,80

R134a

2,16

R22

2,70

R404A

2,26

R407C

2,68

R410A

3,60

R507

2,15

R134a

8,50

R22

11,70

R404A

10,00

R407C

11,62

R410A

13,00

R507

7,77

+4

TABLE 2 - Nominal Working Conditions

+18

+38

0,15

1

Application Suction Temperature[°C]

Condensing Temperature[°C]

Pressure drop [bar]

LIQUID

VAPOUR

HOT

GAS

Evaporating Temperature[°C]

12

Liquid lineTABLE 3 - Correction Factors – L1 of the refrigeration capacity for operating temperatures different from nominal values

LiquidTemperature

[°C] Refrigerant+ 10 + 5 0 – 5 – 10 – 15 – 20 – 25 – 30 – 35 – 40

Evaporating Temperature [°C]

0

+10

+20

+30

+40

+50

+60

R134a

R22

R404A

R407C

R410A

R507

R134a

R22

R404A

R407C

R410A

R507

R134a

R22

R404A

R407C

R410A

R507

R134a

R22

R404A

R407C

R410A

R507

R134a

R22

R404A

R407C

R410A

R507

R134a

R22

R404A

R407C

R410A

R507

R134a

R22

R404A

R407C

R410A

R507

1,23

1,19

1,28

1,23

1,19

1,33

1,12

1,08

1,13

1,12

1,08

1,17

1,00

0,99

0,99

0,99

1,00

1,00

0,88

0,89

0,85

0,85

0,85

0,80

0,76

0,79

0,68

0,71

0,70

0,58

1,21

1,17

1,26

1,22

1,17

1,30

1,10

1,07

1,12

1,10

1,07

1,15

0,98

0,98

0,97

0,97

0,99

0,97

0,86

0,88

0,83

0,84

0,84

0,78

0,74

0,78

0,66

0,70

0,69

0,56

1,19

1,16

1,25

1,20

1,16

1,28

1,08

1,06

1,09

1,08

1,06

1,13

0,96

0,97

0,95

0,96

0,96

0,95

0,84

0,87

0,81

0,82

0,81

0,76

0,72

0,77

0,64

0,68

0,67

0,54

1,17

1,16

1,22

1,18

1,16

1,26

1,06

1,05

1,07

1,06

1,05

1,10

0,94

0,96

0,93

0,94

0,95

0,93

0,82

0,86

0,79

0,80

0,80

0,74

0,70

0,76

0,62

0,66

0,66

0,52

1,15

1,15

1,20

1,16

1,15

1,23

1,04

1,04

1,05

1,04

1,04

1,08

0,92

0,95

0,92

0,92

0,94

0,90

0,80

0,85

0,77

0,79

0,79

0,71

0,68

0,75

0,60

0,65

0,65

0,50

1,13

1,13

1,17

1,15

1,13

1,20

1,02

1,03

1,04

1,03

1,03

1,05

0,90

0,93

0,89

0,90

0,93

0,87

0,78

0,84

0,75

0,77

0,78

0,68

0,66

0,74

0,58

0,63

0,63

0,47

1,34

1,32

1,40

1,35

1,32

1,52

1,23

1,22

1,27

1,23

1,22

1,35

1,11

1,11

1,16

1,13

1,11

1,17

1,00

1,02

1,02

1,00

1,02

1,02

0,88

0,92

0,87

0,89

0,92

0,85

0,76

0,82

0,73

0,75

0,76

0,66

0,64

0,72

0,56

0,61

0,61

0,45

1,32

1,31

1,38

1,33

1,31

1,49

1,21

1,21

1,25

1,21

1,21

1,32

1,09

1,10

1,13

1,11

1,10

1,14

0,98

1,01

0,99

0,99

1,01

0,99

0,86

0,90

0,85

0,87

0,91

0,82

0,74

0,81

0,71

0,73

0,74

0,63

0,62

0,71

0,54

0,60

0,60

0,42

1,30

1,29

1,36

1,31

1,29

1,46

1,18

1,19

1,23

1,19

1,19

1,29

1,07

1,08

1,11

1,09

1,08

1,12

0,96

0,99

0,97

0,97

0,99

0,96

0,84

0,89

0,83

0,85

0,90

0,79

0,72

0,80

0,69

0,72

0,73

0,60

0,60

0,70

0,52

0,58

0,58

0,40

1,28

1,27

1,33

1,29

1,27

1,42

1,16

1,17

1,20

1,18

1,18

1,26

1,05

1,07

1,08

1,07

1,07

1,08

0,94

0,98

0,95

0,95

0,98

0,93

0,82

0,87

0,80

0,83

0,87

0,76

0,70

0,78

0,67

0,70

0,72

0,57

0,58

0,68

0,50

0,56

0,57

0,36

1,26

1,25

1,31

1,25

1,25

1,38

1,14

1,16

1,18

1,16

1,16

1,22

1,03

1,05

1,06

1,06

1,05

1,04

0,91

0,96

0,93

0,94

0,96

0,89

0,80

0,86

0,78

0,82

0,86

0,72

0,68

0,77

0,65

0,69

0,71

0,54

0,56

0,67

0,48

0,55

0,56

0,33

TABLE 4 - Correction Factors – L2 of the refrigeration capacity for pressure drops different from nominal values

Pressuredrop[bar]

0,01 0,03 0,05 0,10

L2 0,263 0,456 0,59 0,81 1,00 1,15 1,30 1,40 1,54 1,64 1,72 1,82 1,92 2,00

0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60

13

Suction line Hot gas line

Q = Kv · Q1 · S1 · S2 [kW]15 = Kv · 2,68 · 0,70 · 0,82

15Kv = ——— = 9,75 [m3/h]

1,538

The result involves the selection of a 1078/9valve with Kv = 10 [m3/h]

3) Hot gas line:Valve selection under the following conditions:

Refrigerant: R407CSet refrigeration capacity: 20 [kW]Condensation: + 40 [°C]Evaporation: 0 [°C]Set pressure drop: 0,5 [bar]

Q = Kv · Q1 · H1 · H2 [kW]20 = Kv · 11,62 · 0,94 · 0.7

20Kv = ——— = 2,61 [m3/h]

7,64

The result involves the selection of a 1078/5valve with Kv = 2,61 [m3/h]

APPLICATION EXAMPLES

1) Liquid line:Evaluation of pressure drop across the valveunder the following working conditions:

Castel 1078/5 valve: Kv = 2,61 [m3/h]Refrigerant: R407CSet refrigeration capacity: 35 [kW]Condensation: + 50 [°C]Evaporation: 0 [°C]

Q = Kv · Q1 · L1 · L2 [kW]35 = 2,61 · 18,74 · 0,82 · L2 [kW]

35L2 = ——— = 0,87

40,11

A pressure drop slightly above 0.11 barcorresponds to the L2 = 0.87 correction factor.Such a pressure drop is compatible with theminimum differential pressure required by thevalve.

2) Suction line:Valve selection under the following conditions:Refrigerant: R407CSet refrigeration capacity: 15 [kW]Condensation: + 40 [°C]Evaporation: – 10 [°C]Set pressure drop: 0,1 [bar]

TABLE 5 - Correction Factors - S1 of the refrigeration capacityfor operating temperatures different fom nominal values

Evaporating Temperature

[°C] + 60 + 55 + 50 + 45 + 40 + 35 + 30

Condensing Temperature [°C]

+10

0

–10

–20

–30

–40

0,87

0,67

0,51

0,35

0,36*

0,27*

0,92

0,73

0,55

0,39

0,38*

0,29*

0,98

0,78

0,59

0,43

0,41*

0,31*

1,04

0,83

0,64

0,50

0,35

0,43*

0,33*

1,11

0,85

0,70

0,53

0,37

0,46*

0,35*

1,17

0,96

0,76

0,57

0,39

0,48*

0,37*

1,23

1,01

0,80

0,60

0,45

0,50*

0,38*

TABLE 6 - Correction Factors - S2 of the refrigeration capa-city for pressure drops different from nominal values

Pressure drop[bar]

0,04 0,05 0,07 0,10 0,15 0,20 0,30 0,40 0,50 0,70

S2 0,47 0,57 0,68 0,82 1,00 1,15 1,40 1,64 1,82 2,15

TABLE 8 - Correction Factors - H2 of the refrigeration capa-city for pressure drops different from nominal values

Pressuredrop[bar]

0,10 0,20 0,30 0,40 0,50 0,70 1,00 1,50 2,00 2,50

H2 0,32 0,45 0,54 0,65 0,70 0,83 1,00 1,17 1,30 1,44

TABLE 7 - Correction Factors - H1 of the refrigeration capacityfor operating temperatures different from nominal values

EvaporatingTemperature

[°C] + 60 + 55 + 50 + 45 + 40 + 35 + 30

Condensing Temperature [°C]

+10

0

–10

–20

–30

–40

1,00

0,83

0,76

1,00

0,90

0,76

1,00

0,92

0,79

0,67

1,03

0,92

0,80

0,71

1,04

0,94

0,84

0,72

0,60

1,05

0,95

0,87

0,76

0,65

0,58

1,05

0,95

0,88

0,77

0,68

0,61

*Two-stages pants, two indipendent circuits, with intermediatetemperature -10 °C.

14

Expansion valves

16

diaphragm assembly by 1.5 meter length ofcapillary tubing, which transmits bulb pressureto the top of the valve’s diaphragm. Thesensing bulb pressure is a function of thetemperature of the thermostatic charge that isthe substance within the bulb.The body is made from forged brass withconnection in angle configuration. Theinterchangeable orifice assembly can bereplaced through the inlet connection. A steelrod, inside the body, transfers the diaphragmmovement to the plug inside the orificeassembly. When the thermostatic chargepressure increases, the diaphragm will bedeflected downward transferring this motion tothe plug, which lifts from seat and allows theliquid passing through orifice. A spring opposesthe force underneath the diaphragm and theside spindle can adjust its tension. Staticsuperheat increases by turning the side spindleclockwise and decreased by turning the spindlecounter clockwise.The thermostatic element is hardly connectedby brazing to the forged brass body to avoid anyleakage.The body assembly can be supplied withinternal or external equalizer; both types canalso be supplied either with flare connectionsor with solder connections (outlet and externalequalizer if present). The nuts for flare connection type and the inlet-

APPLICATION

Castel thermostatic expansion valves series 22regulate the flow of refrigerant liquid intoevaporators; the liquid injection is controlled bythe refrigerant superheat.The new Castel “22” series are designed towork with interchangeable orifice assembly, toprovide flexibility in selection of capacities, andcan be used in a wide range of applications aslisted below:• Refrigeration systems (display cases in

supermarkets, freezers, ice cream and icemaker machines, transport refrigeration etc).

• Air conditioning systems• Heat pump systems• Liquid chillerswhich use refrigerant fluids proper to the GroupII (as defined in Article 9, Section 2.2, ofDirective 97/23/EC and referred to in Directive67/548/EEC).

OPERATION

Castel thermostatic expansion valves acts asthrottle device between the high pressure andthe low pressure sides of refrigeration systemsand ensure that the rate of refrigerant flow intothe evaporator exactly matches the rate ofevaporation of liquid refrigerant in theevaporator. If the actual superheat is higherthan the set point the valve feeds theevaporator with more liquid refrigerant, if theactual superheat is lower than the set point thevalve decreases the flow of liquid refrigerant tothe evaporator. Thus the evaporator is fullyutilized and no liquid refrigerant may reach thecompressor.

CONSTRUCTION

Castel thermostatic expansion valve series 22is made up of two parts that must worktogether: the first is the body, which is theactuator of the regulator, and the second is theorifice, which contains the valve and attendsthe expansion of the refrigerating fluid.

Body assembly: two parts make it up: thethermostatic (power) element and the body withits inner elements.The thermostatic element is the motor of thevalve; a sensing bulb is connected to the

THERMOSTATIC EXPANSION VALVES SERIES 22WITH INTERCHANGEABLE ORIFICE ASSEMBLY

17

TABLE 1a: General Characteristics of Body Assemblies of Liquid Charge Thermostatic Expansion Valves

externalequalizer

internalequalizer

Cataloguenumber

IN OUT Equal. OUT OUT Equal. min max

PS [bar]

SAE Flare ODS [mm] ODS [in]

Refri

gera

nt

Evap

orat

ing

Tem

pera

ture

Ran

ge[°C

]

Max

bul

bte

mpe

ratu

re [°

C]

MOP

TS [°C]Connections

2210/4E

2210/M12SE

2210/4SE

2220/4E

2220/M12SE

2220/4SE

2230/4E

2230/M12SE

2230/4SE

2210/4

2210/M12S

2210/4S

2220/4

2220/M12S

2220/4S

2230/4

2230/M12S

2230/4S

3/8"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/4"

1/4"

1/4"

12

12

12

12

12

12

Equal.

6

6

6

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/4"

1/4"

1/4"

R22

R407C

R134a

R404A

R507

- 40 ›

+ 10

without 100

(1)-60 +120 34

RiskCategoryaccording

toPED

Art. 3.3

(1) When valve is installed. 60 °C with element not mounted

TABLE 1b: General Characteristics of Body Assemblies of MOP Charge Thermostatic Expansion Valves

externalequalizer

internalequalizer

Cataloguenumber

IN OUT Equal. OUT OUT Equal. min max

PS [bar]

SAE Flare ODS [mm] ODS [in]

Refri

gera

nt

Evap

orat

ing

tem

pera

ture

Rang

e [°C

]

Max

bul

b te

mpe

ratu

re [°

C]

MOP

TS [°C]Connections

2211/4E

2211/M12SE

2211/4SE

2221/4E

2221/M12SE

2221/4SE

2231/4E

2231/M12SE

2231/4SE

2234/4E

2234/M12SE

2234/4SE

2211/4

2211/M12S

2211/4S

2221/4

2221/M12S

2221/4S

2231/4

2231/M12S

2231/4S

2234/4

2234/M12S

2234/4S

3/8"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/4"

1/4"

1/4"

1/4"

12

12

12

12

12

12

12

12

Equal.

6

6

6

6

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/2"

1/4"

1/4"

1/4"

1/4"

R22

R407C

R134a

R404A

R507

- 40 ›

+ 10

- 60 ›

- 25

+ 15 °C

(95 psi)

+ 15 °C

(55 psi)

+ 15 °C

(120 psi)

- 20 °C

(30 psi)

100

(1)-60 +120 34

RiskCategoryaccording

toPED

Art. 3.3

(1) When valve is installed. 60 °C with element not mounted

18

charge cannot incorporate MOP functions.

Gas charge: the behaviour of valves with gascharge will be determined by the lowesttemperature at any part of the expansion valve(thermostatic element, capillary tube or bulb). Ifany parts other than the bulb are subjected tothe lowest temperature, malfunction ofexpansion valve may occur (charge migration).Castel thermostatic expansion valves with gascharge always feature MOP functions andinclude ballasted bulb. Ballast in the bulb has adamping effect on the valve regulation andleads to slow opening and fast closure of thevalve.

MOP (Maximum Operating Pressure): thisfunctionality limits the evaporator pressure to amaximum value to protect the compressor fromthe overload condition (Motor OverloadProtection). MOP is the evaporating pressure atwhich the expansion valve will throttle liquidinjection into the evaporator and thus preventthe evaporating pressure from rising. Expansionvalve operates as superheat control in normalworking range and operates as pressureregulator within MOP range. The MOP point willchange if the factory superheat setting of theexpansion valve is changed. Superheatadjustments influence the MOP point asfollowing:• increase of superheat

decrease of MOP• decrease of superheat

increase of MOP

Superheat: this is the controlling parameter ofthe expansion valve. Superheat, measured atthe evaporator outlet, is defined as thedifference between actual bulb temperature andthe evaporating temperature, deduce fromevaporator pressure. In order to prevent liquidrefrigerant from entering the compressor, acertain minimum superheat must bemaintained. In expansion valve operation thefollowing terms are used:• Static superheat: it’s the superheat above

that the valve will begin to open. Castelthermo expansion valves are factory presetat the following values:5 °C for Castel valves without MOP 4 °C for Castel valves with MOPwith nominal operating conditions (see table 2)

• Opening superheat: it’s the superheat abovethe static one required to produce a givenvalve capacity

• Operating superheat: it’s the sum of staticand opening superheat

brazing adapter for solder connection type canbe ordered separately.Every body assembly is supplied with a strap,code G9150/R61 that allows fixing the bulb tothe pipe. This code can be ordered separatelytoo, as repair kit.The main part of body assembly are made withthe following materials:• stainless steel for bulb, capillary tubing,

diaphragm casing, diaphragm and rod• hot forged brass EN 12420 – CW 617N for

body• brass EN 12164 – CW 614N for superheat

setting spindle and spring holder• steel DIN 17223-1 for spring• copper tube EN 12735-1 – Cu DHP for solder

connection

Orifice assembly: interchangeable orificeassembly provide a wide range of capacity from0,5 up to 15,5 kW (nominal capacity with R22).The external cartridge contains the followingelements: housing, plug (metering device), seat,spring and strainer. The rigid design of orificeassembly and its internal components makesure that plug and seat will withstand all typesof critical operations (liquid hammering,cavitation, sudden variation of pressure andtemperature contaminants). The spring holdsthe plug firmly to the seat to ensure theminimum leakage through the valve; for positiveshut-off, the installation of a solenoid valve isrequired. Orifice assemblies are available inthese two solutions:• with conical flanged strainer, for valves with

SAE Flare threaded connections.• with flat flanged strainer, for valves with ODS

solder connections, to use with adapterseries 2271.

Orifice assemblies strainers can be cleaned orexchanged, in this last case it’s possible toorder separately the following two types ofstrainers.• strainer 2290 for valves with SAE Flare

threaded connections.• strainer 2290/S for valves with ODS solder

connections.

THERMOSTATIC CHARGES

Liquid charge: the behaviour of valves withliquid charge is exclusively determined bytemperature changes at the bulb and notsubject to any cross-ambient interference. Theyfeature a fast response time and thus reactquickly in the control circuit. Castelthermostatic expansion valves with liquid

19

Subcooling: it’s defined as the differencebetween the condensing temperature (deducedfrom condensing pressure) and the actualtemperature at inlet valve. Subcooling generallyincreases the capacity of refrigeration systemand may be accounted for when dimensioningan expansion valve. Depending on systemdesign, subcooling may be necessary toprevent flash gas from forming in the liquid line.If flash gas forms in the liquid line, the capacityof expansion valve will be greatly reduced. Allcapacity tables, in this chapter, are calculatedfor a subcooling value of 4 °C; if the actualsubcooling is higher than 4 °C the valvecapacity comes from evaporator capacitydivided by the correction factor shown in thetables below every capacity table.

41,5

42

20

chosen refrigerant.

Step 4Select a thermostatic charge. Chose the type ofcharge, liquid without MOP or gas with MOP, andthe temperature range, normal temperature or lowtemperature.

Step 5Determine if external equalizer is required.External equalizer is always required if adistributor is used or if there is an appreciabledifference in pressure from the valve outlet to thebulb location. Finally determine the type ofconnections and their sizes.

Step 6Order the required componentsIf SAE Flare connections you have to order thefollowing two parts:- Body assembly (see tabs 1a/1b)- Orifice assembly, completed with strainer (seetab 2)If ODS connections you have to order the followingthree parts:- Body assembly (see tabs 1a/1b)- Orifice assembly, completed with strainer(see tab 2)- Solder adapter (see tab. 3)

SELECTION

To correctly select a thermo expansion valve on arefrigerating system, the following designconditions must be available:Type of refrigerantEvaporator capacity, Qe

Evaporating temperature/pressure, Te / pe

Lowest possible condensing temperature/pressure, Tc / pc

Liquid refrigerant temperature, Tl

Pressure drop in the liquid line, distributor andevaporator, �p

The following procedure helps to select the correctvalve for the system.

Step 1Determine the pressure drop across the valve.The pressure drop is calculated by the formula:

where:Pc = condensing pressurePe = evaporating pressure�p = sum of pressure drops in the liquid line,distributor and evaporator

Step 2Determine required valve capacity. Use theevaporating capacity Qe to select the requiredvalve size at a given evaporating temperature. Ifnecessary, correct the evaporator capacity forsubcooling. Subcooling liquid refrigerant enteringthe evaporator increase the evaporator capacity,so that a smaller valve may be required.

The subcooling is calculated by the formula:

From the subcooling corrector factor table find theappropriate corrector factor Fsub corresponding tothe �Tsub calculated and determine the requiredvalve capacity by the formula:

Step 3Determine required orifice size. Use the pressuredrop across the valve, the evaporatingtemperature and the calculated evaporatorcapacity to select the corresponding orifice sizefrom the capacity table corresponding to the

sub

esub F

QQ =Δ

lcsub TTT −=Δ

( )pppp ectot Δ+−=Δ

TABLE 2: Orifice Assemblies - Rated Capacities in kW

Valves withSAE Flare

connections

Catalogue number

Valves with ODS

connections R22R407C R134a R404A

R507R404AR507

Evaporating Temperature Range [°C]

- 40 › + 10 -60› -25

220X

2200

2201

2202

2203

2204

2205

2206

220X/S

2200/S

2201/S

2202/S

2203/S

2204/S

2205/S

2206/S

0,5

1,0

2,5

3,5

5,2

8,0

10,5

15,5

0,4

0,9

1,8

2,6

4,6

6,7

8,6

10,5

0,38

0,7

1,6

2,1

4,2

6,0

7,7

9,1

0,38

0,7

1,6

2,1

3,5

4,9

6,0

6,6

Rated capacities, for temperature range - 40 › + 10, are based on:– Evaporating temperature Tevap = + 5 °C– Condensing temperature Tcond = + 32 °C– Refrigerant liquid temperature ahead

of valve Tliq = + 28 °C

Rated capacities, for temperature range - 60 › - 25, are based on:– Evaporating temperature Tevap = - 30 °C– Condensing temperature Tcond = + 32 °C– Refrigerant liquid temperature ahead

of valve Tliq = + 28 °C

21

• pressure drop across the valve = 4,2 bar• evaporating temperature = - 10 °C• calculated evaporator capacity = 5,55 kW• select the corresponding orifice 2205 (N.B.:

the expansion valve capacity must be equalor slightly more than the calculatedevaporator capacity)

MARKING

Main valve data are indicated on the upper sideof the thermostatic element and on thecartridge surface of the orifice assembly.On the thermostatic element you may find thefollowing data:• The valve code number• The refrigerant• The evaporating temperature range• The MOP value, if present• The maximum allowable pressure PS• The date of productionOn the cartridge of orifice assembly you mayfind the following data:• The size of the orifice• The date of productionOn the plastic cap of the orifice assemblypackage the orifice size is marked. The cap caneasily be fastened around the valve capillarytube to clearly identify the valve size.

TABLE 3: Solder adapters

Catalogue numberODS Connections

[in] [mm]

2271/M6S

2271/2S

2271/3S

2271/M10S

1/4"

3/8"

6

10

SIZING EXAMPLE

• Type of refrigerant R134a• Evaporator capacity, Qe 6 kW• Evaporating temperature/

pressure, Te - 10 °C• Lowest possible condensing

temperature/pressure, Tc + 30 °C• Liquid refrigerant temperature, Tl + 20 °C• Pressure drop in the liquid line, distributor

and evaporator, �p 1,5 bar

STEP 1 - Determine the pressure drop acrossthe valve• Condensing pressure at

+ 30 °C - pc = 6,71 bar• Evaporating pressure at

- 10 °C - pe = 1,01 bar

�ptot = 6,71 – ( 1,01 + 1,5 ) = 4,2 bar

STEP 2 - Determine required valve capacity

�Tsub = 30 – 20 = 10 °C

From the subcooling corrector factor table 5b,we find the appropriate corrector factor Fsub

equal to 1,08 for �Tsub = 10 °C Required valvecapacity is:

�Qsub = 6/1,08 = 5,55 kW

STEP 3 - Determine required orifice sizeUsing the capacity table for R134a on page 25with:

22

TABLE 4a: Refrigerant R22/R407C - Capacities in kW for temperature range - 40 °C › +10 °C

Orifice code

Orificecode

Pressure drop across valve [bar] Pressure drop across valve [bar]

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Evaporating temperature = 0 °C

220X 0,37 0,48 0,55 0,59 0,63 0,65 0,66 0,66

2200 0,84 1,0 1,2 1,3 1,3 1,4 1,4 1,4

2201 1,9 2,4 2,7 3,0 3,1 3,2 3,3 3,3

2202 2,6 3,4 4,0 4,3 4,6 4,8 4,9 5,0

2203 4,6 6,1 7,1 7,8 8,2 8,5 8,7 8,8

2204 6,9 9,1 10,5 11,5 12,2 12,7 13,0 13,2

2205 8,8 11,6 13,3 14,6 15,5 16,1 16,4 16,6

2206 10,8 14,2 16,3 17,8 18,9 19,6 20,0 20,2

Evaporating temperature =-20 °C

220X 0,44 0,50 0,54 0,57 0,59 0,61 0,61

2200 0,88 1,0 1,1 1,1 1,2 1,2 1,2

2201 1,7 1,9 2,0 2,2 2,3 2,3 2,3

2202 2,4 2,7 2,9 3,1 3,2 3,3 3,3

2203 4,2 4,8 5,2 5,5 5,8 5,9 6,0

2204 6,2 7,1 7,7 8,2 8,5 8,7 8,8

2205 7,9 9,0 9,8 10,3 10,8 11,0 11,2

2206 9,6 11,0 11,9 12,6 13,1 13,5 13,7

Evaporating temperature = -40 °C

220X 0,42 0,45 0,48 0,50 0,52 0,53

2200 0,8 0,86 0,92 0,95 0,98 0,99

2201 1,3 1,4 1,4 1,5 1,5 1,6

2202 1,7 1,9 2,0 2,0 2,1 2,1

2203 3,1 3,4 3,5 3,7 3,8 3,8

2204 4,6 4,9 5,2 5,4 5,6 5,7

2205 5,8 6,3 6,6 6,9 7,1 7,2

2206 7,1 7,7 8,1 8,4 8,7 8,8

Evaporating temperature = +10 °C

220X 0,37 0,48 0,55 0,60 0,63 0,65 0,65 0,67

2200 0,87 1,1 1,2 1,3 1,4 1,4 1,4 1,5

2201 2,2 2,8 3,2 3,4 3,6 3,7 3,8 3,8

2202 3,0 4,0 4,7 5,1 5,4 5,6 5,8 5,8

2203 5,4 7,2 8,3 9,1 9,7 10,0 10,2 10,3

2204 8,1 10,8 12,5 13,8 14,5 15,0 15,5 15,5

2205 10,2 13,6 15,7 17,2 18,3 18,9 19,3 19,5

2206 12,6 16,7 19,3 21,0 22,3 23,1 23,5 23,7

Evaporating temperature = -10 °C

220X 0,37 0,47 0,53 0,57 0,60 0,63 0,64 0,64

2200 0,79 0,96 1,1 1,2 1,2 1,3 1,3 1,3

2201 1,6 2,0 2,3 2,5 2,6 2,7 2,8 2,8

2202 2,2 2,9 3,3 3,6 3,8 4,0 4,1 4,1

2203 3,9 5,1 5,9 6,4 6,8 7,1 7,3 7,3

2204 5,8 7,6 8,7 9,5 10,1 10,5 10,8 10,9

2205 7,4 9,6 11,0 12,0 12,8 13,3 13,6 13,8

2206 9,1 11,6 13,5 14,7 15,6 16,2 16,6 16,8

Evaporating temperature = -30 °C

220X 0,40 0,45 0,49 0,52 0,55 0,56 0,57

2200 0,79 0,9 0,96 1,0 1,1 1,1 1,1

2201 1,4 1,5 1,7 1,8 1,8 1,9 1,9

2202 1,9 2,2 2,7 2,5 2,6 2,6 2,7

2203 3,4 3,9 4,2 4,4 4,6 4,7 4,8

2204 5,0 5,7 6,2 6,6 6,8 7,0 7,1

2205 6,4 7,2 7,8 8,3 8,6 8,8 9,0

2206 7,8 8,8 9,6 10,1 10,5 10,8 11,0

TABLE 4b: Refrigerant R22/R407C - Correction factor for subcooling Dtsub > 4 °C

Dtsub [°C] 4 10 15 20 25 30 35 40 45 50

Fsub 1,00 1,06 1,11 1,15 1,20 1,25 1,30 1,35 1,39 1,44

When subcooling ahead of the expansion valve is over than 4 °C, adjust the evaporator capacity by dividing by the appropriatecorrection factor found in table 4b

23

TABLE 5a: Refrigerant R134a – Capacities in kW for temperature range - 40 °C › + 10 °C

Orificecode

Orificecode

Pressure drop accross valve [bar] Pressure drop accross valve [bar]

2 4 6 8 10 2 4 6 8 10

Evaporating temperature = 0 °C

220X 0,33 0,42 0,46 0,47 0,49

2200 0,65 0,78 0,86 0,89 0,91

2201 1,3 1,6 1,7 1,8 1,8

2202 1,7 2,2 2,4 2,6 2,6

2203 3,0 3,9 4,4 4,6 4,7

2204 4,5 5,7 6,4 6,8 7,0

2205 5,7 7,3 8,1 8,6 8,8

2206 7,0 8,9 1,0 10,5 10,8

Evaporating temperature = -20 °C

220X 0,28 0,35 0,39 0,41 0,42

2200 0,53 0,62 0,69 0,72 0,73

2201 0,81 1,0 1,1 1,2 1,2

2202 1,1 1,4 1,5 1,6 1,7

2203 2,0 2,5 2,8 2,9 3,0

2204 2,9 3,6 4,0 4,3 4,4

2205 3,7 4,6 5,1 5,4 5,5

2206 4,5 5,6 6,2 6,6 6,8

Evaporating temperature = -40 °C

220X 0,23 0,28 0,32 0,33 0,34

2200 0,44 0,50 0,54 0,56 0,57

2201 0,54 0,65 0,72 0,78 0,77

2202 0,7 0,9 1,0 1,0 1,0

2203 1,3 1,6 1,8 1,9 1,9

2204 1,9 2,3 2,6 2,7 2,7

2205 2,4 2,9 3,2 3,5 3,5

2206 3,0 3,6 4,0 4,2 4,3

Evaporating temperature = +10 °C

220X 0,34 0,43 0,47 0,50 0,51

2200 0,71 0,86 0,93 0,97 0,98

2201 1,5 1,9 2,1 2,2 2,2

2202 2,0 2,6 3,0 3,1 3,2

2203 3,6 4,7 5,3 5,6 5,8

2204 5,4 7,0 7,8 8,3 8,6

2205 6,9 8,9 9,9 10,8 10,9

2206 8,4 10,8 12,1 12,8 13,2

Evaporating temperature = -10 °C

220X 0,30 0,36 0,43 0,44 0,44

2200 0,59 0,70 0,77 0,81 0,82

2201 1,0 1,3 1,4 1,5 1,5

2202 1,4 1,8 2,0 2,1 2,1

2203 2,5 3,1 3,5 3,7 3,8

2204 3,6 4,6 5,1 5,4 5,6

2205 4,6 5,8 6,5 6,9 7,1

2206 5,7 7,1 8,0 8,4 8,6

Evaporating temperature = -30 °C

220X 0,25 0,32 0,35 0,37 0,38

2200 0,48 0,55 0,61 0,64 0,64

2201 0,66 0,80 0,88 0,93 0,95

2202 0,9 1,1 1,2 1,3 1,3

2203 1,6 2,0 2,2 2,3 2,3

2204 2,3 2,9 3,2 3,3 3,4

2205 3,0 3,6 4,0 4,2 4,3

2206 3,6 4,4 4,9 5,2 5,3

TABLE 5b: Refrigerant R134a - Correction factor for subcooling Dtsub > 4 °C

Dtsub [°C] 4 10 15 20 25 30 35 40 45 50

Fsub 1,00 1,08 1,13 1,19 1,25 1,31 1,37 1,42 1,48 1,54

When subcooling ahead of the expansion valve is over than 4 °C, adjust the evaporator capacity by dividing by the appropriatecorrection factor found in table 5b

24

TABLE 6a: Refrigerant R404A/R507 – Capacities in kW for temperature range - 40 °C › + 10 °C

Orificecode

Orificecode

Pressure drop across valve [bar] Pressure drop across valve [bar]

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Evaporating temperature = 0 °C

220X 0,30 0,37 0,41 0,42 0,43 0,43 0,43 0,41

2200 0,68 0,80 0,87 0,90 0,92 0,93 0,91 0,87

2201 1,53 1,86 2,04 2,13 2,18 2,18 2,15 2,08

2202 2,06 2,64 2,95 3,13 3,22 3,25 3,21 3,11

2203 3,68 4,72 5,27 5,59 5,75 5,80 5,73 5,55

2204 5,49 7,15 7,86 8,33 8,58 8,64 8,53 8,27

2205 6,97 8,92 9,95 10,52 10,83 10,90 10,76 10,43

2206 8,57 10,93 12,16 12,85 13,21 13,30 13,12 12,72

Evaporating temperature = -20 °C

220X 0,35 0,38 0,40 0,39 0,40 0,39 0,38

2200 0,70 0,75 0,77 0,79 0,79 0,79 0,76

2201 1,34 1,45 1,50 1,52 1,52 1,51 1,47

2202 1,85 2,04 2,14 2,17 2,18 2,16 2,09

2203 3,32 3,66 3,83 3,89 3,90 3,86 3,75

2204 4,88 5,40 5,64 5,75 5,77 5,71 5,56

2205 6,20 6,86 7,17 7,29 7,31 7,23 7,05

2206 7,60 8,39 8,75 8,91 8,93 8,84 8,61

Evaporating temperature = -40 °C

220X 0,32 0,33 0,33 0,33 0,32 0,32

2200 0,60 0,61 0,62 0,61 0,60 0,59

2201 0,92 0,96 0,97 0,96 0,94 0,91

2202 1,27 1,32 1,33 1,31 1,28 1,24

2203 2,28 2,36 2,38 2,36 2,31 2,24

2204 3,34 3,47 3,50 3,48 3,42 3,33

2205 4,25 4,41 4,45 4,43 4,36 4,24

2206 5,19 5,39 5,45 5,42 5,33 5,19

Evaporating temperature = +10 °C

220X 0,28 0,35 0,40 0,42 0,43 0,43 0,42 0,41

2200 0,67 0,82 0,90 0,94 0,96 0,96 0,93 0,90

2201 1,70 2,10 2,30 2,42 2,48 2,46 2,41 2,34

2202 2,32 3,00 3,39 3,61 3,73 3,74 3,68 3,59

2203 4,15 5,36 6,03 6,43 6,63 6,66 6,55 6,39

2204 6,24 8,06 9,06 9,66 9,95 9,98 9,81 9,57

2205 7,91 10,17 11,43 12,16 12,53 12,56 12,34 12,03

2206 9,71 12,47 13,98 14,86 15,29 15,31 15,05 14,66

Evaporating temperature = -10 °C

220X 0,30 0,37 0,40 0,42 0,42 0,42 0,41 0,41

2200 0,65 0,76 0,82 0,84 0,87 0,87 0,85 0,83

2201 1,31 1,61 1,74 1,81 1,84 1,85 1,84 1,78

2202 1,76 2,24 2,50 2,62 2,69 2,71 2,68 2,60

2203 3,14 4,02 4,47 4,69 4,81 4,84 4,79 4,65

2204 4,66 5,97 6,61 6,95 7,13 7,18 7,11 6,91

2205 5,93 7,57 8,39 8,81 9,02 9,08 8,99 8,73

2206 7,28 9,27 10,26 10,76 11,00 11,08 10,97 10,65

Evaporating temperature = -30 °C

220X 0,35 0,37 0,36 0,37 0,36 0,35

2200 0,67 0,70 0,70 0,70 0,69 0,67

2201 1,18 1,21 1,23 1,21 1,20 1,17

2202 1,63 1,69 1,71 1,70 1,68 1,64

2203 2,93 3,04 3,07 3,06 3,02 2,93

2204 4,28 4,47 4,52 4,51 4,46 4,35

2205 5,45 5,68 5,74 5,74 5,67 5,52

2206 6,66 6,94 7,02 7,01 6,93 6,75

TABLE 6b: Refrigerant R404A/R507 - Correction factor for subcooling Dtsub > 4 °C

Dtsub [°C] 4 10 15 20 25 30 35 40 45 50

Fsub 1,00 1,10 1,20 1,29 1,37 1,46 1,54 1,63 1,70 1,78

When subcooling ahead of the expansion valve is over than 4 °C, adjust the evaporator capacity by dividing by the appropriatecorrection factor found in table 6b

25

TABLE 7a: Refrigerant R404A/R507 – Capacities in kW for temperature range - 60 °C › - 25 °C

Orificecode

Orificecode

Pressure drop across valve [bar] Pressure drop across valve [bar]

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Evaporating temperature = -30 °C

2200 0,53 0,64 0,67 0,70 0,70 0,70 0,69 0,67

2201 0,88 1,07 1,18 1,21 1,23 1,21 1,20 1,17

2202 1,18 1,47 1,63 1,69 1,71 1,70 1,68 1,64

2203 2,12 2,65 2,93 3,04 3,07 3,05 3,02 2,93

2204 3,09 3,88 4,28 4,47 4,52 4,51 4,46 4,35

2205 3,94 4,94 5,45 5,68 5,74 5,74 5,67 5,52

2206 4,83 6,06 6,66 6,94 7,02 7,01 6,93 6,75

Evaporating temperature = -50 °C

2200 0,49 0,53 0,54 0,54 0,53 0,52 0,50

2201 0,51 0,57 0,60 0,60 0,60 0,60 0,59

2202 0,91 0,99 1,02 1,02 1,01 0,98 0,95

2203 1,63 1,73 1,84 1,84 1,81 1,78 1,72

2204 2,36 2,60 2,69 2,71 2,68 2,63 2,56

2205 3,02 3,30 3,43 3,45 3,42 3,35 3,26

2206 3,69 4,04 4,20 4,22 4,18 4,12 4,00

Evaporating temperature = -25 °C

2200 0,57 0,67 0,72 0,73 0,74 0,85 0,74 0,71

2201 0,98 1,20 1,31 1,36 1,37 1,37 1,35 1,31

2202 1,31 1,65 1,83 1,91 1,93 1,93 1,90 1,85

2203 2,35 2,97 3,28 3,42 3,47 3,46 3,42 3,32

2204 3,45 4,37 4,82 5,04 5,11 5,12 5,06 4,93

2205 4,40 5,56 6,14 6,40 6,49 6,49 6,42 6,26

2206 5,40 6,30 7,49 7,81 7,93 7,93 7,85 7,64

Evaporating temperature = -40 °C

2200 0,56 0,60 0,61 0,62 0,61 0,60 0,59

2201 0,65 0,72 0,75 0,77 0,77 0,77 0,75

2202 1,17 1,27 1,32 1,33 1,31 1,28 1,24

2203 2,09 2,28 2,36 2,38 2,36 2,31 2,24

2204 3,03 3,34 3,47 3,50 3,48 3,42 3,33

2205 3,87 4,25 4,41 4,45 4,43 4,36 4,24

2206 4,73 5,19 5,39 5,45 5,47 5,33 5,19

Evaporating temperature = -60 °C

2200 0,46 0,48 0,47 0,45 0,45 0,43

2201 0,58 0,60 0,60 0,58 0,56 0,54

2202 0,78 0,80 0,80 0,78 0,75 0,72

2203 1,40 1,44 1,43 1,40 1,36 1,30

2204 2,04 2,11 2,11 2,07 2,03 1,96

2205 2,59 2,69 2,66 2,65 2,59 2,50

2206 3,16 3,28 3,30 3,25 3,18 3,07

TABLE 7b: Refrigerant R404A/R507 - Correction factor for subcooling Dtsub > 4 °C

Dtsub [°C] 4 10 15 20 25 30 35 40 45 50

Fsub 1,00 1,10 1,20 1,29 1,37 1,46 1,54 1,63 1,70 1,78

When subcooling ahead of the expansion valve is over than 4 °C, adjust the evaporator capacity by dividing by the appropriatecorrection factor found in table 7b

26

PWM SOLENOID EXPANSION VALVE WITH INTERCHANGEABLE ORIFICE

APPLICATION

Solenoid expansion valve Castel type 2028regulates the refrigerant flow into theevaporator by modulating the opening timephase of the plug and so permitting a widerange of power.This valve must be used with a coil type HM4(see table 2), controlled by an electronicregulator device (not supplied by Castel).This valve is most frequently used inrefrigeration systems, in particular refrigeratedcabinets in the supermarket, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/CE, and referred in Directive67/548/CE).

OPERATION

Valve type 2028 is a lamination device thatreceives liquid from the condenser and injectsit into the evaporator, operating the necessarypressure drop across the expansion orifice.It’s an ON/OFF valve that must be regulatedwith the Pulse Width Modulation (PWM)method and it can be actuated by a very simpleelectronic controller. In according to the PWMmethod, the evaporator refrigerant capacity QT,required in a fixed period “T”, is delivered bythe valve in a time interval “t”, shorter than“T”. During the period “t” the valve opens andpermits maximum flow (ON phase); in theremaining period “T-t” the valve closes with noflow (OFF phase).For an effective PWM regulation, the valve mustbe sized in such a way that in the hardestconditions of the system, the orifice of thevalve is big enough to deliver the refrigerantrequested; in these extreme conditions thevalve will last opened for the entire period “T”.The use of an electronic regulator allows amore accurate metering of the refrigerantreaching a greater efficiency (and then asensible decrement of the machinerymanagement costs) and a faster response tothe variations of the evaporation load.

CONSTRUCTION

Valve is supplied complete with its orifice; thereare seven different orifices corresponding toseven different evaporator capacities , thatincrease passing from orifice 01 to orifice 07.The last two numbers in the code identify whatsize of orifice has been mounted on the valveinto the factory; for example the code2028/3S02 identifies a valve with 3/8” solderconnections, size 02 orifice. The orifices areinterchangeable and can be mounted even ifthe valve is soldered on the system; in thiscase use the corresponding spare parts kit, inaccording to table 3.

The main parts of the valves are made with thefollowing materials:• Hot forged brass EN 12420 – CW 617N for

body and the housing pipe of the mobile plug• Copper tube EN 12735-1 – Cu-DHP for solder

connections• Austenitic stainless steel EN 10088-3 –

1.4301 for the filter• Ferritic stainless steel EN 10088-3 – 1.4105

for mobile and fixed plugs• Austenitic stainless steel EN 10088-3 –

1.4305 for orifices• Chloroprene rubber (CR) for outlet seal

gaskets• P.T.F.E. for seat gaskets

COILS AND CONNECTORS

Coils type HM4 must be mounted on thesevalves. Table 2 presents the most importantcharacteristics of coils and correspondingconnectors. For further technical characteristicsabout HM4 coils and their connectors see tothe “solenoid valve” chapter.

SELECTION

To correctly select a solenoid expansion valveon a refrigerating system, the following designconditions must be available:• Type of refrigerant• Evaporator capacity, Qe

• Evaporating temperature/pressure, Te / pe

• Lowest possible condensingtemperature/pressure, Tc / pc

• Liquid refrigerant temperature, Tl

• Pressure drop in the liquid line, distributorand evaporator, ∆p

27

TABLE 1: General Characteristics of PWM solenoid expansion valves

Cataloguenumber

0,5 0,01

0,07 0,017

0,8 0,023

1,1 0,043

1,3 0,065

1,7 0,113

2,3 0,2

OrificeFlow[mm]

KvFactor[m3/h] MinOPD

0 18

PWM

(Pul

se W

idth

Mod

ulat

ing)

1 -40 100 45 Art. 3.3

MOPD

AC/RAC DC

Oper

atin

g pr

incip

les Minimum

workingtime[s]

Opening pressure differential [bar]

min max

PS [bar]

TS [°C]ODS Connections

[mm][in]

IN OUT IN OUT

RiskCategoryaccording

toPED

2028/3S01 3/8” 1/2” – –2028/M10S01 – – 10 122028/3S02 3/8” 1/2” – –2028/M10S02 – – 10 122028/3S03 3/8” 1/2” – –2028/M10S03 – – 10 122028/3S04 3/8” 1/2” – –2028/M10S04 – – 10 122028/3S05 3/8” 1/2” – –2028/M10S05 – – 10 122028/3S06 3/8” 1/2” – –2028/M10S06 – – 10 122028/4S07 1/2” 5/8” – –2028/M12S07 – – 12 16

18

14

Nominal capacities are referred to:– Evaporating temperature Tevap = +5°C– Condensating temperature Tcond = +32°C– inlet temperature of liquid Tliq = +28°C

The following procedure helps to select thecorrect valve for the system.

Step 1Determine the pressure drop across the valve.The pressure drop is calculated by the formula:

( )pppp ectot ∆+−=∆

where:Pc = condensing pressurePe = evaporating pressure∆p = sum of pressure drops in the liquid line,distributor and evaporator

Step 2Subcooling correction. Use the evaporatingcapacity Qe to select the required valve size ata given evaporating temperature. If necessary,

TABLE 2: General Characteristic of coils

Coiltype Protection

DegreeIP65

ProtectionDegree

IP65/IP68

ConnectionsConsumption at 20°C [mA]

Start

50 [Hz] D.C. 50 [Hz] D.C.

WorkingFrequency[Hz]

Voltage tolerance [%]

Voltage[V]

Cataloguenumber

HM4

9160/RA2

9160/RA6

9160/RD1

9160/RD2

24 A.C.

220/230 A.C.

12 D.C.

24 D.C.

1490

162

-

700

76

-

-

1350

650

-

1350

650

+6 / -10

+10 / -15

50

-

9155/R019150/R02

TABLE 3: Orifice – Nominal capacities in kW

Catalogue numberRefrigerent

Orifice typeOrifice size

[mm] R22 R134aR404A

R507R407C R410A

9150/R63 01 0,5 1 0,9 0,8 1,1 1,3

9150/R64 02 0,7 1,9 1,7 1,6 2 2,4

9150/R65 03 0,8 2,5 2 1,9 2,4 3

9150/R66 04 1,1 3,9 3,2 2,9 3,8 4,8

9150/R67 05 1,3 6,7 5,6 5,1 6,7 8,4

9150/R68 06 1,7 9,2 7,7 7 9,1 11,4

9150/R69 07 2,3 14,7 12,2 11,3 15,3 18,2

28

a given evaporating temperature. If necessary,correct the evaporator capacity for subcooling.Subcooling liquid refrigerant entering theevaporator increase the evaporator capacity, sothat a smaller valve may be required. Thesubcooling is calculated by the formula:

From the subcooling corrector factor table findthe appropriate corrector factor Fsub

corresponding to the ∆Tsub calculated anddetermine the required valve capacity by theformula:

Qsub = Fsub. Qe

Step 3Application correction. To obtain a correctregulation with this valve, is necessar y tooversize it so its closing period is between the25% and the 50% of the total period T of theregulator. The correct choice of this closingperiod depends on the application, that canhave peaks of load, and on the criterion used bythe electronic regulator. Generally, anyway, this correcting factor Fev isstr ict ly dependent by the evaporationtemperature so it be assumed that Fev = 1.25for Tev >= -15°C and Fev = 1.50 for Tev<=-15°C.These generic instructions must be verified onthe real application.

The capacity of the valve will have therefore tobe at least equal to:

Qev = Fev. Qsub

Step 4Determine required orifice size. Use thepressure drop across the valve, the evaporatingtemperature and the calculated evaporatorcapacity Qe to select the corresponding orificesize from the capacity table corresponding tothe chosen refrigerant.

Step 5Liquid line sizing. Since the 2028 is an ON/OFFvalve, during the opening phase of the valve,the flow rate can be too much higher than themean flow rate. For this reason the designermust size the diameter of the pipes of theliquid line in according to the maximum flowrate across the orifice in the effectiveconditions of ∆Ptot and so avoiding thedecrement of the valve capacity due to thepressure drop.

lcsub TTT −=∆

SIZING EXAMPLE

• Type of refrigerant R404A• Evaporator capacity, Qe 2,8 kW• Evaporating temperature/pressure, Te - 5 °C• Lowest possible condensing

temperature/pressure, Tc + 35 °C• Liquid refrigerant temperature, Tl + 20 °C• Pressure drop in the liquid line, 2 bar

distributor and evaporator, ∆p

Step 1 - Determine the pressure drop acrossthe valve• Condensing pressure

at + 35 °C - Pc = 16,9 bar• Evaporating pressure

at – 5 °C - Pe = 5,14 bar

�ptot = 16,9 – ( 5,14 + 2 ) = 9,76 bar

Step 2 - Determine required valve capacity

�Tsub = 35 – 20 = 15 °C

From the subcooling corrector factor table 5b,we find the appropriate corrector factor Fsub

equal to 0,83 for ∆Tsub = 15 °C. Required valvecapacity is:

Qsub = 0,83 . 2,8 = 2,324 kW

Step 3 - Determine application correctionIn according to the above criterion of sizing, Fev = 1,25:

Qev = 1,25 . 2,324 = 2,91 kW

Step 4 - Determine orifice sizeUsing the capacity table for R404A on page 29with:• pressure drop across the valve = 9,76 bar• evaporating temperature = - 5 °C• calculated evaporator capacity = 2,91 kWselect the corresponding orifice 04 (N.B. : theexpansion valve capacity must be equal orslightly more than the calculated evaporatorcapacity)

29

TABLE 4: Refrigerant R22 – Capacities in kW

2

Pressure drop across valve [bar] Orifice

type 4 6 8 10 12 14 16 18

01 0,7 0,9 1,0 1,1 1,2 1,2 1,2 1,2 1,2

02 1,3 1,7 1,9 2,2 2,2 2,3 2,3 2,4 2,3

03 1,7 2,2 2,5 2,7 2,8 2,9 2,9 2,9 2,9

04 2,7 3,4 3,9 4,2 4,4 4,5 4,6 4,7 4,7

05 4,6 6,0 6,7 7,2 7,6 7,9 8,0 8,1 8,1

06 6,3 8,1 9,2 9,9 10,4 10,6 10,9 11,0 11,1

07 10,1 13,0 14,7 15,8 16,6 17,0 17,4 17,6 (1) 17,4 (2)

TABLE 5: Refrigerant R134a – Capacities in kW

2

Pressure drop across valve [bar] Orifice

type 4 6 8 10 12 14 16 18

01 0,6 0,8 0,9 0,9 0,9 0,9 0,9 0,9 0,9

02 1,1 1,4 1,7 1,7 1,8 1,8 1,8 1,8 1,7

03 1,4 1,8 2,0 2,2 2,2 2,3 2,3 2,2 2,2

04 2,3 2,9 3,2 3,4 3,5 3,6 3,6 3,5 3,4

05 3,9 5,0 5,6 6,0 6,2 6,2 6,2 6,2 6,0

06 5,3 6,8 7,7 8,1 8,4 8,5 8,5 8,4 8,1

07 8,5 10,9 12,2 13,0 13,3 13,5 13,5 13,3 (1) 13 (2)

TABLE 6: Refrigerant R404A/R507 – Capacities in kW

2

Pressure drop across valve [bar] Orifice

type 4 6 8 10 12 14 16 18

01 0,6 0,7 0,8 0,8 0,9 0,8 0,8 0,8 0,8

02 1,1 1,3 1,6 1,6 1,7 1,7 1,6 1,6 1,4

03 1,3 1,7 1,9 2,0 2,0 2,0 2,0 1,9 1,8

04 2,2 2,8 2,9 3,1 3,2 3,2 3,1 3,1 2,9

05 3,8 4,7 5,1 5,5 5,6 5,6 5,6 5,4 5,1

06 5,0 6,4 7,0 7,4 7,6 7,7 7,6 7,4 6,9

07 8,1 10,3 11,3 11,9 12,2 12,2 12,1 11,8 (1) 11,2 (2)

TABLE 7: Refrigerant R407C – Capacities in kW

2

Pressure drop across valve [bar] Orifice

type 4 6 8 10 12 14 16 18

01 0,7 1,0 1,1 1,1 1,2 1,2 1,2 1,2 1,2

02 1,4 1,8 2,0 2,0 2,3 2,3 2,4 2,4 2,3

03 1,7 2,3 2,4 2,7 2,8 2,9 2,9 2,9 2,9

04 2,9 3,6 3,8 4,3 4,5 4,6 4,7 4,7 4,7

05 4,9 6,2 6,7 7,5 7,8 7,9 8,1 8,1 8,0

06 6,7 8,5 9,1 10,2 10,5 10,8 11,0 11,0 10,9

07 10,7 13,6 15,3 15,7 16,9 17,2 17,6 17,6 (1) 17,2 (2)

(1) Pressure differential not available with coils 9160/RD2

(2) Pressure differential not available with coils 9160/RD1 and 9160/RD2

30

TABLE 8: Refrigerant R410A – Capacities in kW

2

Pressure drop across valve [bar] Orifice

type 4 6 8 10 12 14 16 18

01 0,9 1,1 1,3 1,4 1,5 1,5 1,6 1,6 1,6

02 1,7 2,2 2,4 2,6 2,8 2,9 3,0 3,0 3,0

03 2,0 2,7 3,0 3,2 3,4 3,6 3,7 3,7 3,8

04 3,2 4,2 4,8 5,2 5,5 5,7 5,9 6,0 6,1

05 5,6 7,4 8,4 9,1 9,6 10,0 10,2 10,4 10,9

06 7,7 10,0 11,4 12,3 13,1 13,5 13,9 14,1 14,3

07 12,2 15,9 18,2 19,8 20,9 21,6 22,2 22,7 (1) 22,9 (2)

TABLE 9: Correction factor for subcooling ∆tsub > 4°C4KRefrigerant 10K 15K 20K 25K 30K 35K 40K 45K 50K

R22 1 0,94 0,9 0,87 0,83 0,8 0,77 0,74 0,72 0,69

R134a 1 093 0,88 0,84 0,8 0,76 0,73 0,7 0,68 0,65

R404A/R507 1 0,91 0,83 0,78 0,73 0,68 0,65 0,61 0,59 0,56

R407C 1 0,93 0,88 0,83 0,79 0,75 0,72 0,69 0,66 0,64

R410A 1 0,95 0,9 0,85 0,81 0,77 0,73 0,7 0,67 0,64

When subcooling ahead of the expansion valve is over than 4 °C, adjust the evaporator capacity by dividing by the appropriatecorrection factor found in table 8

(1) Pressure differential not available with coils 9160/RD2

(2) Pressure differential not available with coils 9160/RD1 and 9160/RD2

The dimensions in brakets are referred to 2028/4S07 & 2028/M12S07 models

Solenoid valves

32

cover;– chloroprene rubber (CR) for outlet seal

gaskets;– P.T.F.E. for seat gaskets.

INSTALLATION

The valves can be installed in all sections of arefrigerating system, in compliance with thelimits and capacities indicated in Tables 3 and 6. Tables 1 and 4 show the following functionalcharacteristics of a solenoid valve:– PS;– TS;– Kv factor;– minimum Opening Pressure Differential

(minOPD), that is the minimum pressuredifferential between inlet and outlet at whicha solenoid valve, pilot operated, can openand stay opened;

– maximum Opening Pressure Differential(MOPD according to ARI STANDARD 760:2001), that is the maximum pressuredifferential between inlet and outlet at whicha solenoid valve, pilot operated, can open.

Before connecting the valve to the pipe it isadvisable to make sure that the refrigeratingsystem is clean. In fact the valves with P.T.F.E.gaskets are particularly sensitive to dirt anddebris. Furthermore check that the flow direction in thepipe corresponds to the arrow stamped on thebody of the valve. All valves can be mounted in whatever positionexcept with the coil pointing downwards. The brazing of valves with solder connectionsshould be carried out with care, using a lowmelting point filler material. It is not necessaryto disassemble the valves before brazing butit’s important to avoid direct contact betweenthe torch flame and the valve body, which couldbe damaged and compromise the properfunctioning of the valve.Before connecting a valve to the electricalsystem, be sure that the line voltage andfrequency correspond to the values marked onthe coil.The NO valves have been designed to work onlywith direct current coils. To use them in applications with 220/230 VACsuplly it’s necessary to mate the NO valve withthe following components:Coil 9120/RD6 +Connector/ Rectifier 9150/R45

APPLICATIONS

The solenoid valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

OPERATION

The valves series 1020; 1028; 1050; 1058;1059; 1064; 1068; 1070; 1078; 1079; 1090;1098; 1099 are normally closed. NC = when the coil is de-energised the plungerstops the refrigerant flow.The valves series 1150; 1158; 1164; 1168;1170; 1178;1190; 1198 are normally open. NO = when the coil is energised the plungerstops the refrigerant flow.The valves series 1020 and 1028 are directacting, while the valves of all the other seriesare pilot operated, with diaphragm or piston.The NC valves are supplied either without coil(S type) or with coil (example: A6 type with coilHM2–220 Vac). The NO valves are supplied only without coil (Stype).N.B.: the NO valve visually differs from thecorresponding NC model by means of the redring installed below the yellow nut that fastensthe coil.

CONSTRUCTION

The main parts of the valves are made with thefollowing materials:– hot forged brass EN 12420 – CW 617N for

body and cover;– copper tube EN 12735-1 – Cu-DHP for solder

connections;– austenitic stainless steel EN 10088-2 –

1.4303 for enclosure where the plungermoves;

– ferritic stainless steel EN 10088-3 – 1.4105for plunger:

– austenitic stainless steel EN ISO 3506 – A2-70 for tightening screws between body and

SOLENOID VALVES FOR REFRIGERATING SYSTEMS

33

TABLE 1a: General Characteristics of NC valves (normally closed) with SAE Flare connections

Cataloguenumber SAE

Flare

1/4"

3/8"

3/8"

1/2"

1/2"

5/8"

5/8"

3/4"

5/8"

3/4"

2,5

3

7

12,5

16,5

0,175

0,23

0,80

2,20

2,61

3,80

4,80

3,80

4,80

0

0,05

0,07

0,05

25

(3)

21

19

18

13

– 35

+105

(1)

+110

(2)

+105

(1)

45 Art. 3.3

ConnectionsSeat sizeNominal

Ø [mm]

KvFactor[m3/h]

Operating Principles min

OPD

MOPDCoil type

Opening Pressure Differential [bar]

HM4(AC)

21

HM2CM2(AC)

HM3(DC)

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

DirectActing

DiaphragmPilot

Operated

1020/2

1020/3

1064/3

1064/4

1070/4

1070/5

1050/5

1050/6

1090/5

1090/6

PistonPilot

Operated

DiaphragmPilot

Operated

(1) Temperature peaks of 120 °C are allowed during defrosting.(2) Temperature peaks of 130 °C are allowed during defrosting.(3) For information about higher MOPD, please contact Castel Technical Departement.

TABLE 1b: General Characteristics of NC valves (normally closed) with ODS connections

Cataloguenumber

1/4"

1/4"

3/8"

3/8"

1/2"

1/2"

5/8"

7/8"

5/8"

3/4"

7/8"

1.1/8"

5/8"

3/4"

7/8"

1.1/8"

1.1/8"

1.3/8"

1.1/8"

1.3/8"

1.3/8"

1.5/8"

10

10

12

12

16

22

16

22

16

22

35

35

35

42

2,2

3

7

12,5

16,5

25,5

25

27

0,15

0,23

0,80

2,20

2,61

3,80

4,80

5,70

3,80

4,80

5,70

10

10

16

0

0,05

0,07

0,05

0,07

25

(3)

21

25

(3)

19

18

13

19

– 35

+105

(1)

+110

(2)

+105

(1)

+110

(2)

45 Art. 3.3

Ø[in.]

Ø[mm]

ODS

ConnectionsSeat sizeNominal

Ø [mm]

KvFactor[m3/h]

Operating Principles min

OPD

MOPDCoil type

Opening Pressure Differential [bar]

HM4(AC)

21

HM2CM2(AC)

HM3(DC)

min.

TS [°C]

max.

PS[bar]

RiskCategory

according toPED

Dire

ct A

ctin

gD

iaph

ragm

Pilo

t O

pera

ted

1028/2

1028/2E

1028/3

1028/M10

1068/3

1068/M10

1068/M12

1068/4

1078/M12

1078/4

1078/5

1079/7

1058/5

1058/6

1058/7

1059/9

1098/5

1098/6

1098/7

1099/9

1078/9

1079/11

1098/9

1099/11

1078/11

1079/13

1079/M42

(1) Temperature peaks of 120 °C are allowed during defrosting.(2) Temperature peaks of 130 °C are allowed during defrosting.(3) For information about higher MOPD, please contact Castel Technical Departement.

Pist

on P

ilot

Ope

rate

dD

iaph

ragm

Pilo

tO

pera

ted

Pist

on P

ilot

Ope

rate

d

34

SOLENOID VALVES FOR REFRIGERATING SYSTEMS

TABLE 2: Dimensions and Weights of NC valves with 9100 coil (1)

Catalogue number

Weight[g]

H1 H2 H3 L1 L2 Q

75

82

91

121

106

115

157

175

62,5

69,5

75

93

78

96

127

141

34

40

47

65

50

72

99

113

58

65

125

125

125

125

68

72

111

111

127

127

100

106

127

127

175

190

120

124

175

175

180

216

120

124

175

175

180

216

250

292

235

277

278

50

45

57

80

68

80

340

355

350

350

365

365

400

415

400

395

420

420

710

755

690

680

775

765

1157

1487

1117

1307

1292

1347

1035

1365

995

1185

1170

1225

2565

2620

2050

2130

2710

2750

2750

Dimensions [mm]

1020/2

1020/3

1028/2

1028/2E

1028/3

1028/M10

1064/3

1064/4

1068/3

1068/M10

1068/M12

1068/4

1070/4

1070/5

1078/M12

1078/4

1078/5

1079/7

1050/5

1050/6

1058/5

1058/6

1058/7

1059/9

1090/5

1090/6

1098/5

1098/6

1098/7

1099/9

1078/9

1079/11

1098/9

1099/11

1078/11

1079/13

1079/M42

(1) With coil type 9120 the dimension L2 is equal to 64 mm and the valves weights must be increased of 305 g.

35

Connectors are not included in the boxes and have to be ordered separately.

36

SOLENOID VALVES FOR REFRIGERATING SYSTEMS

TABLE 3: Refrigerant Flow Capacity of NC valves

Cataloguenumber

R134a R22 R407C R404A R134a R22 R407C R404A R134a R22 R407C R404A

Liquid Vapour Hot Gas

Refrigerant Flow Capacity [kW]

1020/2

1020/3

1028/2

1028/2E

1028/3

1028/M10

1064/3

1064/4

1068/3

1068/M10

1068/M12

1068/4

1070/4

1070/5

1078/M12

1078/4

1078/5

1079/7

1050/5

1050/6

1058/5

1058/6

1058/7

1059/9

1090/5

1090/6

1098/5

1098/6

1098/7

1099/9

1078/9

1079/11

1098/9

1099/11

1078/11

1079/13

1079/M42

2,95

3,88

2,53

3,88

13,5

37,1

44,0

37,1

44,0

64,0

80,9

64,0

80,9

96,0

64,0

80,9

64,0

80,9

96,0

168,5

168,5

269,6

3,15

4,14

2,70

4,14

14,4

39,6

47,0

39,6

47,0

68,4

86,4

68,4

86,4

102,6

68,4

86,4

68,4

86,4

102,6

180,0

180,0

288,0

3,28

4,31

2,81

4,31

15,0

41,2

48,9

41,2

48,9

71,2

90,0

71,2

90,0

106,8

71,2

90,0

71,2

90,0

106,8

187,4

187,4

299,8

2,08

2,74

1,79

2,74

9,5

26,2

31,1

26,2

31,1

45,2

57,1

45,2

57,1

67,8

45,2

57,1

45,2

57,1

67,8

119,0

119,0

190,4

R410A

3,33

4,38

2,86

4,38

15,2

41,9

49,7

41,9

49,7

72,4

91,4

72,4

91,4

108,5

72,4

91,4

72,4

91,4

108,5

190,4

190,4

304,6

1,73

4,75

5,64

4,75

5,64

8,2

10,4

8,2

10,4

12,3

8,2

10,4

8,2

10,4

12,3

21,6

21,6

34,6

2,16

5,94

7,05

5,94

7,05

10,3

13,0

10,3

13,0

15,4

10,3

13,0

10,3

13,0

15,4

27,0

27,0

43,2

2,14

5,90

6,99

5,90

6,99

10,2

12,9

10,2

12,9

15,3

10,2

12,9

10,2

12,9

15,3

26,8

26,8

42,9

1,81

4,97

5,90

4,97

5,90

8,6

10,8

8,6

10,8

12,9

8,6

10,8

8,6

10,8

12,9

22,6

22,6

36,2

R410A

2,88

7,92

9,40

7,92

9,40

13,7

17,3

13,7

17,3

20,5

13,7

17,3

13,7

17,3

20,5

36,0

36,0

57,6

1,49

1,96

1,28

1,96

6,8

18,7

22,2

18,7

22,2

32,3

40,8

32,3

40,8

48,5

32,3

40,8

32,3

40,8

48,5

85,0

85,0

136,0

2,05

2,69

1,76

2,69

9,4

25,7

30,5

25,7

30,5

44,5

56,2

44,5

56,2

66,7

44,5

56,2

44,5

56,2

66,7

117,0

117,0

187,2

2,03

2,67

1,74

2,67

9,3

25,6

30,3

25,6

30,3

44,2

55,8

44,2

55,8

66,2

44,2

55,8

44,2

55,8

66,2

116,2

116,2

185,9

1,75

2,30

1,50

2,30

8,0

22,0

26,1

22,0

26,1

38,0

48,0

38,0

48,0

57,0

38,0

48,0

38,0

48,0

57,0

100,0

100,0

160,0

R410A

2,28

2,99

1,95

2,99

10,4

28,6

33,9

28,6

33,9

49,4

62,4

49,4

62,4

74,1

49,4

62,4

49,4

62,4

74,1

130,0

130,0

208,0

Refrigerant flow capacity referred to the following operating conditions: Particularly for hot gas:– Evaporating temperatre: +4 °C – Suction temperature: +18 °C– Condensing temperature: +38 °C – Pressure drop: 1 bar– Pressure drop: 0,15 bar

37

TABLE 4a: General Characteristics of NO valves (normally open) with SAE Flare connections

Cataloguenumber

0,05

0,07

0,05

SAEFlare

3/8"

1/2"

5/8"

5/8"

3/4"

5/8"

3/4”

7

12,5

16,5

0,80

2,20

2,61

3,80

4,80

3,80

4,80

21

19

– 35

+105

(1)

+110

(2)

+105

(1)

32 Art. 3.3

ConnectionsSeat sizenominal

Ø [mm]

Kv Factor[m3/h]

OperatingPrinciples

MOPD

Opening PressureDifferential [bar]

minOPD

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

Coil type

HM

3 (D

.C.)

1164/3

1170/4

1170/5

1150/5

1150/6

1190/5

1190/6 R

R

R

R

R

R

RDiaphragm

pilot operated

DiaphragmPilot

Operated

Piston Pilot

Operated

PistonPilot

Operated

DiaphragmPilot

Operated

Diaphragm pilot operated

Piston PilotOperated

(1) Temperature peaks of 120 °C are allowed during defrosting.

(2) Temperature peaks of 130 °C are allowed during defrosting.

Available on request.R

TABLE 4b: General Characteristics of NO valves (normally open) with ODS connections

Cataloguenumber

3/8"

1/2"

5/8"

5/8"

3/4"

7/8"

5/8"

3/4"

7/8"

1.1/8"

1.1/8"

1.3/8"

10

12

16

16

22

16

22

35

7

12,5

16,5

25,5

25

27

0,80

2,20

2,61

3,80

4,80

5,70

3,80

4,80

5,70

10

10

16

0,05

0,07

0,05

0,07

21

19

– 35

+105

(1)

+110

(2)

+105

(1)

+110

(2)

32 Art. 3.3

Ø[in.]

Ø[mm]

ODS

ConnectionsSeat sizenominal

Ø [mm]

Kv Factor[m3/h]

OperatingPrinciples

MOPD

Opening PressureDifferential [bar]

minOPD

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

Coiltype

HM

3 (D

.C.)

1168/3

1168/M10

1178/M12

1178/4

1178/5

1158/5

1158/6

1158/7

1198/5

1198/6

1198/7

1178/9

1198/9

1178/11 R

R

R

R

R

R

R

R

R

R

R

R

R

R

(1) Temperature peaks of 120 °C are allowed during defrosting.

(2) Temperature peaks of 130 °C are allowed during defrosting.

Available on request.R

38

Connectors and coils are not included in the boxes and have to be ordered separately.

SOLENOID VALVES FOR REFRIGERATING SYSTEMS

1164/31168/31168/M10

1170/41170/5

1178/M121178/41178/5

1150/51150/61190/51190/6

1158/51158/61158/71198/51198/61198/7

1178/9

1198/91178/11

39

TABLE 5: Dimensions and Weights of NO valves with 9120 coil

Cataloguenumber

Weight[g]

H1 H2 H3 L1 L2 Q

87

96

126

111

120

162

177

74,5

80

98

83

101

132

143

40

47

70

50

72

99

110

68

111

111

100

106

127

127

175

120

124

175

175

180

120

124

175

175

180

250

235

278

64

45

57

80

68

68

705

705

700

1015

1060

995

985

1080

1462

1792

1422

1612

1597

1340

1670

1300

1490

1475

2870

2355

3015

Dimensions [mm]

1164/3

1168/3

1168/M10

1170/4

1170/5

1178/M12

1178/4

1178/5

1150/5

1150/6

1158/5

1158/6

1158/7

1190/5

1190/6

1198/5

1198/6

1198/7

1178/9

1198/9

1178/11

TABLE 6: Refrigerant Flow Capacity of NO valves

Cataloguenumber

R134a R22 R407C R404A R134a R22 R407C R404A R134a R22 R407C R404A

Liquid Vapour Hot Gas

Refrigerant Flow Capacity [kW]

1164/3

1168/3

1168/M10

1170/4

1170/5

1178/M12

1178/4

1178/5

1150/5

1150/6

1158/5

1158/6

1158/7

1190/5

1190/6

1198/5

1198/6

1198/7

1178/9

1198/9

1178/11

13,5

37,1

44,0

37,1

44,0

64,0

80,9

64,0

80,9

96,0

64,0

80,9

64,0

80,9

96,0

168,5

168,5

269,6

14,4

39,6

47,0

39,6

47,0

68,4

86,4

68,4

86,4

102,6

68,4

86,4

68,4

86,4

102,6

180,0

180,0

288,0

15,0

41,2

48,9

41,2

48,9

71,2

90,0

71,2

90,0

106,8

71,2

90,0

71,2

90,0

106,8

187,4

187,4

299,8

9,5

26,2

31,1

26,2

31,1

45,2

57,1

45,2

57,1

67,8

45,2

57,1

45,2

57,1

67,8

119,0

119,0

190,4

1,73

4,75

5,64

4,75

5,64

8,2

10,4

8,2

10,4

12,3

8,2

10,4

8,2

10,4

12,3

21,6

21,6

34,6

2,16

5,94

7,05

5,94

7,05

10,3

13,0

10,3

13,0

15,4

10,3

13,0

10,3

13,0

15,4

27,0

27,0

43,2

2,14

5,90

6,99

5,90

6,99

10,2

12,9

10,2

12,9

15,3

10,2

12,9

10,2

12,9

15,3

26,8

26,8

42,9

1,81

4,97

5,90

4,97

5,90

8,6

10,8

8,6

10,8

12,9

8,6

10,8

8,6

10,8

12,9

22,6

22,6

36,2

6,8

18,7

22,2

18,7

22,2

32,3

40,8

32,3

40,8

48,5

32,3

40,8

32,3

40,8

48,5

85,0

85,0

136,0

9,4

25,7

30,5

25,7

30,5

44,5

56,2

44,5

56,2

66,7

44,5

56,2

44,5

56,2

66,7

117,0

117,0

187,2

9,3

25,6

30,3

25,6

30,3

44,2

55,8

44,2

55,8

66,2

44,2

55,8

44,2

55,8

66,2

116,2

116,2

185,9

8,0

22,0

26,1

22,0

26,1

38,0

48,0

38,0

48,0

57,0

38,0

48,0

38,0

48,0

57,0

100,0

100,0

160,0

Refrigerant flow capacity referred to the following operating conditions: Particularly for hot gas:– Evaporating temperatre: +4 °C – Suction temperature: +18 °C– Condensing temperature: +38 °C – Pressure drop: 1 bar– Pressure drop: 0,15 bar

40

Protection against electric contacts is class I forall the coils. Therefore, for safety purposes,coils must be effectively connected to anearthing system. Rubber gaskets on the upperand lower ends of coil ensure moistureprotection of winding. Coils HM2 and HM3 maybe joined to all connectors produced by Castelexcept type 9155/R01; protection degreeguaranteed by this system, coil (HM2, HM3) +connector, is IP65 according to EN 60529.Coils HM4 must be preferably used withconnector type 9155/R01; protection degreeguaranteed by this other system, coil HM4 +connector 9155/R01, is IP65/IP68 accordingto EN 60529. Coils HM4 can be used withconnectors series 9150 and 9900 too;protection degree guaranteed by this system isIP65.Either the terminals of coils series HM2 andHM3 or the ones of coils series HM4 consist oftwo Faston line connections plus one Fastonearthing connection. Coil type CM2 has a pre-assembled cable (length 1 meter).The coils are designed for continuous use. Thesolid construction of these coils is suitable forheavy-duty applications in refrigerant systems.The maximum ambient temperature for all coilsis 50 °C.

ELECRIC TYPE APPROVAL

Coils series 9100, 220/230 VAC and 240 VACsupply, are approved by the german registrationbody VDE. Coils series 9105 are approved by Underwriterslaboratories Inc. of the United States.Coils series 9100, 9110 and 9160, 110 VAC,220/230 Vac and 240 VAC supply, and coilsseries 9120, 220/230 VAC supply, aremanufactured according to low Voltage (LV)Directive 2006/95/EC. Coils series 9100,9110, 9120 and 9160 are manufacturedaccording to Electromagnetic Compatibility(EMC) Directive 2004/108/EC.

APPLICATION

For the normally closed solenoid valves,previously shown in this Handbook, Castel putsthe following types of coils at disposal of itsown customers:– coils series HM2, only for A.C.

(catalogue numbers 9100 - 9105).– coils series CM2, only for A.C.

(catalogue number 9110);– coils series HM3,either for A.C. or for D.C.

(catalogue number 9120).– coils series HM4, only for A.C.

(catalogue number 9160).

For the normally open solenoid valves, alwaysshown in this Handbook, the customer’sselection must compulsorily apply to the coilsseries HM3 – D.C.For applications of the NO solenoid valves witha voltage supply of 220 VAC, Castel hasdesigned a specific coil at 220 V RAC (code9120/RD6) that must be used solely with the220 VAC connector/rectifier circuit (code9150/R45).

CONSTRUCTION

Coils HM2 (9100) are class H, whereas coilsCM2, HM3 and HM4 are class F, in compliancewith IEC 85 standard and their construction isin compliance with EN 60730-1 and EN 60730-2-8 standards. The windings are made withcopper wire, insulation class H 180 °C, incompliance with IEC 85 standard. The outercasing is provided with dielectric andwaterproof resins that assure a reinforcedinsulation making the coils suitable for allassemblies.Coils HM2 (9105) are class F, with UL approvedEIS (Electrical Insulation System), and theirconstruction is in compliance with UL 429Standards.

COILS

41

TABLE 1: General Characteristics of coils

CoilType

Degree of

protectionConnectionsFrequency

[Hz]

Voltagetollerance

[%]

Voltage[V]

Cataloguenumber

HM2

HM2

u Recognized

File number E243604

CM2

HM3

HM4

9100/RA2

9100/RA4

9100/RA6

9100/RA7

9100/RA8

9105/RA2

9105/RA4

9105/RA6

9105/RA7

9110/RA2

9110/RA4

9110/RA6

9110/RA7

9120/RA6

9120/RD1

9120/RD2

9120/RD4

9120/RD6

9160/RA2

9160/RA4

9160/RA6

9160/RA7

24 A.C.

110 A.C.

220/230 A.C.

240 A.C.

380 A.C.

24 A.C.

110/120 A.C.

220/230 A.C.

240 A.C.

24 A.C.

110 A.C.

220/230 A.C.

240 A.C.

220/230 A.C.

12 D.C.

24 D.C.

48 D.C.

220 RAC

24 A.C.

110 A.C.

220/230 A.C.

240 A.C.

+10 / -10

+6 / -10

+10 / -10

+10 / -10

+6 / -10

+10 / -10

+10 / -10

+6 / -10

+10 / -10

+6 / -10

+10 / -5

+10 / -10

+6 / -10

+10 / -10

50 / 60

60

50 / 60

50 / 60

50 / 60

Junction box

DIN 43650

junction box

DIN 43650

Three wire cable

Junction box

DIN 43650

Junction box DIN 43650 or

Connector9155/R01 (1)

IP65

EN 60529

(with

junction box)

IP65 EN 60529

(with junction box)

IP65

EN 60529

IP65

EN 60529

(With

junction box)

IP65 EN 60529(with junction box)

IP65/IP68EN 60529

(with connector)

(1) Coil HM4 can also be coupled to connectors series 9150 and 9900, achieving a degree of protection IP65, the“versatile” degree of protection ( IP65/IP68) is achieved coupling coil HM4 with four screws connector 9155/R01

CM2HM2

42

TABLE 2: Coils consumptions

Cataloguenumber

CoilType

50 [Hz]

Consumptions at 20 °C [mA]Dimensions

[mm]Weight

[g]

60 [Hz] D.C. 50 [Hz] 60 [Hz] D.C.

Start Working

9100/RA2

9100/RA4

9100/RA6

9100/RA7

9100/RA8

9105/RA2

9105/RA4

9105/RA6

9105/RA7

9110/RA2

9110/RA4

9110/RA6

9110/RA7

9120/RA6

9120/RD1

9120/RD2

9120/RD4

9120/RD6

9160/RA2

9160/RA4

9160/RA6

9160/RA7

HM2

HM2

uRecognized

CM2

HM3

HM4

920

230

140

100

58

920

230

120

100

190

1490

330

162

147

825

205

128

87

51

825

205

105

87

825

205

105

87

160

1320

300

142

130

_

1720

900

460

93

527

128

68

54

32

527

128

68

54

110

700

156

76

70

420

114

58

43

23

420

114

58

43

420

114

58

43

80

530

118

57

53

_

1720

900

460

93

L1 L2 H

57,5

57,5

66,5

82

63

34

34

34

61

41

35

35

35

35

35

165

165

230

470

220

HM3 HM4

43

with an external diameter of 6 ÷ 9 mm and isprovided with a self-locking device. Cables sized3 x 0,75 mm2 are to be preferred for this junctionbox too.The junction box type 9155/R01 offers aprotection degree IP65/IP68 against dust andwater, according to EN 60529, when correctlyinstalled with the proper gaskets, which aresupplied as standard.The junction box 9150/R45 is equipped with afull-wave bridge rectifier plus VDR for protection.The VDR device, Voltage e-Dependent-Resistor, isa special type of resistor, placed in parallel to thecoil; its purpose is to protect the diodes and thecoil from any excessive voltage generated withinthe ac supply circuit.

WARNING: the junction box 9150/R45 must besolely used with coils 9120/RD6 (220 VRAC).The wrong use of these junction boxes withother types of Castel coils takes quickly to thedestruction of the coil.

The junction boxes 9150, DIN 43650standardized, represent an effective system forthe connection of the coil to the supply circuit,thus ensuring safety also in the presence ofmoisture.These junction boxes, according to assemblyrequirements, allow choosing the position of outercasing compared to inner terminal block. Theclamping screw of casing may be PG9 or PG11,which are respectively suitable for cables with anexternal diameter of 6 ÷ 8 or 8 ÷ 10 mm. Cables sized 3 x 0,75 mm2 are to be preferred.The junction box type 9900 is available withcabled core of different length. In this case,it is not possible to change the position of casingcompared to terminal block.Both the two types offer a protection degree IP65against dust and water, according to EN 60529, when correctly installed with theproper gaskets, which are supplied as standard.Castel has developed a specific junction box, type9155/R01, suitable for use on those refrigeratingsystems working in heavy duty environments, forexample:– exposition to the atmospheric conditions;– rooms with high moisture degree;– cyclic condensing / evaporating on the valve;– cyclic icing / defrosting on the valve.This junction box, according to assemblyrequirements, allows choosing the side position ofouter casing compared to inner terminal block; butit is not possible to point the cable upwards. Thegland nut of casing is suitable to receive cables

CONNECTORS

TABLE 3: General Characteristics of connectors

Cataloguenumber

Nominal

Supply Voltage[V]

Maximum

PgCable length

[m]

Cablethickness

[mm2]Standard Degree

of protectionClass

of insulation

9150/R01

9150/R02

9150/R45

9155/R01

9900/X66

9900/X84

9900/X73

9900/X55

9900/X54

R

220 A.C.

250 A.C.

9

11

1

1,5

2

3

5

3 x 0,75

DIN

43650

DIN

43650

IP65

EN 60529

IP65/IP68

EN 60529

IP65

EN 60529

Group C VDE

0110-1

/ 89

Available on request.R

44

APPLICATIONS

The solenoid valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for the applications specifiedin Table 1 where the different fluids areindicated with the following symbols, accordingto an already established code:– W = Water;– L = Air;– B = Secondary coolants (solutions of glycol

and water);– O = Light oils (gas oil).In short these valves may be used:– with fluids in the gaseous state proper to the

Group II (as defined in Article 9, Section 2.2of Directive 97/23/EC and referred to inDirective 67/548/EEC);

– with fluids in the liquid state proper to theGroup I (as defined in Article 9, Section 2.1of Directive 97/23/EC and referred to inDirective 67/548/EEC).

SOLENOID VALVES FOR DIFFERENT FLUIDS

APPLICATION

Castel supplies to its customers the permanentmagnet code 9900/X91 for the normally closedsolenoid valves, shown in this chapter.This product can be used during brazing of thevalve copper connections to the plant pipes;slipping it on the armature, instead of the coil, itallows the protective gas (nitrogen) flowing andavoids any damage to the plunger gasket and tothe diaphragm.

CONSTRUCTION

The main parts of the permanent magnet code9900/X91 are made with the following materials:– three rings of anisotropic ferrite;– anodized aluminum for the body.

PERMANENT MAGNET

45

OPERATION

All the valves for different fluids are normallyclosed. NC = when the coil is de-energised theplunger stops the refrigerant flow.The valves series 1512 and 1522 are directacting, while the valves series 1132 and 1142are pilot operated with diaphragm.

CONSTRUCTION

The main parts of the valves are made with thefollowing materials:– hot forged brass EN 12420 – CW 617N for

body and cover;– austenitic stainless steel EN 10088-2 –

1.4303 for enclosure where the plungermoves;

– ferritic stainless steel EN 10088-3 – 1.4105for plunger;

– austenitic stainless steel EN ISO 3506 – A2-70 for tightening screws between body andcover;

– fluorocarbon rubber (FPM) for outlet sealgaskets;

– fluorocarbon rubber (FPM) for seat gaskets;– fluorocarbon rubber (FPM) for diaphragms.

Nitril rubber (NBR) for the valves series1142.

TABLE 1: General Characteristics

Cataloguenumber

1,5

4,5

12,5

20

38

G 1/8"

G 1/4"

G 3/8"

G 1/2"

G 3/8"

G 1/2"

G 3/4"

G 1"

G 1.1/4"

G 1.1/2"

W.L.O.

W.O.

W.L.O.B.

0,070

0,40

2,10

2,20

5,50

6,00

19,00

21,00

0

0,1

0,15

0,3

30

4

17

12

11

-15

+105

+90

30

15

Art. 3.3

FPTConnections

Main Use

Seat Sizenominal

Ø[mm]

KvFactor[m3/h] Op

erat

ing

Prin

ciple

s

MOPD

Opening Pressure Differrential

[bar]

minOPD

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

CoilType

HM

2 (A.

C.) -

CM

2 (A.

C.) -

HM

3 (A.

C.; D

.C.) -

HM

4 (A.

C.)

Dire

ct

Actin

gD

iaph

ragm

Pilo

tO

pera

ted

1512/01

1522/02

1522/03

1522/04

1132/03

1132/04

1132/06

1132/08

1142/010

1142/012

INSTALLATION

Table 1 shows the following functionalcharacteristics of a solenoid valve:– PS;– TS;– Kv factor;– minimum Opening Pressure Differential

(minOPD), that is the minimum pressuredifferential between inlet and outlet at whicha solenoid valve, pilot operated, can openand stay opened;

– maximum Opening Pressure Differential(MOPD according to ARI STANDARD 760:2001), that is the maximum pressuredifferential between inlet and outlet at whicha solenoid valve, pilot operated, can open.

Before connecting the valve it is advisable tomake sure that the piping are clean and thatthe flow direction in the pipe corresponds tothe arrow stamped on the body of the valve. All valves can be mounted in whatever positionexcept with the coil pointing downwards. Before connecting a valve to the electricalsystem, be sure that the line voltage andfrequency correspond to the values marked onthe coil.

46

AIR CAPACITY

Table 2 provides the values of air capacityunder the following conditions:

• temperature at valve inlet = 20 °C;• discharge pressure (absolute) = 1 bar;• Kv of the valve under consideration = 1 m3/h.

The pressures upstream the valve specified inthe table are absolute values.

EXAMPLE

Select the valve suitable for use withapproximately 200 m3/h of air, assuming anabsolute pressure of 8 bars at valve inlet ( = 7 bars of relative pressure + 1 bar) and anacceptable pressure drop across the valve of1,5 bars. In the column of pressures upstream the valve,the value 8 is shown; where this columnintersects the horizontal column relating to thepressure drop of 1,5, the value of 87 m3/h isshown. This is the capacity value of ahypothetical valve with Kv = 1 working underthe above mentioned conditions.

200 / 87 = 2,29

This is the Kv value required in the case underconsideration. In Table 1, select the valve with the Kv valuenearest to 2,29, rounding off the value andsubsequently checking that all thecharacteristics of the selected valve (max. opening pressure differential,temperature, connections, etc.) are suitable.

When the viscosity of the liquid is expressed asdynamic viscosity, i.e. cP, where:

1cP = 10-3 N sec/m2

the corresponding value of cinematic viscosityin cSt is obtained by the following relation:

mn = ——r

where:n = cinematic viscosity [cSt];m = dynamic viscosity [cP];r = volumic mass of the fluid at the

considered temperature [kg/dm3].

Moreover, the fluid viscosity may remarkablyvary according to changes in temperature.Therefore, if the temperature of the fluid doesnot ensure viscosity values compatible with thecorrect operation of the valve, the valve may notopen.

LIQUIDS CAPACITY

The following ratio applies:

DpQ = Kv x =++——

rwhere:Kv = Kv factor of the valve [m3/h];Q = capacity [m3/h];Dp = pressure drop through the valve [bar];r = volumic mass of the liquid [kg/dm3].

Cinematic Viscosity cSt Reducing factor

12

12 ÷ 30

30 ÷ 45

1

0,8

0,7

VISCOSITY

The values of maximum differential pressurespecified in Table 1 are suitable for fluids withmaximum cinematic viscosity of 12 cSt where:

1cSt = 10-6 m2/sec.

If the cinematic viscosity of the fluid underconsideration is more than 12 cSt it isnecessary to multiply the value of the maximumdifferential pressure by the following reducingfactors:

47

TABLE 2 - Air Capacity (Kv = 1)

Pressuredrop[bar]

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1,5 1,3 1,2 1,1 1,05 1,03 1,015

Capacity [m3/h] (1)

Inlet pressure (absolute) [bar]

0,0025

0,005

0,010

0,015

0,025

0,05

0,1

0,15

0,25

0,5 82,0 80,0 77,0 74,0 72,0 69,5 66,6 63,7 60,6 57,3 54,0

1 115,0 111,0 108,0 104,0 100,0 96,0 92,0 88,0 83,0 78,6 73,5

1,5 138,0 134,0 130,0 125,0 120,0 115,5 110,3 105,0 99,3 93,0 87,0

2 157,0 152,0 147,0 142,0 136,0 130,0 124,0 118,0 111,0 96,0 96,0

2,5 173,0 167,5 161,5 155,5 149,0 142,5 135,5 128,0 120,4 112,0 103,0

3 186,0 180,0 174,0 167,0 160,0 152,0 144,5 136,0 127,0 118,0 108,0

3,5 198,0 191,0 184,0 176,5 168,6 160,3 151,7 142,5 132,6 122,0 110,0

4 208,0 200,0 193,0 184,0 176,0 167,0 157,0 147,0 136,0 124,0 111,0

4,5 216,0 208,6 200,0 191,0 182,0 172,0 161,5 150,4 138,0 125,0

5 224,0 215,0 206,0 195,5 186,0 176,0 164,5 152,3 139,0

5,5 230,0 221,0 211,0 201,0 190,0 178,6 166,3 152,9

6 236,0 226,0 215,0 204,0 192,7 180,0 166,8

6,5 240,0 230,0 218,0 206,7 194,0 180,7

7 244,0 233,0 220,0 208,0 194,7

7,5 246,0 234,0 222,0 208,5

8 249,0 236,0 222,5

8,5 250,0 236,5

9 250,5

1,46 1,42 1,40 1,35

2,2 2,10 2,00 1,95 1,90

3,0 3,0 3,00 2,85 2,80 2,75

4,2 3,9 3,7 3,55 3,45 3,40 3,35

6,2 5,4 5,0 4,8 4,56 4,45 4,40

10,7 8,7 7,5 6,9 6,6 6,40 6,20

17,4 15,0 12,2 10,2 9,6 9,2 8,8

23,8 21,2 18,3 14,6 12,5 11,5 11,0

33,4 30,4 27,0 23,2 18,5 15,6 13,9

50,0 46,0 41,7 36,8 31,0 24,3 19,6

68,0 62,0 55,6 48,0 39,3 27,8

80,0 72,0 63,7 53,8 41,7

88,0 78,0 68,0 55,6

89,5 82,0 69,5

96,0 83,0

97,0

(1) The table provides air capacity values in m3/h under the following conditions:– temperature at value inlet: + 20 °C– pressure at outlet (absolute): 1 bar– Kv of the solenoid valve: 1 m3/h

48

With coils 9120 the dimension L2 is equal to 64 mm and the weight must be increased of 305 g.

TABLE 3 - Dimensions and Weights (valves with coils 9100)

Cataloguenumber

Weight[g]

H1 H2 H3 L1 L2 Q

91

101

136

69

71

75

81

103

57

59

47

52

82

34

36

75

88

168

44

51

50

104

50

45

57

104

664

641

1004

944

4100

4000

310

385

370

355

Dimensions [mm]

1132/03

1132/04

1132/06

1132/08

1142/010

1142/012

1512/01

1522/02

1522/03

1522/04

Connectors are not included in the boxes and have to be ordered separately

H2

H1

L1

L2

H3

H2

L1

H1

H3

L2

1132/031132/04

Q

L1

H2

H1

Q

H3

L2

1142/0101142/012

1132/061132/08

H2

H3H

1

L1

L2

H2

H3H

1

L1

L2

1512/011522/031522/04

1522/02

Q

Safetydevices

50

atmosphere. For this reason, during relief, agas leak occurs through this orifice.Utilized material: EN 12420-CW617N brass.

Disc: obtained through bar machining andequipped with gasket, it ensures the requiredsealing degree on the valve seat. The gasket ismade in P.T.F.E. (Polytetrafluorethylene), amaterial that, during valve estimated servicelife, maintains a good strength and does notcause the disc to stick on the seat. The disc isproperly guided in the body and the guideaction can never fail; there are no glands orretaining rings that hamper the movementthereof.Utilized material: EN 12164-CW614N brass.

Spring: it opposes the pressure and the fluiddynamic actions and always ensures valve re-closing after pressure relief. The spring coils,when the disc has reached the liftcorresponding to the state of relief at full flowrate, are spaced apart by at least half the wirediameter and, in any case, by not less than 2mm. The disc is equipped with a mechanic lockand when it attains it, the spring set does notexceed 85% of the total set.Utilized material: DIN 17223-1 steel for springs.

Setting system: hexagonal head, threadedring nut to be screwed inside the body top bycompressing the spring below. On settingcompletion, the position attained by the ring nutis maintained unchanged laying, in the threadedcoupling, a bonding agent with high mechanicstrength and low viscosity features to makepenetration thereof easier. The setting systemis protected against subsequent unauthorizedinterventions by means of a cap nut that isscrewed outside the body and is sealed withCastel lead to it.

GENERAL DESCRIPTION

Valves series 3030 are safety devicesaccording to the definition given in Article 1,Point 2.1.3, 2nd dash of 97/23/EC Directiveand are the subject of Article 3, Point 1.4 ofaforesaid Directive.The valves above mentioned are standard type,unbalanced, direct-loaded safety valves. Valveopening is produced by the thrust the fluidunder pressure exerts on the disc, when saidthrust exceeds, under setting conditions, theopposing force of the spring acting on the disc.

Valves are identified by means of:– a model number formed of an

alphanumerical coding that includes:– in the first part the family identification

(e.g. 3030/44C);– in the second part the setting pressure,

expressed in bars, multiplied by 10 (e.g.140);

– an alphanumerical serial number.

CONSTRUCTION

Body: squared, obtained through die forgingand subsequent machining. It houses thefollowing elements:– the nozzle with flat sealing seat;– the disc guide;– the setting spring holder;– the threaded seat of the setting adjusting

ring nut.

In the body, above the disc guide, a smallpressure relief hole is provided through whichthe spring holder is put into contact with the

SAFETY VALVES 3030

TABLE 1: General Characteristics of valves 3030

1/2" NPT

3/4" G

12

113

4,1

0,90

3/4" NPT

3/4" G

12

113

4,1

0,90

1" NPT

1.1/4" G

19,5

298

6,8

0,83

Catalogue number 3030/44C 3030/66C 3030/88C

Connections

Flow Diameter [mm]

Flow Section [mm2]

Lift [mm]

Discharge Coefficient “Kd”

PS [bar]

TS [°C]

Set Pressure Range [bar]

Overpressure

Blowdown

Risk category according to PED

55

- 50 / + 150

8 / 50

5% of set pressure

15% of set pressure

IV

Inlet male

Outlet male

51

L

H2H1

D

H3

Ch

safety devices such as safety valves. Suchdevices shall prevent pressure frompermanently exceeding the max allowablepressure PS of the equipment they protect. Inany case, a short pressure peak limited to 10%of admissible maximum pressure is permitted.As to the selection and sizing of the suitableprotection device, users shall refer to thespecific sector or product standards.EN 378-2: 2008 Standard “Refrigeratingsystems and heat pumps – safety andenvironmental requirements – Part 2: Design,construction, testing, marking anddocumentation”, harmonized with 97/23/ECDirective, provides a general outline of theprotection devices to be adopted in refrigeratingsystems and their features (par 6.2.5). It alsoindicates the criteria for the selection of thedevice suitable to the type and sizes of thesystem component to be protected (par. 6.2.6).EN 13136: 2001/A1: 2005 Standard“Refrigerating systems and heat pumps –Pressure relief devices and their associatedpiping – Methods for calculation” highlights thepossible causes of overpressure in a systemand makes available to users the instrumentsfor pressure relief device sizing, among whichthe safety valves.

SCOPE

Use: protection against possible overpressuresof the apparatuses listed below, with regard tothe operating conditions for which they havebeen designed:– refrigerating system and heat pump

components, for instance: condensers, liquidreceivers, evaporators, liquid accumulators,positive displacement compressor discharge,heat exchangers, oil separators, piping(reference: EN 378-2: 2008);

– simple pressure vessels(reference: 87/404/ EEC Directive).

Fluids: the valves can be used with:– refrigerant fluids, in the physical state of gas

or vapour, belonging to Group II according tothe definitions of 97/23/EC Directive, Article9, Point 2.2 (with reference to 67/548/EECDirective of June 27th, 1967);

– air and nitrogen (reference: 87/404/EECDirective).

MARKING

In conformity with the provisions of Article 15 of97/23/EC Directive, the EC marking and theidentification number of the notified bodyinvolved in the production control phase arereported on the valve body.Still on the body, the following information isindicated:– manufacturer’s mark, address and

manufacture country;– valve model;– flow section;– Kd discharge coefficient;– indication of flow direction;– max allowable pressure;– allowable temperature range;– set pressure;– production date;– serial number.

VALVE SELECTION

97/23/EC Directive requires that pressureequipment, in which permissible limits arereasonably likely to be exceeded, shall be fittedwith suitable protection devices, for instance

TABLE 2: Dimensions and Weights of valves 3030

Cataloguenumber

Weight[g]

3030

Ø D L Ch H1 H2 H3

38

38

50

38

38

56

28

28

40

44

44

58

115

115

158

159

159

216

780

780

1960

Dimensions [mm]

3030/44C

3030/66C

3030/88C

52

for this calculation the value of k shall be asmeasured at 25 °C. (Section 7.2.3, StandardEN 13136: 2001/A1:2005).Values of k and calculated values of C for somerefrigerants are given in table A.1 of theaforesaid standard.Following we show the values of k and C for themore useful refrigerants.

SIZING OF SAFETY VALVES DESIGNED TO DISCHARGE GAS OR VAPOUR ATCRITICAL FLOW (Ref. EN 13136: 2001/A1: 2005)

Critical flow occurs when the backpressure pb

(the pressure existing immediately at the outletof a safety valve) is below or equal to thecritical pressure:

[bar abs]

with:– po = actual relieving pressure, upstream the

safety valve; it’s equal to the set pressureplus overpressure. That is a pressureincrease over set pressure at which the dischas its total lift. [bar abs];

– k = isentropic exponent of gas or vapour,based on the actual flowing conditions at thesafety valve inlet.

If k is unknown or anyway difficult to establishit’s possible to suppose:

[bar abs]

A safety valve, which discharges toatmosphere, works in critical flow.

The safety valves designed to discharge gas orvapour at critical flow must be sized as follow:

[mm2]

with:– Ac = minimum flow area of safety valve

[mm2];– Qmd = minimum required discharge capacity,

of refrigerant, of safety valve [kg/h];– Kd = certified coefficient of discharge;– po = actual relieving pressure, upstream the

safety valve, see definition above [bar abs];

– vo = specific volume of gas or vapour atrelieving conditions po e To meaning with To

fluid temperature at valve inlet, settled bythe user or by the designer [m3/kg];

– C = function of isentropic coefficient kcalculated from:

C kk

k

k= × ×

+

+( )−( )

3 9482

1

1

1,

AQ

C Kvpc

md

d

o

o

= ×× ×

×3 4690 9

,,

p pcritical o= ×0 5,

p pkb o

kk

≤+

−⎛⎝⎜

⎞⎠⎟2

1

1

Calculation of minimum required dischargecapacity of safety valve is closely linked tothe type of system where the valve isinstalled, with the causes that may arousethe opening of safety valve, i.e.:

– external heat sources. The minimumrequired discharge capacity shall bedetermined by the following:

[kg/h]

with:– � = density of heat flow rate, it’s assumed

to be 10 [kW/m2];– Asurf = external surface area of the vessel

[m2];– hvap = heat of vaporization of liquid at po

[kJ/kg];

– internal heat sources. The minimum requireddischarge capacity shall be determined bythe following:

[kg/h]

withQh = rate of heat production [kW].

– Excessive pressure caused by compressors.The minimum required discharge capacityshall be determined by the following:

[kg/h]Q V nmd v= × × × ×60 10ρ η

QQ

hmdh

vap

=×3600

QA

hmdsurf

vap

=× ×3600 ϕ

RefrigerantIsentropiccoefficient

k

Functionof Isentropiccoefficient

C

R22

R134a

R404A

R407C

R410A

R507

1,17

1,12

1,12

1,14

1,17

1,10

2,54

2,50

2,50

2,51

2,54

2,48

53

– ηv = volumetric efficiency estimated atsuction pressure and discharge pressureequivalent to the safety valve setting.

with:– V = theoretical displacement of

compressor [m3]– n = rotational frequency of compressor

[min –1]– ρ10 = vapour density at refrigerant

saturation pressure / dew point at 10 °C [kg/m3]

These conditions, settled in any case by thedesigner, are considered the most unfavorablefor the safety valve in consequence offunctional defects as:– move mistake;– non-working of automatic safety devices, set

to operate before safety valve.

It shall be excluded:– closeness the refrigerating system, the

presence of flammable substances in solarge quantities to be able to feed a fire.;

– inside the vessel, the presence of a heartsource.

Calculation of minimum discharge capacityPrudentially leaving the vapour overheating atthe outlet of the liquid cooler out of account,the volumetric efficiency of compressor is:

and so the minimum required dischargecapacity:

= 60x0,00224x1450x26,34x0,83=4260 [kg/h]

with ρ10 = 26,34 [kg/m3], vapour density ofR407C at saturation pressure / dew point at10 °C.

Q V nmd v= × × × × =60 10ρ η

ηvdisch e

suction

p

p= − = − =1 0 04 1 0 04

27 256 33

0 83, ,,

,,arg

System descriptionCompact refrigerating system designed to makerefrigerated water and consisting of:– open type reciprocating compressor;– water-cooled, shell-and-tube horizontally

condenser with lower section of shell usedas receiver;

– shell-and-tube horizontally liquid cooler fedwith a thermostatic valve;

– refrigerant fluid R407C.

Compressor data– Bore 82,5 mm– Stroke 69,8 mm– Cylinder number 6– Rotational frequency 1450 rpm– Clearance 4%The theoretical displacement of compressor is:

[m3]

Maximum allowable pressure of the condenser,refrigerant side: PS = 25 bar.

Set pressure of the safety valve installed onthe upper shell section of condenser: pset = 25 bar

Actual relieving pressure of safety valve,choosing one valve type 3030 with anoverpressure of 5%:

[bar abs]

Working conditions of compressorcorresponding to the relieving of safety valve:Condensing temperature:

+ 64 °C (27,25 bar abs)Evaporating temperature:

+ 10 °C (6,33 bar abs)

p pset0 15

1001 27 25= × +

+ = ,

V = × × × =π4

0 0825 0 0698 6 0 002242, , ,

EXAMPLE OF CALCULATION OF MINIMUM REQUIRED DISCHARGE CAPACITY Qmd AND SIZING OFTHE SAFETY VALVE FOR THE HIGH PRESSURE SIDE OF A REFRIGERATING SYSTEM

54

Sizing of minimum flow area of the safety valve

[mm2]

with:– C = 2,51, corresponding to isentropic

exponent k for R407C equal to 1,14,according to table A1 of standard EN13136:2001/A1:2005;

– Kd = 0,83, certified coefficient of dischargefor safety valve 3030/88;

– vo = 0,0104 [m3/kg], specific volume ofoverheating vapour upstream the safety valveduring relieving.This value is referred to the followingoperating conditions, upstream the safetyvalve:– pressure po = 27,25 [bar abs];– temperature To = 100 [°C] (precautionary

temperature, settled in any case by thedesigner).

Conclusion: the selected safety valve is themodel 3030/88 with the followingcharacteristics:– certified coefficient of discharge, Kd = 0,83;– flow section, Ac = 298 [mm2];– set pressure, pset = 25 bar.

In case of single-screw compressor withinjection of pressurized oil, the theoreticaldisplacement is:

[m3]

with:– D = rotor diameter [m]– L = rotor length [m]

VD

Lc =×

×π 2

4

= ×× ×

× =3 4694260

2 51 0 9 0 830 010427 25

154,, , ,

,,

AQ

C Kvpc

md

d

o

o

= ×× ×

× =3 4690 9

,,

55

with:– A = flow area of safety valve [mm2];– Ain = inside area of inlet tube to valve [mm2];– Kdr = Kd x 0,9, derated coefficient of discharge;– C = function of isentropic coefficient k;– ξ = addition of pressure loss coefficients

ξn of any component and piping;The coefficients ξn are relevant to:– pipe elements loss, as connections and

bends;– valves loss;– loss along the pipe and are listed in EN 13136:2001/A1:2005Standard, Table A.4.

Example: assume to install, on the condenserof the previous example, a safety valve type3030/88, set to 25 bar, using a steel unionwith the following characteristics:– din = 28 [mm], inside diameter;– Ain = 616 [mm2], inside area;– L = 60 [mm], length;– flush connection to the shell of condenser,

with a broken edge.From table A.4 it’s possible to have these data:– ξ1 (inlet) = 0,25– ξ2 (length) = λ x L/ din = 0,02 x 60/28 = 0,043

with λ = 0,02 for steel tube– ξT = ξ1 + ξ2 = 0,25 + 0,043 = 0,293Between safety valve and union it’s installed ashut-off valve type 3033/88 (see page 59). Themain characteristics of this valve are:– dR = 20 [mm], inside diameter;– AR = 314 [mm2], inside area;– kv = 20 [m3/h], kv factor.Pressure loss coefficient ξR of shut-off valve isgiven by:

The total pressure loss coefficient is:ξT + ξR = 0,933

We remember the main characteristics of safetyvalve 3030/88 and of refrigerant fluid R407C:– A = 298 [mm2]– Kdr = 0,83 x 0,9 =0,747– C = 2,51

Pressure loss in the upstream line is:

Δpp

in

o

= × × ×⎡⎣⎢

⎤⎦⎥× =0 032

298616

2 51 0 747 0 933 0 02452

, , , , ,

ζR = × ⎡⎣⎢

⎤⎦⎥× =−2 592

31420

10 0 642

3, ,

VALVE INSTALLATIONAs far as the installation of safety relief valvesis concerned, the fundamental points listedbelow shall be taken into account:• safety valves shall be installed near an area

of the system where vapours or gases arepresent and there is no fluid turbulence; theposition shall be as upright as possible, withthe inlet connector turned downwards;

• vessels, joined together with piping rightlyselected by the manufacturer and withoutany stop valve between them, may beconsidered as only one vessel for theinstallation of a safety valve;

• the union between the valve and theequipment to be protected shall be as shortas possible. Furthermore, its passagesection shall not be narrower than the valveinlet section. In any case, EN 13136:2001/A1:2005 Standard states that thepressure loss between protected vessel andsafety valve, at discharge capacity, shall notexceed 3% of the setting value, including anyaccessory mounted on the upstream line;

• in selecting the safety valve location, it shallbe taken into account that valve operationinvolves the discharge of the refrigerant fluidunder pressure, sometimes even at hightemperature. Where the risk exists to causedirect injuries to the persons nearby, anexhaust conveying piping shall be provided,which shall be sized in such a way as not tocompromise valve operation. EN 13136: 2001/A1:2005 Standard statesthat this piping shall not generate, atdischarge capacity, a back pressureexceeding 10% of pressure po, for standardtype valves, unbalanced.

To calculate the pressure loss either in theupstream line (between vessel and safetyvalve) or in the downstream line (betweensafety valve and atmosphere) refer to EN 13136: 2001/A1:2005 Standard, Chapter7.4.

Pressure loss in the upstream lineCalculation of pressure loss is given by:

Δpp

AA

C Kin

o indr= × × ×

⎣⎢

⎦⎥ ×0 032

2

, ζ

56

Example: assume to install a discharge pipe onsafety valve type 3030/88 of the previousexample, using a steel tube nominal size 2”with the following characteristics:

- dout = 53 [mm] , inside diameter- Aout = 2206 [mm2] , inside area- L = 3000 [mm] , length- pipe bend 90° with bending radius R equal to

three times external diameter of tube

From table A.4 it’s possible to have these data:- ξ1 (bend) = 0,25- ξ2 (length) = λ x L/ din = 0,02 ξ 3000/53 = 1,13

with λ = 0,02 for steel tube- ξT = ξ1 + ξ2 = 0,25 + 1,13 = 1,38

Pressure loss in the downstream line is:

The obtained value is admissible because lowerthan the value of 0,10 forecast in EN13136:2001/A1:2005 Standard.

The obtained value is admissible because lowerthan the value of 0,03 forecast in EN 13136:2001/A1:2005 Standard.

Pressure loss in the downstream line

Calculation of pressure loss is given by:

with:- P1 = inlet pressure to downstream line

[bar ass]- P2 = outlet pressure to downstream line,

equal to atmospheric pressure [bar ass]- A = flow area of safety valve [mm2]- Aout = inside area of outlet tube to valve

[mm2]- Kdr = Kd x 0,9 , derated coefficient of

discharge- C = function of isentropic coefficient k- Po = actual relieving pressure, upstream the

valve [bar abs]- ξ = addition of pressure loss coefficients

ξn of pipingThe coefficients ξn are relevant to:- pipe elements loss, bends- loss along the pipe and are listed in EN 13136:2001//A1:2005Standard, Table A.4.

[bar]

57

SAFETY VALVES 3060

GENERAL DESCRIPTION

Valves series 3060 are safety devicesaccording to the definition given in Article 1,Point 2.1.3, 2nd dash of 97/23/EC Directiveand are the subject of Article 3, Point 1.4 ofaforesaid Directive.The valves above mentioned are standard type,unbalanced, direct-loaded safety valves. Valveopening is produced by the thrust the fluidunder pressure exerts on the disc, when saidthrust exceeds, under setting conditions, theopposing force of the spring acting on the disc.

Valves are identified by means of:– a model number formed of an

alphanumerical coding that includes:– in the first part the family identification

(e.g. 3060/45C);– in the second part the setting pressure,

expressed in bars, multiplied by 10 (e.g.140);

– an alphanumerical serial number.

CONSTRUCTION

Body: squared, obtained through die forgingand subsequent machining. It houses thefollowing elements:– the nozzle with flat sealing seat;– the disc guide;– the setting spring holder;– the threaded seat of the setting adjusting

ring nut.In the body, above the disc guide, a small

pressure relief duct is provided through whichthe spring holder is put into contact with theoutput connection. Utilized material: EN 12420-CW617N brass.

Disc: obtained through bar machining andequipped with gasket, it ensures the requiredsealing degree on the valve seat. The gasket ismade in P.T.F.E. (Polytetrafluorethylene), amaterial that, during valve estimated servicelife, maintains a good strength and does notcause the disc to stick on the seat. The disc isproperly guided in the body and the guideaction can never fail; there are no glands orretaining rings that hamper the movementthereof.Utilized material: EN 12164-CW614N brass.

Spring: it opposes the pressure and the fluiddynamic actions and always ensures valve re-closing after pressure relief.Utilized material: DIN 17223-1 steel for springs.

Setting system: hexagonal head, threadedring nut to be screwed inside the body top bycompressing the spring below. On settingcompletion, the position attained by the ring nutis maintained unchanged laying, in the threadedcoupling, a bonding agent with high mechanicstrength and low viscosity features to makepenetration thereof easier. The setting systemis protected against subsequent unauthorizedinterventions by means of a cap nut that ishoused into the brass body and is fixed in thisseat with an edge calking operation.

SCOPE

Use: protection against possible overpressuresof the apparatuses listed below, with regard tothe operating conditions for which they havebeen designed:– refrigerating system and heat pump

components, for instance: condensers, liquidreceivers, evaporators, liquid accumulators,positive displacement compressor discharge,heat exchangers, oil separators, piping.(reference: EN 378-2: 2008);

– simple pressure vessels(reference: 87/404/ EEC Directive).

Fluids: the valves can be used with:• refrigerant fluids, in the physical state of gas

or vapour, belonging to Group II according tothe definitions of 97/23/EC Directive, Article9, Point 2.2 (with reference to 67/548/EECDirective of June 27th, 1967);

• Air and nitrogen(reference: 87/404/EEC Directive).

MARKING

In conformity with the provisions of Article 15 of97/23/EC Directive the following informationare reported on the valve body:• manufacturer’s mark, address and

manufacture country• indication of flow direction• max allowable pressure• set pressure• allowable temperature range• production date• serial numberThe following data are stamped on the cap:

58

• EC marking and the identification number ofthe notified body involved in the productioncontrol phase

• valve model• flow section• Kd discharge coefficient

VALVE SELECTION

97/23/EC Directive requires that pressureequipment, in which permissible limits arereasonably likely to be exceeded, shall be fittedwith suitable protection devices, for instancesafety devices such as safety valves. Suchdevices shall prevent pressure frompermanently exceeding the max allowablepressure PS of the equipment they protect. Inany case, a short pressure peak limited to 10%of admissible maximum pressure is permitted.As to the selection and sizing of the suitableprotection device, users shall refer to thespecific sector or product standards.EN 378-2: 2008 Standard “Refrigeratingsystems and heat pumps – safety andenvironmental requirements – Part 2: Design,construction, testing, marking anddocumentation”, harmonized with 97/23/ECDirective, provides a general outline of theprotection devices to be adopted in refrigeratingsystems and their features (par 6.2.5). It alsoindicates the criteria for the selection of thedevice suitable to the type and sizes of thesystem component to be protected (par. 6.2.6).EN 13136: 2001/A1:2005 Standard “Refrigeratingsystems and heat pumps – Pressure relief devicesand their associated piping – Methods

TABLE 3: General Characteristics valves 3060

1/4" NPT

3/8" SAE

0,63

7,0

38,5

10,0

78,5

1/4" NPT

1/2" SAE

0,69

3/8" NPT

3/8" SAE

0,63

3/8" NPT

1/2" SAE

0,69

1/2" NPT

5/8" SAE

9,5

70,9

0,45

3/8" NPT

3/4" G

0,92

1/2" NPT

3/4" G

0,93

Catalogue number 3060/23C 3060/24C 3060/33C 3060/34C 3060/45C 3060/36C 3060/46C

Connections

Flow Diameter [mm]

Flow Section [mm2]

Discharge Coefficient “Kd”

PS [bar]

TS [°C]

St Pressure Range [bar]

Overpressure

Risk Category according to PED

55

- 50 / + 150

9 / 50

10% of set pressure

IV

inlet male

outlet male

59

Ch

H1

L

H2H3

DØfor calculation” highlights the possible causes ofoverpressure in a system and makes availableto users the instruments for pressure reliefdevice sizing, among which the safety valves.For sizing and installation of safety valvesseries 3060 see the previous chapter of safetyvalves series 3030.

TABLE 4: Dimensions and Weights of valves 3060

Cataloguenumber

Weight[g]

3060

Ø D L Ch H1 H2 H3

21,5

21,5

21,5

21,5

24,5

30

30

35

35

35

35

39,0

40

40

20

20

20

20

23

27

27

33,5

33,5

33,5

33,5

37

37

40

46,5

46,5

46,5

46,5

52,5

59,5

59,5

80

80

80

80

89

96,5

99,5

180

195

195

195

240

360

380

Dimensions [mm]

3060/23C

3060/24C

3060/33C

3060/34C

3060/45C

3060/36C

3060/46C

BALL SHUT-OFF VALVES FOR SAFETY VALVES

refrigerant from a section of the system. Thesevalves can be used with the same fluidsforeseen for safety valves series 3030 and3060, in particularly:– refrigerant fluids, in the physical state of gas

or vapour, belonging to Group II according tothe definitions of 97/23/EC Directive, Article9, Point 2.2 (with reference to 67/548/EECDirective of June 27th, 1967);

– air and nitrogen(reference: 87/404/EEC Directive).

CONSTRUCTION

Castel supplies to its customers the valvesseries 3033 and 3063 in open position and theball spindle is protected by means of a capscrewed to the body and sealed with lead to it.Any closing intervention on the valve forcedlycauses the tampering of the seal and thenthese interventions shall be performedexclusively by:

APPLICATIONS

We would like to remember to our customerthat the running of pressure equipments andpressure assemblies is excluded by the scopeof Directive 97/23/EC but it’s regulated incompliance with national regulations of MemberStates of European Communities.We think that these regulations, actually onupdating with the Competent Bodies of all thestates to avoid conflicts with the ESR of PED,could provide for periodical checks on thepressure equipments and assemblies.Any intervention for periodic checking orreplacement of an installed safety valvebecomes very difficult if the protected vessel isnot equipped with a shut-off valve.The shut-off valves series 3033 and 3063,installed between vessel and safety valve, allowto remove the valve for periodic checking orreplacement without blowing off all the

60

TABLE 5: General Characteristics, dimensions and Weights of valves 3033, 3063

Cataloguenumber

Designedfor valve

KvFactor [m3/h]

RiskCategory

according toPED

Weight[g]

min maxPS [bar]

Ø D A C L H1 H2 H3

Art. 3.3

Dimensions [mm]TS [°C]

3063/44

3033/44

3033/88

3060/45C

3060/46C

3030/44C

3030/88C

5

10

20

-50 +150 55

10

13

20

1/2"

NPT

1"

NPT

78

101

107

58

73

77

44,5

59

72

84,5

100

123

162

245

323

350

710

1070

– staff authorized to work on the system;– public servant of a Competent Body.These persons will be responsible for the nextvalve reopening and the new cap sealing withtheir own lead.

The main parts of these valves are made withthe following materials:– hot forged brass EN 12420 – CW 617N for

body;– hot forged brass EN 12420 – CW 617N,

chromium plated, for ball;– steel, with proper surface protection, for the

spindle;– P.T.F.E. for seat ball gaskets;– chloroprene rubber (CR) for outlet seal

gaskets;– glass reinforced PBT for cap that covers the

spindle.

the vessel alone.Valve type 3032/44 is supplied with:– two female threaded connections 1/2” NPT with

swivel nut, code Castel 3039/4;– two O-Ring.These components ensure the perfectalignment of two safety valves 3060/45.The valves series 3032 can be used with thesame fluids foreseen for safety valves series3030 and 3060, in particularly:– refrigerant fluids, in the physical state of gas

APPLICATIONS

The changeover device type 3032 is a servicevalve for dual pressure relief valves that allowsusing one valve while isolating the other from thesystem. This device allows the user to work onthe isolated valve, for periodic checking orreplacement, while the system is completelyoperative and the other valve is in service.N.B.: each safety valve placed on a changeoverdevice must have sufficient capacity to protect

CHANGEOVER DEVICES FOR SAFETY VALVES

SEAL

VALVE 3030/..

BALL VALVE 3033/..

SEAL

61

of discharge of saturated vapour as well asoverheated vapour.The main parts of these valves are made withthe following materials:– hot forged brass EN 12420 – CW 617N for

body;– steel, with proper surface protection, for the

spindle;– chloroprene rubber (CR) and aramidic fibers

for gland seal;– chloroprene rubber (CR) for outlet seal

gaskets;– glass reinforced PBT for cap that covers the

spindle.

or vapour, belonging to Group II according tothe definitions of 97/23/EC Directive, Article9, Point 2.2 (with reference to 67/548/EECDirective of June 27th, 1967);

– air and nitrogen(reference: 87/404/EEC Directive).

CONSTRUCTION

The valve 3032 is designed so that it is neverpossible to close off both ports at the sametime, excluding all the two safety valves. Underworking conditions, the shutter must beclamped against one of the two seats of thevalve, front port or back port, in order to ensurealways full discharge to the correspondingsafety valve. Intermediate positions of theshutter are not acceptable in order not to affectthe operation of both safety valves. The valveensures a pressure drop perfectly compatiblewith the safety valve operation under conditions

TABLE 6: General Characteristics, Dimensions and Weights of valves 3032

Cataloguenumber

Designedfor valve

KvFactor [m3/h]

RiskCategory

according to PED

Weight[g]

min maxPS [bar]

L3L2L1H2H1

Art. 3.3

Dimensions [mm]TS [°C]

3032/44

3032/64

3032/66

3032/88

3032/108

3060/45C

3060/46C

3030/44C

3030/66C

3030/88C

3,3

9,0

9,0

14,5

20,0

-50 +150 55

117

95

95

120

123

45

52

52

71

74

33

48

48

66

66

91

133

133

185

185

50

80

80

110

110

775

1750

1750

3200

3200

B

1/2"

NPT

1/2"

NPT

3/4"

NPT

1”

NPT

1”

NPT

A

1/2"

NPT

3/4"

NPT

3/4"

NPT

1”

NPT

1 1/4"

NPT

D

13

17,5

17,5

22,0

31,0

GASKET

62

Unions series 3035 allow assembling safetyvalves series 3030 and 3060 or shut-off valvesseries 3032, 3033 and 3063 close to thepressure equipments to protect, set up in arefrigerating system.These unions are designed for installationsaccording to the following two ways:– Make a copper tube jointing the pressure

equipment to the union, fit the end of thistube into the solder connection of the unionand then make a capillary brazing.

– Drill the inner/outer pipe close to thepressure equipment (if possible make acollar on the pipe), put the end of the unioninto this drill and then make a braze welding.

The unions series 3035 are machined by brassbar EN 12164-CW614N.

SAFETY VALVES UNIONS

3060

3035

Tubo di rame

Copper tube

TABLE 7: General Characteristics, Dimensions and Weights of unions 3035

Cataloguenumber ODS

Ø [mm]

PS[bar]

D L Ch

Weight[g]

NPT

Connections Dimensions [mm]

3035/2

3035/3

3035/4

3035/6

3035/8

3035/10

1/4”

3/8”

1/2”

3/4”

1”

1.1/4"

12

18

22

28

36

42

55

18

22

28

35

42

54

33

36,5

44

51

62

67

21

26

32

40

45

55

58

90,5

165

255

364

613

copper tube

63

MARKING

In conformity with the provisions of Article 15 of97/23/EC Directive and of Point 7.3.3 of EN378-2:2008 Standard the following data arereported on the hexagonal nut:• EC marking;• Manufacturer's logo;• Max allowable pressure PS;• Melting point.

INSTALLATION

If a fusible plug is mounted on a pressurevessel or any other part which it protect it shallbe placed in a section where superheatedrefrigerant would not affect its correct function.Fusible plug shall not be covered by thermalinsulation. Discharge from fusible plugs shalltake place so that persons and property are notendangered by the released refrigerant.EN 378-2:2008 Standard, harmonized with the97/23/EC Directive, establishes that a fusibleplug shall not be used as pressure relief deviceon vessels containing refrigerants proper to A2,B1, B2, A3 e B3 groups. The same Standardestablishes that a fusible plug shall not beused as the sole pressure relief devicebetween a refrigerant containing componentand the atmosphere for systems with arefrigerant charge larger than 2,5 kg of groupA1 refrigerant (ex. R22; R134a; R404A;R407C; R410A; R507).

FUSIBLE PLUG SELECTION

97/23/EC Directive requires that pressureequipment, in which permissible limits arereasonably likely to be exceeded, shall be fittedwith suitable protection devices, for instancesafety devices such as fusible plugs. Suchdevices shall prevent pressure frompermanently exceeding the max allowablepressure PS of the equipment they protect. Inany case, a short pressure peak limited to 10%of admissible maximum pressure is permitted.As to the selection and sizing of the suitableprotection device, users shall refer to thespecific sector or product standards.EN 378-2 : 2008 Standard “Refrigeratingsystems and heat pumps – safety andenvironmental requirements – Part 2:Design,construction, testing, marking anddocumentation” provides a general outline ofthe protection devices to be adopted in

GENERAL DESCRIPTION

Fusible plugs series 3080/.C and 3082/.C aresafety devices according to the definition givenin Article 1, Point 2.1.3, 2nd dash of 97/23/ECDirective and are the subject of Article 3, Point1.4 of aforesaid Directive.According to the definition given in Point 3.6.4of EN 378-1:2008 Standard, fusible plug is adevice containing material that melts at apredetermined temperature and therebyrelieving the pressure.Castel has resolved to classify fusible plugsseries 3080/.C and 3082/.C in the Category ofRisk I therefore fixing their use, as protectiondevices, on specific pressure equipments,proper to the same Category of Risk I, incompliance with Annex II, Point 2, of 97/23/ECDirective.In consequence of this choice, fusible plugsseries 3080/.C and 3082/.C cannot be used,as sole protection devices, on pressureequipments proper to Categories of Risk higherthan first.

CONSTRUCTION

The body of the fusible plug is an NPT plugdrilled with a taper hole. A predeterminedquantity of fusible alloy, with checked meltingpoint, is poured inside this hole.The parts of the fusible plugs are made withthe following materials:• Brass EN 12164 – CW 614N, hot tinned, for

the plug.• Eutectic alloy with several components,

cadmium and lead free, for the fusiblematerial.

SCOPE

Use: the fusible plugs are basically used toprotect the components in a refrigeratingsystem or heat pump against possibleoverpressures, with regard to the operatingconditions for which they have been designed,in case of an excessive external heat source,such as fire.Fluids: the fusible plugs can be used withrefrigerant fluids belonging to Group 2according to the definitions of 97/23/ECDirective, Article 9, Point 2.2 (with reference to67/548/EEC Directive of June 27th, 1967).

FUSIBLE PLUGS

64

To find the values of k and C for the moreuseful refrigerants, see the chapter of safetyvalves series 3030Calculation of minimum required dischargecapacity of fusible plug is closely linked to themain cause that may arouse the opening offusible plug, which is the external heat source.The minimum required discharge capacity shallbe determined by the following:

[kg/h]

with– ϕ = density of heat flow rate, it’s

assumed to be 10 [kW/m2]– Asurf = external surface area of the vessel

[m2]– hvap = heat of vaporization of liquid at po

[kJ/kg]

EN 13136 : 2001/A1:2005 Standard alsoestablishes that the following values for Kdr

shall be the maximum used depending on howthe pipe between the vessel and the fusibleplug is mounted on the vessel:• flush or flared connection: Kdr = 0,70• inserted connection: Kdr = 0,55.

QA

hmdsurf

vap

=× ×3600 ϕ

C k

k

k

k= × ×

+

+( )−( )

3 9482

1

1

1,

refrigerating systems and their features (par6.2.5). It also indicates the criteria for theselection of the device suitable to the type andsizes of the system component to be protected(par.6.2.6).EN 13136 : 2001/A1:2005 Standard “Refrigerating systems and heat pumps –Pressure relief devices and their associatedpiping – Methods for calculation”, harmonizedwith 97/23/EC Directive, highlights thepossible causes of overpressure in a systemand makes available to users the instrumentsfor pressure relief device sizing, among whichthe fusible plugs.

SIZING OF FUSIBLE PLUG(REF. EN 13136: 2001/A1:2005)

As the fusible plugs discharge to atmosphere,they always work in critical flow (to know thedefinition of critical flow, see the chapter ofsafety valves series 3030).The fusible plugs must be sized as follow:

[mm2]

with:– Ac = minimum flow area of fusible plug [mm2]– Qmd = minimum required discharge capacity,

of refrigerant, of fusible plug [kg/h]– Kdr =derated coefficient of discharge of

fusible plug, equal to 0,9 x Kd

– po = pressure upstream the fusible plug,inside the equipment to be protected [barabs]

– vo = specific volume of gas or vapour atrelieving conditions po e To , [m3/kg] (To is thefluid temperature at plug inlet, settled by theuser or by the designer)

– C = function of isentropic coefficient k (asmeasured at 25 °C , see Section 7.2.3 , EN13136 : 2001/A1:2005 Standard)calculated from:

A

QC K

vpc

md

dr

o

o

= ××

×3 469,

TABLE 8: General Characteristics, Dimensions and Weights of fusible plugs 3080 e 3082

Cataloguenumber

ConnectionsNPT

FlowDiameter

[mm]

FlowSection[mm2]

Kd PS [bar]

Melting point[°C]

Hexa

gona

l Key Wrench

Torquemin/max

[Nm]

Weight[g]

RiskCategory

according toPED

3080/1C

3080/2C

3080/3C

3080/4C

3082/1C

3082/2C

3082/3C

3082/4C

1/8"

1/4"

3/8"

1/2"

1/8"

1/4"

3/8"

1/2"

4,9

5,7

8,5

9,3

4,9

5,7

8,5

9,3

18,8

25,5

56,7

67,9

18,8

25,5

56,7

67,9

0,91

42

30

79

138

12

17

12

12

17

22

7 / 10

10 / 15

14 / 20

21 / 30

7 / 10

10 / 15

14 / 20

21 / 30

11

23

39

76

11

23

39

76

I

Check valves

66

INSTALLATION

The valves can be installed in any section of arefrigerating system, where it is necessary toavoid an inversion of the refrigerating flow, incompliance with the limits and capacitiesindicated in table 3. Table 1 shows the following functionalcharacteristics of a check valve:– PS;– TS;– Kv factor;– minimum opening pressure differential, that

is the minimum pressure differential betweeninlet and outlet at which a check valve canopen and stay opened.

Before connecting the valve to the pipe it isadvisable to make sure that the refrigeratingsystem is clean. In fact the valves with P.T.F.E.gaskets are particularly sensitive to dirt anddebris. Furthermore check that the flowdirection in the pipe corresponds to the arrowstamped on the body of the valve.

The allowed operating positions are:– types 3122 and 3142 with horizontal axis

and valve cover facing upward;– types 3182 with inlet facing down and the

valve cover facing upward;– types 3112, 3132 and 3133, preferably with

vertical axis and arrow upward. Sloping axis,up to horizontal position, are tolerable.

The brazing of valves with solder connectionsshould be carried out with care, using a lowmelting point filler material. Before starting tobraze, it’s necessary to disassemble the valvesseries 3122, while this operation is notnecessary with solder connection valves. In anycase, it’s important to avoid direct contactbetween the torch flame and the valve body,which could be damaged and compromise theproper functioning of the valve.

APPLICATIONS

The check valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).For heavy duty, about the operationtemperature, for example installation on thedischarge line close to the compressor, Castelhas developed three new series of valves, types3122, 3142 and 3182, equipped with specialgasket for high temperature, between the bodyand its cover.

MATERIALS

The main parts of the valves are made with thefollowing materials:– hot forged brass EN 12420 – CW 617N for

body and cover;– copper tube EN 12735-1 – Cu-DHP for solder

connections;– austenitic stainless steel AISI 302 for the

spring;– chloroprene rubber (CR) for outlet seal

gaskets. Metal-rubber laminated gaskets forthe valves series 3122, 3142 and 3182;

– P.T.F.E. for seat gasket.

CHECK VALVES

67

TABLE 1: General Characteristics

Catalogue Number

ConnectionsKv Factor [m3/h]

Minimum Opening Pressure Differential

[bar]

TS [°C]PS [bar]

Risk Category according to

PEDSAE Flare

ODS ODM

Ø [in.] Ø [mm] Ø [in.] Ø [mm] min. max.

3112/2 1/4”

– – – –

0,5

0,1

– 40 +105

45

Art. 3.3

3112/3 3/8” 1,5

3112/4 1/2” 1,8

3112/5 5/8” 3,3

3112/6 3/4” 5,0

3122/M22

– 22 – 286,6

– 35 +160

3122/7 7/8” – 1.1/8” –

3122/M28 – 28 1.3/8” 358,8

3122/9 1.1/8” – 1.3/8” 35

3122/11 1.3/8” 35 1.5/8”

15,2

3122/13 1.5/8” – 2”25,0

I3122/M42 – 42 2”

3122/17 2.1/8” 54

40,0

3132/2 1/4” – 0,5

– 40 +105

Art. 3.3

3132/3 3/8” –1,5

3132/M10 – 10

3132/M12 – 121,8

3132/4 1/2” –

3132/5 5/8” 16 3,3

3132/M18 – 18

5,03132/6 3/4” –

3132/7 7/8” 22

3133/M10 – 10 1,4

0,33133/M12 – 12 1,7

3133/5 5/8” 16 3,3

3133/7 7/8” 22 5,0

3142/7 7/8” 22 6,6

0,1 – 35 +160

3142/M28 – 288,8

3142/9 1.1/8” –

3142/11 1.3/8” 35 15,2

3142/13 1.5/8” –25,0

I

3142/M42 – 42

3142/17 2.1/8” 54

40,03142/21 2.5/8” –

3142/25 3.1/8” –

3182/7 7/8” 22 8,5

Art. 3.33182/M28 – 28

9,53182/9 1.1/8” –

3182/11 1.3/8” 35 19,0

3182/13 1.5/8” –37,0

I3182/M42 – 42

3182/17 2.1/8” 54 45,4

68

TABLE 2: Dimensions and Weights

Cataloguenumber

Weight[g]

H H1 L L1 Q Ø D Ch

56

68

73

85

98

84,5

101,5

125,5

142

92

107

132

139

165

107

132

139

165

84,5

101,5

125,5

142

151

177

221

28,5

34

37

42,5

28,5

34

37

42,5

95

109,5

123,5

100

118

141

173

170

201

232

256

285

329

130,5

150

195,5

100,5

116

143,5

60

68

88

104

60

68

88

104

60

68

104

16

20

22

27

33

16

20

22

27

33

20

22

27

33

14

18

20

24

30

70

110

140

220

350

1180

1090

1625

2955

4225

95

110

145

210

310

110

145

210

310

1320

1885

3315

4875

5690

1280

1295

1855

3255

4780

Dimensions [mm]

3112/2

3112/3

3112/4

3112/5

3112/6

3122/M22

3122/7

3122/M28

3122/9

3122/11

3122/13

3122/M42

3122/17

3132/2

3132/3

3132/M10

3132/M12

3132/4

3132/5

3132/M18

3132/6

3132/7

3133/M10

3133/M12

3133/5

3133/7

3142/7

3142/M28

3142/9

3142/11

3142/13

3142/M42

3142/17

3142/21

3142/25

3182/7

3182/M28

3182/9

3182/11

3182/13

3182/M42

3182/17

69

3122

3142

3182

Ch

H H

DØDØ

313231333112

Ch

H H

DØDØ

313231333112

3112 31323133

70

TABLE 3: Refrigerant Flow Capacity

Catalogue Number

Refrigerant Flow Capacity [kW]

Liquid Vapour Hot Gas

R134a R22 R404A R407C R410A R134a R22 R404A R407C R410A R134a R22 R404A R407C R410A

3112/2 8,4 9,0 6,0 9,4 9,5 1,1 1,4 1,1 1,3 1,8 4,3 5,9 5,0 5,8 6,5

3112/3 25,3 27,0 17,9 28,1 28,6 3,2 4,1 3,4 4,0 5,4 12,8 17,6 15,0 17,4 19,5

3112/4 30,3 32,4 21,4 33,7 34,3 3,9 4,9 4,1 4,8 6,5 15,3 21,1 18,0 20,9 23,4

3112/5 55,6 59,4 39,3 61,8 62,8 7,1 8,9 7,5 8,8 11,9 28,1 38,6 33,0 38,3 42,9

3112/6 84,3 90,0 59,5 93,7 95,2 10,8 13,5 11,3 13,4 18,0 42,5 58,5 50,0 58,1 65,0

3122/M22111,2 118,8 78,5 123,7 125,7 14,3 17,8 14,9 17,7 23,8 56,1 77,2 66,0 76,7 85,8

3122/7

3122/M28148,3 158,4 104,7 164,9 167,6 19,0 23,8 19,9 23,6 31,7 74,8 103,0 88,0 102,3 114,4

3122/9

3122/11 256,1 273,6 180,9 284,8 289,4 32,8 41,0 34,4 40,7 54,7 129,2 177,8 152,0 176,6 197,6

3122/13421,3 450,0 297,5 468,5 476,0 54,0 67,5 56,5 67,0 90,0 212,5 292,5 250,0 290,5 325,0

3122/M42

3122/17 674,0 720,0 476,0 749,6 761,6 86,4 108,0 90,4 107,2 144,0 340,0 468,0 400,0 464,8 520,0

3132/2 8,4 9,0 6,0 9,4 9,5 1,1 1,4 1,1 1,3 1,8 4,3 5,9 5,0 5,8 6,5

3132/325,3 27,0 17,9 28,1 28,6 3,2 4,1 3,4 4,0 5,4 12,8 17,6 15,0 17,4 19,5

3132/M10

3132/M1230,3 32,4 21,4 33,7 34,3 3,9 4,9 4,1 4,8 6,5 15,3 21,1 18,0 20,9 23,4

3132/4

3132/5 55,6 59,4 39,3 61,8 62,8 7,1 8,9 7,5 8,8 11,9 28,1 38,6 33,0 38,3 42,9

3132/M18

84,3 90,0 59,5 93,7 95,2 10,8 13,5 11,3 13,4 18,0 42,5 58,5 50,0 58,1 65,03132/6

3132/7

3133/M10 25,3 27,0 17,9 28,1 28,6 3,2 4,1 3,4 4,0 5,4 12,8 17,6 15,0 17,4 19,5

3133/M12 30,3 32,4 21,4 33,7 34,3 3,9 4,9 4,1 4,8 6,5 15,3 21,1 18,0 20,9 23,4

3133/5 55,6 59,4 39,3 61,8 62,8 7,1 8,9 7,5 8,8 11,9 28,1 38,6 33,0 38,3 42,9

3133/7 84,3 90,0 59,5 93,7 95,2 10,8 13,5 11,3 13,4 18,0 42,5 58,5 50,0 58,1 65,0

3142/7 111,2 118,8 78,5 123,7 125,7 14,3 17,8 14,9 17,7 23,8 56,1 77,2 66,0 76,7 85,8

3142/M28148,3 158,4 104,7 164,9 167,6 19,0 23,8 19,9 23,6 31,7 74,8 103,0 88,0 102,3 114,4

3142/9

3142/11 256,1 273,6 180,9 284,8 289,4 32,8 41,0 34,4 40,7 54,7 129,2 177,8 152,0 176,6 197,6

3142/13421,3 450,0 297,5 468,5 476,0 54,0 67,5 56,5 67,0 90,0 212,5 292,5 250,0 290,5 325,0

3142/M42

3142/17

674,0 720,0 476,0 749,6 761,6 86,4 108,0 90,4 107,2 144,0 340,0 468,0 400,0 464,8 520,03142/21

3142/25

3182/7 143,2 153,0 101,2 159,3 161,8 18,4 23,0 19,2 22,8 30,6 72,3 99,5 85,0 98,8 110,5

3182/M28160,1 171,0 113,1 178,0 180,9 20,5 25,7 21,5 25,5 34,2 80,8 111,2 95,0 110,4 123,5

3182/9

3182/11 320,2 342,0 226,1 356,1 361,8 41,0 51,3 42,9 50,9 68,4 161,5 222,3 190,0 220,8 247,0

3182/13623,5 666,0 440,3 693,4 704,5 79,9 99,9 83,6 99,2 133,2 314,5 432,9 370,0 429,9 481,0

3182/M42

3182/17 765,0 817,2 540,3 850,8 864,4 98,1 122,6 102,6 121,7 163,4 385,9 531,2 454,0 527,5 590,2

Refrigerant flow capacity referred to the following operating conditions:- Evaporating temperature: + 4 °C- Condensing temperature: + 38 °C- Pressure drop: 0,15 bar

Particularly for hot gas:- Suction temperature: + 18 °C- Pressure drop: 1 bar

Water regulatingvalves

72

APPLICATIONS

The water regulating valve, employed withcondenser fed with either main or well water,keeps the condensation pressure constant atthe previously set value by adjusting the waterflow so as to ensure a balanced heat exchangeunder all conditions. At plant start-up, this adjustment is designed toallow the thermostatic valve rapidly reachesnormal operating conditions and subsequently,during operations, to avoid excessive pressureincreases or decreases under different flowconditions. An excessive rise of high pressureaffects the refrigerating capacity of the system. On the other side, pressure lowering leads toinsufficient refrigerant feeding of the evaporatorwith a consequent increased gas overheatingand parallel reduction of gas pressure atcompressor suction. Castel valves are appropriate for refrigerantfluids HCFC and HFC and only for main and wellwater.

OPERATIONS

The moving elements of the valve are a metalbellows and a shutter. The thrust of the refrigerant condensation

WATER REGULATING VALVES

1/4"

48

Ch

1/4"Flare

8799

L

A02

MADE IN ITALY

RANGE 5-18 bar

MEDIUM R134a-R404A-R12-R22-R502MAX WATER TEMP. 80 |BCMAX WATER PRESS. 10 bar

CAT.BC

A

pressure outside the bellows favours theopening of the valve and the thrust of theadjustment spring on the shutter acts in theopposite sense. Given a specific setting of thespring, the valve progressively opens in linewith the increasing condensation pressure, andcloses when this pressure decreases. When the compressor stops, the valve closes:water is no longer fed into the condenser, thisbeing a notable operating economy.Valve setting is performed in the works at apressure of 7,5 bars. Setting is modified byturning the control screw.Three reference notches, marked with letters A,B, and C, are present on the spring cover. Eachnotch is equivalent to a different spring setting.The notches are referred to the followingcondensation pressures:• letter A equivalent to about 7.5 bar

(valid for R134a at a temperature ofcondensation of 30 °C);

• letter B equivalent to about 14 bar (valid for R404A, R407C and R507 at atemperature of condensation of 30 °C);

• letter C equivalent to about 18 bar (top limit of working pressure)

73

• Water temperature at the condenser inlet: 14°C.

• Expected thermal difference: Dt = 10 °C.• Condensation temperature expected on the

basis of the water/refrigerant heat exchangein the condenser:approximately 6 °C above the watertemperature at the outlet, equivalent to 30°C (with a corresponding saturationpressure) (fig. 1).

• Refrigeration yield at the level of theevaporator: 18,6 kW under the following operatingconditions,condensation temperature: + 30 °C;evaporation temperature: –15 °C.

Thermal power to be disposed of at the level ofthe condenser (Table 2):

18,6 x 1,325 = 24,65 [kW]

Water flow rate:

24,65 x 860––––––––––– = 2120 l/h = 2,12 [m3/h]

10

Fig. 1 – Heat exchange pattern in the condenser.

TABLE 1: General Characteristics

Cataloguenumber Weight [g]

Connections

UNI ISO228/1

Working pressure

[bar]

Maximumwater

pressure[bar]

Maximumwater

Temperature[°C]

KvFactor

[m3/h]

Refrigerantmax.

workingpressure

[bar]

Ch L

3210/03

3210/04

3210/06

G 3/8"

G 1/2"

G 3/4"

5 - 18 10 80

2

3

4,7

2027

32

70

74

1015

985

1010

MATERIALS

The materials used for the main parts are:• ST-UNI-EN 12165 - CW617N hot-forged brass

for the main body;• austenitic stainless steel – AISI 303 for the

seat;• nitril rubber (NBR) for seat gasket;• NBR coated-fabric for diaphragms.

INSTALLATION

The valve will be mounted on the water outletside of the condenser, preferably vertically, withthe bellows downward.The high pressure connection to the bellowmust show no deflection.The arrow on the valve body shows water flowdirection.

EXAMPLE OF VALVE SELECTION

A refrigerating system including a hermeticcompressor and a condenser fed with mainswater.• Mains water pressure: 3 bar

74

When the point of intersection of pressuredifferential through the valve and flow range iswithin the area between the curves of twovalves, select the valve with larger diameter.

When the valve is completely closed, thepressure must be the same as the refrigerantsaturation pressure at the air temperature ofthe place where the condenser is installed.When the valve begins to open, the pressure isabout 0,2 bar above the pressure when thevalve is totally closed.

The pressure drop corresponding to the waterflow rate specified above in thecondenser/piping circuit, with the exclusion ofthe water regulating valve, is about 2,5 bar.

The water regulating valve has this pressuredifferential at its disposal:

Dp = 3 – 2,5 = 0,5 bar

At Dp = 0,5 bar the 3210/04 valve, completlyopened, ensures the required flow rate (fig. 2).

0

0,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

∆p [H2O]

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

0

0,12

5

0,25

0,37

5

0,5

0,62

5

0,75

0,87

5 1

1,12

5

1,25

1,37

5

1,5

1,62

5

1,75

1,87

5 2

2,12

5

2,25

2,37

5

2,5

2,62

5

2,75

∆p [bar]

Q [m3/h]

3210/04

3210/06

3210/03

Fig. 2 – Characteritics curves when the valves are completely open

75

TABLE 2: Thermal factor for hermetic refrigeration compressors. Relationship between the total heat to be disposed of atthe level of the condenser and refrigeration capacity at the level of the evaporator

CondensingTemperature

[°C]

Evaporating Temperature [°C]

–35 –30 –25 –20 –15 –10 –5 0 +5 +10

+30

+35

+40

+45

+50

+55

+60

1,524

1,553

1,578

1,473

1,503

1,531

1,421

1,453

1,484

1,521

1,371

1,403

1,435

1,475

1,325

1,355

1,387

1,425

1,468

1,520

1,281

1,310

1,340

1,377

1,420

1,465

1,526

1,238

1,268

1,295

1,330

1,369

1,412

1,457

1,200

1,228

1,254

1,285

1,320

1,363

1,398

1,163

1,188

1,210

1,240

1,270

1,304

1,338

1,133

1,155

1,175

1,200

1,227

1,255

1,285

TABLE 3: Thermal factor for open compressors (direct or belt driven). Relationship between the total heat to be disposedof at the level of the condenser and the refrigeration capacity at the level of the evaporator

CondensingTemperature

[°C]

Evaporating Temperature [°C]

–35 –30 –25 –20 –15 –10 –5 0 +5 +10

+30

+35

+40

+45

+50

+55

+60

1,460

1,495

1,537

1,417

1,450

1,530

1,371

1,405

1,441

1,485

1,330

1,367

1,396

1,437

1,482

1,291

1,320

1,350

1,390

1,431

1,243

1,279

1,306

1,342

1,381

1,426

1,474

1,213

1,240

1,265

1,295

1,334

1,369

1,410

1,178

1,202

1,224

1,252

1,288

1,320

1,355

1,143

1,168

1,185

1,211

1,241

1,274

1,330

1,114

1,133

1,152

1,175

1,120

1,228

1,255

Liquid Indicators &Moisture-Liquid Indicators

78

CONSTRUCTION

New liquid indicators, series 38, and newliquid/moisture indicators, series 39, aremanufactured in a total hermetic constructionto avoid any possible refigerant leaks. Theglass “lens”, with its proper gasket, is housedinto the brass body and is fixed in this seatwith an edge calking operation.

The main parts of the indicators are made withthe following materials:– hot forged brass EN 12420 – CW 617N for

body;– copper tube EN 12735-1 – Cu-DHP for solder

connections;– Glass for lens;– PTFE for outlet seal gaskets;Liquid/moisture indicators series 3770, 3771,3780 and 3781 are manufactured with theglass “lens” directly fused onto a steel metallicring, with proper surface protection.

APPLICATIONS

The indicators, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject of Article3, Section 1.3 of the same Directive.The indicators series 3780 are excluded fromthe scope of Directive 97/23/EC, as specified inthe Guidelines 1/8 and 1/9, because they arepiping components.They are designed for installation on commercialrefrigerating systems and on civil and industrialconditioning plants, which use refrigerant fluidsproper to the Group II (as defined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).Liquid indicators and moisture liquid indicatorsensure a fast and safe inspection of theconditions of the refrigerant fluid in the circuitconcerning regular flow and moisture. Liquidindicators also ensure inspection of the regularreturn of oil to the compressor crankcase.

OPERATION

The moisture/liquid indicators consist of asensitive element as a ring, which changescolor passing from green to yellow according tothe percentage of moisture in the system. Thedata of moisture content, shown in table 1 withthe “green” color, can be consideredadmissible for the proper working of thesystem. When the sensitive element from green

LIQUID INDICATORS &MOISTURE-LIQUID INDICATORS

TABLE 1: Moisture contained in the fluid [p.p.m.]

ColourR22 R134a R404A R407C R410A

Refrigerant fluid

Green

Green

“Chartreuse”

Yellow

<60

60

>60

<75

75

>75

<30

30

>30

<30

30

>30

<30

30

>30

R507

<30

30

>30

fade to yellow, “green Chartreuse”, workingconditions of the system could become difficult.When the sensitive element becomes “yellow”,it’s time to substitute the dehydrator filter.If the charge and working condition are normal,the refrigerant fluid appears perfectly liquidunderneath the “lens” of the indicator. Thepresence of bubbles indicates that therefrigerant fluid is partial evaporating along theliquid line.

79

TABLE 2: General Characteristics of liquid indicators

Cataloguenumber

Type SAE Flare

RIskCategory

according to PED

PS [bar]ODSTS [°C]

Ø [mm] max.Ø

[in.] min.

Art. 3.3

Connections

male-

male

soldering

male-

female

3810/22

3810/33

3810/44

3810/55

3810/66

3840/2

3840/3

3840/M10

3840/M12

3840/4

3840/5

3840/M18

3840/6

3840/7

3840/9

3850/22

3850/33

3850/44

3850/55

3850/66

1/4"

3/8"

1/2"

5/8"

3/4"

1/4"

3/8"

1/2"

5/8"

3/4

1/4"

3/8"

1/2"

5/8"

3/4"

7/8"

1.1/8"

10

12

16

18

22

– 30 +110 45

achieve equilibrium. However, the moistureindication is given normally when the plant is infunction and the fluid is flowing.The brazing of indicators with solderconnections should be carried out with care,using a low melting point filler material. In anycase, avoid direct contact between the torchflame and the indicator body or glass, wichcould be damaged and compromise the properfunctioning of the indicator.With indicators series 3780 and 3781 it’snecessary to disassemble the ring beforestarting to braze.

INSTALLATION

At the start-up the color of the sensitiveelement may be yellow, due to exposure to airhumidity and to moisture in the circuit. Whenthe moisture of the refrigerant is brought backto acceptable levels with the dehydrator, theindicator color is once again green. This isevidence that equilibrium has been re-established. In case of persisting yellow,measures have to be taken to eliminatemoisture. Only when the sensitive elementcomes back to green, there is evidence thatadopted measures were effective. About 12hours of system operation are required to

80

1/4"

3/8"

1/2"

5/8"

3/4"

1/4"

3/8"

1/2"

5/8"

3/4"

TABLE 3: General Characteristics of liquid / moisture indicators

Cataloguenumber

Type SAE Flare

RiskCategoryaccording

to PED

PS [bar]

ODS ODM for pipeTS [°C]

Ø [mm]

Ø [mm]

Ø [mm]

Ø hole[mm] max.Ø

[in.]Ø

[in.]Ø

[in.] min.

Art. 3.3

I

Art. 3.3

I

Excluded

Connections

3910/22

3910/33

3910/44

3910/55

3910/66

3940/2

3940/3

3940/M10

3940/M12

3940/4

3940/5

3940/M18

3940/6

3940/7

3940/9

3950/22

3950/33

3950/44

3950/55

3950/66

3770/M28

3770/11

3770/13

3770/M42

3771/11

3771/M42

3771/17

3780/5

3780/M18

3780/7

3780/9

3780/11

3781/M28

male-

male

soldering

male-

female

soldering

saddle

type

level glass

1/4"

3/8"

1/2"

5/8"

3/4"

7/8"

1.1/8"

1.3/8"

2.1/8"

10

12

16

18

22

35

42

1.3/8"

1.5/8"

28

35

42

5/8"

7/8"

1.1/8"

1.3/8"

16

18

22

28

35

28

– 30 +110

45

35

38103910

38403940 3850

3950

81

3770 3771

3780 3781

MoistureLiquid

IndicatorsH H1 L Ch

22

26,5

30

34

37,5

22

34

34

37,5

43,5

26,5

30

34

37,5

43,5

71,5

77,5

81,5

89,5

90

133

117

131

151

186

68

74

77

82

92

150

160

170

160

170

12

17

22

24

28

17

22

24

28

35

Catalogue number

TABLE 4: Dimensions and Weights

LiquidIndicators

Weight [g]

3910/22

3910/33

3910/44

3910/55

3910/66

3940/2

3940/3

3940/M10

3940/M12

3940/4

3940/5

3940/M18

3940/6

3940/7

3940/9

3950/22

3950/33

3950/44

3950/55

3950/66

3770/M28

3770/11

3770/13

3770/M42

3771/11

3771/M42

3771/17

3780/5

3780/M18

3780/7

3780/9

3780/11

Dimensions [mm]

3810/22

3810/33

3810/44

3810/55

3810/66

3840/2

3840/3

3840/M10

3840/M12

3840/4

3840/5

3840/M18

3840/6

3840/7

3840/9

3850/22

3850/33

3850/44

3850/55

3850/66

115

150

210

195

315

120

190

225

195

215

310

540

140

190

240

300

525

250

300

480

300

480

550

90

16,5

17,5

18,5

21,5

23,5

15,5

21,5

21,5

23,5

26

17,5

18,5

21,5

23,5

26

38

41,5

45

41,5

45

30

31

33

36

39,5

Dehydrators and Filters

84

In molecular sieve driers, with a chargeconstituted by non-agglomerated products,the dehydrating mass is pressed in betweentwo fine steel mesh disks, or two filteringdisks of various material, kept in place by aspring.In solid core driers, dehydrating anddeacidifying products with binders constitutethe block. Water adsorption combines withthe neutralization of acids that may bepresent in the refrigerant, and with a strongfiltering action.Castel have planned either its productionlines of hermetic driers on this secondsolution that avoid any risk of abrasion of thecharge and consequently the making ofpowder and permit to put the filter in anyposition inside the refrigerating system.It is always advisable to install a moistureindicator downstream the filter, which willshow the refrigerant moisture and,consequently, the degree of efficiency of thefilter.The dehydrating capacity of Castel drier isrelative to the charge of refrigerant and not tothe refrigeration potential of the plant. As amatter of fact, for the same refrigerantpotential and for the same type of refrigerantfluid, there can be different refrigerantcharges according to the type, design andworking conditions of the plant as well as tothe shutter degree.The data shown in the following tables arededuced from the test results of the presentCastel production.It is important to note in the case of a highoil level in the circuit (> 5%) the data shownin the tables will be reduced considerably.

Among contaminating agents causing seriousdamages to refrigerating systems, moistureplays a major role. Its presence, evenpossible in the refrigerating system, is due tomany factors:• inadequate or insufficiently prolonged

vacuum before refrigerant charging;• oil used for topping up remained exposed

to air humidity;• refrigerant used for subsequent additions

contained in non dried vessels;• sealing defects especially in systems not

designed for operation at lowtemperatures.

High temperatures combined with humiditygive rise to complex phenomena enhancingacid formation both in lubricating oil andrefrigerant.Oil organic acids react with metal and favorthe formation of sludge, which are viscousclots consisting of insoluble metal salts andlarge molecules of polymerized oil.Sludge affects the lubrication of the movingelements of the compressor, can clog valvesand filters and cause serious damages.Acids, especially hydrofluoric acid, producedby the hydrolysis of the fluorinated refrigerant(in compressors iron and aluminum act ascatalysts) are particularly corrosive.Acids etch metal surfaces with theconsequent formation of crystal salts, whichstick to surfaces and affect the total heatexchange coefficient in the condenser and inthe evaporator.In the sealed and semi-sealed groups, thesesalts damage the windings of electric motorsas in these groups cold gas cools windingsthrough direct contact.On the other hand, water solubility inrefrigerants in a liquid phase, is quitereduced, especially at low temperatures. As aconsequence, when in the system waterexceeds the very low limits of solubilityadmitted at low temperature, excess waterturns into ice, and blocks expansion valvesand capillaries either partially or totally.Consequently, refrigerating plants must beequipped with a filter drier on the liquid lineand types available on the market areessentially two: molecular sieve driers andsolid core driers.

DEHYDRATION OF REFRIGERANTS

85

activated alumina, and a special bindingagent in appropriate proportions. Thechoice of blend, molecular sieves –activated alumina, gives to the block a veryhigh capacity of acid adsorption alsomaintaining very good dehydratingcharacteristics. The presence of acontrolled and defined percentage ofactivated alumina, lower than the maximumvalue recommended by ASERCOM, keepsunchanged the original concentration ofadditives in the polyolester lubricant.The blocks in the filters series 43 aremolded from a blend of dehydrating charge,totally made of 3 Å molecular sieves, and aspecial binding agent in appropriateproportions. The choice of the 3 Åmolecular sieves, as sole dehydratingmaterial, gives to the block a superlativecapacity of water adsorption also

APPLICATIONS

The filters, shown in this chapter, areclassified “Pressure vessels” in the senseof the Pressure Equipment Directive94/23/EC, Article 1, Section 2.1.1 and aresubject of Article 3, Section 1.1 of thesame Directive.They are designed for installation oncommercial refrigerating systems and oncivil and industrial conditioning plants,which use refrigerant fluids proper to theGroup II (as defined in Article 9, Section2.2 of Directive 97/23/EC and referred toin Directive 67/548/EEC).Filters series 42 and series 43 have beendeveloped for specific installations onrefrigerating systems using HFC refrigerantfluids, particularly R134a, R404A, R407C,R410A and R507 mixed with polyolesterlubricants. In spite of this, the new blockmay be successfully used also inrefrigerating systems using the old CFC orHCFC refrigerant fluids, mixed with minerallubricants.

CONSTRUCTION

The filter is completely manufactured insteel, either with nickel-plated Flarethreaded connections. The product rangealso includes types with copper platedsolder connections, offering the possibilityto solder the copper pipe inside theconnections (ODS) or outside theconnections, using a copper sleeve (ODM).On specific customers’ request, Castel isalso able the supply them filters series 42and 43 with:• solder connections made of copper tube

EN 12735-1 – Cu-DHP• ORFS (O-Ring Face Seal) threaded

connections according to SAE J 1453Standard.

The blocks in the filters series 42 aremolded from a blend of dehydrating charge,80% of 3 Å molecular sieves and 20 % of

ANTI-ACID SOLID CORE FILTER DRIERS WITHMOLECULAR SIEVES AND ACTIVATED ALUMINA– SERIES “42”

Approved by Underwriters Laboratories Inc. u

SOLID CORE FILTER DRIERS WITH 100%MOLECULAR SIEVES – SERIES “43”

Approved by Underwriters Laboratories Inc. u

86

Solid core dehydrator1 – Spring2 – Block3 – Felt4 – Stainless steel mesh

maintaining quite good deacidifyingcharacteristics.The manufacturing process gives aconsiderable compacted ness andstoutness to both the products so thatthey are resistant to shocks andabrasions.The shape of the block is designed in

order to offer the maximum possiblesurface area to the incoming fluid. Theinternal cavity is also positioned in such away as to have a uniform wall thickness.As a result, the fluid encounters aconstant strength at all points, flowslinearly through the block, and ensuresefficient dehydration and minimum chargeloss.The block is chemically inert, notdeliquescent, does not react withrefrigerating fluids, and is capable ofblocking oil by-products dragged into thecircuit. Impurities accumulate in the ringbetween the metal shell and the block; thisprevents filter clogging.

EXAMPLE OF SELECTION

System data:Refrigerant: R407CCondensing temperature: + 50 [°C]Weight of refrigerant: 34 [kg]

According to DIN 8949:2000, the adsorptioncapacity of the drier is given by:

(1.050 – 50) x 34 / 1.000 = 34 g of H2O

where:

1.050 ppm. = moisture in the refrigerantentering the filter according to DIN 8949:200050 ppm. = moisture in the refrigerant flowingout the filter according to DIN 8949:2000

Comparing the absorption capacity requiredwith the values shown in table 3, driermod.4341 should be selected, with a waterabsorption capacity of 40,5 g at 50 °C.If the dehydrating capacity of products isexpressed in water drops, it must beremembered that:

1g H2O = 20 water drops

In this case and when a molecular sieve drier isselected, the following result is obtained:34 x 20 = 680 water drops.

If moisture exceeds the values specified in DIN8949:2000, a drier with a higher adsorptioncapacity shall be selected.

flow

dire

ctio

n

87

TABLE 1a: General Characteristics of filters with high water capacity core (1). SAE flare connections

Cataloguenumber

Block FilteringSurface

[cm2]

NominalVolume[cm3]

1/4"

1/4"

3/8"

1/4"

1/4"

3/8"

1/4"

1/4"

3/8"

3/8"

1/2"

1/4"

3/8"

3/8"

1/2"

5/8"

3/8"

1/2"

5/8"

1/2"

5/8"

5/8"

3/4"

+8045

(3)

Connections

– 40

TS [°C]

4303/2

4303/2F (2)

4303/3

4305/2

4305/2F (2)

4305/3

4308/2

4308/2F (2)

4308/3

4308/3F (2)

4308/4

4316/2

4316/3

4316/3F (2)

4316/4

4316/5

4330/3

4330/4

4330/5

4332/4

4332/5

4341/5

4341/6

032

033

052

053

082

083

084

162

163

164

165

303

304

305

304

305

415

416

47

70

103

155

310

255

330

50

80

130

250

500

500

670

Art. 3.3

InternationalReference

min. max.

PS[bar]

RiskCategory

according toPED

(1) 100% molecular sieves; (2) Male-female connections (Inlet female)(3) PS = 400 psig in compliance with the UL approval

88

TABLE 1b: General Characteristics of filters with high water capacity core (1).Solder connections

Cataloguenumber

InternationalReference

BlockFilteringSurface

[cm2]

NominalVolume[cm3]

1/4"

1/4"

3/8"

1/4"

3/8"

1/2"

3/8"

1/2"

5/8"

3/8"

1/2"

5/8"

1/2"

5/8"

5/8"

3/4"

7/8"

1/2"

5/8"

3/4"

7/8"

1.1/8"

10

10

12

10

12

16

16

16

16

16

3/8"

3/8"

1/2"

3/8"

1/2"

5/8"

1/2"

5/8"

3/4"

1/2"

5/8"

3/4"

5/8"

3/4"

3/4"

7/8"

1.1/8"

5/8"

3/4"

7/8"

1.1/8"

1.3/8"

12

12

14

16

12

14

16

16

16

16

35

– 40 +80

45

(2)

Art. 3.3

I

Ø[in.]

Ø[mm]

Ø[in.]

Ø[mm]

ODS ODM

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategoryaccording

toPED

4303/2S

4305/2S

4305/3S

4305/M10S

4308/2S

4308/3S

4308/M10S

4308/M12S

4308/4S

4316/3S

4316/M10S

4316/M12S

4316/4S

4316/5S

4330/3S

4330/4S

4330/5S

4332/4S

4332/5S

4341/5S

4341/6S

4341/7S

4375/4S

4375/5S

4375/6S

4375/7S

4375/9S

032S

052S

053S

082S

083S

084S

163S

164S

165S

303S

304S

305S

304S

305S

415S

416S

417S

754S

755S

756S

757S

759S

47

70

103

155

310

255

330

660

50

80

130

250

500

500

670

1340

(1) 100% molecular sieves; (2) PS = 400 psig in compliance with the UL approval

89

TABLE 2a: General Characteristics of filters with antiacid core (1).SAE Flare connections

Catalogue number

InternationalReference

BlockFilteringSurface[cm2]

NominalVolume[cm3]

1/4"

3/8"

1/4"

3/8"

1/4"

3/8"

1/2"

1/4"

3/8"

1/2"

5/8"

3/8"

1/2"

5/8"

1/2"

5/8"

5/8"

3/4"

– 40 +80

45

(2)Art. 3.3

Connectionsmin.

TS [°C]

max.

PS[bar]

RiskCategory

according toPED

4203/2

4203/3

4205/2

4205/3

4208/2

4208/3

4208/4

4216/2

4216/3

4216/4

4216/5

4230/3

4230/4

4230/5

4232/4

4232/5

4241/5

4241/6

032

033

052

053

082

083

084

162

163

164

165

303

304

305

304

305

415

416

47

70

103

155

310

255

330

50

80

130

250

500

500

670

(1) 80% molecular sieves + 20% activated alumina;(2) PS = 400 psig in compliance with the UL approval

90

TABLE 2b: General Characteristics of filters with antiacid core (1).Solder connections

Cataloguenumber

Internationalreference

BlockFilteringSurface

[cm2]

NominalVolume[cm3]

1/4"

1/4"

3/8"

1/4"

3/8"

1/2"

3/8"

_

1/2"

5/8"

3/8"

1/2"

5/8"

1/2

5/8"

5/8"

3/4"

7/8"

1/2"

5/8"

3/4"

7/8"

1.1/8"

10

10

12

10

12

16

16

16

16

16

3/8"

3/8"

1/2"

3/8"

1/2"

5/8"

1/2"

5/8"

3/4"

1/2"

5/8"

3/4"

5/8"

3/4"

3/4"

7/8"

1.1/8"

5/8"

3/4"

7/8"

1.1/8"

1.3/8"

12

12

14

16

12

14

16

16

16

16

35

– 40 +8045

(2)Art.3.3

I

Ø[in.]

Ø[mm]

Ø[in.]

Ø[mm]

ODS ODM

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategoryaccording

toPED

4203/2S

4205/2S

4205/3S

4205/M10S

4208/2S

4208/3S

4208/M10S

4208/M12S

4208/4S

4216/3S

4216/M10S

4216/M12S

4216/4S

4216/5S

4230/3S

4230/4S

4230/5S

4232/4S

4232/5S

4241/5S

4241/6S

4241/7S

4275/4S

4275/5S

4275/6S

4275/7S

4275/9S

032S

052S

053S

082S

083S

084S

163S

164S

165S

303S

304S

305S

304S

305S

415S

416S

417S

754S

755S

756S

757S

759S

47

70

103

155

310

255

330

660

50

80

130

250

500

500

67

1340

(1) 80% molecular sieves + 20% activated alumina;(2) PS = 400 psig in compliance with the UL approval

91

(1) (2) See caption on page 92.

TABLE 3: Refrigerant Flow Capacity and Water Capacity

Cataloguenumber

Refrigerant Flow Capacity,Pressure drop0,07 bar (1)

[kW]

R134

a4303/2

4303/2F

4303/2S

4303/3

4305/2

4305/2F

4305/2S

4305/3

4305/3S

4305/M10S

4308/2

4308/2F

4308/2S

4308/3

4308/3F

4308/3S

4308/M10S

4308/M12S

4308/4

4308/4S

4316/2

4316/3

4316/3F

4316/3S

4316/M10S

4316/M12S

4316/4

4316/4S

4316/5

4316/5S

4330/3

4330/3S

4330/4

4330/4S

4330/5

4330/5S

4332/4

4332/4S

4332/5

4332/5S

4341/5

4341/5S

4341/6

4341/6S

4341/7S

4375/4S

4375/5S

4375/6S

4375/7S

4375/9S

6,5

8,0

14,9

6,7

8,2

15,4

19,4

6,9

8,5

18,0

22,8

29,0

24,0

29,0

6,9

19,7

24,6

34,1

28,2

34,1

37,6

45,0

21,7

27,1

30,9

37,3

38,8

46,6

33,6

40,5

39,9

48,2

40,9

49,5

67,2

74,2

53,4

54,5

80,6

92,8

96,5

R22

7,0

8,6

16,1

7,2

8,9

16,6

21,0

7,5

9,2

19,5

24,7

31,3

25,9

31,3

7,5

21,3

26,6

36,9

30,5

36,9

40,6

48,7

23,4

29,3

33,4

40,4

41,9

50,4

36,3

43,8

43,1

52,1

44,2

53,5

72,6

80,2

57,7

58,9

87,1

100,3

104,3

R404

AR5

07

4,6

5,6

10,5

4,7

5,8

10,8

13,7

4,9

6,0

12,7

16,1

20,4

16,9

20,4

4,9

13,9

17,3

24,0

19,9

24,0

26,4

31,7

15,3

19,0

21,8

26,3

27,3

32,8

23,6

28,5

28,1

33,9

28,8

34,8

47,3

52,2

37,5

38,3

56,8

65,3

67,9

R407

C

6,9

8,5

16,0

7,1

8,8

16,5

20,8

7,4

9,1

19,3

24,5

31,0

25,7

31,0

7,4

21,1

26,4

36,6

30,3

36,6

40,3

48,3

23,2

29,0

33,2

40,0

41,6

50,0

36,0

43,4

42,8

51,7

43,8

53,1

72,0

79,6

57,3

58,4

86,4

99,5

103,5

R410

A

7,0

8,6

16,2

7,2

9,0

16,7

21,2

7,5

9,3

19,6

24,8

31,4

26,0

31,4

7,5

21,4

26,7

37,0

30,6

37,0

40,8

48,9

23,5

29,4

33,5

40,5

41,9

50,6

36,4

44,0

43,0

52,3

44,4

53,7

73,0

80,5

57,9

59,1

87,6

100,6

104,7

Water capacity at + 25 °C (2)

[g H2O]

R134

a

4,1

7,3

12,7

25,1

50,2

45,4

61,4

122,8

R22

3,8

6,7

11,6

22,9

45,8

41,4

56,1

112,2

R404

AR5

07

4,2

7,4

13,0

25,6

51,2

46,4

62,8

125,6

R407

C

3,4

6,0

10,4

20,5

41,0

37,2

50,3

100,6

R410

A

3,7

6,5

11,3

22,3

44,6

40,5

54,7

109,4

Dehydratable Chargeat + 25 °C

[kg refrigerant]

R134

a

4,4

7,8

13,7

27,0

54,0

48,8

66,0

132,0

R22

4,0

7,2

12,5

24,6

49,2

44,5

60,3

120,6

R404

AR5

07

4,5

8,0

13,9

27,5

55,1

49,9

67,5

135,1

R407

C

3,6

6,4

11,2

22,0

44,1

40,0

54,1

108,2

R410

A

3,9

7,0

12,2

24,0

48,0

43,5

58,8

117,6

Water capacityat + 50 °C (2)

[g H2O]

R134

a

3,5

6,3

10,9

21,6

43,2

39,1

53,0

106,0

R22

3,0

5,3

9,3

18,4

36,8

33,2

45,0

90,0

R404

AR5

07

3,9

6,9

12,0

23,8

47,6

43,1

58,3

116,6

R407

C

2,7

4,8

8,4

16,5

33,0

29,9

40,5

81,0

R410

A

2,9

5,2

9,1

18,0

36,0

32,6

44,1

88,2

Dehydratable Chargeat + 50 °C

[kg refrigerant]

R134

a

3,8

6,8

11,8

23,2

46,5

42,0

57,0

114,0

R22

3,2

5,7

10,0

19,8

39,6

35,7

48,4

96,8

R404

AR5

07

4,2

7,4

13,0

25,6

51,2

46,3

62,7

125,4

R407

C

2,9

5,2

9,0

17,7

35,5

32,2

43,5

87,1

R410

A

3,2

5,6

9,8

19,4

38,7

35,1

47,4

94,8

92

TABLE 4: Refrigerant Flow Capacity and Water Capacity

Cataloguenumber

Water capacity,Pressure drop0,07 bar (1)

[kW]

R134

a4203/2

4203/2S

4203/3

4205/2

4205/2S

4205/3

4205/3S

4208/2

4208/2S

4208/3

4208/3S

4208/4

4208/4S

4216/2

4216/3

4216/3S

4216/4

4216/4S

4216/5

4216/5S

4230/3

4230/3S

4230/4

4230/4S

4230/5

4230/5S

4232/4

4232/4S

4232/5

4232/5S

4241/5

4241/5S

4241/6

4241/6S

4241/7S

4275/4S

4275/5S

4275/6S

4275/7S

4275/9S

6,5

8,0

14,9

6,7

8,2

15,4

19,4

6,9

8,5

18,0

22,8

24,0

29,0

6,9

19,7

24,6

28,2

34,1

37,6

45,0

21,7

27,1

30,9

37,3

38,8

46,6

33,6

40,5

39,9

48,2

40,9

49,5

67,2

74,2

53,4

54,5

80,6

92,8

96,5

R22

7,0

8,6

16,1

7,2

8,9

16,6

21,0

7,5

9,2

19,5

24,7

25,9

31,3

7,5

21,3

26,6

30,5

36,9

40,6

48,7

23,4

29,3

33,4

40,4

41,9

50,4

36,3

43,8

43,1

52,1

44,2

53,5

72,6

80,2

57,7

58,9

87,1

100,3

104,3

R404

AR5

07

4,6

5,6

10,5

4,7

5,8

10,8

13,7

4,9

6,0

12,7

16,1

16,9

20,4

4,9

13,9

17,3

19,9

24,0

26,4

31,7

15,3

19,0

21,8

26,3

27,3

32,8

23,6

28,5

28,1

33,9

28,8

34,8

47,3

52,2

37,5

38,3

56,8

65,3

67,9

R407

C

6,9

8,5

16,0

7,1

8,8

16,5

20,8

7,4

9,1

19,3

24,5

25,7

31,0

7,4

21,1

26,4

30,3

36,6

40,3

48,3

23,2

29,0

33,2

40,0

41,6

50,0

36,0

43,4

42,8

51,7

43,8

53,1

72,0

79,6

57,3

58,4

86,4

99,5

103,5

R410

A

7,0

8,6

16,2

7,2

9,0

16,7

21,2

7,5

9,3

19,6

24,8

26,0

31,4

7,5

21,4

26,7

30,6

37,0

40,8

48,9

23,5

29,4

33,5

40,5

41,9

50,6

36,4

44,0

43,0

52,3

44,4

53,7

73,0

80,5

57,9

59,1

87,6

100,6

104,7

(1) Maximum values of the refrigerant flow capacity at which the drier can be used when fluid dehydration is not the a majorproblem, provided that the original moisture is limited before the installation of the drier. The maximum refrigerant flowcapacities are referred to a total pressure drop of 0,07 bar, inlet and outlet connections included, (according to ARISTANDARD 710:86 - with condensing temperature at +30 °C and evaporating temperature at -15 °C)

(2) Water capacity values with R22 are referred to the following conditions, fixed in ARI STANDARD 710:86:- Liquid temperatures: 25 °C and 50 °C- Equilibrium point dryness, EPD: 60 ppmWater capacity values with the other refrigerant fluids are referred to the following conditions, fixed in DIN 8949:2000Standard:- Liquid temperatures: 25 °C and 50 °C- Equilibrium point dryness, EPD: 50 ppm

Water capacityat + 25 °C (2)

[g H2O]

R134

a

3,5

6,2

10,8

21,3

42,7

38,6

52,2

104,4

R22

3,2

5,7

9,9

19,5

38,9

35,2

47,7

95,4

R404

AR5

07

3,6

6,3

11,0

21,8

43,5

39,4

53,4

106,8

R407

C

2,9

5,1

8,8

17,4

34,9

31,6

42,8

85,5

R410

A

3,1

5,5

9,6

19,0

37,9

34,4

46,5

93,0

Dehydratable Chargeat + 25 °C

[kg refrigerant]

R134

a

3,8

6,7

11,6

22,9

45,9

41,5

56,1

112,2

R22

3,4

6,1

10,6

20,9

41,9

37,8

51,3

102,5

R404

AR5

07

3,9

6,8

11,9

23,4

46,8

42,4

57,4

114,8

R407

C

3,1

5,5

9,5

18,7

37,5

34,0

46,0

91,9

R410

A

3,4

6,0

10,3

20,4

40,8

37,0

50,0

100,0

Water capacityat + 50 °C (2)

[g H2O]

R134

a

3,0

5,4

9,3

18,4

36,7

33,2

45,1

90,1

R22

2,6

4,5

7,9

15,6

31,3

28,2

38,3

76,5

R404

AR5

07

3,3

5,9

10,2

20,2

40,5

36,6

49,6

99,1

R407

C

2,3

4,1

7,1

14,0

28,1

25,4

34,4

68,9

R410

A

2,5

4,5

7,7

15,3

30,6

27,7

37,5

75,0

Dehydratable Chargeat + 50 °C

[kg refrigerant]

R134

a

3,3

5,8

10,0

19,7

39,5

35,7

48,4

96,9

R22

2,8

4,9

8,5

16,8

33,6

30,3

41,1

82,3

R404

AR5

07

3,6

6,3

11,0

21,8

43,5

39,4

53,3

106,6

R407

C

2,5

4,4

7,7

15,1

30,2

27,3

37,0

74,0

2,7

4,8

8,3

16,5

32,9

29,8

40,3

80,6

93

TABLE 5: Dimensions and Weights

Catalogue number

4303/2

4303/2F

4303/2S

4303/3

4305/2

4305/2F

4305/2S

4305/3

4305/3S

4305/M10S

4308/2

4308/2F

4308/2S

4308/3

4308/3F

4308/3S

4308/M10S

4308/M12S

4308/4

4308/4S

4316/2

4316/3

4316/3F

4316/3S

4316/M10S

4316/M12S

4316/4

4316/4S

4316/5

4316/5S

4330/3

4330/3S

4330/4

4330/4S

4330/5

4330/5S

4332/4

4332/4S

4332/5

4332/5S

4341/5

4341/5S

4341/6

4341/6S

4341/7S

4375/4S

4375/5S

4375/6S

4375/7S

4375/9S

4203/2

4203/2S

4203/3

4205/2

4205/2S

4205/3

4205/3S

4208/2

4208/2S

4208/3

4208/3S

4208/4

4208/4S

4216/2

4216/3

4216/3S

4216/4

4216/4S

4216/5

4216/5S

4230/3

4230/3S

4230/4

4230/4S

4230/5

4230/5S

4232/4

4232/4S

4232/5

4232/5S

4241/5

4241/5S

4241/6

4241/6S

4241/7S

4275/4S

4275/5S

4275/6S

4275/7S

4275/9S

1/4"

1/4"

3/8"

1/4"

1/4"

3/8"

1/4"

1/4"

3/8"

3/8"

1/2"

1/4"

3/8"

3/8"

1/2"

5/8"

3/8"

1/2"

5/8"

1/2"

5/8"

5/8"

3/4"

1/4"

1/4"

3/8"

1/4"

3/8"

1/2"

3/8"

1/2"

5/8"

3/8"

1/2"

5/8"

1/2"

5/8"

5/8"

3/4"

7/8"

1/2"

5/8"

3/4"

7/8"

1.1/8"

10

10

12

10

12

16

16

16

16

16

52

73

91

103

92

94

111

119

109

110

127

112

146

135

137

154

142

139

146

162

146

158

166

154

151

158

174

158

183

166

245

230

253

237

262

245

187

173

196

179

231

214

232

219

367

373

378

378

378

240

230

220

235

275

260

295

260

380

345

395

380

345

380

430

380

635

690

680

620

630

640

680

640

740

640

1380

1240

1360

1280

1480

1370

1300

1200

1320

1250

1580

1470

1640

1560

1600

2540

2640

2820

2900

3050

SAEFlare Ø

[in.]Ø

[mm] Ø D L

ODS

Connections Dimensions[mm]

Weight[g]

male connections

male - female connections (female - in)

solder connections

94

APPLICATIONS

The filters, shown in this chapter, are classified “Pressure vessels” in the sense of the Pressure Equipment Directive 94/23/EC, Article 1, Section 2.1.1 and are subject of Article 3, Section 1.1 of the same Directive.They are designed for installation on commercial refrigerating systems and on civil and industrial conditioning plants, which use refrigerant fluids proper to the Group II (as defined in Article 9, Section 2.2 of Directive 97/23/EC and referred to in Directive 67/548/EEC).Filters series 41 have been developed for specific installations on refrigerating systems using HFC refrigerant fluids, particularly R134a , R404A , R407C , R410A and R507 mixed with polyolester lubricants. In spite of this, the new block may be successfully used also in refrigerating systems using the old CFC or HCFC refrigerant fluids, mixed with mineral lubricants

CONSTRUCTION

The filter series 41 is a liquid line filter drier with a sight glass directly brazed on its outlet side. This group reduces the amount of field brazing required and the potential risk for leaks. Moisture/liquid indicators ensure a fast and safe inspection of the conditions of the refrigerant fluid in the circuit concerning regular flow and moistureThe filter is completely manufactured in steel, either with nickel-plated Flare threaded connections or with copper plated solder connections. Liquid/moisture indicator is manufactured with the glass “lens” directly fused onto a steel metallic ring, with proper surface protection.The block is molded from a blend of dehydrating charge, totally made of 3 Å molecular sieves, and a special binding agent in appropriate proportions. The choice of the 3 Å molecular sieves, as sole dehydrating material, gives to the block a superlative capacity of water adsorption also maintaining quite good deacidifying characteristics. The manufacturing process gives a considerable compactness and stoutness to both the products so that they are resistant to shocks and abrasions.

OPERATION

The moisture/liquid indicators consist of a sensitive element as a ring, which changes color passing from green to yellow according to the percentage of moisture in the system.The data of moisture content, shown in table 1 with the “green” colour, can be considered admissible for the proper working of the system. When the sensitive element from green fade to yellow, “green Chartreuse”, working conditions of the system could become difficult. When the sensitive element becomes “yellow”, it’s time to substitute the dehydrator filter.If the charge and working condition are normal, the refrigerant fluid appears perfectly liquid underneath the “lens” of the indicator. The presence of bubbles indicates that the refrigerant fluid is partial evaporating along the liquid line.

INSTALLATION

At the start-up the color of the sensitive element may be yellow, due to exposure to air humidity and to moisture in the circuit. When the moisture of the refrigerant is brought back to acceptable levels with the dehydrator, the indicator color is once again green. This is evidence that equilibrium has been re-established. In case of persisting yellow, measures have to be taken to eliminate moisture. Only when the sensitive

SOLID CORE FILTER DRIERS WITH SIGHT GLASS – SERIES 41

95

TABLE 1: Moisture contained in the fluid [p.p.m.]

Colour

Refrigerant fluid

R22 R134a R404A R407C R410A R507

Green <60 <75 <30 <30 <30 <30

Green Chartreuse”

60 75 30 30 30 30

Yellow >60 >75 >30 >30 >30 >30

TABLE 2: General Characteristics of filters with sight glass

Catalogue Number

Inte

rnat

iona

l Re

fere

nce

Bloc

k Fi

lterin

g Su

rface

[cm

2 ]

Nom

inal

Vol

ume

[cm

3 ]Connections

TS [°C]

PS [bar]

Risk Category

according to PED

SAE Flare

ODS ODM

SAE Flare ODS Ø [in.] Ø [mm] Ø [in.] Ø [mm] min. max.

4108/2 – 082

103 130

1/4” –

– 40 80 45 Art. 3.3

– 4108/2S 082S – 1/4”– 3/8” –

4108/3 – 083 3/8” –

– 4108/3S 083S – 3/8”– 1/2” –

4108/4 – 084 1/2” –

– 4108/4S 084S – 1/2”– 5/8” 16

4116/3 – 163

155 250

3/8” –

– 4116/3S 163S – 3/8”– 1/2” –

4116/4 – 164 1/2” –

– 4116/4S 164S – 1/2” – 5/8” 16

4116/5 – 165 5/8” –

– 4116/5S 165S – 5/8” 16 3/4” –

L

L

element comes back to green, there is evidence that adopted measures were effective. About 12 hours of system operation are required to achieve equilibrium. However, the moisture indication is given normally when the plant is in function and the fluid is flowingThe brazing of filter/indicator with solder connections should be carried out with care, using a low melting point filler material. In any case, avoid direct contact between the torch flame and the indicator body or glass, which could be damaged and compromise the proper functioning of the indicator.

96

TABLE 3: Refrigerant Flow Capacity and Water Capacity

Catalogue Number

Refrigerant Flow Capacity, pressure drop 0,07 bar (1)

[kW]

Water Capacity at + 25 °C (2)

[g H2O]

Dehydratable Charge at + 25 °C

[kg refrigerant]

Water Capacity at + 50 °C (2)

[g H2O]

Dehydratable Charge at + 50 °C

[kg refrigerant]

R134

A

R22

R404

A R5

07

R407

C

R410

A

R134

A

R22

R404

A R5

07

R407

C

R410

A

R134

a

R22

R404

A R5

07

R407

C

R410

A

R134

A

R22

R404

A R5

07

R407

C

R410

A

R134

A

R22

R404

A R5

07

R407

C

R410

A

4108/2 6,9 7,5 4,9 7,4 7,5

12,7 11,6 13,0 10,4 11,3 13,7 12,5 13,9 11,2 12,2 11,0 9,3 12,1 8,4 9,1 11,8 10,0 13,0 9,0 9,8

4108/2S 8,5 9,2 6,0 9,1 9,3

4108/3 18,0 19,5 12,7 19,3 19,6

4108/3S 22,8 24,7 16,1 24,5 24,8

4108/4 24,0 25,9 16,9 25,7 26,0

4108/4S 29,0 31,3 20,4 31,0 31,4

4116/3 19,7 21,3 13,9 21,1 21,4

25,1 22,9 25,6 20,5 22,3 27,0 24,6 27,5 22,0 24,0 21,6 18,4 23,8 16,5 18,0 23,2 19,8 25,6 17,7 19,4

4116/3S 24,6 26,6 17,3 26,4 26,7

4116/4 28,2 30,5 19,9 30,3 30,6

4116/4S 34,1 36,9 24,0 36,6 37,0

4116/5 37,6 40,6 26,4 40,3 40,8

4116/5S 45,0 48,7 31,7 48,3 48,9

(1) : Maximum values of the refrigerant flow capacity at which the drier can be used when fluid dehydration is not the a major problem, provided that the original moisture is limited before the installation of the drier. The maximum refrigerant flow capacities are referred to a total pressure drop of 0,07 bar, inlet and outlet connections included, (according to ARI STANDARD 710:86 - with condensing temperature at + 30 °C and evaporating temperature at - 15 °C )

(2) : Water capacity values with R22 are referred to the following conditions, fixed in ARI STANDARD 710:86: - Liquid temperatures: 25 °C and 50 °C - Equilibrium point dryness, EPD: 60 ppm Water capacity values with the other refrigerant fluids are referred to the following conditions, fixed in DIN 8949:2000 Standard: - Liquid temperatures: 25 °C and 50 °C - Equilibrium point dryness, EPD: 50 ppm

TABLE 4: Dimensions and Weights

Catalogue Number

Connections Dimensions [mm] Weight [g]

SAE FlareODS

Ø [in.] Ø [mm] Ø D L

4108/2 1/4" – –

52

182 538

4108/2S – 1/4" – 190 510

4108/3 3/8" – – 191 553

4108/3S – 3/8" – 193 515

4108/4 1/2" – – 198 593

4108/4S – 1/2" – 200 595

4116/3 3/8" – –

73

202 795

4116/3S – 3/8" – 204 780

4116/4 1/2" – – 210 835

4116/4S – 1/2" – 212 805

4116/5 5/8" – – 219 895

4116/5S – 5/8" 16 221 870

97

APPLICATIONS

The filters, shown in this chapter, are classified “Pressure vessels” in the sense of the Pressure Equipment Directive 94/23/EC, Article 1, Section 2.1.1 and are subject of Article 3, Section 1.1 of the same Directive.They are designed for installation in liquid lines on conditioning plants with reverse-cycle, on heat pumps and on refrigerating systems which use refrigerant fluids proper to the Group II (as defined in Article 9, Section 2.2 of Directive 97/23/EC and referred to in Directive 67/548/EEC).Filters series 46 have been developed for specific installations on refrigerating systems using HFC refrigerant fluids, particularly R134a , R404A , R407C , R410A and R507 mixed with polyolester lubricants. In spite of this, the new block may be successfully used also in refrigerating systems using the old CFC or HCFC refrigerant fluids, mixed with mineral lubricants

CONSTRUCTION

The filter is completely manufactured in steel, either with copper plated solder connections, offering the possibility to solder the copper pipe inside the connections (ODS) or outside the connections, using a copper sleeve (ODM).By-flow filter driers have two built-in check valves, one on both sides, which ensure that the refrigerant liquid always flows through the drier from the outer side of the solid core towards the center, regardless of the flow direction. Thus all dirt particles are retained irrespective of flow direction.The blocks are molded from a blend of dehydrating charge, totally made of 3 Å molecular sieves, and a special binding agent in appropriate proportions. The choice of the 3 Å molecular sieves, as sole dehydrating material, gives to the block a superlative capacity of water adsorption also maintaining quite good deacidifying characteristics. The manufacturing process gives a considerable compactness and stoutness to both the products so that they are resistant to shocks and abrasions.The blocks are symmetrical and are designed to offer the maximum possible surface area to the incoming fluid, while the internal hole guaranties a uniform wall thickness. As a result, the fluid encounters a constant strength at all points, flows linearly through the block, and ensures efficient dehydration and minimum charge loss.The block is chemically inert, not deliquescent, does not react with refrigerating fluids, and is capable of blocking oil by-products dragged into the circuit.When building heat pump systems or conditioning plants with reverse-cycle, the use of by-flow filter driers eliminates the need for external check valves and reduces external piping and brazing.

SOLID CORE BI-FLOW FILTER DRIERS – SERIES 46

98

TABLE 1: General Characteristics of by-flow filter driers

Catalogue NumberInternational Reference

Block Filtering Surface [cm2]

Nominal Volume [cm3]

Connections

TS [°C]

PS [bar]Risk Category

according to PEDODS ODM

Ø [in.] Ø [mm] Ø [in.] Ø [mm] min. max.

4608/3S 083S

70 95

3/8" – 1/2" –

– 40 +80 45 Art. 3,3

4608/4S 084S 1/2" – 5/8" 16

4616/3S 163S

105 150

3/8" – 1/2" –

4616/4S 164S 1/2" – 5/8" 16

4616/5S 165S 5/8" 16 3/4" –

TABLE 2: Refrigerant Flow Capacity and Water Capacity

Cata

logu

e Nu

mbe

r

Refrigerant Flow Capacity, pressure drop 0,07 bar (1)

[kW]

Water Capacity at + 25 °C (2)

[g H2O]

Dehydratable Charge at + 25 °C

[kg refrigerant]

Water Capacity at + 50 °C (2)

[g H2O]

Dehydratable Charge at + 50 °C

[kg refrigerant]

R134

A

R22

R404

A R5

07

R407

C

R410

A

R134

A

R22

R404

A R5

07

R407

C

R410

A

R134

A

R22

R404

A R5

07

R407

C

R410

A

R134

A

R22

R404

A R5

07

R407

C

R410

A

R134

A

R22

R404

A R5

07

R407

C

R410

A

4608/3S 11,5 12,5 8,1 12,4 12,6

14,0 12,7 14,3 11,4 12,4 15,1 13,7 15,4 12,3 13,3 12,1 10,2 13,3 9,2 10,0 13,0 11,0 14,3 9,9 10,8

4608/4S 16,0 17,3 11,3 17,2 17,4

4616/3S 16,8 18,2 11,9 18,1 18,3

27,6 25,2 28,2 22,5 24,5 29,7 27,1 30,3 24,2 26,3 23,7 20,2 26,2 18,1 19,8 25,5 21,7 28,2 19,5 21,34616/4S 28,1 30,4 19,8 30,2 30,5

4616/5S 36,6 39,6 25,8 39,3 39,8

(1) : Maximum values of the refrigerant flow capacity at which the drier can be used when fluid dehydration is not the a major problem, provided that the original moisture is limited before the installation of the drier. The maximum refrigerant flow capacities are referred to a total pressure drop of 0,07 bar, inlet and outlet connections included, (according to ARI STANDARD 710:86 - with condensing temperature at + 30 °C and evaporating temperature at - 15 °C )

(2) : Water capacity values with R22 are referred to the following conditions, fixed in ARI STANDARD 710:86: - Liquid temperatures: 25 °C and 50 °C - Equilibrium point dryness, EPD: 60 ppm Water capacity values with the other refrigerant fluids are referred to the following conditions, fixed in DIN 8949:2000 Standard: - Liquid temperatures: 25 °C and 50 °C - Equilibrium point dryness, EPD: 50 ppm

99

TABLE 3: Dimensions and Weights

Catalogue Number

ODS connections

Dimensions [mm] Weight [g]

Ø [in.] Ø [mm] Ø D L

4608/3S 3/8” –

60

140 345

4608/4S 1/2” – 146 380

4616/3S 3/8” –

83

149 620

4616/4S 1/2” – 156 640

4616/5S 5/8” 16 164 640

L

100

using the old CFC or HCFC refrigerant fluids,mixed with mineral lubricants.The blocks 4490, type A and type B, and theblock 4491, type A, are molded from a blend ofdehydrating charge, totally made of 3 Åmolecular sieves, and a special binding agent inappropriate proportions. The choice of the 3 Åmolecular sieves, as sole dehydrating material,gives to the block a superlative capacity ofwater adsorption also maintaining quite gooddeacidifying characteristics.The blocks 4490, type AA and type AB, and theblock 4491, type AA, are molded from a blend ofdehydrating charge, 80% of 3 Å molecular sievesand 20 % of activated alumina, and a specialbinding agent in appropriate proportions. Thechoice of blend, molecular sieves – activatedalumina, gives to the block a very high capacityof acid adsorption also maintaining very gooddehydrating characteristics. The presence of a controlled and definedpercentage of activated alumina, lower than themaximum value recommended by ASERCOM,keeps unchanged the original concentration ofadditives in the polyolester lubricant.The manufacturing process of blocks series 4490and 4491 gives a considerable compacted ness andstoutness to both the products so that they areresistant to shocks and abrasions.The blocks series 4490 have a volume of 48 cu.in.,equivalent to approx. 800 cm3, and it is used with

FILTER DRIERS WITH REPLACEABLE ANTI-ACID SOLID CORE

Approved by Underwriters Laboratories Inc. uExcept filters 4423/17A, /21A, /25A and4424/25A, /33A

APPLICATIONS

The filters, shown in this chapter, are classified“Pressure vessels” in the sense of thePressure Equipment Directive 97/23/EC,Article 1, Section 2.1.1 and are subject ofArticle 3, Section 1.1 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

OPERATIONS

In the case of filters with more than one block,the passage of the fluid takes place in parallel;as a result, the pressure drop does notincrease proportionately to the number ofblocks. A large ring between the block and theinner surface of the filter permits theaccumulation of solid particles, and preventsclogging. Before leaving the filter, the refrigerantfluid must pass through the mesh sieve onwhich blocks are mounted. The danger thatsmall particles of dehydrating material beingintroduced into the system is thus avoided.Furthermore, at filter outlet, a plastic cup, theedge of which closely adheres to the innersurface of the filter, prevents dirt from reachingthe outlet connection during normal operationand block change.

CONSTRUCTION

The filters type 4410 are manufactured in steel,with the exception of the connections which aremade of EN 12735-1 – Cu-DHP copper tube.The filters type 4420 are completelymanufactured in steel and solder connection,are machined with a steel bar EN 10025S355JR.The blocks series 4490 and 4491 has beendeveloped for specific installations onrefrigerating systems using HFC refrigerantfluids, particularly R134a, R404A, R407C,R410A ed R507 mixed with polyolesterlubricants. In spite of this, the new block may besuccessfully used also in refrigerating systems

101

type 4411, 4412, 4413 and 4414 filters.The block series 4491 has a volume of 96 cu.in.,equivalent to approx. 1600 cm3. and it is used withtype 4421, 4423 and 4424 filters.The two blocks are shaped as a hollow cylinder andtheir overall dimensions correspond to those of otherinternational brands. Consequently they areinterchangeable. The hollow cylinder shape offers alarge surface area to the inflowing fluid, whichcrosses the block in radial sense. As a result,dehydration is highly efficient with a minimum loss ofcharge.Liquid line filter driers series 4411, 4412, 4413 and4414 are supplied in these two solutions:- Codes with “A” suffix (listed in table 1), equipped

with 1/4” NPT threaded cover for mounting anaccess fitting with valve core (for exampleG9150/R05)

- Codes with “B” suffix (listed in table 1), equippedwith blind cover

Liquid line filter driers series 4423 e 4424 aresupplied solely in codes with “A” suffix (not listed intable 1), equipped with 1/4” NPT threaded cover formounting an access fitting with valve core (forexample G9150/R05).

TABLE 1: General Characteristics

Cataloguenumber

(1)

Core FilteringSurface[cm2]

Numberof Core

Core Cat.number

NominalVolume

5/8"

7/8"

1.1/8"

1.3/8"

1.5/8"

2.1/8"

7/8"

1.1/8"

1.3/8"

2.1/8"

1.3/8"

1.5/8"

1.5/8"

2.1/8"

2.1/8"

2.5/8"

800

1600

2400

3200

4800

6400

48

96

144

192

300

400

16

22

35

42

54

22

35

42

54

35

42

42

54

54

60,3

76,1

88,9

88,9

114,3

– 40 +80

45 (2)

35 (2)

32

I

II

Ø[in.][cm3][cu.in] Ø

[mm]Ø

[mm]

ODS W

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according toPED

4411/5A

4411/7A

4411/9A

4411/11A

4411/13A

4411/M42A

4411/17A

4412/7A

4412/9A

4412/11A

4412/M42A

4412/17A

4413/11A

4413/13A

4413/M42A

4414/13A

4414/M42A

4414/17A

4423/17A

4423/21A

4423/25A

4424/25A

4424/33A

4490/A -

4490/B -

4490/AA

4490/AB

4491/A

4491/AA

1

2

3

4

3

4

420

840

1260

1680

1890

2520

"(1) : filters series 4411 , 4412 , 4413 and 4414 with A suffix, as shown in table, are equipped with 1/4"" NPT threaded coverfilters series 4411 , 4412 , 4413 and 4414 with B suffix, not shown in table, are equipped with blind cover"

(2) PS = 470 psig in compliance with UL approval

Sketch of filter with 2 blocks1 – Block2 – Mesh sieve serving as block support3 – Spring4 – Cover5 – Bottom

inlet

outlet

102

TABLE 2a: Refrigerant Flow Capacity and Water Capacity (filters)

Cataloguenumber

Refrigerant Flow Capacity,Pressure drop0,07 bar (1)

[kW]

4411/5A

4411/7A

4411/9A

4411/11A

4411/13A

4411/M42A

4411/17A

4412/7A

4412/9A

4412/11A

4412/M42A

4412/17A

4413/11A

4413/13A

4413/M42A

4414/13A

4414/M42A

4414/17A

4423/17A

4423/21A

4423/25A

4424/25A

4424/33A

83

146

200

233

250

146

226

306

333

327

361

426

447

492

670

737

1180

90

158

216

252

270

158

244

331

361

354

391

460

483

532

725

797

1276

59

103

141

164

176

103

159

215

234

230

254

300

315

346

472

519

830

89

156

214

250

268

156

242

328

357

351

387

456

479

527

719

791

1265

90

159

217

253

271

159

245

332

362

355

393

462

485

534

728

800

1281

R134

a

R22

R404

A

R407

C

R410

A

84

168

252

336

504

672

77

154

231

308

462

616

86

172

258

344

516

688

69

138

207

276

414

552

75

150

225

300

450

600

R134

a

R22

R404

A

R407

C

R410

A

90

181

271

361

542

723

83

166

248

331

497

662

92

185

277

370

555

740

74

148

223

297

445

594

81

161

242

323

484

645

R134

a

R22

R404

A

R407

C

R410

A

72

144

216

288

432

576

61

122

183

244

366

488

80

160

240

320

480

640

56

112

168

224

336

448

60

120

180

240

360

480

R134

a

R22

R404

A

R407

C

R410

A

77

155

232

310

465

619

66

131

197

262

394

525

86

172

258

344

516

688

60

120

181

241

361

482

65

129

194

258

387

516

R134

a

R22

R404

A

R407

C

R410

A

Water Capacityat + 25 °C (2)

[g H2O]

Dehydratable Chargeat + 25 °C

[kg refrigerant]

Water Capacityat + 50 °C (2)

[g H2O]

Dehydratable Chargeat + 50 °C

[kg refrigerant]

(1) Maximum values of the refrigerant flow capacity at which the drier can be used when fluid dehydration is not the a majorproblem, provided that the original moisture is limited before the installation of the drier. The maximum refrigerant flowcapacities are referred to a total pressure drop of 0,07 bar, inlet and outlet connections included, (according to ARISTANDARD 710:86 - with condensing temperature at + 30 °C and evaporating temperature at -15 °C)

(2) Water capacity values with R22 are referred to the following conditions, fixed in ARI STANDARD 710:86:- Liquid temperatures: 25 °C and 50 °C- Equilibrium point dryness, EPD: 60 ppmWater capacity values with the other refrigerant fluids are referred to the following conditions, fixed in DIN 8949:2000Standard:- Liquid temperatures: 25 °C and 50 °C- Equilibrium point dryness, EPD: 50 ppm

(3) Maximum values of the refrigerant flow capacity (according to ARI STANDARD 710:86) at which filter driers:- series 4411, 4412, 4413, and 4414 can be used with blocks type 4490/AA and 4490/AB- series 4423 and 4424 can be used with blocks type 4491/AAwhen fluid dehydration is not the a major problem, are the same achieved with block type 4490/A, 4490/B and 4491/A.

TABLE 2b: Refrigerant Flow Capacity and Water Capacity (single block)

Cataloguenumber

Refrigerant Flow Capacity,Pressure drop0,07 bar (1)

[kW]

R134

a

4490/A - 4490/B

4491/A

4490/AA - 4490/AB

4491/AA

(3)

84

168

71

143

77

154

65

131

86

172

73

146

69

138

59

117

90

181

77

154

83

166

70

141

92

185

79

157

74

148

63

126

72

144

61

122

61

122

52

104

80

160

68

136

56

112

48

95

77

155

66

132

66

131

56

112

86

12

73

146

60

120

51

102

75

150

64

128

81

161

69

137

60

120

51

102

65

129

55

110

R22

R404

A

R407

C

R410

A

R134

a

R22

R404

A

R407

C

R410

A

R134

a

R22

R404

A

R407

C

R410

A

R134

a

R22

R404

A

R407

C

R410

A

R134

a

R22

R404

A

R407

C

R410

A

Water Capacityat + 25 °C (2)

[g H2O]

Dehydratable Chargeat + 25 °C

[kg refrigerant]

Water Capacityat + 50 °C (2)

[g H2O]

Dehydratable Chargeat + 50 °C

[kg refrigerant]

103

TABLE 3: Dimensions and Weights

Cataloguenumber

4411/5A

4411/7A

4411/9A

4411/11A

4411/13A

4411/M42A

4411/17A

4412/7A

4412/9A

4412/11A

4412/M42A

4412/17A

4413/11A

4413/13A

4413/M42A

4414/13A

4414/M42A

4414/17A

4423/17A

4423/21A

4423/25A

4424/25A

4424/33A

5/8"

7/8"

1.1/8"

1.3/8"

1.5/8"

2.1/8"

7/8"

1.1/8"

1.3/8"

2.1/8"

1.3/8"

1.5/8"

1.5/8"

2.1/8"

2.1/8"

2.5/8"

16

22

35

42

54

22

35

42

54

35

42

42

54

54

60,3

76,1

88,9

88,9

114,3

121

163

149

200

148

154

159

171

162

296

300

312

303

442

454

595

586

518

538

705

715

235

241

246

258

249

383

387

399

390

529

541

682

673

641

661

829

839

185

324

600

760

90

96

101

113

103

96

101

113

103

101

113

103

142

162

172

5360

5405

5395

5464

5435

5410

5585

6880

7015

6985

7136

8510

8470

8445

9940

10010

18000

18200

18400

21600

22000

Ø[in.]

Ø[mm]

Ø[mm]

Ø D1 Ø D2 H1 H2 H3 P

ODS W

Connections Dimensions[mm]

Weight[g]

104

Blocks must be ordered separately from thefilter. They are supplied in individual packages,which are hermetically sealed in suitablewrappings (type 4490), and in special bags(type 4491) for safe storage over long periodsof time.Every cartridge is equipped of two seals insynthetic material to use like seal between thetwo cartridges and between the cartridge andits covers.If the filter is installed in a system without anyby-pass, the block replacement has to be donefollowing these instructions:

1 Close the valve on the departing line.2 Start the compressor and its auxiliaries in

order to transfer the refrigerant charge intothe high pressure side of the plant (liquidreceiver).

3 Stop the compressor at a suction pressuresufficiently higher than the atmosphericpressure.

4 Shutt off the service valve at the suctionside of the compressor.NOTE: if during the transfer of the refrigerantto the high-pressure side of the plant, thedischarge pressures reach too high values(the condenser is flooded due to insufficientcapacity of the liquid receiver), shut off thevalve on the compressor suction side andstop immediately the compressor.

5 Replace quickly the filter block. During thepreparation of the new block, close the filterwith a clean cloth. The slight over-pressureinside the filter and the ability of thetechnician will prevent air from getting intothe plant.

BLOCKS REPLACEMENT

TABLE 4: General Characteristics, dimensions and Weights

Cataloguenumber

CoreFilteringSurface[cm2]

4490/A

4490/B (1)

4490/AA

4490/AB (1)

4491/A

4491/AA

420

630

48

100

800

1600

47

53

96

122

140

165

670

1350

[cu.in] [cm3] Ø D1 Ø D2 H

Weight[g]

4490

4491

NominalVolume

Dimensions[mm]

(1) Supplied without cover gasket as spare part

6 The internal cleanliness of the body isguaranteed by the cleaning effect of the cupwhich is characteristic of Castel filters.if air is supposed to have entered the plantduring filter block replacement, produce avacuum in the low-pressure side of the plant,and always in the sector of the circuitinvolved.

7 Open the valve on the departure of liquid line8 Slowly open the suction valve of the

compressor and start the compressor andits auxiliaries.

9 Top the charge up, if necessary.

105

SUCTION LINE:SELECTION CRITERION

With clean systems, refrigerant flow capacityand pressure drops of table 2 are reported to agas speed of 20 m/s for pipes adequate to thefilter connections. For refrigerant flow capacities different from thetable values, under the other same conditions,gas speeds and relative pressure drops throughthe filter can be gained for simpleproportionality.

EXAMPLE

System data:Refrigerant: R407CRefrigerant flow capacity: 130 [kW]Evaporating temperature: + 5 [°C]Suction pipe: Ø 2.1/8”Filter: 4411/17C

In table 2, corresponding to filter type4411/17C refrigerant and evaporatingtemperature, the following data is given:

– refrigerant flow capacity = 141,7 [kW];– pressure drop = 0,21 [bar].

The gas speed in the suction line will be:

[m/s]

Pressure drop through the filter:

[bar]

Remember that the dimensioning of the suctionline in a refrigerating system requires greatattention. In fact the relative pressure loss,included filter, which implies a reduction of flowcapacity sucked by the compressor, influencesdirectly the refrigerating capacity of the plant.This line is normally sized to have a totalpressure loss lower then a variation of thesaturation temperature of 1° C.

0,21130

141,70,177

2

2× =

20130

141,716,8

2

2× =

Approved by Underwriters Laboratories Inc. �Except filters 4421/21C, /25C, /33C

APPLICATIONS

The filters, shown in this chapter, are classified“Pressure vessels” in the sense of thePressure Equipment Directive 97/23/EC,Article 1, Section 2.1.1 and are subject ofArticle 3, Section 1.1 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

OPERATION

Good filtering of the refrigerant on the low-pressure side of the system is a guarantee ofprotection for the compressor. Systemcleanliness is ensured by micro filtering cores,which filter out impurities derived frommanufacture and assembly of the refrigeratingsystem.

CONSTRUCTION

The filters type 4410 are manufactured insteel, with the exception of the connectionswhich are made of EN 12735-1 – Cu-DHPcopper tube.The filters type 4420 are completelymanufactured in steel and solder connection,are machined with a steel bar EN 10025S355JR.Zinc plated wire cloths and a filtering baffle form the block, which features a large surface, with controlled porosity. The block can stop solid particles up to 20 micron. At the two ends, soft felt gaskets ensure perfect sealing with the plastic cups. Filters are supplied withan access fitting kit G9150/R05.

MECHANICAL FILTERS WITH REPLACEABLE FILTERINGBLOCK

106

pressure loss in the suction line.To such purpose diagram 2 illustrates theexisting relation between saturationtemperature, in the suction line, and variationof the refrigerant flow capacity of a compressor.

For example diagram 1, referred to R22, allowsto estimate the aforesaid variation in functionof pressure loss and evaporating temperature.After all it’s always important to remember thatthe refrigerant flow capacity of a compressor,under the other same conditions, can reduceconsiderably because of the decrease of thesaturation temperature, consequent to the

TABLE 1: General Characteristics

CatalogueNumber

CoreFilteringSurface[cm2]

Numberof Core

Core Cat.Number

45 (1)

32

I

Ø[in.]

Ø[mm]

Ø[mm]

ODS W

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according toPED

4411/7C

4411/9C

4411/11C

4411/13C

4411/M42C

4411/17C

4411/21C

4421/21C

4421/25C

4421/33C

4495/C

4496/C

1

820

1850

7/8"

1.1/8"

1.3/8"

1.5/8"

2.1/8"

2.5/8"

2.5/8"

22

35

42

54

76,1

88,9

114,3

– 40 +80

(1) PS = 470 psig in compliance with the UL approval

Sketch of filter withmechanical block1 – Block2 – Cover3 – Botton4 – Spring

inlet

outlet

107

DIAGRAM 1

DIAGRAM 2

0 5 10 15 20 25 30 350

1

2

3

4

5

6-40 -35

-30

-25

-20

-15

-10-50

+10evapora

tion te

mperature

Pressure loss (kPa)

Equi

vale

nt v

aria

tion

of th

e sa

tura

tion

tem

pera

ture

0

0,5

1

1,5

2

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10

Cor

rect

ion

fact

or o

f ref

riger

ant

flow

cap

acity

Saturation temperature at the suction (°C)

108

TABLE 2: Refrigerant Flow Capacity and Pressure drop

Cataloguenumber Refrigerant

Evaporating Temperature [°C]

[bar][kW][bar][kW][bar][kW][bar][kW][bar][kW]

-30-20-100+5

4411/7C

4411/9C

4411/11C

4411/13C

4411/M42C

4411/17C

4411/21C

4421/21C

4421/25C

4421/33C

R134a

R22

R404A

R407C

R410A

R134a

R22

R404A

R407C

R410A

R134a

R22

R404A

R407C

R410A

R134a

R22

R404A

R407C

R410A

R134a

R22

R404A

R407C

R410A

R134a

R22

R404A

R407C

R410A

R134a

R22

R404A

R407C

R410A

R134a

R22

R404A

R407C

R410A

R134a

R22

R404A

R407C

R410A

13,7

21,5

20,0

19,0

31,7

23,0

36,4

34,0

32,1

53,7

35,0

55,0

51,4

48,6

81,0

50,0

79,0

73,5

69,5

116,0

87,0

137,0

128,0

121,1

202,0

133,5

211,0

197,0

186,4

311,0

133,5

211,0

197,0

186,4

311,0

191,0

302,0

281,0

266,0

446,0

334,0

528,0

491,0

468,0

780,0

0,070

0,100

0,130

0,090

0,200

0,074

0,110

0,140

0,100

0,210

0,075

0,110

0,140

0,100

0,210

0,090

0,130

0,170

0,120

0,250

0,140

0,190

0,270

0,180

0,370

0,250

0,360

0,480

0,330

0,700

0,100

0,150

0,200

0,140

0,300

0,180

0,260

0,340

0,230

0,500

0,540

0,770

1,000

0,690

1,400

9,0

15,6

14,0

12,8

23,0

15,0

26,0

24,0

21,3

38,0

23,0

39,0

36,2

33,2

57,0

33,0

56,0

51,7

47,5

82,0

57,2

97,0

90,0

82,6

143,0

87,5

149,0

138,6

127,0

220,0

87,5

149,0

138,6

127,0

220,0

125,0

213,0

198,0

182,0

315,0

218,0

372,0

346,0

320,0

550,0

0,048

0,074

0,090

0,060

0,140

0,051

0,080

0,100

0,066

0,150

0,052

0,080

0,100

0,068

0,150

0,062

0,090

0,120

0,080

0,180

0,100

0,150

0,190

0,125

0,290

0,180

0,270

0,330

0,210

0,520

0,070

0,110

0,130

0,090

0,200

0,120

0,190

0,220

0,150

0,370

0,360

0,570

0,660

0,440

1,200

6,0

10,8

9,0

8,4

16,0

10,0

18,0

15,0

14,2

26,0

15,0

27,0

22,7

21,9

40,0

21,4

39,0

32,4

31,3

57,0

37,3

66,4

56,5

54,4

98,0

57,0

102,0

87,0

83,7

150,0

57,0

102,0

87,0

83,7

150,0

81,5

146,0

124,0

119,7

215,0

142,0

255,0

217,0

210,0

377,0

0,033

0,052

0,060

0,043

0,100

0,035

0,056

0,070

0,047

0,110

0,036

0,056

0,070

0,047

0,110

0,043

0,064

0,080

0,056

0,120

0,070

0,100

0,130

0,087

0,250

0,120

0,180

0,230

0,150

0,350

0,050

0,074

0,100

0,060

0,150

0,090

0,130

0,170

0,100

0,250

0,270

0,390

0,500

0,300

0,800

3,5

7,2

6,0

5,1

10,6

6,0

12,0

10,0

8,7

17,7

9,0

18,0

14,5

13,4

26,0

13,0

26,0

20,7

19,2

38,0

22,4

44,0

36,0

33,4

65,0

34,3

68,0

55,5

51,4

100,0

34,3

68,0

55,5

51,4

100,0

49,0

97,0

79,3

73,5

143,0

85,0

170,0

138,7

129,0

251,0

0,021

0,037

0,040

0,028

0,100

0,022

0,040

0,050

0,031

0,110

0,023

0,040

0,050

0,031

0,110

0,027

0,046

0,060

0,037

0,100

0,040

0,070

0,100

0,057

0,200

0,070

0,120

0,170

0,100

0,240

0,030

0,050

0,070

0,040

0,100

0,050

0,090

0,120

0,070

0,200

0,150

0,270

0,360

0,200

0,530

0,084

0,120

0,150

0,100

0,230

0,091

0,130

0,160

0,110

0,250

0,092

0,130

0,160

0,110

0,250

0,110

0,150

0,200

0,136

0,300

0,170

0,230

0,310

0,210

0,440

0,300

0,420

0,550

0,380

0,810

0,120

0,170

0,220

0,160

0,340

0,210

0,300

0,390

0,270

0,600

0,630

0,900

1,170

0,790

1,800

17,0

26,0

23,7

22,2

38,4

28,7

43,0

40,0

37,6

63,5

43,5

65,0

60,7

57,0

96,0

62,0

93,0

86,8

81,4

137,0

108,3

162,0

151,3

141,7

239,0

167,0

249,0

232,7

218,0

368,0

167,0

249,0

232,7

218,0

368,0

238,0

356,0

332,0

312,0

526,0

416,0

623,0

581,0

547,0

921,0

Refrigerant flow capacities and pressure drops are referred to the following working conditions: – Liquid temperature ahead expansion valve: + 35 °C– Overheating of suction gas: 6 °C

109

TABLE 4: General Characteristics,dimensions and Weights

Cataloguenumber

44954496

4495/C

4496/C

127

287

820

1850

60

80

87

113

138

168

480

750

[sq.in] [cm2] Ø D1 Ø D2 H

FilteringSurface

Dimensions[mm]

Weight[g]

TABLE 3: Dimensions and Weights

Catalogue Number

4411/7C

4411/9C

4411/11C

4411/13C

4411/M42C

4411/17C

4411/21C

4421/21C

4421/25C

4421/33C

7/8"

1.1/8"

1.3/8"

1.5/8"

2.1/8"

2.5/8"

2.5/8"

22

35

42

54

76,1

88,9

114,3

121

163

149

200

154

159

171

162

186

187

205

215

241

246

258

249

273

308

328

338

185

200

96

101

113

103

128

142

162

172

5450

5375

5435

5410

5585

6030

12000

12200

12500

Ø[in.]

Ø[mm]

Ø[mm]

Ø D1 Ø D2 H1 H2 H3 P

ODS W

Connections Dimensions[mm]

Weight[g]

110

CONSTRUCTION

The filter is completely manufactured in steel,either with nickel-plated Flare threadedconnections. The product range also includestypes with copper plated solder connections,offering the possibility to solder the copper pipeinside the connections (ODS) or outside theconnections, using a copper sleeve (ODM).Inside the filters there is a screen basket, withwide filtering surface, made of austeniticstainless steel AISI 304.These filters may not be cleaned.

APPLICATIONS

The filters, shown in this chapter, are classified“Pressure vessels” in the sense of thePressure Equipment Directive 97/23/EC,Article 1, Section 2.1.1 and are subject ofArticle 3, Section 1.1 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

STRAINERS

TABLE 1: General Characteristics

Cataloguenumber

UsefullPassageSurface

[%]

MeshOpening

[mm]

KvFactor[m3/h]

FilteringSurface[cm2] SAE

Flare

3/8"

1/2"

3/8"

1/2"

5/8"

10

12

16

18

1/2"

5/8"

3/4"

12

14

16

22

– 40 +80 45 Art. 3.3

Ø[in.]

Ø[mm]

Ø[in.]

Ø[mm]

ODS ODM

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according toPED

4510/3

4510/4

4520/3

4520/M10

4520/M12

4520/4

4520/5

4520/M18

58

142

58

142

36,6 0,166

2,4

3,2

2,4

3,4

8,0

TABLE 2: Dimensions and Weights

Cataloguenumber

4510/3

4510/4

4520/3

4520/M10

4520/M12

4520/4

4520/5

4520/M18

52

76

52

76

110

174

109

113

122

126

170

195

515

195

205

215

245

495

Ø D L

Dimensions[mm]

Weight[g]

4510 4520

Valves

112

a third one for charging or manometerconnection, types:– 6065 with right access connection;– 6075 with left access connection.

N.B. : the third way must be equiped with avalve core (for example type 8394/A or othersimilar ones) to be ordered separately.

The main parts of the hermetic valves aremade with the following materials:– hot forged brass EN 12420 – CW 617N for

body;– steel, with proper surface protection, or

brass for the spindle;– chloroprene rubber (CR) and aramidic fibers

for gland seal;– glass reinforced PBT for cap that covers the

spindle.

APPLICATIONS

The hermetic valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

CONSTRUCTION

These valves are available in the following twotypes:– two-ways shut-off valves types 6010/2 and

6012/22;– three-ways valves; two main connections plus

HERMETIC VALVES

TABLE 1: General Characteristics

Cataloguenumber

KvFactor[m3/h]

1/4"

1/4"

1/4"

1/4"

3/8"

1/2"

5/8"

1/4"

3/8"

1/4"

3/8"

3/8"

1/2"

5/8"

1/4"

1/4"

3/8"

1/2"

5/8"

1/4"

6

10

6

8

10

12

16

0,27

0,39

1,20

2,20

2,80

0,46

1,38

0,46

1,29

1,38

2,55

3,40

-40

+130

+110 45 Art. 3.3

(1) (2) (3) Ø[in.]

Ø[mm]

SAE Flare ODS (4)

Connections

min.

TS [°C]

max.

PS[bar]

Risk Category

according to PED

6010/2

6012/22

6020/222

6020/233

6020/244

6020/255

6065/22M6

6065/23M10

6075/22M6

6075/23M8

6075/23M10

6075/24M12

6075/25M16

6010/2

113

TABLE 2: Dimensions and Weight

Cataloguenumber

H1 H2 H3 H4 H5 I L1 L2 L3 P1

Dimensions [mm]

Weight [g]

6010/2

6012/22

6020/222

6020/233

6020/244

6020/255

6065/22M6

6065/23M10

6075/22M6

6075/23M8

6075/23M10

6075/24M12

6075/25M16

14

25

26,5

25,5

29,5

66

51

52

31

33

31

33

38,5

39,5

61

68,5

56,5

58,5

56,5

58,5

68

69

115

127

1

36

29

62

67

77

79

25

58

55,5

25

72

84

30,5

32

160

145

360

370

520

530

205

200

205

210

220

310

320

6012/22

6020

6065

6075

114

CONSTRUCTION

These valves are available in the following twotypes:– two-ways valves, 90° angle connections,

types 6110 and 6120;– three-ways valves; two main connections

(90° angle) plus a third one for charging, type6132. The access connection may be shutoff by the back-seating of the spindle;

– two-ways valves, 120° angle connections,type 6140.

The main parts of the receiver valves are madewith the following materials:

– hot forged brass EN 12420 – CW 617N forbody;

– steel, with proper surface protection, for thespindle;

– chloroprene rubber (CR) and aramidic fibersfor gland seal;

– glass reinforced PBT for cap that covers thespindle.

APPLICATIONS

The receiver valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9,Section 2.2 of Directive 97/23/EC and referredto in Directive 67/548/EEC).

RECEIVER VALVES

TABLE 1: General Characteristics

Cataloguenumber

KvFactor[m3/h]

1/4" f

3/8" f

1/4"

1/4"

1/4"

1/4"

1/4"

3/8"

3/8"

3/8"

1/2"

1/2"

5/8"

3/4"

1/4"

1/4"

3/8"

1/2"

1/2"

5/8"

3/4"

1/4"

3/8"

1/2"

5/8"

1/4"

1/4"

1/8"

1/4"

3/8"

1/4"

3/8"

3/8"

1/2"

1/2"

3/4"

1/4"

3/8"

3/8"

3/8"

1/2"

1/2"

3/4"

1/4"

3/8"

1/2"

1/2"

1/4"

3/8"

0,44

0,45

1,35

2,40

3,40

6,00

0,44

0,45

1,35

2,40

3,40

6,00

0,45

1,20

2,20

3,85

0,36

-60

+130

+110

+130

45 Art. 3.3

(1) (2) (3)

SAE Flare NPT

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

6110/21

6110/22

6110/X15

6110/23

6110/32

6110/33

6110/X13

6110/43

6110/44

6110/54

6110/66

6120/22

6120/23

6120/33

6120/43

6120/44

6120/54

6120/66

6132/22

6132/33

6132/44

6132/54

6140/22

6140/23

115

H1

H2

L1

2

3

6110

L1

L2

H1

NPT

2

3

6120

H1

L2

L1

NPT

3

2

6140

L2L1

H1

H2

1

2

3 NPT

6132

NPT

H2

H1

L1

6110/X136110/X15

1

2

TABLE 2: Dimensions and Weight

Cataloguenumber

6110/21

6110/22

6110/X15

6110/23

6110/32

6110/33

6110/X13

6110/43

6110/44

6110/54

6110/66

6120/22

6120/23

6120/33

6120/43

6120/44

6120/54

6120/66

6132/22

6132/33

6132/44

6132/54

6140/22

6140/23

70,5

72

83

77

87

88

92

128

27,5

30

33

40

56

63,5

57

48

50

55,5

88

29

36

27,5

29

31

34,5

42,5

72

77

80

93

94

130

94

97

112

115

69

48

50

55,5

88

64

75

46

100

110

130

135

130

140

175

220

235

245

675

110

130

140

225

305

245

670

240

250

375

365

115

125

H1 H2 L1 L2

Dimensions [mm]

Weight [g]

116

The main parts of the stop valves are madewith the following materials:

– hot forged brass EN 12420 – CW 617N forbody;

– brass EN 12164 – CW 614N for spindle andprotection cap;

– chloroprene rubber (CR) for outlet sealgaskets for series 6165 and 6175;

– chloroprene rubber (CR) and aramidic fibersfor gland seal, only for series 6170.

APPLICATIONS

The stop valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

CONSTRUCTION

The very compact design of these brass valvesallows minimum dimensional sizes and thefixing flange complies with current marketrequirements.Valves 6170 and 6175 must be completed withthe following devices, to be ordered separately:– valve code 8394/A or code 8394/B;– cap with gasket code 8392/A.

STOP VALVES

TABLE 1: General Characteristics

Cataloguenumber

KvFactor[m3/h]

2

3

1/4"

1/4"

3/8"

3/8"

1/2"

5/8"

3/4"

7/8"

1/4"

3/8"

3/8"

1/2"

5/8"

3/4"

7/8"

16

0,68

1,70

1,70

3,40

4,60

9,00

10,80

-20 +110 45 Art. 3.3

WayNr.

(1) (2) Ø[in.]

Ø[mm]

SAE Flare ODS (3)

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

6165/22

6165/33

6175/33

6175/44

6175/55

6170/66

6170/77

117

TABLE 2: Dimensions and Weight

Cataloguenumber

H1 H2 H3 Ø D L1 L2 L3 I

Dimensions [mm]

Weight [g]

6165/22

6165/33

6175/33

6175/44

6175/55

6170/66

6170/77

17

20

28,5

52

65

104

8

12

9,5

12,7

15,9

19

22,2

28,6

29

30,5

36

47

29

31

36

59,5

67

83

38

50

113

120

135

225

235

655

670

I I

L2

L3

H3

L1

H1

H2

L1

H3

H1

H2

BDBD

6170

6165 6175

B 6

.5

B 6

.5

2 2

3 3

1

118

CONSTRUCTION

Diaphragm valves don’t have gland seal. Theexternal sealing is ensured by some thin metaldiscs (diaphragms), which hermetically dividethe spindle chamber from the fluid flow area.

The main parts of the hermetic valves aremade with the following materials:– hot forged brass EN 12420 – CW 617N for

body;– brass EN 12164 – CW 614N for spindle;– harmonic steel for spring;– nylon for seat sealing gaskets.

APPLICATIONS

The diaphragm valves, shown in this chapter,are classified “Pressure accessories” in thesense of the Pressure Equipment Directive97/23/EC, Article 1, Section 2.1.4 and aresubject of Article 3, Section 1.3 of the sameDirective.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

DIAPHRAGM VALVES

TABLE 1: General Characteristics

Cataloguenumber

KvFactor[m3/h]

1/4"

3/8"

1/2"

5/8"

3/4"

1/4"

3/8"

1/2"

5/8"

3/4"

7/8"

16

0,28

1,00

1,30

1,80

3,65

0,28

1,00

1,30

1,80

3,65

-35 +90 28 Art. 3.3

Ø[in.]

Ø[mm]

SAE Flare(1)

ODS (2)

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

6210/2

6210/3

6210/4

6210/5

6210/6

6220/2

6220/3

6220/4

6220/5

6220/6

6220/7

119

TABLE 2: Dimensions and Weight

Cataloguenumber

6210/2

6210/3

6210/4

6210/5

6210/6

6220/2

6220/3

6220/4

6220/5

6220/6

6220/7

68

72

86

68

72

86

53,5

62,5

53,5

62,5

58

74

78

98

53

61

70

71

92

94

4,5

6,2

4,5

6,2

36

38

50

36

38

50

52

60

52

60

200

325

335

340

655

195

300

305

580

645

H1 H2 L1 d I D

Dimensions [mm]

Weight[g]

D

L1

d

H2

H1

H2

I

H2

D

H2

H1

H2

H1

d

L1

I

A94 A94

A

1

2 2

6210 6220 6260

1 1

120

The main parts of the hermetic valves aremade with the following materials:– hot forged brass EN 12420 – CW 617N for

body;– steel, with proper surface protection, for the

spindle;– chloroprene rubber (CR) and aramidic fibers

for gland seal;– glass reinforced PBT for cap that covers the

spindle;– steel bar EN 10277-3 11 S Mn Pb 37 for

7910 fittings;– P.T.F.E. for 7990 gaskets.

APPLICATIONS

The rotalock valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

CONSTRUCTION

Rotalock valves, mounted with 7910 fittingsand 7990 gaskets, assure fast installation andsafe sealing.Before tightening it is possible to turn the valvein every direction.All Rotalock valves have an additional chargingconnection, which can be excluded by the backsealing of the spindle.Fittings 7910 and gaskets 7990 have to beordered separately.

ROTALOCK VALVES

TABLE 1: General Characteristics

Cataloguenumber

KvFactor[m3/h]

1/4"

1/4"

3/8"

1/2"

3/8"

1/2"

5/8"

3/4"

3/4"

UNF

1"

UNS

0,46

1,35

1,40

3,10

3,4

-60 +110 45 Art. 3.3

(1) (2) (3)

SAE Flare Swivel nut

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

6310/2

6310/3

6310/4

6320/3

6320/4

6320/5

6320/6

Valves 6310

6320

Gasket 7990

Coupling 7910

121

L2

L1

H1

H2

6310 6320

7990

Guarnizione

7910

Raccordo

12

3

TABLE 2: Dimensions and Weight

Catalogue number

6310/2

6310/3

6310/4

6320/3

6320/4

6320/5

6320/6

68,5

69,5

72

33,5

34,5

36,5

94

97

114,5

117,5

64

77,5

290

300

330

400

415

425

H1 H2 L1 L2

Dimensions [mm]

Weight[g]

122

INSTALLATION

The brazing of capped valves with solderconnections, type 6420, should be carried outwith care, using a low melting point fillermaterial. It‘s necessary to remove the spindleassembly, with gland too, before brazing thebody. It’s important to avoid direct contactbetween the torch flame and the valve body,which could be damaged and compromise theproper functioning of the valve.

APPLICATIONS

The capped valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

CONSTRUCTION

The main parts of the capped valves are madewith the following materials:– hot forged brass EN 12420 – CW 617N for

body;– steel, with proper surface protection, for the

spindle;– chloroprene rubber (CR) and aramidic fibers

for gland seal;– glass reinforced PBT for cap that covers the

spindle.

CAPPED VALVES

TABLE 1: General Characteristics

Catalogue number

KvFactor[m3/h]

1/4"

3/8"

1/2"

5/8"

3/4"

1/4"

1/4"

1/4"

3/8"

1/2"

5/8"

3/4"

7/8"

10

12

16

18

22

0,40

1,00

1,45

1,70

3,50

0,40

1,00

1,45

1,70

3,50

0,35

-60 +110 45 Art. 3.3

Ø[in.]

Ø[mm]

SAE Flare

(2)(1)

ODS (3)

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

6410/2

6410/3

6410/4

6410/

6410/6

6420/2

6420/3

6420/M10

6420/M12

6420/4

6420/5

6420/M18

6420/6

6420/M22

6420/7

6460/22A E

Until exhaustion of the stockE

123

TABLE 2: Dimensions and Weight

Cataloguenumber

H1 H2 L1 L2 L3 P1 d I

Dimensions [mm]

Weight [g]

6410/2

6410/3

6410/4

6410/5

6410/6

6420/2

6420/3

6420/M10

6420/M12

6420/4

6420/5

6420/M18

6420/6

6420/M22

6420/7

6460/22A

85,5

113

85,5

113

85,5

67

89,5

67

89,5

67

68

74

78

98

57

61

70

71

92

94

97

34

51

35

4,5

6,2

4,5

6,2

4,5

38

50

38

50

38

305

325

330

695

300

305

700

685

690

395

N.B. When the valve 6460/22A is closed, connections A-B are open and C is stopped; when opened, all connections are open.

6410 6460/22A6420

124

CONSTRUCTION

These valves are available in the following twotypes:– 6512 with straight solder connections;– 6532 with solder angle connections;The main parts of the globe valves are madewith the following materials:– hot forged brass EN 12420 – CW 617N for

body, cover and cap that covers the spindle;– steel, with proper surface protection, for the

spindle;– chloroprene rubber (CR) and aramidic fibers

for gland seal;– metal-rubber laminated for outlet seal

gaskets– P.T.F.E. for seat gaskets.

APPLICATIONS

The globe valves, shown in this chapter, areclassified “Pressure accessories” in thesense of the Pressure Equipment Directive97/23/EC, Article 1, Section 2.1.4 and aresubject of Article 3, Section 1.3 of the sameDirective.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

GLOBE VALVES

TABLE 1: General Characteristics

Cataloguenumber

KvFactor[m3/h]

7/8"

1.1/8"

1.3/8"

1.5/8"

2.1/8"

7/8"

1.1/8"

1.3/8"

1.5/8"

2.1/8"

22

28

35

42

54

22

28

35

42

54

1.1/8"

1.3/8"

1.3/8"

1.5/8"

2"

2"

1.1/8"

1.3/8"

1.3/8"

1.5/8"

2"

2"

28

35

35

28

35

35

7,1

8,4

15,0

25,0

40,0

8,2

9,1

18,7

38,0

48,5

-35 +160 45

Art. 3.3

I

Art. 3.3

I

Ø[in.]

Ø[mm]

ODS

Ø[mm]

Ø[in.]

ODM

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

6512/M22

6512/7

6512/M28

6512/9

6512/11

6512/13

6512/M42

6512/17

6532/M22

6532/7

6532/M28

6532/9

6532/11

6532/13

6532/M42

6532/17

125

TABLE 2: Dimensions and Weight

Cataloguenumber

6512/M22

6512/7

6512/M28

6512/9

6512/11

6512/13

6512/M42

6512/17

6532/M22

6532/7

6532/M28

6532/9

6532/11

6532/13

6532/M42

6532/17

136

166

199

215

147

165

238

28,5

34

37

42,5

44,5

52,5

65

100

118

141

173

80

93

139

50

59

86,5

60

68

88

104

60

68

104

94

126

138

94

126

138

1415

1310

2020

3500

5050

1350

1290

1910

4920

4765

H H1 L L1 Q A

Dimensions [mm]

Weight [g]

6512

6532

126

BALL VALVES

APPLICATIONS

The ball valves, shown in this chapter, areclassified “Pressure accessories” in the senseof the Pressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject of Article3, Section 1.3 of the same Directive.They are designed for installation on commercialrefrigerating systems and on civil and industrialconditioning plants, which use refrigerant fluidsproper to the Group II (as defined in Article 9,Section 2.2 of Directive 97/23/EC and referredto in Directive 67/548/EEC).

CONSTRUCTION

The specific design of Castel ball valves:– ensures the internal equilibrium of pressures

when the valve is closed;– permits the bi-directional flow of the

refrigerant and, consequently, the assemblyon the plant without taking into account thedirection of the refrigerant;

– prevents any risk of ejection or explosion ofthe spindle.

The opening and closing of the valve is realizedby turning the spindle one fourth of a turn. Astandstill in turning realizes either a full openingor a full closing, moreover the arrow printed onthe spindle head shows the flow direction.The electric welding of the bodies and the sealgaskets, assembled on the spindle, prevent anyleaks.

Ball valves are available in the following twotypes:– type 6590 (full port) and type 6591 (reduced

port) without access fitting.– type 6590/A (full port) and type 6591/A

(reduced port) with access fitting. These ball valves are equipped with valve core8394/A and cap 8392/A.

The main parts of the valves are made with thefollowing materials:– hot forged brass EN 12420 – CW 617N for

body;– hot forged brass EN 12420 – CW 617N,

chromium plated, for ball;– copper tube EN 12735-1 – Cu-DHP for solder

connections;– steel, with proper surface protection, for the

spindle;– chloroprene rubber (CR) for outlet seal

gaskets;– P.T.F.E. for seat ball gaskets;– glass reinforced PBT for cap that covers the

spindle. Hot forged brass EN 12420 – CW617N for caps on sizes from 6590/M64A upto 6591/34A.

INSTALLATION

The brazing of ball valves should be carried outwith care, using a low melting point filler material.It is important to avoid direct contact between thetorch flame and the valve body, which could bedamaged and compromise the proper functioningof the valve.

6590

127

TABLE 1: General Characteristics

Withoutaccessfitting

Withaccessfitting

Catalogue number

KvFactor[m3/h]

1/4"

3/8"

1/2"

5/8"

5/8"

3/4"

7/8"

7/8"

1.1/8"

1.1/8"

1.3/8"

1.3/8"

1.5/8"

1.5/8"

2.1/8"

2.1/8"

2.5/8"

2.5/8"

3"

3.1/8"

3.1/8"

3.1/2"

3.5/8"

4.1/8"

4.1/4"

6

10

12

16

15

16

18

22

22

28

28

35

35

42

42

54

54

64

64

80

89

105

108

10

15

19

25

32

38

50

65

80

0,8

3

5

14,5

24

40

68

100

178

293

430

-40 +150

45

42

Art. 3.3

I

Ø[in.]

Ø[mm]

Ball PortØ [mm]

ODS

Connections

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

6590/M6

6590/2

6590/3

6590/M10

6590/M12

6590/4

6591/5

6590/M15

6590/5

6590/M18

6590/6

6591/7

6590/7

6591/M28

6591/9

6590/M28

6590/9

6591/11

6590/11

6591/13

6591/M42

6590/13

6590/M42

6591/17

6590/17

6591/M64

6591/21

6590/3A

6590/M10A

6590/M12A

6590/4A

6590/M15A

6590/5A

6590/M18A

6590/6A

6590/7A

6590/M28A

6590/9A

6590/11A

6590/13A

6590/M42A

6590/17A

6591/M64A

6591/21A

6590/M64A

6590/21A

6591/24A

6591/25A

6590/25A

6591/28A

6591/29A

6591/33A

6591/34A

128

TABLE 2: Dimensions and Weight

Cataloguenumber

H H1 H2 L L1 L2 I d

Dimensions [mm]

Weight[g]

6590/3A

6590/M10A

6590/M12A

6590/4A

6590/M15A

6590/5A

6590/M18A

6590/6A

6590/7A

6591/M28

6590/M28A

6590/9A

6590/11A

6590/13A

6590/M42A

6590/17A

6591/M64A

6591/21A

6590/M64A

6590/21A

6591/24A

6591/25A

6590/25A

6591/28A

6591/29A

6591/33A

6591/34A

6590/M6

6590/2

6590/3

6590/M10

6590/M12

6590/4

6591/5

6590/M15

6590/5

6590/M18

6590/6

6591/7

6590/7

6591/M28

6591/9

6590/M28

6590/9

6591/11

6590/11

6591/13

6591/M42

6590/13

6590/M42

6591/17

6590/17

6591/M64

6591/21

73

80

95,5

101,5

117

127

148

172,5

196,5

20

24

27,5

30

37

44

54

62

75

33

36

38

41

45

45

53

64

70

121

138

141

177

175

206

206

248

210

239

253

275

330

350

380

400

65

73,5

74

92

93

108,5

109

130

112

126

133

149

175

185

199

209

24

32

33

43

43

48

58

58

68

76

86

18

30

75

M5

M6

M10

260

300

290

410

450

760

800

1050

1518

2470

2520

4360

4400

8120

8090

8310

8350

12400

12450

12500

6590/..A

129

CONSTRUCTION

The valves are equipped with:– a little flange for fixing the valve to the

control panel;– a SAE-Flare connection for joining it to the

copper tube;– an NPT (type 8320) or a swivel SAE FLare

(8321) connection for mounting the gauge.The main parts of this valve are made with thefollowing materials:– Hot forged brass EN 12420 – CW 617N for

body;– Steel, with proper surface protection, for the

spindle;– Chloroprene rubber (CR) and aramidic fibers

for gland seal;– Glass reinforced PBT for cap that covers the

spindle.

GAUGE MOUNTING VALVES

TABLE 1: General Characteristics

Cataloguenumber

1/4"

1/4"

1/4"

1/8"

1/4"

19

37

40

-60 +130 45 Art. 3.3

H1SAEFlare NPT

1/4" f

SAEFlare

Connections Dimensions [mm]

min.

TS [°C]

max.

PS[bar]

RiskCategory

according to PED

8320/21

8320/22

8321/22

83

L1

35

L2

17

L3

140

186

Weight[g]

APPLICATIONS

The valves, shown in this chapter, are classified“Pressure accessories” in the sense of thePressure Equipment Directive 97/23/EC,Article 1, Section 2.1.4 and are subject ofArticle 3, Section 1.3 of the same Directive.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC). They are used for mounting andintercepting the gauges on control panels.

8320

8321

130

CONSTRUCTION

The main parts of the piercing valve are madewith the following materials:– Hot forged brass EN 12420 – CW 617N for

body;– Hardened steel for the needle;– Chloroprene rubber (CR) for the outlet seal

gaskets.

INSTALLATION

The threaded fork must be installed astride ofthe copper tube, the valve is fastened to thepipe by tightening the lower nut and screwing itthe needle pierces the pipe. The hole, piercedby the needle, connects the pipe inlet with theSAE-Flare connection as shown in figures 1 and 2.

APPLICATIONS

The valve, shown in this chapter, is classified“Pressure accessories” in the sense of thePressure Equipment Directive 97/23/EC, Article1, Section 2.1.4 and is subject of Article 3,Section 1.3 of the same Directive.It is designed for installation on commercialrefrigerating systems and on civil and industrialconditioning plants, which use refrigerant fluidsproper to the Group II (as defined in Article 9,Section 2.2 of Directive 97/23/EC and referredto in Directive 67/548/EEC).The piercing valve is a fast and cheap means ofproviding a loading, outlet or inlet point in therefrigerating system. It can be applied on coppertube with a 6 mm to 10 mm diameter, and canbe installed in any position on the system.

LINE PIERCING VALVE

TABLE 1: General characteristics, dimensions and weight

Cataloguenumber

1/4" 6 - 10 72 -10 +70 25 Art. 3.3

H1SAEFlare

Pipe diameter

[mm]

Connections Dimensions [mm]

min.

TS [°C]

max.

PS[bar]

RiskCategory

according toPED

8330/A 25,5

L1

29

L2

36

L3

104

Weight[g]

open

ed v

alve

Threaded brass fittings

132

All straight fittings, from series 7110 to series7170, and all the plug, from series 7510 toseries 7520, are machined by brass bar EN12164 – CW 614N.Seal caps series 7560 and gaskets series 7580 are made with copper Cu – ETP UNI 5649.The main parts of the flanges joints are madewith the following materials:– hot forged brass EN 12420 – CW 617N for

bushes and flanges;– aramidic fibers for seal gasket of the

flanges.

APPLICATIONS

All the fittings, shown in this chapter, areexcluded from the scope of Directive97/23/EC, as specified in the Guidelines 1/8and 1/9, because they are piping components.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).

OPERATION

The sealing system between the end of a maleconnection and a nut series 7010, 7020 and7030 requires a special flaring of the end ofcopper tube, the so-called flared connection.The sealing system between the end of a maleconnection and a Flare-ODS adapter allowsavoiding the flaring process on copper tube end(national laws of some European countriesdon’t accept this operation) because the tubeend is brazed into the solder connection of theadapter. We wish to remember to our customers thatthey may assure no leakage of the maleconnection/adapter system only interposing thecopper gasket 7580, supplied with the sameadapter.Flange joints 7630 consist of two brass bushesfor brazing to the copper tubes. When the fourflange screws are tightened, a gasket, putbetween the two bushes, assures the seal offlanged joints.

CONSTRUCTION

All nuts, from series 7010 to series 7050, andall the elbows, TEE and cross fittings, fromseries 7210 to series 7410, are manufacturedwith hot forged brass EN 12420 – CW 617N.

THREADED BRASS FITTINGS

133

TABLE 1: General Characteristics

Cataloguenumber

InternationalReference

SAE Flare Ø

[in]Ø

[mm]

PS [bar]

Ø D L Ch

Copper pipe Dimensions [mm]Wrenchtorque

min / max[Nm]

Weight [g]

7010/22

7010/33

7010/44

7010/55

7010/66

7010/77

7010/88

NS4–4

NS4–6

NS4–8

NS4–10

NS4–12

NS4–14

NS4–16

1/4"

3/8"

1/2"

5/8"

3/4"

7/8"

1"

1/4"

3/8"

1/2"

5/8"

3/4"

7/8"

1"

6

16

22

45

6,5

9,7

13

16,2

19,4

22,5

25,6

15,5

19,5

22,5

25

29,5

36,5

36,5

17

22

25

28

33

41

11 / 14

20 / 25

34 / 47

54 / 75

68 / 71

90 /120

120 / 150

19

38

49

64

97

186

153

SAE Flare nuts (inch tubing)

7020/20

7020/X02

N5–4

CAP NUT

N5-5

CAP NUT

1/4"

5/16"

blind blind 45 –

15,5

15

17

15

11 / 14

8,5 / 11,5

20

14

SAE Flare cap nuts

7020/32

7020/43

7020/54

7020/65

7020/87

NRS4–64

NRS4–86

NRS4–108

NRS4–1210

NRS4–1614

3/8"

1/2"

5/8"

3/4"

1"

1/4"

3/8"

1/2"

5/8"

7/8"

6

16

22

45

6,5

9,7

13

16,2

22,5

19,5

22,5

25

29,5

36,5

22

25

28

33

41

20 / 25

34 / 47

54 / 75

68 / 71

120 / 150

38

53

69

104

160

SAE Flare reducing nuts (inch tubing)

7030/3M8

7030/3M10

7030/4M10

7030/4M12

7030/4M14

7030/5M12

7030/5M14

7030/6M14

7030/6M18

3/8"

1/2"

5/8"

3/4"

8

10

10

12

14

12

14

14

18

45

8,3

10,3

10,3

12,3

14,3

12,3

14,3

14,3

18,3

19,5

22,5

25

29,5

22

25

28

33

20 / 25

34 / 47

54 / 75

68 / 71

37

36

53

50

47

70

68

106

98

SAE Flare nuts (metric tubing)

7050/2

7050/3

7050/4

7050/5

US4–4

US4–6

US4–8

US4–10

1/4"

3/8"

1/2"

5/8"

45 –

32

40

46

51

17

22

25

28

11 / 14

20 / 25

34 / 47

54 / 75

39

78

105

140

SAE Flare twin nuts

– –

134

TABLE 2: General Characteristics

Cataloguenumber

InternationalReference

SAE Flare NPT

PS [bar]

L Ch

Connections Dimensions [mm]

Weight[g]

7110/2

7110/3

7110/4

7110/5

7110/6

7110/8

U2–4

U2–6

U2–8

U2–10

U2–12

U2–16

1/4"

3/8"

1/2"

5/8"

3/4"

1"

– 45

38

44

50

58

63

72

12

17

20

23

27

36

23

46

73

113

164

304

SAE Flare unions

1/4" x 3/8"

1/4" x 1/2"

3/8" x 1/2"

3/8" x 5/8"

1/2" x 5/8"

5/8" x 3/4"

– 45

42

45

48

52

54

61,5

17

20

23

23

27

38

58

66

89

98

170

Reducing SAE Flare unions

7130/2

7130/3

7130/4

7130/6

7130/8

U1–4B

U1–6C

U1–8D

U1–12F

U1–16H

1/4"

3/8"

1/2"

3/4"

1"

1/4"

3/8"

1/2"

3/4"

1"

45

38,1

41,2

49,8

57,6

68

14

17

22

27

36

32

48

92

152

277

SAE Flare / NPT unions

7140/21

7140/32

7140/43

7140/54

U1–4A

U1–6B

U1–8C

U1–10D

1/4"

3/8"

1/2"

5/8"

1/8"

1/4"

3/8"

1/2"

45

32,9

41,1

45,2

53,8

12

17

20

23

20

39

64

102

SAE Flare / NPT reducing unions

Available on request

Until exhaustion of the stockE

R

7120/23

7120/24

7120/34

7120/35

7120/45

7120/56

UR2–64

UR2–84

UR2–86

UR2-106

UR2–108

UR2-1210

E

R

R

R

135

TABLE 3: General Characteristics

Cataloguenumber

InternationalReference SAE Flare ODS

m fNPT GAS

Ø[in.]

Ø[mm]

PS [bar]

L Ch

Connections Dimensions [mm]

Weight [g]

7150/21

7150/32

7150/43

7150/54

7150/64

7150/65

U3–4A

UR3–46

UR3–68

UR3–810

UR3–812

UR3–1012

1/4"

3/8"

1/2"

5/8"

3/4"

3/4"

1/4"

3/8"

1/2"

1/2"

5/8"

1/8" f

–– – – 45

29

33

38

45

46,5

49,5

14

17

22

25

27

30

21

38

66

99

132

157

Male / female reducing unions (reduced female)

7150/23

7150/24

7150/34

7150/45

7150/46

7150/56

UR3–64

UR3–84

UR3–86

UR3–108

UR3–128

UR3–1210

1/4"

1/4"

3/8"

1/2"

1/2"

5/8"

3/8"

1/2"

1/2"

5/8"

3/4"

3/4"

– – – – 45

33

36

39

44

45

49

22

25

30

34

49

66

74

127

140

150

Male / female reducing unions (reduced male)

7154/2

7156/2

1/4"

1/4"

20 – 14 left thread, female

W 21,8 – 14 right thread, female

45 29

25

27

46

52

Cylinder adaptors

7160/2

7160/3

7160/4

R –

1/4"

3/8"

1/2"

1/4"

3/8"

1/2"

– – – – 45

30,5

36

41

17

22

25

31

57

84

Male / female unions

7164/2

7166/2

1/4"

1/4"

G1/4"

f

G1/4"

m

– – 45

32,5

32

20

17

45

25

Unions SAE Flare to BSP

7170/22

7170/2M8

7170/33

7170/3M10

7170/44

7170/4M12

7170/55

7170/6M18

US3–44

US3–66

US3–88

US3–1010

1/4"

3/8"

1/2"

5/8"

3/4"

– – –

1/4"

3/8"

1/2"

5/8"

8

10

12

16

18

45

26,5

33

35

42

45,5

12

17

20

23

27

17

39

55

82

123

Male SAE Flare / solder unions

Available on requestR

136

TABLE 4: General Characteristics

Item

pos

ition

Cataloguenumber SAE

Flare

ODS

Ø[in.]

Ø[mm]

PS [bar]

L1 L2 L3 L4 Ch

Connections Dimensions [mm]

Weight[g]

Wrenchtorque

min/max[Nm]

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

9900/X58

9900/X62

7580/2

9900/X58

9900/X70

7580/2

9900/X59

9900/X63

7580/3

9900/X59

9900/X71

7580/3

9900/X60

9900/X64

7580/4

9900/X60

9900/X72

7580/4

9900/X61

9900/X65

7580/5

9900/X68

9900/X69

7580/6

9900/X68

9900/X77

7580/6

1/4"

1/4"

3/8"

3/8"

1/2"

1/2"

5/8"

3/4"

3/4"

1/4"

3/8"

1/2"

5/8"

3/4"

6

10

12

16

18

45

21

21

23,5

23,5

26

26

27,5

30

30

3,5

3,5

4

4

4,5

4,5

5

5

5

16

16

18,5

18,5

21

21

22,5

25

25

12,5

12,5

14,7

14,7

17

17

18

20

20

17

17

22

22

27

27

30

36

36

67

83

114

130

207

226

271

404

455

11/14

11/14

20/25

20/25

34/47

34/47

54/75

68/71

68/71

Flare - ODS adapters

POS. 1

POS. 2

POS. 3

Flare/ODS fitting

Nut Connection Copper seal

Copper pipe SAE/Flare connection

137

TABLE 5: General Characteristics

Cataloguenumber

InternationalReference SAE Flare

m fNPT

PS [bar]

H L

Connections Dimensions [mm]

Weight [g]

7210/2

7210/3

7210/4

7210/5

7210/6

E2–4

E2–6

E2–8

E2–10

E2–12

1/4"

3/8"

1/2"

5/8"

3/4"

– – 45

24,5

29,5

32,5

36

42,5

24,5

29,5

32,5

36

42,5

26

49

83

116

192

SAE Flare elbows

7220/2

7220/3

7220/4

7220/6

E1–4B

E1–6C

E1–8D

E1–12F

1/4"

3/8"

1/2"

3/4"

1/4"

3/8"

1/2"

3/4"

45

26

29,5

32,5

42,5

24

28,5

32

39,5

33

54

91

183

SAE Flare / NPT elbows

7230/21

7230/32

7230/43

7230/54

E1–4A

E1–6B

E1–8C

E1–10D

1/4"

3/8"

1/2"

5/8"

1/8"

1/4"

3/8"

1/2"

45

24,5

29,5

32,5

36

23,5

29,5

31

35

25

46

75

114

SAE Flare / reduced NPT elbows

7240/2

7240/3

7240/4

1/4"

3/8"

1/2"

1/4"

3/8"

1/2"

– 45

28,5

32

39,5

28

31

38

56

84

198

Male / female SAE Flare elbows

138

TABLE 6: General Characteristics

Cataloguenumber

InternationalReference SAE Flare

(1) (2) (3) (4)

NPT(3)

PS [bar]

H L

Connections Dimensions [mm]

Weight [g]

7310/2

7310/3

7310/4

7310/5

7310/6

T2–4

T2–6

T2–8

T2–10

T2–12

1/4"

3/8"

1/2"

5/8"

3/4"

1/4"

3/8"

1/2"

5/8"

3/4"

1/4"

3/8"

1/2"

5/8"

3/4"

– – 45

23,5

29

31,5

36

41,5

47

58

63

72

83

32

69

97

153

235

SAE Flare TEE

7320/223

7320/334

7320/445

7320/556

TR2–46

TR2–68

TR2–810

TR2–1012

1/4"

3/8"

1/2"

5/8"

1/4"

3/8"

1/2"

5/8"

3/8"

1/2"

5/8"

3/4"

– – 45

29

32,5

38

41,5

56

63

72

83

77

95

153

228

SAE Flare reducing TEE (reduced side connections)

7320/332

7320/443

7320/554

7320/665

TR2–64

TR2–86

TR2–108

TR2–1210

3/8"

1/2"

5/8"

3/4"

3/8"

1/2"

5/8"

3/4"

1/4"

3/8"

1/2"

5/8"

– – 45

28

32,5

38

41,5

58

63

72

83

77

101

158

220

SAE Flare reducing TEE (reduced central connection)

7330/221

7330/222

T1–4A

T1–4B

1/4"

1/4"

1/4"

1/4"

– –

1/8"

1/4"

45

21

24

47

51

56

198

SAE Flare / NPT TEE (taper central connection)

7340/222 T6–4 1/4" 1/4" 1/4" – – 45 27,5 56 78

Male / female SAE Flare (female central connection)

H

L

H

L

H

L

7330/221

7340/222

7410/2

7410/2 C1–4 1/4" 1/4" 1/4" 1/4" – 45 52 52 55

SAE Flare cross

139

TABLE 6: General Characteristics

Cataloguenumber

InternationalReference SAE

Flare NPTODS

Ø[in.]

Ø[mm]

PS [bar]

H L Ch

Connections Dimensions [mm]Wrench torque

min / max[Nm]

Weight[g]

7520/1

7520/2

7520/3

7520/4

7520/6

7520/8

121–B–02

121–B–04

121–B–06

121–B–08

121–B–12

121–B–16

1/8"

1/4"

3/8"

1/2"

3/4"

1"

– – 45 –

15,9

23,1

23,2

29,8

32,1

39

12

14

17

22

27

34

10 / 13

15 / 20

17 / 22

25 / 35

30 / 40

60 / 80

12

27

43

87

149

279

NPT plugs

7510/2

7510/3

7510/4

P2–4

P2–6

P2–8

1/4"

3/8"

1/2"

– – – 45 –

23

26

30

12

17

20

11 / 14

20 / 25

34 / 47

19

40

67

SAE Flare plugs

7560/2

7560/3

7560/4

7560/5

7560/6

7560/7

B1–4

B1–6

B1–8

B1–10

B1–12

B1–14

1/4"

3/8"

1/2"

5/8"

3/4"

7/8"

– – – 45 – – – –

0,5

1

1,5

2

4

10

Copper seal caps

L

H H

Ch

Ch

7580/2

7580/3

7580/4

7580/5

7580/6

B2–4

B2–6

B2–8

B2–10

B2–12

1/4"

3/8"

1/2"

5/8"

3/4"

– – – 45 – – – –

0,5

0,5

1

1,5

3

Copper gasket

7630/7

7630/9

7630/11

7630/13

7630/M42

7630/17

– – –

7/8"

1.1/8"

1.3/8"

1.5/8"

2.1/8"

35

42

54

42

22

23

24

25

63

67

71

20 / 24

42 / 50

68 / 80

315

490

1045

1340

1940

Flange joints

Copper braze - joint pressure fittings

142

dimensions:– 7832 Tees and reducing teesReinforced series 79 show the followingselection of copper braze-joint fittings, with ODS/ IDS millimeters connections, limited to somedimensions:– 7900 Female to female couplings– 7902 Female to female reducing

couplings– 7903 Male to female reducing couplings– 7916 45° female to female elbows– 7917 45° male to female elbows– 7918 90° female to female elbows –

long radius– 7919 90° male to female elbows –

long radius– 7932 Tees and reducing tees

CONSTRUCTION

Dimensions and tolerances of the ODS / IDSconnections ends in copper braze-joint fittingsseries 77, 78 and 79 are in compliance withthe EN 1254-1 : 1998 Standard.All copper braze-joint fittings series 77, 78 and79 are made of seamless copper tube EN12735-2 – CW024A, soft annealed.Technical characteristics of copper fittingsseries 77 and 78, depending on tube nominaldiameters, are given in table 1, while technicalcharacteristics of copper fittings series 79,always depending on nominal diameters, aregiven in table 2.Copper braze-joint fittings series 77, 78 and79, if submitted to ambient-temperature bursttest, guarantee a pressure strength at leastequal to 3 x PS (30 °C rated working-pressureas shown in tables 1 and 2) according to ASMEB16.50 : 2001 Standard.

APPLICATIONS

All the fittings, shown in this chapter, areexcluded from the scope of Directive97/23/EC, as specified in the Guidelines 1/8and 1/9, because they are piping components.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, made ofseamless copper tube specified in EN 12735-1: 2001 Standard, which use refrigerant fluidsproper to the Group II (as defined in Article 9,Section 2.2 of Directive 97/23/EC and referredto in Directive 67/548/EEC).

PRODUCTS RANGE

Series 77 show the following selection ofcopper braze-joint fittings, with ODS / IDSmillimeters connections, practically in alldiameter dimensions:– 7700 Female to female couplings– 7702 Female to female reducing

couplings– 7703 Male to female reducing couplings– 7708 90° female to female elbows –

short radius– 7709 90° male to female elbows –

short radius– 7716 45° female to female elbows– 7717 45° male to female elbows– 7718 90° female to female elbows –

long radius– 7719 90° male to female elbows –

long radius– 7732 Tees and reducing tees

Series 78 show the following selection ofcopper braze-joint fittings, with ODS / IDS inchconnections, limited to few diameter

COPPER BRAZE-JOINT PRESSURE FITTINGS

143

INSTALLATION

The internal working pressure-temperaturerating for a copper fitting, is dependent upon,not only fitting strength, but also the adoptedjoining process and the used filler metal. Theworking pressure-temperature values given intables 1 and 2 are referred to a brazingprocess, performed in accordance with thesound engineering practice.We wish to remember the definition of brazingprocess, given in EN 13133 : 2000 Standard.“The process of joining generally applied to thejoining of materials by a heating process duringwhich the parent materials do not melt and thefiller metal is drawn into the joint by capillaryaction. It is generally applicable to joiningsystems where the filler metal melts at 450 °Cor above”.In actual practice brazing is done attemperatures ranging from 630 to 820 °C andthere are two general types of brazing fillermetals, normally used for joining copper tube:– Copper – Phosphorus alloys (the so called B-

CuP), proper to CP Class of EN 1044 : 1999Standard, that are normally used withoutfluxes;

– Silver alloys (the so called B-Ag), proper toAG Class of EN 1044 : 1999, that must beused with their specific fluxes.

TABLE 1

Tube Nominal Diameter

6

8

10

12

14

15

16

18

22

28

35

42

54

64

67

76

80

89

106

1/4"

3/8"

1/2"

5/8"

7/8"

1"

1.1/8"

1.3/8"

1.5/8"

2.1/8"

2.5/8"

3.1/8"

3.1/2"

90

90

70

60

60

50

50

45

45

45

40

40

35

30

30

30

25

25

20

20

20

20

18

18

18

18

15

72

72

56

48

48

40

40

36

36

36

32

32

28

24

24

24

20

20

16

16

16

16

14

14

14

12

12

63

63

49

42

42

35

35

32

32

32

28

28

24

21

21

21

18

18

14

14

14

14

13

13

13

11

11

[mm] [in.] -40 / +30 °C +95 °C +150 °C

Working Pressure PS [bar],depending on temperature

TABLE 2

Tube Nominal Diameter

22

28

35

42

54

7/8”

1”

1.1/8”

1.3/8”

1.5/8”

2.1/8”

60

55

50

50

50

40

40

35

80

73

67

67

67

53

53

47

50

45

40

40

40

35

35

30

[mm] [in.] (1) (2) (1)

67

60

53

53

53

47

47

40

45

41

37

37

37

30

30

26

60

55

49

49

49

40

40

35

(2) (1)

-40 /+ 30 °C +95 °C +150 °C

(2)

Working Pressure PS [bar], depending on temperature

(1) PS values listed in this column are referred to a safety coefficient 4, according to ASME B16.50 : 2001 Standard

(2) PS values listed in this column are referred to a safety cefficient 3, minimum value warranted by Castel for all its products

Note: working pressure shown in this table are incomparison with rated working pressures established inASME B16.50 : 2001 Standard.

144

TABLE 3: General Characteristics

InternationalReference

Cataloguenumber IDS

Ø[mm]

ODSØ

[mm]

Weight[g] Note

Connections

7700/M6

7700/M8

7700/M10

7700/M12

7700/M14

7700/M16

7700/M18

7700/M22

7700/M28

7700/M35

7700/M42

7700/M54

7700/M76

7700/M89

5270/6

5270/8

5270/10

5270/12

5270/14

5270/16

5270/18

5270/22

5270/28

5270/35

5270/42

5270/54

5270/76

5270/89

– –

6

8

10

12

14

16

18

22

28

35

42

54

76

89

6

8

10

12

14

16

18

22

28

35

42

54

76

89

2

3

4

5

8

8

13

20

39

71

89

138

220

350

Female to female couplings (metric tubing)

7702/M10.6

7702/M10.8

7702/M12.8

7702/M12.10

7702/M14.10

7702/M14.12

7702/M16.10

7702/M16.12

7702/M16.14

7702/M18.12

7702/M18.16

7702/M22.12

7702/M22.14

7702/M22.16

7702/M22.18

7702/M28.12

7702/M28.18

7702/M28.22

7702/M35.22

7702/M35.28

7702/M42.28

7702/M42.35

7702/M54.35

7702/M54.42

7702/M67.54

7702/M76.54

5240/10.6

5240/10.8

5240/12.8

5240/12.10

5240/14.10

5240/14.12

5240/16.10

5240/16.12

5240/16.14

5240/18.12

5240/18.16

5240/22.12

5240/22.14

5240/22.16

5240/22.18

5240/28.12

5240/28.18

5240/28.22

5240/35.22

5240/35.28

5240/42.28

5240/42.35

5240/54.35

5240/54.42

5240/67.54

5240/76.54

– –

10

10

12

12

14

14

16

16

16

18

18

22

22

22

22

28

28

28

35

35

42

42

54

54

67

76

6

8

8

10

10

12

10

12

14

12

16

12

14

16

18

12

18

22

22

28

28

35

35

42

54

54

3

6

6

8

9

9

12

9

11

12

13

22

19

23

23

34

29

33

56

56

66

88

166

160

246

314

Female to female reducing couplings (metric tubing)

145

TABLE 4: General Characteristics

InternationalReference

Cataloguenumber IDS

Ø[mm]

ODSØ

[mm]

Weight [g] Note

Connections

7703/M8.6

7703/M10.6

7703/M10.8

7703/M12.6

7703/M12.8

7703/M12.10

7703/M14.10

7703/M14.12

7703/M16.10

7703/M16.12

7703/M16.14

7703/M18.10

7703/M18.12

7703/M18.14

7703/M18.16

7703/M22.12

7703/M22.14

7703/M22.16

7703/M22.18

7703/M28.12

7703/M28.14

7703/M28.16

7703/M28.18

7703/M28.22

7703/M35.18

7703/M35.22

7703/M35.28

7703/M42.22

7703/M42.28

7703/M42.35

7703/M54.28

7703/M54.42

7703/M67.42

7703/M67.54

7703/M76.42

7703/M80.42

7703/M106.54

5243/8.6

5243/10.6

5243/10.8

5243/12.6

5243/12.8

5243/12.10

5243/14.10

5243/14.12

5243/16.10

5243/16.12

5243/16.14

5243/18.10

5243/18.12

5243/18.14

5243/18.16

5243/22.12

5243/22.14

5243/22.16

5243/22.18

5243/28.12

5243/28.14

5243/28.16

5243/28.18

5243/28.22

5243/35.18

5243/35.22

5243/35.28

5243/42.22

5243/42.28

5243/42.35

5243/54.28

5243/54.42

5243/67.42

5243/67.54

5243/76.42

5243/80.42

5243/106.54

8

10

10

12

12

12

14

14

16

16

16

18

18

18

18

22

22

22

22

28

28

28

28

28

35

35

35

42

42

42

54

54

67

67

76

80

106

– –

6

6

8

6

8

10

10

12

10

12

14

10

12

14

16

12

14

16

18

12

14

16

18

22

18

22

28

22

28

35

28

42

42

54

42

42

54

2

3

3

3

6

4

8

5

9

9

8

12

9

11

8

23

20

20

21

32

31

33

29

32

50

65

50

90

102

93

125

146

197

246

270

306

784

= 7700/M6

= 7700/M8

= 7702/M10.6

= 7702/M10.8

= 7700/M10

= 7702/M12.10

= 7700/M12

= 7702/M14.10

= 7702/M14.12

= 7700/M14

= 7702/M16.10

= 7702/M16.12

= 7702/M16.14

= 7700/M16

Male to female reducing couplings (metric tubing)

146

TABLE 5: General Characteristics

InternationalReference

Cataloguenumber IDS

Ø[mm]

ODSØ

[mm]

Weight [g] Note

Connections

7708/M6

7708/M8

7708/M14

7708/M16

7708/M18

7708/M22

7708/M28

7708/M35

7708/M42

7708/M54

5090/6

5090/8

5090/14

5090/16

5090/18

5090/22

5090/28

5090/35

5090/42

5090/54

– –

6

8

14

16

18

22

28

35

42

54

6

8

14

16

18

22

28

35

42

54

4

5

12

13

22

34

56

119

163

298

90° female to female elbows - short radius (metric tubing)

7709/M16

7709/M18

7709/M22

7709/M28

7709/M35

7709/M42

7709/M54

5092/16

5092/18

5092/22

5092/28

5092/35

5092/42

5092/54

16

18

22

28

35

42

54

– –

16

18

22

28

35

42

54

18

26

34

67

114

184

304

90° male to female elbows - short radius (metric tubing)

7716/M16

7716/M18

7716/M22

7716/M28

7716/M35

7716/M54

7716/M80

5041/16

5041/18

5041/22

5041/28

5041/35

5041/54

5041/80

– –

16

18

22

28

35

54

80

16

18

22

28

35

54

80

16

21

35

61

119

231

740

45° female to female elbows (metric tubing)

7717/M22

7717/M28

7717/M35

7717/M42

7717/M54

7717/M80

5040/22

5040/28

5040/35

5040/42

5040/54

5040/80

22

28

35

42

54

80

– –

22

28

35

42

54

80

33

57

124

167

288

800

45° male to female elbows (metric tubing)

147

TABLE 6: General Characteristics

InternationalReference

Cataloguenumber IDS

Ø[mm]

ODSØ

[mm]

Weight [g] Note

Connections

7718/M10

7718/M12

7718/M14

7718/M16

7718/M18

7718/M22

7718/M28

7718/M35

7718/M42

7718/M54

7718/M64

7718/M67

7718/M76

7718/M80

7718/M89

5002/10

5002/12

5002/14

5002/16

5002/18

5002/22

5002/28

5002/35

5002/42

5002/54

5002/64

5002/67

5002/76

5002/80

5002/89

– –

10

12

14

16

18

22

28

35

42

54

64

67

76

80

89

10

12

14

16

18

22

28

35

42

54

64

67

76

80

89

7

11

15

20

29

46

79

146

216

353

420

505

880

1340

1670

90° female to female elbows - long radius (metric tubing)

7719/M12

7719/M14

7719/M16

7719/M18

7719/M22

7719/M28

7719/M35

7719/M42

7719/M54

7719/M64

7719/M67

7719/M76

7719/M80

5001/12

5001/14

5001/16

5001/18

5001/22

5001/28

5001/35

5001/42

5001/54

5001/64

5001/67

5001/76

5001/80

12

14

16

18

22

28

35

42

54

64

67

76

80

– –

12

14

16

18

22

28

35

42

54

64

67

76

80

11

16

20

30

47

86

144

210

390

470

550

915

1006

90° male to female elbows - long radius (metric tubing)

148

TABLE 7: General Characteristics

InternationalReference

Cataloguenumber IDS

Ø[mm]

ODSØ

[mm]

Weight[g] Note

Connections

7732/M6

7732/M8

7732/M10

7732/M12

7732/M14

7732/M16

7732/M18

7732/M22

7732/M28

7732/M35

7732/M42

7732/M54

7732/M64

7732/M67

7732/M80

5130/6

5130/8

5130/10

5130/12

5130/14

5130/16

5130/18

5130/22

5130/28

5130/35

5130/42

5130/54

5130/64

5130/67

5130/80

6

8

10

12

14

16

18

22

28

35

42

54

64

67

80

6

8

10

12

14

16

18

22

28

35

42

54

64

67

80

6

8

10

12

14

16

18

22

28

35

42

54

64

67

80

5

7

17

14

22

25

36

59

101

185

269

465

510

658

1084

Tees (metric tubing)

7732/M8.6.8

7732/M8.10.8

7732/M10.6.10

7732/M10.8.8

7732/M10.8.10

7732/M10.12.10

7732/M12.8.12

7732/M12.10.12

7732/M12.14.12

7732/M12.16.12

7732/M14.12.14

7732/M14.22.14

7732/M16.12.16

7732/M16.14.16

7732/M16.16.12

7732/M16.22.16

7732/M18.12.18

7732/M18.16.18

7732/M18.22.18

7732/M22.12.22

7732/M22.16.22

7732/M22.18.22

7732/M22.28.22

7732/M28.22.28

7732/M35.28.35

7732/M42.22.42

7732/M42.28.42

7732/M54.42.54

5130/8.6.8

5130/8.10.8

5130/10.6.10

5130/10.8.8

5130/10.8.10

5130/10.12.10

5130/12.8.12

5130/12.10.12

5130/12.14.12

5130/12.16.12

5130/14.12.14

5130/14.22.14

5130/16.12.16

5130/16.14.16

5130/16.16.12

5130/16.22.16

5130/18.12.18

5130/18.16.18

5130/18.22.18

5130/22.12.22

5130/22.16.22

5130/22.18.22

5130/22.28.22

5130/28.22.28

5130/35.28.35

5130/42.22.42

5130/42.28.42

5130/54.42.54

8

8

10

10

10

10

12

12

12

12

14

14

16

16

16

16

18

18

18

22

22

22

22

28

35

42

42

54

6

10

6

8

8

12

8

10

14

16

12

22

12

14

16

22

12

16

22

12

16

18

28

22

28

22

28

42

8

8

10

8

10

10

12

12

12

12

14

14

16

16

12

16

18

18

18

22

22

22

22

28

35

42

42

54

7

12

10

13

10

17

12

13

17

22

34

57

22

20

30

58

27

28

45

37

45

43

93

75

110

154

170

354

Reducing tees (metric tubing)

149

TABLE 8: General Characteristics

InternationalReference

Cataloguenumber IDS

Ø[mm]

ODSØ

[mm]

Weight [g] Note

Connections

7832/222

7832/333

5130/222

5130/333

1/4"

3/8

1/4"

3/8

1/4"

3/8

8

8

Tees (inch tubing)

7832/323 5130/323 – 3/8” 1/4" 3/8” 14

Reducing tees (inch tubing)

150

TABLE 9: General Characteristics

InternationalReference

Cataloguenumber IDS

Ø[mm]

ODSØ

[mm]

Note

Connections

7900/M22

7900/M28

7900/M35

7900/M42

7900/M54

– – –

22

28

35

42

54

22

28

35

42

54

Female to female couplings, reinforced series (metric tubing)

7916/M22

7916/M28

7916/M35

7916/M42

7916/M54

– – –

22

28

35

42

54

22

28

35

42

54

45° female to female elbows, reinforced series (metric tubing)

7917/M22

7917/M28

7917/M35

7917/M42

7917/M54

22

28

35

42

54

– –

22

28

35

42

54

45° male to female elbows, reinforced series (metric tubing)

7902/M28.22

7902/M35.22

7902/M35.28

7902/M42.28

7902/M42.35

7902/M54.35

7902/M54.42

– – –

28

35

35

42

42

54

54

22

22

28

28

35

35

42

Female to female reducing couplings, reinforced series (metric tubing)

7903/M28.22

7903/M35.22

7903/M35.28

7903/M42.28

7903/M42.35

7903/M54.35

7903/M54.42

28

35

35

42

42

54

54

– –

22

22

28

28

35

35

42

Male to female reducing couplings, reinforced series (metric tubing)

151

TABLE 10: General Characteristics

InternationalReference

Cataloguenumber IDS

Ø[mm]

ODSØ

[mm]

Note

Connections

7918/M22

7918/M28

7918/M35

7918/M42

7918/M54

– – –

22

28

35

42

54

22

28

35

42

54

90° female to female elbows - long radius, reinforced series (metric tubing)

7919/M22

7919/M28

7919/M35

7919/M42

7919/M54

– ––

22

28

35

42

54

22

28

35

42

54

90° male to female elbows - long radius, reinforced series (metric tubing)

7932/M22

7932/M28

7932/M35

7932/M42

7932/M54

– –

22

28

35

42

54

22

28

35

42

54

22

28

35

42

54

Tees, reinforced series (metric tubing)

Access fittings &valve cores

154

CONSTRUCTION

The straight fittings are machined by hexagonalbrass bar EN 12164 – CW 614N.The TEE and cross fittings are manufacturedwith hot forged brass EN 12420 – CW 617N.The main parts of the valve cores are madewith the following materials:– brass EN 12164 – CW 614N for body;– chloroprene rubber (CR) for seat gasket;– chloroprene rubber (CR) for outlet seal

gasket for types 8394/A and 8395/A;– PTFE for outlet seal gasket for type 8394/B.

APPLICATIONS

All the access fittings and valve cores, shown inthis chapter, are excluded from the scope ofDirective 97/23/EC, as specified in theGuidelines 1/8 and 1/9, because they arepiping components.They are designed for installation oncommercial refrigerating systems and on civiland industrial conditioning plants, which userefrigerant fluids proper to the Group II (asdefined in Article 9, Section 2.2 of Directive97/23/EC and referred to in Directive67/548/EEC).The access fittings allow to create a loading ordraining point rapidly and with a minimumexpense.After completion of the loading or drainingoperations, the cap with gasket (cod. 8392/A) prevents any leakage.For particular customer’s requirements,the 7020/20 flare blind nut with combined8580/2 copper flare gasket may replace the 8392/A cap.This solution requires to screw the nut with atorque wrench at 8,5 ÷ 11,5 Nm.For system using R410A refrigerant, Castel hasdeveloped three specific access fittings with5/16” SAE-Flare connection (codes 8350/X09,8351/X05 and 8351/X07) that have to beused with the following parts:– valve core, code 8395/A1;– flare blind nut, code 7020/X02;Also this solution requires to screw the nut witha torque wrench at 8,5 ÷ 11,5 Nm.

OPERATION

The valve consists of a body that can havedifferent shapes and sizes, according to thedifferent requirements of the customers. Insidethe valve, the valve core seat is manufacturedaccording to the ARI STANDARD 720:1997.When the internal valve core has been insertedthrough the fitting, by the mounting tool (code8390/A), the fluid flows just acting on the valveneedle.

ACCESS FITTINGS & VALVE CORES

Access fitting with inserted valve core

155

TABLE 1: General Characteristics

Cataloguenumber SAE Flare ODS IDS

m fNPT

Ø[in.]

Ø[in.]

Ø[mm]

Ø[mm]

PS [bar]

L Ch D H

Connections Dimensions [mm]

8350/22 1/4" –

1/4" – – – 26 11 – –

Straight access fittings

8350/X01 1/4" – 6 3/8" – 20 11 – –

1/4" – – – 6 90 11 – –

8350/X09 5/16" 1/4" – – – 27 14 9,4 2,1

8351/2

8351/X04

8351/X05

8351/X07

1/4"

5/16"

6

3/8"

8-10

6

7

6

30

26

27

11

14

– –

8351/X02 1/4" – 5

1/4"

3/8"

8 26 11 – –

8352/22 1/4" – – – – – – 31 11 – –

1/4" –

1/8"

1/4"

3/8"

– – – –

28

33

38

11

14

17

– –

1/4" 1/4" – – – – – 35 17 – –

8354/21

8354/22

8354/23

8362/22

8350/X03

45

156

TABLE 2: General Characteristics

Catalogue number SAE Flare IDS

m fNPT

Ø[in.]

Ø[mm]

PS [bar]

L Ch D H

Connections Dimensions [mm]

Note

1/4" – – – 6

45

43 – – 24

The valve core may beinstalled on each of thetwo 1/4” SAE Flareconnections.

8380/122 1/4" – 1/8" – – 45 – – 24

TEE access fittings

8380/X01

1/4" 1/4" – – – 45

50

49

– – 24

With valve-core openingdevice on femaleconnection.The valve core may beinstalled on each of thetwo 1/4” SAE Flareconnections

The valve core may beinstalled on each of thetwo 1/4” SAE Flareconnections

TEE access fittings with swivel nuts

8380/X06

8380/X08

157

TABLE 3: General Characteristics

Cataloguenumber SAE Flare IDS

m fNPT

Ø[in.]

Ø[mm]

PS [bar]

L Ch D H

Connections Dimensions [mm]

Note

1/4" – 1/8" – –

45

48 – – 50

The valve core may beinstalled on each of thethree 1/4” SAE Flareconnections

1/4" – 1/4" – – 48 – – 50

Cross access fittings

1/4" – – – 6 48 – – 44

8382/1222

1/4" 1/4" – – – 45 50 – – 46

With valve-core openingdevice on femaleconnection.The valve core may beinstalled on each of thethree 1/4” SAE Flareconnections

Cross access fittings with swivel nuts

8382/X04

8382/X02

8382/X03

158

TABLE 4: General Characteristics

Cataloguenumber SAE Flare IDS

m fNPT

Ø[in.]

Ø[mm]

PS [bar]

Lmaxmin Ch D H

Connections Dimensions [mm]TS [°C]

Note

– – – – – – – – 75 – – –8390/A

– 1/4” – – – 35 – –

13

– 13 –

Caps with gasket

8392/A

22 The key needs to removethe valve core.8392/B

Core remover (for all types)

1/4" – – – – –45 2,8 – 5,2 –8580/2

Copper gasket with neck

1/4" – – – – –45

175

– –

30 Four ways

162 30 Three ways9900/X87

Manifolds with access fittings

9900/X47

– – – – –

(1) -40 +100

(2) -30 +90

(4) -40 +100

– – – –

Outside spring.Torque wrench0,4 / 0,8 Nm.(1) - Static pressure: 40[bar](1) - working pressure: 28[bar]

Outside spring.Torque wrench0,4 / 0,5 Nm.(4) - Static pressure: 140[bar](4) -working pressure: 60[bar]

8394/A

Outside spring.Torque wrench0,30 / 0,35 Nm.(2) - Static pressure: 40[bar](2) - working pressure: 28[bar]

8394/B

8395/A1

Spare valve cores

Accessories and spare parts

160

KIT N° ITEM CODE DESCRIPTION SUITABLE FOR PRODUCTS NOTE

ACCESSORIES AND SPARE PARTS FOR SOLENOID VALVES

G9150/R06

9150/R07

9150/R08

9150/R09

9150/R10

9151/R04

9150/R50

9150/R11

9150/R43

008217

008218

008229

004238

200193

009060

008323

200292

004254

008323

200292

200646

004259

008323

200292

009003

004257

004298

008323

004571

200431

004266

004299

008323

004571

009894

004251

004625

008323

004571

009278

009277

004251

004625

008323

200292

004118

004253

004256

004254

004692

008387

008415

008393

004251

008966

004256

004692

Yellow nut for fixing coil

Black screw for fixing coil

O Ring for yellow nut

O Ring under coil

Bracket

Screw

Plunger

Plunger spring

Nut/body O Ring

Plunger

Plunger spring

Diaphragm

Nut/body O Ring

Plunger

Plunger spring

Diaphragm

Cover/body O Ring

Cover/body screws

Plunger

Plunger spring

Diaphragm

Cover/body O Ring

Cover/body screws

Plunger

Plunger spring

Diaphragm

Cover/body O Ring

Cover/body screws

Plunger

Plunger spring

Piston

Piston ring

Cover/body O Ring

Cover/body screws

Plunger

Plunger spring

Diaphragm

Cover/body O Ring

Pilot O Ring

Nut/cover O Ring

Cover/body screws

Piston

Piston ring

Piston spring

Cover/body O Ring

New Pilot O Ring

Old Pilot O Ring

Cover/body screws

All the solenoid valves

All the solenoid valves

All the solenoid valves

All the solenoid valves

N.C. and N.O. solenoid valves type:

1020/..; 1028/..;

1064/..; 1068/..;

1070/4 - /5; 1078/4 - /5 - /M12; 1079/7;

1164/..; 1168/..;

1170/4 - /5; 1178/4 - /5 - /M12; 1512/..;

1522/..; 1132/03 - /04

N.C. solenoid valves type:

1020/..; 1028/..

N.C. solenoid valves type:

1064/..; 1068/..

1098/9; 1099/11

1078/11; 1079/13 - /M42

N.C. solenoid valves type:

1070/4 - /5; 1078/4 - /5 - /M12;

1079/7

N.C. solenoid valves type:

1070/6; 1078/6 - /7; 1079/9

N.C. solenoid valves type:

1090/5 - /6; 1098/5 - /6 - /7; 1099/9

N.C. solenoid valves type:

1050/5 - /6; 1058/5 - /6 - /7; 1059/9

N.C. solenoid valves type:

1078/9; 1079/11

N.C. and N.O. solenoid valves type:

1098/9; 1099/11

1198/9

Diaphragm pilot operated spare

parts for:

1098/9; 1099/11; 1078/11;

1079/13 - /M42

Valves out of stock

Main piston pilot operated

spare parts

161

KIT N° ITEM CODE DESCRIPTION SUITABLE FOR PRODUCTS NOTE

ACCESSORIES AND SPARE PARTS FOR SOLENOID VALVES

9150/R39

9150/R35

9150/R34

9151/R05

9150/R51

9150/R42

9150/R15

9150/R12

9150/R13

9150/R14

008387

008415

008393

004691

008966

004256

004692

N.D.

200646

004259

004238

008757

009003

004257

004254

004238

004298

200286

008757

009894

004251

004254

004238

004625

200286

008757

009278

009277

004251

004254

004238

004625

200286

008757

004118

004253

004256

004254

004238

004692

200286

200581

200292

004242

200581

200292

200520

004244

004298

200581

200292

004617

004625

200581

200292

200552

004246

004242

004309

Piston

Piston ring

Piston spring

Cover/body O Ring

New pilot O Ring

Old pilot O Ring

Cover/body screws

Pre-assembled armature with nuts

Diaphragm

Nut/body O Ring

O Ring under coil

N.O. armature group

Diaphragm

Cover/body O Ring

Nut/body O Ring

O Ring under coil

Cover/body screws

Nut

N.O. armature group

Diaphragm

Cover/body O Ring

Nut/cover O Ring

O Ring under coil

Cover/body screws

Nut

N.O. armature group

Piston

Piston ring

Cover/body O Ring

Nut/cover O Ring

O Ring under coil

Cover/body screws

Nut

N.O. armature group.

Diaphragm

Cover/body O Ring

Pilot O Ring

Nut/cover O Ring

O Ring under coil

Cover/body screws

Nut

Punger

Plunger spring

Nut/body O Ring

Plunger

Plunger spring

Diaphragm

Cover/body O Ring

Cover/body screws

Plunger

Plunger spring

Diaphragm

Cover/body screws

Plunger

Plunger spring

Diaphragm

No 2 pilot O Ring

Nut/cover O Ring

Cover/body screws

N.C. and N.O. solenoid valves type:

1078/11; 1079/13 - /M42

1178/11

N.O. solenoid valves type:

1164/..; 1168/..

1198/9

1178/11

N.O. solenoid valves type:

1170/4- /5; 1178/4 - /5 - /M12

N.O. solenoid valves type:

1190/5 - /6; 1198/5 - /6 - /7

N.O. solenoid valves type:

1150/5 - /6; 1158/5 - /6 - /7

N.O. solenoid valves type:

1178/9

Solenoid valves for different fluids type:

1512/..

Solenoid valves for different fluids type:

1132/03 - /04

Solenoid valves for different fluids type:

1132/06 - /08

Solenoid valves for different fluids type:

1142/010 - /012

Main piston pilot operated

spare parts

Diaphragm pilot operated spare

parts for:

1198/9

1178/11

162

KIT N° ITEM CODE DESCRIPTION SUITABLE FOR PRODUCTS NOTE

ACCESSORIES AND SPARE PARTS FOR CHECK VALVES

9150/R16

9150/R17

9150/R18

9150/R19

9150/R52

9150/R53

9150/R54

9150/R55

003558

001869

004251

004299

003559

000728

004691

004692

003854

000728

008002

004302

003855

001857

004261

004302

003558

001869

008863

004299

003559

000728

009174

004692

003854

000728

009175

004302

003855

001857

009176

004302

Piston

Spring

Cover/body O Ring

Cover/body screws

Piston

Spring

Cover/body O Ring

Cover/body screws

Piston

Spring

Cover/body O Ring

Cover/body screws

Piston

Spring

Cover/body O Ring

Cover/body screws

Piston

Spring

Cover/body gasket

Cover/body screws

Piston

Spring

Cover/body gasket

Cover/body screws

Piston

Spring

Cover/body gasket

Cover/body screws

Piston

Spring

Cover/body gasket

Cover/body screws

Check valves type:

3120/7 - /9 - /M22 - /M28

3140/7 - /9 - /M28

3180/7 - /9 - /M28

Check valves type:

3120/11

3140/11

3180/11

Check valves type:

3120/13 - /M42

3140/13 - /M42

Check valves type:

3120/17

3140/17 - /21 - /25

3160/17; 3180/13 - /M42 - /17

Check valves type:

3122/7 - /9 - /M22 - /M28

3142/7 - /9 - /M28

3182/7 - /9 - /M28

Check valves type:

3122/11

3142/11

3182/11

Check valves type:

3122/13 - /M42

3142/13 - /M42

Check valves type:

3122/17

3142/17 - /21 - /25

3182/13 - /M42 - /17

Valves out of stock

Valves out of stock

Valves out of stock

Valves out of stock

163

KIT N° ITEM CODE DESCRIPTION SUITABLE FOR PRODUCTS NOTE

ACCESSORIES AND SPARE PARTS FOR INDICATORS

9150/R20

9150/R21

003575

007779

004259

004270

007780

004259

Nut

Protection cap

Nut/body O Ring

Pre-assembled nut

Protection cap

Nut/body O Ring

Liquid indicators type:

3610/..; 3620/..; 3640/..; 3650/..

Moisture - liquid indicators type:

3710/..; 3720/..; 3740/..; 3750/..;

3770/..; 3771/..; 3780/..; 3781/..

3610/; 3640/..; 3650/..

out of stock

3710/..; 3740/..; 3750/..;

out of stock

ACCESSORIES AND SPARE PARTS FOR FILTERS

G9150/R05

9150/R57

9150/R58

8354/22

8392/A

8394/B

003319

003322

009406

003324

007677

005535

004592

008336

008304

008305

008307

008403

008345

008344

008303

008306

Access fitting

Cap with gasket

valve core

Spring

Flange gasket

Dehydrating block cover

Dehydrating block bottom

Filtering tube for one block

Mechanical block cover

Mechanical block bottom

Flange gasket

Dehydrating block cover

Dehydrating block bottom

Screw for filtering tube

Filtering tube

Filtering tube

Filtering tube

Mechanical block cover

Mechanical block bottom

Filters with replaceable block type:

4411/..; 4412/..; 4413/..; 4414/..

4421/..; 4423/..; 4424/..

All the filters series 44

Filters with replaceable block type:

4411/..; 4412/..; 4413/..; 4414/..

Filters with replaceable block type:

4411/..A-B; 4412/..A-B; 4413/..A-B;

4414/..A-B

Filters with replaceable block type:

4411/..C

Filters with replaceable block type:

4421/..; 4423/..; 4424/..

Filters with replaceable block type:

4421/..A; 4423/..A; 4424/..A

Filters with replac. block type: 4421/..A

Filters with replac. block type: 4423/..A

Filters with replac. block type: 4424/..A

Filters with replaceable block type:

tipo:4421/..C

164

CHANGEOVER VALVES

9150/R24

9150/R25

004297

004329

004330

004348

000529

000534

000535

001039

3039/44

004260

009036

008281

Gland

Gland seal gaskets

Gland seal gaskets

Washer

Gland

Gland seal gaskets

Gland seal gaskets

Washer

Pair of connetions 1/2"NPT female

Connection/body O Ring

Cap

Cap

Changeover devices 3032/44

- /64 - /66

Changeover valve 3032/108

Changeover valve 3032/44

Changeover valve 3032/64 - /66

HERMETIC VALVES

9150/R23

G9150/R33

003664

000384

000957

000382

007486

000913

004307

004326

Gland

Gland seal gaskets

Gland seal gaskets

Washer

Cap

Spindle

Screw

Spring washer

All the hermetic valves type:

6010/..; 6012/..; 6020/..; 6060/..;

6070/..

Hermetic valves type:

6010/2; 6012/22

Hermetic valves type: 6020/..

6060/..; 6070/..

out of stock

RECEIVER VALVES

9150/R23

9150/R24

9150/R25

003664

000384

000957

000382

007486

000913

001641

004297

004329

004330

004348

009036

001647

000529

000534

000535

001039

008282

001038

Gland

Gland seal gaskets

Gland seal gaskets

Washer

Cap

Spindle

Spindle

Gland

Gland seal gaskets

Gland seal gaskets

Washer

Cap

Spindle

Gland

Gland seal gaskets

Gland seal gaskets

Washer

Cap

Spindle

Receiver valves type:

6110/21 - /22 - /23 - /32 - /33

6120/22 - /23 - /33

6132/..

6140/22 - /23

Receiver valves type:

6110/21 - /22; 6120/22; 6140/22 -

Receiver valves type:

6110/23 - /32 - /33; 6120/23 - /33

Receiver valves type:

6110/43 - /44 - /54

6120/43 - /44 - /54

Receiver valves type:

6110/66

6120/66

BALL SHUT-OFF VALVES

009035

009256

Cap

Cap

Ball shut-off valves 3033/..

Ball shut-off valves 3063/44

KIT N° ITEM CODE DESCRIPTION SUITABLE FOR PRODUCTS NOTE

165

STOP VALVES

9150/R26 000822

000823

000824

007476

Gland

Gland seal gasket

Gland seal gasket

Washer

Stop valves type:

6170/66 - /77

ROTALOCK VALVES

9150/R23 003664

000384

000957

000382

7910/6

7990/6

7910/8

7990/8

Gland

Gland seal gasket

Gland seal gasket

Washer

Steel solder connection

3/4" UNF-16

PTFE gasket for 7910/6

Steel solder connection

1" UNS-16

PTFE gasket for 7910/8

Rotalock valves type:

6310/..

6320/..

To be ordered separately

CAPPED VALVES

9150/R23 003664

000384

000957

000382

007486

002337

005174

007619

007676

Gland

Gland seal gasket

Gland seal gasket

Washer

Cap

Spindle

Nipple/body O Ring

Spindle

Nipple/body O Ring

Capped valves type:

6410/..; 6420/..; 6460/..

Capped valves type:

6410/2 - /3 - /4 - /5

6420/2 - /3 - /M10 - /M12 - /4 - /5

6460/22A.

Capped valves type:

6410/6

6420/M18 - /6 - /M22 - /7

KIT N° ITEM CODE DESCRIPTION SUITABLE FOR PRODUCTS NOTE

166

GLOBE VALVES

9150/R24

9150/R27

9150/R28

9150/R26

9150/R29

9150/R30

004297

004329

004330

004348

001635

004296

007637

004299

004251

008863

007638

004692

004691

009174

000822

000823

000824

007476

001228

000830

004302

007639

008002

009175

007640

004261

009176

Gland

Gland seal gaskets

Gland seal gaskets

Washer

Cap

Cap gasket

Spindle/plate group

Cover/body screws

Cover/body O Ring

Cover/body gasket

Spindle/plate group

Cover/body screws

Cover/body O Ring

Cover/body gasket

Gland

Gland seal gaskets

Gland seal gaskets

Washer

Cap

Cap gasket

Cover/body screws

Spindle/plate group

Cover/body O Ring

Cover/body gasket

Spindle/plate group

Cover/body O Ring

Cover/body gasket

Globe valves type:

(1) 6510/M22 - /7 - /M28 - /9 - /11

6512/M22 - /7 - /M28 - /9 - /11

(1) 6520/7 - /9 - /11

(1) 6530/M22 - /7 - /M28 - /9 - /11

6532/M22 - /7 - /M28 - /9 - /11

Globe valves type:

(1) 6510/M22 - /7 - /M28 - /9

6512/M22 - /7 - /M28 - /9

(1) 6520/7 - /9

(1) 6530/M22 - /7 - /M28 - /9

6532/M22 - /7 - /M28 - /9

Globe valves type:

(1) 6510/M22 - /7 - /M28 - /9

(1) 6520/7 - /9

(1) 6530/M22 - /7 - /M28 - /9

Globe valves type:

6512/M22 - /7 - /M28 - /9

6532/M22 - /7 - /M28 - /9

Globe valves type:

(1) 6510/11; 6512/11

(1) 6520/11; (1) 6530/11;

6532/11

Globe valves type:

(1) 6510/11; (1) 6520/11;

(1) 6530/11

Globe valves type:

6512/11; 6532/11

Globe valves type:

(1) 6510/13 - /M42 - /17

6512/13 - /M42 - /17

(1) 6520/13 - /M42 - /17

(1) 6530/13 - /M42 - /17

6532/13 - /M42 - /17

Globe valves type:

(1) 6510/13 - /M42

6512/13 - /M42

(1) 6520/13 - /M42

Globe valves type:

(1) 6510/13 - /M42

(1) 6520/13 - /M42

Globe valves type:

6512/13 - /M42

Globe valves type:

(1) 6510/17; 6512/17

(1) 6520/17; (1) 6530/13 - /M42 - /17

6532/13 - /M42 - /17

Globe valves type:

(1) 6510/17; (1) 6520/17

(1) 6530/13 - /M42 - /17

Globe valves type:

6512/17

6532/13 - /M42 - /17

(1) Valves out of stock

KIT N° ITEM CODE DESCRIPTION SUITABLE FOR PRODUCTS NOTE

167

BALL VALVES

9150/R46

009055

009750

003752

009036

009751

004296

009037

009752

000530

009038

009753

009754

009207

009208

8394/A

8392/A

Plastic cap

Brass cap

Brass cap gasket

Plastic cap

Brass cap

Brass cap gasket

Plastic cap

Brass cap

Brass cap gasket

Plastic cap

Brass cap

Brass cap gasket

Brass cap

Brass cap gasket

Valve core

Cap with gasket

Ball valves type:

6590/M6 - /2 - /3 - /3A - /M10 -

/M10A - /M12 - /M12A - /4 - /4A

6591/5

6590/M15 - M15A - /5 - /5A - /M18

- /M18A - /6 - /6A

6591/7

Ball valves type:

6590/7 - /7A

6591/M28 - /9

6590/M28 - /M28A - /9 - /9A

6591/11

Ball valves type:

6590/11 - /11A

6591/13 - /M42

6590/13 - /13A - /M42 - /M42A

6591/17

Ball valves type:

6590/17 - /17A

6591/21 - /21A

6591/M64 - /M64A

Ball valves type:

6590/M64A - /21A

6591/24A - /25A

6590/25A

6591/28A - /29A - /33A - /34A

Ball valves with access fitting

COMPRESSOR VALVES

9150/R23 003664

000384

000957

000382

Gland

Gland seal gasket

Gland seal gasket

Washer

Compressor valves type:

6640

Valves out of stock

GAUGE MOUNTING VALVES

9150/R23 003664

000384

000957

000382

Gland

Gland seal gasket

Gland seal gasket

Washer

Gauge mounting valves:

8320/21 - /22

KIT N° ITEM CODE DESCRIPTION SUITABLE FOR PRODUCTS NOTE

168

NOTE