applied math paper 2 marking by n.f. yang

Post on 07-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    1/12

    AL Applied MathematicsPaper II - Marking Scheme

    byN.F. Yang

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    2/12

    Appl ied Mathemat ics (So lu t ions)

    1. (a)( 2)( 3) ( 1)( 3) ( 1)( 2) 3

    ( ) (sin ) (sin ) (sin )(1 2)(1 3) 4 (2 1)(2 3) 2 (3 1)(3 2) 4

    x x x x x xp x

    = + +

    [1M]

    22( 1) (4 2 2) (2 2

    2x x= + + 3) [1M]

    (b)(3)1

    | ( ) ( ) | | ( 1)( 2)( 3) | | ( ) |3!

    p x f x x x x f = where (1,3)

    3

    3

    1| ( 1)( 2)( 3) | | cos |

    6 4 x x x

    4

    = [1M]

    31

    | ( 1)( 2)( 3) | ( )6 6 x x x

    2

    4 2 [1M]3

    2.8 1 2| (2.8) sin( ) | | (2.8 1)(2.8 2)(2.8 3) | ( )( )

    4 6 64 2p

    [1M]

    0.017<

    2. (a) 12

    2dx

    dt t= ,

    2

    1

    2 3

    4d x

    dt t= .

    22 1 1

    12

    4 10 63

    d x dxt t x

    dt dt t t t

    0 + + = + = [1M]

    Hence 1( )x t is a solution of (*).

    (b)u

    xt

    =Q

    2

    1dx u du

    dt t t dt = +

    2 2

    2 3 2

    2 2 1d x u du d u

    dt t t dt t dt

    = + 2

    22

    3 2 2 2

    2 2 1 1( ) 5 ( )

    u du d u u du ut t

    t t dt t dt t t dt t 3( ) 0 + + + + = [2M]

    2

    2

    2 52 5

    u du d u u du ut

    t dt dt t dt t + + + =

    30

    2

    23

    d u dut

    dt dt 0+ = [1M]

    Putdu

    vdt

    = ,

    3dv

    t vdt

    0 + = [1M]

    N.F. Yan g P.1

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    3/12

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    4/12

    (c) For4

    t

    > , 0y = andx satisfies the differential equation u u=& .

    / 4

    u t

    N

    dudt

    u = ,

    giving/ 4

    500 2t

    u e +

    = for 4t

    > .

    v

    u 500 2

    t

    e

    / 4

    500

    [1M+1M]

    4. (a) [1M]1

    2 3

    0(1 ) 1nkx x dx =

    1

    3 3

    0

    1(1 ) (1 ) 1

    3

    nk x d x =

    13 1

    0

    (1 )1

    3 1

    nk x

    n

    + = +

    [1M]3( 1k n= + )

    (b) (i) When k= 6,

    n = 1

    13 5

    0( ) 6( ) E X x x= dx [1M]

    14 7

    0

    6 6

    4 7

    x x =

    914=

    [1M]

    2 2( ) ( ) [ ( )]Var X E X E X =

    1

    4 7

    0

    96( ) ( )

    14 x x dx=

    2 [1M]

    15 8

    0

    6 6 8

    5 8 196

    x x =

    1

    9

    245= [1M]

    N.F. Yan g P.3

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    5/12

    (c) 2 5( ) 6( ) f x x x= 4'( ) 6(2 5 ) f x x x=

    Put '( )f x 0= 3 0.4x = or 0 [1M]3

    "( ) 6(2 20 ) f x x=

    3"( 0.4) 0f < and [1M]"(0) 0f >

    ( )f x attains a maximum at 3 0.4x =

    So the mode is 3 0.4

    5. (a) (3500 [1M]1.96 150,3500 1.96 150) +

    [1M](3206,3794)=

    (b) LetXbe the daily production of factory,2 2~ (6000,150 250 )X N +

    90% confidence interval for the daily production of factory is

    2 2 2(6000 1.645 150 250 ,6000 1.645 150 250 ) + + + 2 [1M]

    (5520.4042 [1M],6479.5958)=

    (c) ( 6500)P X >

    2

    6500 6000(

    150 250P Z

    2)

    = >

    +[1M]

    ( 1.715)P Z= >

    5

    0.5 [0.4564 (0.4573 0.4564)]10

    = +

    [1M]0.0432=

    6. LetXand Ybe the scores of the students in F.6 and F.7 respectively,

    (a) ( 68) ( 68)P X P Y > >

    68 10 68 56

    ( ) (10 6

    P Z P Z

    = > > )

    )

    [1M]

    ( 0.8) ( 2P Z P Z = > >

    (0.5 0.2881)(0.5 0.4772)=

    [1M]0.0048=

    N.F. Yan g P.4

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    6/12

    (b) 2 2~ (4,10 6 ) X Y N +

    (0 6)P X Y< [1M]

    ( )f x is a strictly increasing function.

    (1) 1 (1) 0.3069 0f g=

    ( )f x 0 = has exactly one root in [1, 2]

    i.e. Ehas exactly one root in [1, 2]

    (b) (i) 2( ) 1 sing x x= +

    Since 20 sin 1x , 1 ( )g x 2

    ]

    [1M]

    If ,0 [1,2]x 1 0( ) [1,2]x g x=

    Inductively, 1( ) [1,2r r x g x = r . [1M]

    N.F. Yan g P.6

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    8/12

    (ii) 1 0 0 01

    | | | '( ) | ( ) | |2

    e e g e= [1M]

    2

    2 1 1 1 0

    1 1| | | '( ) | ( ) | | ( ) |

    2 2e e g e e= | [1M]

    Inductively,

    2

    1 2

    1 1 1| | ( ) | | ( ) | | ( ) | |

    2 2 2

    r

    r r re e e L 0e [1M]

    (iii) 01

    lim | | | | lim( ) 02

    n

    nn n

    e e

    = [1M]

    lim | | 0nn

    e

    = i.e. lim nn

    x s

    = . [1M]

    (c)

    N.F. Yan g P.7

    [2M]

    r rx ( )rg x | ( ) |r rg x x

    0 1.3 1.388684405 0.0886844051 1.388684405 1.402569166 0.0138847612 1.402569166 1.404266922 0.0016977563 1.404266922 1.404465509 0.0001985884 1.404465509 1.40448861 2.31004 5105 1.40448861 1.404491295 2.68537 6106 1.404491295 1.404491607

    3.121467

    10

    6 1.404491x = [1M]

    9. (a) Let rt x x=

    [ 1 2 3( ) ( ) (0) ( )h

    h]f t dt h c f h c f c f h

    + + (1) [1M]

    Since (1) is exact for ,( ) 1f t = ( ) 2 f t t = and 4( ) 5 f t t = ,

    (2) [1M]1 2 32 (h

    hdt h h c c c

    = = + + )

    )

    4 )

    (3) [1M]1 32 0 ( 2 2h

    htdt h c h c h

    = = +

    (4) [1M]4 5 41 35 2 (5 5h

    ht dt h h c h c h

    = = +

    By solving, 1 31

    5c c= = , 2

    8

    5c = . [1M]

    [ ]1

    11 1( ) ( ) 8 ( ) ( )5

    r

    r

    x

    r rx

    h

    f x dx f x f x f x

    +

    + + +

    r

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    9/12

    (b) Let , the given formula is reduced tort x x=

    N.F. Yan g P.8

    ] [ ] [21 2 1 20

    ( ) (0) ( ) '(0) '( )h

    f t dt h a f a f h h b f b f h + + + (5) [1M]

    Putting 2 3( ) 1,2 ,3 ,4 f t t t = t

    )

    22 ]

    3

    2 ]

    4

    2 ]

    (6)1 20 (

    h

    dt h h a a= = + (7) [1M]2 22 1

    02 [2 ] [2

    h

    tdt h h a h h b b= = + +

    (8) [1M]4 5 4 220

    5 [5 ] [20h

    t dt h h a h h b h= = +

    (9) [1M]5 6 5 220

    6 [6 ] [30h

    t dt h h a h h b h= = +

    By solving,1

    2

    3a = ,

    2

    1

    3a = ,

    1

    1

    5b = ,

    2

    1

    30b = . [1M]

    1 2

    1 1

    2 1 1 1( ) ( ) ( ) '( ) '( )

    3 3 5 30

    r

    r

    x

    r r r r x

    f x dx h f x f x h f x f x+

    + +

    + +

    (c) 20

    2 1 1 1( ) (0) ( ) '(0) '( )

    3 3 5 30

    h

    f t dt h f f h h f f h

    + +

    If 6( ) f t t = , the error is2 7

    6 6 5

    0

    ( ) (6 )

    3 30 105

    h h ht dt h h + =

    h[1M]

    For any ( )f t ,

    (6 )6

    5

    ( )( ) ( )

    6!

    f f t p t t

    = + , [0, ]h [1M]

    where 5 ( )p t is a polynomial in twith degree 5.

    the error for ( )f t is

    2

    0

    (6) 7 7

    (6)

    2 1 1 1( ) (0) ( ) '(0) '( )

    3 3 5 30

    ( ) ( )6! 105 75600

    h

    f t dt h f f h h f f h

    f h h f

    +

    = =

    [2M]

    Putting ,rt x x=

    1

    72 (

    1 1

    2 1 1 1( ) ( ) ( ) '( ) '( ) (

    3 3 5 30 75600

    r

    r

    x

    r r r r x

    hf x dx h f x f x h f x f x f 6) )

    +

    + +

    = + + +

    [1M]

    for 1r rx x + .7

    (6) ( )75600

    hf for 1r rx x +

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    10/12

    10. (a) Without lost of generality, we assume thatXis the winner, Yis the loser andZis the

    pausing player in the nth match so that

    nx = P(Xis the final victory)

    = P(XwinsZin the (n + 1)th game

    + P(XlossesZin the (n + 1)th game and the loserXwill be the final victory) [1M]

    1

    3 1

    4 4ny += +

    ny = P(Yis the final victory)

    = P(XlossesZin the (n + 1)th game and the pausing player Yin the (n + 1)th game will

    be the final victory) [1M]

    1

    1

    4nz +=

    = P(Zis the final victory)nz

    = P(ZwinsXin the (n + 1)th game and the winnerZwill be the final victory) [1M]

    1

    1

    4nx +=

    (b) (i) Let X, Y and Z be the events thatA,B and Cwins a game respectively.

    Assume thatA is the winner of the first game so that

    1x 3 63 1 3 1 3( ) ( ) ( ) ( )

    4 4 4 4 4= + + +L [1M]

    3

    3

    41

    1 ( )4

    =

    16

    21= [1M]

    (ii) 13 1

    4 4n nx y += +

    2

    3 1 1(

    4 4 4nz += + ) [1M]

    3

    3 1 1( )

    4 16 4nx += +

    3

    3 1

    4 64nx += + [1M]

    N.F. Yan g P.9

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    11/12

    N.F. Yan g P.10

    2(iii) Since 1(4 )n

    n x k k = + , we have

    3

    1 2 1

    3 1(4 ) [ (4 ) ]

    4 64

    nk k k

    ++ == + + 2n

    k i.e. 216

    21k = [1M]

    1

    16

    (4 ) 21

    n

    nx k = +

    Since 116

    21x = 1

    16 164

    21 21k = + i.e. 1 0k = [1M]

    16

    21nx = for . [1M]1n

    Hence 11 1 16

    4 4 21 21n nz x += = =

    4[1M]

    and1

    1 1 4

    4 4 21 21n ny z

    +

    = = =1

    [1M]

    (c) P(Xwill be the final victory)

    = P(Xwins the 1st game and will be the final victory)

    + P(Xloses the 1st game and will be the final victory)

    = 1 13 1 3 16 1 1 4

    4 4 4 21 4 21 84x y+ = + =

    9[1M]

    P(B will be the final victory) = 1 11 3 1 16 3 1 1

    4 4 4 21 4 21 84

    x y+ = + =9

    [1M]

    P(Cwill be the final victory) =16 4

    84 21= [1M]

    11. (a) LetX(in minutes) be the late time,2~ ( , )X N

    ( 0) 0.1003P X < =

    0( ) 0.1003P Z

    < =

    1.280

    = (1) [1M]

    ( 4) 0.1793P X =

    4

    ( ) 0.1793P Z

    =

    40.918

    = (2) [1M]

    By solving (1) and (2), 2.33 = and 1.82 = [1M]

  • 8/6/2019 Applied Math Paper 2 Marking by N.F. Yang

    12/12

    (b) (i)15.3

    1.27512 12

    xx = = = [1M]

    0

    1

    : 2.3

    : 2.3

    H

    H

    3

    3

    =