applied differential calculus lecture 2: second-order...

18
Applied Differential Calculus Lecture 2: Second-order ordinary differential equations Authors: Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin, Roc´ ıo Vega Bachelor’s Degree in Computer Science and Engineering and Dual Bachelor in Computer Science and Engineering and Business Administration. Applied Differential Calculus (OCW-UC3M) Lecture 2 1 / 18

Upload: others

Post on 28-Jan-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Applied Differential CalculusLecture 2: Second-order ordinary differential equations

    Authors:Manuel Carretero, Luis L. Bonilla, Filippo Terragni, Sergei Iakunin,

    Roćıo Vega

    Bachelor’s Degree in Computer Science and Engineering andDual Bachelor in Computer Science and Engineering and Business Administration.

    Applied Differential Calculus (OCW-UC3M) Lecture 2 1 / 18

  • Outline

    Outline

    Linear second order ODEs.

    Variation of parameters.

    Method of undetermined coefficients.

    Reduction of order.

    Supplementary material: Resonance.

    Applied Differential Calculus (OCW-UC3M) Lecture 2 2 / 18

  • Linear second order ODEs

    General properties

    Existence and uniqueness: a(t), b(t), f (t) continuous on interval I .Then for each t0 in I and each set of values of y0, v0, the IVP:

    y ′′ + a(t)y ′ + b(t)y = f (t), y(t0) = y0, y′(t0) = v0,

    has a unique solution y(t) for t ∈ I .Superposition principle for undriven ODE: y1(t), y2(t) are solutions ofthe homogeneous ODE with f (t) = 0. Then y(t) = c1y1(t) + c2y2(t)is also a solution (ci are arbitrary constants).

    For independent solutions yi (t), with Wronskian determinantW (y1, y2) = y1y

    ′2 − y2y ′1 6= 0, y(t) = c1y1(t) + c2y2(t) is the general

    solution. Abel formula: ddtW (y1, y2) = −a(t)W (y1, y2), f (t) = 0.Particular solution yp(t) of the driven ODE gives general solution:y(t) = yp(t) + c1y1(t) + c2y2(t) if y1(t), y2(t) are independentsolutions of the homogeneous ODE.

    Applied Differential Calculus (OCW-UC3M) Lecture 2 3 / 18

  • Linear second order ODEs

    Visualizing solutions: damped spring

    10 5 0 5 10y

    60

    40

    20

    0

    20

    40

    60

    y′ 20 22 24 26 28 30 32 34

    t

    10

    5

    0

    5

    10

    y

    20 22 24 26 28 30 32 34t

    604020

    0204060

    y′

    y ′′ + 0. 4y ′ + 65 = 0, y(20) = 9, y ′(20) = 0

    y

    105

    05

    10

    y ′

    6040

    20020

    4060

    t

    05

    10

    15

    20

    25

    30

    35

    y ′′ + 0. 4y ′ + 65 = 0, y(20) = 9, y ′(20) = 0

    Applied Differential Calculus (OCW-UC3M) Lecture 2 4 / 18

  • Linear second order ODEs

    Visualizing solutions: driven damped spring

    0.2 0.1 0.0 0.1 0.2y

    2

    1

    0

    1

    2

    y′ 0 5 10 15 20

    t

    0.2

    0.1

    0.0

    0.1

    0.2

    y

    0 5 10 15 20t

    2

    1

    0

    1

    2

    y′

    y ′′ + 0. 1y ′ + 64 = sin(8. 6t), y(0) = 0, y ′(0) = 0

    y

    0.20.1

    0.00.1

    0.2

    y ′

    2

    1

    01

    2

    t

    0

    5

    10

    15

    20

    y ′′ + 0. 1y ′ + 64 = sin(8. 6t), y(0) = 0, y ′(0) = 0

    Applied Differential Calculus (OCW-UC3M) Lecture 2 5 / 18

  • Linear second order ODEs

    Visualizing solutions: driven undamped spring

    0.00 6.25 12.50 18.75 25.00t

    0.250

    0.125

    0.000

    0.125

    0.250

    y

    0.00 6.25 12.50 18.75 25.00t

    1.250

    0.625

    0.000

    0.625

    1.250

    y′

    y ′′ + 36y ′ = 3sin(4t), y(0) = 0, y ′(0) = 0

    0.2 0.1 0.0 0.1 0.2y

    1

    0

    1

    y′

    y ′′ + 36y ′ = 3sin(4t), y(0) = 0, y ′(0) = 0

    Applied Differential Calculus (OCW-UC3M) Lecture 2 6 / 18

  • Linear second order ODEs

    Visualizing solutions: vector field undamped spring

    y ′′ + 4y = 0, equivalent to y ′ = v , v ′ = −4y .

    4 2 0 2 4y

    4

    2

    0

    2

    4

    v

    y ′ = v, v ′ = − 4y

    4 2 0 2 4y

    4

    2

    0

    2

    4

    v

    y ′ = v, v ′ = − 4y

    Applied Differential Calculus (OCW-UC3M) Lecture 2 7 / 18

  • Linear second order ODEs

    Visualizing solutions: vector field damped spring

    y ′′ + 0.4y ′ + 65y = 0, equivalent to y ′ = v , v ′ = −65y − 0.4v .

    10 5 0 5 10y

    60

    40

    20

    0

    20

    40

    60

    v

    y ′ = v, v ′ = − 65y− 0. 4v

    10 5 0 5 10y

    60

    40

    20

    0

    20

    40

    60

    v

    y ′ = v, v ′ = − 65y− 0. 4v, y(0) = 8, v(0) = 0

    Applied Differential Calculus (OCW-UC3M) Lecture 2 8 / 18

  • Linear second order ODEs

    Visualizing solutions: saddle point

    y ′′ + y ′ − 2y = 0, equivalent to y ′ = v , v ′ = 2y − v .

    4 2 0 2 4y

    4

    2

    0

    2

    4

    v

    y ′ = v, v ′ = 2y− v

    4 2 0 2 4y

    4

    2

    0

    2

    4

    v

    y ′ = v, v ′ = 2y− v

    Applied Differential Calculus (OCW-UC3M) Lecture 2 9 / 18

  • Variation of parameters

    Variation of parameters

    Inhomogeneous ODE: au′′ + bu′ + cu = F (t).

    u1(t), u2(t) are independent solutions of the homogeneous ODE.

    Particular solution of the inhomogeneous ODE:

    up(t) = −u1(t)∫ tt0

    u2(s)F (s)ds

    a(s)W (u1, u2)(s)+ u2(t)

    ∫ tt0

    u1(s)F (s)ds

    a(s)W (u1, u2)(s),

    where W (u1, u2) = u1u′2 − u2u′1 is the Wronskian determinant.

    General solution is u(t) = up(t) + c1u1(t) + c2u2(t).

    Applied Differential Calculus (OCW-UC3M) Lecture 2 10 / 18

  • Undetermined coefficients

    Method of undetermined coefficients

    F (t) up(t)

    Pn(t) = a0tn + a1t

    n−1 + . . .+ an ts(A0t

    n + A1tn−1 + . . .+ An)

    Pn(t)eαt ts(A0t

    n + A1tn−1 + . . .+ An)e

    αt

    Pn(t)

    {cosβtsinβt

    ts [(A0tn + A1t

    n−1 + . . .+ An) cosβt

    +(B0tn + B1t

    n−1 + . . .+ Bn) sinβt]

    Particular solutions of the ODE au′′ + bu′ + cu = F (t) depending on theform of the source term F (t). Here s is the smallest nonnegative integer(s = 0, 1, or 2) that will ensure that no term in up(t) is a solution of thecorresponding homogeneous equation. Equivalently, for the three cases, sis the number of times 0 is a root of the characteristic equation, α is aroot of the characteristic equation, and iβ is a root of the characteristicequation, respectively.

    Applied Differential Calculus (OCW-UC3M) Lecture 2 11 / 18

  • Reduction of order

    Reduction of order

    Let u1(t) be a solution of a(t)u′′ + b(t)u′ + c(t)u = 0. The substitution

    u(t) = u1(t)v(t) transform the ODE a(t)u′′ + b(t)u′ + c(t)u = F (t) in a

    first-order ODE for v ′:

    a(t)v ′′ +

    [b(t) + 2

    u′1u1

    ]v ′ =

    F (t)

    u1(t).

    Example. u′′ − 1+tt u′ + ut = 0 is solved by u1 = 1 + t. u = (1 + t)v gives:

    (1 + t)v ′′ + 2v ′ − (1 + t)2

    tv ′ = 0 =⇒ v

    ′′

    v ′= 1 +

    1

    t− 2

    1 + t

    or ln v ′ = t + ln t(1+t)2

    =⇒ v ′ = tet(1+t)2

    =⇒ v =∫

    tetdt(1+t)2

    =

    − tet1+t +∫etdt = e

    t

    1+t . Thus u = et is the other independent solution.

    Applied Differential Calculus (OCW-UC3M) Lecture 2 12 / 18

  • Reduction of order

    Nonlinear autonomous ODE

    u′′ + V ′(u) = 0 =⇒ 0 = u′[u′′ + V ′(u)] = ddt

    [u′2

    2+ V (u)].

    Then u′2

    2 + V (u) = C and

    ±∫

    du√2[C − V (u)]

    = t − t0.

    Example: Pendulum : ml θ̈ = −mg sin θ =⇒ 12 θ̇2 + gl (1− cos θ) = C .

    θ

    v

    Applied Differential Calculus (OCW-UC3M) Lecture 2 13 / 18

  • Supplementary material: Resonance

    Linear oscillations and resonance

    Damped pendulum with force −γθ̇ −mgl sin θ:

    θ̈ +γ

    mlθ̇ +

    g

    lsin θ = 0.

    Use sin θ ≈ θ and t = ω0t̃, with ω0 =√

    gl ,

    θ̈ + 2βθ̇ + θ = 0, β =γ

    2m√gl.

    λ2 + 2βλ+ 1 = 0 gives λ = −β ±√β2 − 1.

    β > 1, overdamped pendulum: θ = e−βt(ae√β2−1t + be

    √β2−1t).

    0 ≤ β < 1, underdamped pendulum: θ(t) = ce−βt cos(Ωt + ϕ),Ω =

    √1− β2. Also θ = e−βt(a cos Ωt + b sin Ωt), a + ib = ce iϕ.

    Applied Differential Calculus (OCW-UC3M) Lecture 2 14 / 18

  • Supplementary material: Resonance

    Particular solution: transfer function

    Add periodic forcing term (coefficient can be set equal to 1):

    θ̈ + 2βθ̇ + θ = cosωt.

    For a force e iωt

    θ(t) = Re H(iω)e iωt = Re1

    1− ω2 + 2iβωe iωt ,

    where H(r) = 1/(r2 + 2βr + 1) is the transfer function.

    Amplitude and phase shift of transfer function:

    M(ω) =1√

    (1− ω2)2 + 4β2ω2, ϕ(ω) = − arctan 2βω

    1− ω2.

    If ω < 1, −π < ϕ(ω) < 0. Steady solution is θ(t) = M(ω) cos[ωt + ϕ(ω)].

    Applied Differential Calculus (OCW-UC3M) Lecture 2 15 / 18

  • Supplementary material: Resonance

    Gain and phase shift (Bodé plots)

    Gain M(ω) (ratio of amplitude of response to force amplitude):

    10-1 100 101

    ω

    10-2

    10-1

    100

    101

    M(ω

    )

    10-1 100 101

    ω

    180

    160

    140

    120

    100

    80

    60

    40

    20

    0

    Phase

    shift φ(ω

    ) (i

    n d

    egre

    es)

    Resonance:

    max M(ω) =1

    2β√

    1− β2, ωmax =

    √1− 2β2.

    As β → 0+, M(ω)→ +∞.Applied Differential Calculus (OCW-UC3M) Lecture 2 16 / 18

  • Supplementary material: Resonance

    Resonance

    Spring driven by a periodic forcing term:

    θ̈ + 2βθ̇ + θ = cosωt.

    General solution:

    θ(t) = M(ω) cos[ωt + ϕ(ω)] + ce−βt cos[Ωt + ϕ0], Ω =√

    1− β2

    M(ω) =1√

    (1− ω2)2 + 4β2ω2, ϕ(ω) = − arctan 2βω

    1− ω2.

    Undamped oscillator with θ(0) = θ̇(0) = 0:

    θ(t) =cosωt − cos t

    1− ω2=

    2 sin (1−ω)t21− ω2

    sin(1 + ω)t

    2=⇒ θ ≈ t

    2sin t (ω → 1).

    Applied Differential Calculus (OCW-UC3M) Lecture 2 17 / 18

  • Soft and hard springs

    Soft and hard springs

    my ′′ = −ky ∓ αy3 − cy ′; +: soft spring; -: hard spring.

    V (y) =k

    2my2 ± α

    4my4.

    For c = 0, y′2

    2 + V (y) = E and V (ytp) = E , ytp > 0, give the period

    ±∫ y du√

    2[E − V (u)]= t − t0 =⇒ P = 4

    ∫ ytp0

    du√2[E − V (u)]

    .

    10 5 0 5 10y

    20

    10

    0

    10

    20

    v

    y ′ = v, v ′ = − 10y+ 0. 2y3 − 0. 2v− 9. 8

    10 5 0 5 10y

    20

    10

    0

    10

    20v

    y ′ = v, v ′ = − 10y+ 0. 2y3 − 0. 2v− 9. 8

    Applied Differential Calculus (OCW-UC3M) Lecture 2 18 / 18

    OutlineLinear second order ODEs Variation of parameters Undetermined coefficientsReduction of orderSupplementary material: ResonanceSoft and hard springs