applications of nuclear physics

38
Tony Weidberg Nuclear Physics Lectures 1 Applications of Nuclear Physics Fusion How the sun works Fusion reactor Radioactive dating C dating Rb/Sr age of the Earth

Upload: ronli

Post on 14-Jan-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Applications of Nuclear Physics. Fusion How the sun works Fusion reactor Radioactive dating C dating Rb/Sr  age of the Earth. Fusion in the Sun. Where nuclear physics meets astrophysics and has a big surprise for particle physics. Neutrinos Heavier Elements Up to Fe Beyond Fe - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 1

Applications of Nuclear Physics

• Fusion– How the sun works– Fusion reactor

• Radioactive dating– C dating– Rb/Sr age of the Earth

Page 2: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 2

Fusion in the Sun

• Where nuclear physics meets astrophysics and has a big surprise for particle physics.

• Neutrinos• Heavier Elements

– Up to Fe– Beyond Fe

• Sun by Numbers:L=3.86 1026 WM=1.99 1030 kgR=6.96 108 m

Page 3: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 3

How to power the sun• Try gravity

• Too short!• By elimination must be nuclear fusion.• Energy per particle (nuclei/electron)

• Gives plasma, ionised H and He.

MYrLUt

JR

GMU

3~/

108.3 412

keVM

MUE

S

P 1~)(~

Page 4: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 4

PP Chain

• Very long range weather forecast very cold• But only ~ 10% H atoms converted to He

MeV49.5HeHp)2( 32

21

MeV42.0eHpp)1( e21

MeV86.12ppHeHeHe)3( 42

32

32

MeV02.12ee)4(

MeV55.6)H(E

MeV26.0E

Page 5: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 5

Physics of Nuclear Fusion• All reactions at low energy are suppressed by

Coulomb barrier (cf decay). • Reaction rate: convolution of MB distribution

and barrier penetration (EG= Gamow Energy)

• Problem:) too small to measure! Extrapolated from higher energy or from n scattering.

2

0

2212

42

)exp()0(~)(

c

eZZmcE

E

EE

G

G

Page 6: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 6

Example C

Page 7: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 7

Reaction Rates & Coulomb Barrier• From definition of

• Main contribution around min

)v(vNNR ba

2/3B

1/3G03/2

1/2G

BT)(kEE0

2E

E

Tk

1

dE

)Tk2

mvexp()

Tk

m()

2()v(P

B

22/3

B

2/1

mvdvdEmv2

1E;dv)v(P)v(v)v(v 2

0

E/ETk/E)E(;dE)]E(exp[)E()v(v GB0

Page 8: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 8

Cross Sections and W.I.• Consider first reaction pp chain

• Cross section small even above Coulomb barrier because this is a weak interaction

• Order of magnitude estimate

• At 1 MeV s=36b; tnuclear~10-23s; tdecay~900s

~10-25b• This reaction is the bottleneck explains long time

scales for nuclear fusion to consume all the H in the core of the sun.

MeV42.0eHpp e21

decay

nuclearS t

t~

Page 9: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 9

Heavier Elements• He to Si:

• 8Be unstable! Resonance in C12 enhances rate.• Heavier elements up to Fe

– Photo-disintegration n,p and . These can be absorbed by other nuclei to build up heavier nuclei up to Fe.

• Fe most stable nucleus, how do we make heavier nuclei?

HeSiOO

OCHe

CBeHe

BeHeHe

4281616

16124

1284

844

Page 10: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 10

Fusion Reactors

• Use deuterium + tritium:

– Large energy release– Large cross-section at low energy– Deuterium abundant (0.015% of H).– Breed Tritium in Lithium blanket– .

MeV62.17nHeHH 42

31

21

MeV8.4HeHLin

nHeHMeV46.2Lin42

31

63

42

31

73

Page 11: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 11

Fusion Reactors

• Energy out > Energy in

• Lawson criteria (assume kBT=20 keV).– number density D ions : – Cross-section: – Confinement time for plasma: tc

– Energy released per fusion: Efusion

cfusion2

out tEvE

TkE Bin c1319

inout t)sm10(~E/E

Page 12: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 12

Magnetic Confinement

• Confine plasma with magnetic fields.– Toroidal field: ions spiral around field

lines.– Poloidal fields: focus ions away from

walls.

• Heating:– RF power accelerates electrons– Current pulse causes further heating.

Page 13: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 13

Jet

Page 14: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 14

Page 15: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 15

Magnetic Confinement Fusion

• JET passed break-even (ie achieved Lawson criteria).

Page 16: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 16

Inertial Confinement Fusion

Very Big Laser

Mirrors

D-T Pellet

Page 17: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 17

Inertial Confinement Fusion

Page 18: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 18

Radioactive Dating

• C14/C12 for organic matter age of dead trees etc.

• Rb/Sr in rocks age of earth.

Page 19: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 19

Carbon Dating

• C14 produced by Cosmic rays (mainly neutrons) at the top of the atmosphere.

• C14 mixes in atmosphere and absorbed by plants/trees constant ratio C14 / C12 . Ratio decreases when plant dies. t1/2=5700 years.

• Either– Rate of C14 radioactive decays– Count C14 atoms in sample by Accelerator Mass

Spectrometer.

• Which is better?• Why won’t this work in the future?

Page 20: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 20

Carbon Dating Calibration

Page 21: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 21

How Old Is The Earth?

• Rb87 Sr87: decay t1/2=4.8 1010 yr

• Assume no initial daughter nuclei get age from ratio of daughter/parent now.

)t(N)t(N)t(N 0p1P1D

)tt(exp()t(N)t(N 010p1P

)t(N

)t(Nln

1t

1p

0p

)t(N

)t(N1ln

1t

1p

1D

Page 22: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 22

Improved Calculation• Allow for initial daughters to be present.• Need another isotope of the daughter D’ which is stable

and not a product of a radioactive decay chain. • Plot vs straight line fit age and initial ratio.

)t(N)t(N)t(N)t(N 0p0D1P1D

)t(N

)t(N

1D

1D

)t(N

)t(N

1D

1P

)t(N

)t(N)t(N

)t(N

)t(N)t(N

0D

0p0D

1D

1P1D

)t(N

)t(N]1)t[exp(

)t(N

)t(N

)t(N

)t(N

0D

0D

1D

1P

1D

1D

Page 23: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 23

Age of Earth

• Rb/Sr method• Stable isotope of

daughter is Sr86

• Fit gives age of earth=4.53 109 years. S

r87/

Sr8

6

Rb87/Sr86

1.0 4.0

Page 24: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 24

Cross-Sections

• Why concept is important– Learn about dynamics of interaction and/or

constituents (cf Feynman’s watches).– Needed for practical calculations.

• Experimental Definition• How to calculate

– Fermi Golden Rule– Breit-Wigner Resonances– QM calculation of Rutherford Scattering

Page 25: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 25

Definition of • a+bx

• Effective area or reaction to occur is

Beam a

dx

Na

Na(0) particles type a/unit time hit target b

Nb atoms b/unit volume

Number /unit area= Nb dx

Probability interaction = Nbdx

dNa=-Na Nb dx

Na(x)=Na(0) exp(-x/) ; =1/(Nb )

Page 26: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 26

Reaction Rates• Na beam particles/unit volume, speed v

• Flux F= Na v

• Rate/target b atom R=F• Thin target x<<: R=(Na

T) F Total

• This is total cross section. Can also define differential cross sections, as a function of reaction product, energy, transverse momentum, angle etc.

• dR(a+bc+d)/dE=(NaT) F d(a+bc+d) /dE

Page 27: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 27

Cross Section Calculations

• Use NRQM to calculate cross sections:

• Calculation (blackboard) gives Breit-Wigner resonance for decay of excited state

nn0nn )/tiEexp()t(a)t(;H

dti

)EE(PH2

)t(a

4/)EE(

H)t(a

nm2

mn2

n

22nm

2mn2

n

4)EE(

1

2)EE(P

22nm

nm

Page 28: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 28

Breit-Wigner Resonance

• Important in atomic, nuclear and particle physics.

• Uncertainty relationship

• Determine lifetimes of states from width.

• t=1/=FWHM;

~tE

Page 29: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 29

Fermi Golden Rule• Decays to a channel i (range of states n).

Density of states ni(E). Assume narrow resonance

dE)EE(P)E(nH2

P 0i2

0ii

)E(nH2

P 0i2

0ii

TotaliiTotali

i RPR;R;P

)E(nH2

R 0i2

0ii

i

Page 30: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 30

Cross Section

• Breit Wigner cross section.

• Definition of and flux F:

v

k4

)2(

V)E(n;v

dk

dE;

m2

)k(E

k4)2(

V)k(n

vVF

)r.kiexp(V

FR

2

3

2

23

1

2/1

Page 31: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 31

Breit-Wigner Cross Section

• Combine rate, flux & density states

4/)EE(

E

)E(n

1

2

1R

)E(nH2)E(

4/)EE(

H)t(aR

2201

f1i

210i

f22

01

201f2

o

4/)EE(

E

2

1

k4V

v)2(

v

V22

01

f1i2

3

Page 32: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 32

Breit-Wigner Cross Section

4/)EE(k 2201

fi2

n + 16O 17O

Page 33: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 33

Low Energy Resonances

• n + Cd total cross section.

• Cross section scales ~ 1/E1/2 at low E.

• B-W: 1/k2 and ~n(E)~k

Page 34: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 34

Rutherford Scattering 1

cosddrrr

)cosiqrexp(2ZZVH

rdr

)r.qiexp(ZZVH

kkq

rd)r.kiexp(r

ZZ)r.kiexp(VH

)r.kiexp(V;)r.kiexp(V

1c;c4

e;

r

ZZ)r(V

221

1fi

321

1fi

fi

3f

21i

1fi

f2/1

fi2/1

i

0

221

Page 35: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 35

Rutherford Scattering 2

2211

fi

22211

fi

211fi

211fi

2221

1fi

q

4ZZVH

q)a/1(

iq2

iq

2ZZVH

iqa/1

1

iqa/1

1

iq

2ZZVH

dr)iqa/1exp(r)iqa/1exp(iq

2ZZVH

a)a/rexp();r(xV

drriqr

)iqrexp()iqrexp(2ZZVH

Page 36: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 36

Rutherford Scattering 3• Use Fermi Golden Rule:

f

2fi dE

dnH

2R

)2/(sinp4)cos1(p2)pp(q

qv)4(

)ZZ(p4

d

d

v

V

)2(v

Vp

Vq

4ZZ2

d

d

vVF;F/R

d)2(v

Vp)E(n

v/1dE

dp;

dE

dp

dp

dn

dE

dn;

4

d

h

Vp4

dp

dn

2222fi

2

422

221

2

3

22

221

1

3

2

32

Page 37: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 37

Low Energy Experiment• Scattering of on Au & Ag agree with calculation

assuming point nucleus

Sin4(/2)

dN

/dco

s

Page 38: Applications of Nuclear Physics

Tony Weidberg Nuclear Physics Lectures 38

Higher Energy

• Deviation from Rutherford scattering at higher energy determine charge distribution in the nucleus.

• Form factors is F.T. of charge distribution.