application of analytical techniques to cosmetics

23
Application of Analytical Techniques to Cosmetics Dr. Joyce Zhao Senior Chemist/Study Director at Jordi Labs Jan. 19 th , 2017

Upload: others

Post on 22-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Application of Analytical Techniques

to Cosmetics

Dr. Joyce ZhaoSenior Chemist/Study Director

at Jordi Labs

Jan. 19th, 2017

Jordi Labs

Jordi Labs: A leader in analytical chemistry

Founded in 1980

Over 1000 projects completed annually

State of the art facilities and instrumentation

80% of staff are degreed chemists (Ph.D., M.S., B.S.)

Cosmetic Analysis

• Identification/Quantification

• Investigative Analyses

• Deformulation/Reformulation

• Purity analysis

• Quality control testing

• Pigment analysis

• Regulatory analysis

Overview

• Deformulation of cosmetics

• Quality control testing

• Pigment analysis

• Regulatory analysis

• Purity analysis

Goals

Techniques

Qualitative and Quantitative Study

through:

• LCMS

QToF-LCMS-UV-CAD

QQQ-LCMS

• FTIR Microscope

• SEM-EDX

• GCMS

QToF-GCMS

Pyrolysis-GCMS (PYMS)

Headspace-GCMS

• GPC, IEC, ICPMS, TGA, DSC, NMR

and many more

Deformulation

Test Article #1: Bar Soap

Analysis Methods:

-LCMS for polar/ionizable compounds: e.g. detergents

-GCMS for non-polar and volatile compounds: e.g. fragrances

-SEM/EDX for elemental composition

-DSC for insight into the material structure.

Sample Preparation: 1 mg/ mL in methanol

Quadrupole Time-of-flight Liquid chromatography–mass spectrometry

(QToF-LCMS):

- Accurate mass analysis for elemental formula determination

- Database searches to correlate mass spectra to know reference compounds

- MS/MS, HPLC-NMR and HPLC-FTIR analysis for structure elucidation

- Verification with authentic reference material for retention time matching

Deformulation

LCMS Results of Soap Sample

RTPositive

m/z

Negative

m/zMass Best Match Score Diff. Possible ID

0.261 124.9913 125.9987 C2H6O4S 98.98 1.452-Hydroxyethanesulfonic

acid

3.366275.0927

270.1380251.0967 252.104

C10 H20 O5

S93.99 -3.25

2-

(Heptylcarbonyloxy)ethanes

ulfonic acid

4.116 279.1275 280.1347C12 H24 O5

S97.05 -1.03

2-

(Nonylcarbonyloxy)ethanesu

lfonic acid

4.516331.1534

326.1980307.1594 308.1667

C14 H28 O5

S92.35 -3.1

2-Lauroxyethanesulfonic

acid

4.698326.2006

331.1565275.1695 276.1767

C14 H28 O3

S93.99 -2.92

1-Tetradecene-1-sulfonic

acid

4.870359.1869

354.2314335.1904 336.1976

C16 H32 O5

S94.91 -1.77

2-Myristoxyethanesulfonic

acid

4.946 199.1709 200.1773 C12H24O2 97.72 -2.31 Lauric acid

4.988 303.2007 304.2072C16 H32 O3

S97.06 0.19

1-Hexadecene-1-sulfonic

acid

5.111387.2173

382.2620363.2223 364.2296

C18 H36 O5

S93.01 -3.42

2-Palmitoxyethanesulfonic

acid

5.243415.2501

410.2944391.2534 392.2607

C20 H40 O5

S93.85 -2.82

2-Stearoxyethanesulfonic

acid

5.444 255.2339 256.2402 C16H32O2 95.49 -3.81 Palmitic acid

5.477 281.2495 282.2568 C18 H34 O2 95.68 -3.19 2-Octadecenoic acid

5.593 283.2654 284.2726 C18 H36 O2 93.99 -3.77 Stearic acid

6.147561.4852

556.5301538.4961 C34H66O4 99.84 0.21 Ethylene palmitate

6.153661.5387

656.5830638.5485 C39H74O6 96.69 -1.52 Trilaurin

6.219589.560

584.5603566.5274 C36H70O4 98.53 1.36

2-(Palmitoyloxy)ethyl

stearate

6.219689.5685

684.6128666.5798 C41H78O6 96.96 1.19

2,3-

Bis(dodecanoyloxy)propyl

myristate

Identification of compounds in positive and negative

modes:

Results: Detection of detergents

Deformulation

Quantitation of each compound:

• Detector: • UV/Vis

• CAD (charged aerosol detector)

• Quantitation method:

• Formal quantitation compares the

observed signal for each

compound against a calibration

curve made using the same

compound.

• Relative quantitation utilizes

internal standards of different

chemistry from the target analyte to

estimate the concentration of the

target molecule.

7

Deformulation

Quadrupole Time-of-flight Gas Chromatography Mass Spectrometry

(QToF-GCMS)

Sample Preparation: 1 mg/ mL in methanol

Results: Detection of esters - known artificial fruit and flower fragrance

RT Possible ID CAS Molecular

Formula

14.429 Dodecanoic acid, methyl ester 111-82-0 C13H26O2

15.991 Tridecanoic acid, 12-methyl-,

methyl ester

5129-58-

8

C15H30O2

17.395 Hexadecanoic acid, methyl

ester

112-39-0 C17H34O2

18.678 Methyl stearate 112-61-8 C19H38O2

8

Deformulation

Scanning Electron Microscopy with X-

ray microanalysis (SEM-EDX)

Elemental Composition of Area 1

Element Weight % Mole %

Carbon 52.85 63.24

Oxygen 31.75 28.52

Sodium 7.65 4.78

Sulfur 7.36 3.30

Chlorine 0.40 0.16

Differential scanning calorimetry

(DSC)

Summary of Soap Deformulation:

9

Other analysis:

-IEC: Concentration of soluble ions: NO3-/NO2

-; ClO2-/ClO3

-

-ICPMS: Concentration of elements: scans 69 elements

-FTIR: Bulk Chemistry

Deformulation

Analysis Method Results

LCMS Detection of aliphatic sulfonic acids - detergents

GCMS Detection of esters - known artificial fruit and flower

fragrance

SEM/EDX Detection of C, O, Na, S and Cl

DSC Sample is consistent with a mixture of compounds

10

Deformulation

Test Article #2: Rose

Analysis Method: Dynamic Headspace Gas Chromatography

Mass Spectrometry (DHSGCMS)

Summary of Red Rose Analysis

Possible ID CAS Comment

α-pinene 7785-70-8 pine odor

β-pinene 18172-67-3 pine odor

Limonene 138-86-3 citrus

Phenyl ethyl alcohol 60-12-8 floral odor

Acetic acid phenylethylester 103-45-7 floral odor

3-hexene-1-ol-acetate 3681-71-8sharp fruity-

green

Vinyl anisole - sweet odor

Caryophyllene 87-44-5 spicy odor

1-ethenyl-4-methoxybenzene 637-69-4 floral odor

3,5-Dimethoxytoluene 4179-19-5 floral odor

1,3,5-trimethoxybenzene 621-23-8 floral odor

Theaspirane 36431-72-8 herbal odor

α,β-Dihydro-β-ionone 17283-81-7 floral odor

Results: 3,5-dimethoxy-toluene as the most abundant component

11

Brand Name vs. Generic

Test Articles #3: Designer Perfume and Imitation Product

Analysis Method: Thermogravimetric Analysis (TGA)

Solvent

Evaporation and thermal

degradation of the

fragrance components

Results: The Designer sample was found to contain larger fragrance content, and

correspondingly a lower amount of ethanol.

12

Analysis Method: Desorption Mass Spectroscopy (DMS) and Gas

Chromatography - Flame Ionization Detector (GC-FID)

Brand Name vs. Generic

X indicates that a particular compound was detected in the sample.

Results: The Designer sample was found to contain some additional fragrance

components and a UV-B absorber.

Qualitycontrol testing

13

•Comparison of soap Lot #1004 and Lot #1007: GCMS and LCMS

Results: The two lots have good reproducibility

14

Purity

Test Article #4: A bar soap with visible crystals blooming to the surface

Analysis Method:

-Fourier transform infrared spectroscopy (FTIR) : identify the general

class of the material

15

Crystal from Soap

Sodium Gluconate Standard

Soap Blank

FTIR Peaks and Identifications

IR Frequency (cm-1)Possible

Functional Group

Possible Source

3541, 3430, 3308, 3165 O-H stretch Sodium gluconate

2969, 2925, 2866 Aliphatic C-H stretch Sodium gluconate

1609 C=O stretch Sodium gluconate

1472, 1443, 1407 C-H bend Sodium gluconate

1308, 1281 C-H rock Sodium gluconate

1093, 1064, 1035 C-O stretch Sodium gluconate

950 O-H bend Sodium gluconate

733 (COO)- rock Sodium gluconate

Purity

Sodium gluconate: a chelating reagent

Results: The crystals in the soap are consistent with sodium gluconate

16

Pigment Analysis

Test Articles #5: A matte brown eye

shadow and a glitter brown eye

shadow

Analysis Method:

-SEM/EDX: elemental composition

Matte eye shadow

Glitter eye shadow

17

Pigment Analysis

• Matte brown eye shadow

Element Weight % Atomic %

C 7.26 12.11

O 49.26 61.70

Na 0.17 0.15

Mg 3.85 3.17

Al 7.20 5.35

Si 12.99 9.27

K 3.15 1.61

Ca 0.57 0.28

Ti 12.85 5.38

Cr 0.70 0.27

Fe 2.01 0.72

Element Weight % Atomic %

C 17.73 27.05

O 46.31 53.04

Na 0.09 0.07

Mg 5.49 4.14

Al 3.49 2.37

Si 11.84 7.73

K 1.61 0.75

Ca 1.55 0.71

Ti 3.79 1.45

Cr 1.30 0.46

Fe 6.80 2.23

Element Weight % Atomic %

C 15.24 23.83

O 45.73 53.66

Mg 5.47 4.23

Al 5.02 3.49

Si 13.23 8.84

K 2.14 1.03

Ca 0.50 0.24

Ti 7.15 2.80

Cr 1.44 0.52

Fe 4.06 1.37

Area 3

Area 4

Area 5

18

Pigment Analysis

• Glitter brown eye shadow

Element Weight % Atomic %

C 8.20 16.85

O 30.66 47.30

Na 2.48 2.67

Mg 0.46 0.47

Al 2.07 1.90

Si 24.87 21.85

Cl 0.34 0.24

Ag 26.63 6.09

Ca 4.28 2.64

Element Weight %Atomic %

C 71.93 77.75

O 26.55 21.55

Si 1.52 0.70

Element Weight % Atomic %

C 13.47 20.83

O 49.66 57.66

Na 0.21 0.17

Mg 0.53 0.40

Al 10.87 7.49

Si 13.50 8.93

K 3.53 1.68

Ti 1.89 0.73

Fe 6.34 2.11

Area 1

Area 2

Area 3

• Target Compound: Cocamide DEA

–The International Agency for Research on Cancer (IARC) lists cocamide DEA as an IARC

Group 2B carcinogen.

–In June 2012, the California Office of Environmental Health Hazard Assessment added

cocamide DEA to the California Proposition 65 (1986) list of chemicals known to cause

cancer.

• Test articles #6: 3 Shampoos

• Analysis Method: QToF-LCMS

19

Regulatory Analysis

• Compound Tested: Positive ion MW (C16H33NO3+ ) = 288.2533

• Targeted Analysis by Extracted Ion Chromatograms (EICs) :

• Results: Cocamide DEA found in Blue Shampoo:

20

Regulatory Analysis

• Target Compounds: Primary Aromatic Amines (PAAs)

–Toxic effects of many PAAs are linked to bladder cancer, adverse effects on red cells, and

skin sensitization.

–For these reasons, EU Cosmetic Regulations (EC) No. 1223/2009, many PAAs are

prohibited for use in cosmetic products

21

Regulatory Analysis

22

Peak ID Amine CAS RT Precursor Ion (m/z)Product Ion

(m/z)R2

1 o-Anisidine 90-04-0 3.340 124.1 109.1 0.986

2 o-Toluidine 95-53-4 3.690 108.1 91.0 0.984

3 o-Tolidine 119-93-7 5.537 213.1 180.0 0.989

4 3,3'-Dimethoxybenzidine 119-90-4 5.582 245.3 187.0 0.989

5 2-Methoxy-5-methylaniline 120-71-8 5.629 138.1 123.4 0.983

6 3,3'-Dimethyl-4,4'-diaminodiphenylmethane 838-88-0 5.777 227.2 120.0 0.983

7 4-4’-Thiodianiline 139-65-1 6.941 217.1 123.9 0.985

8 2-Naphthylamine 91-59-8 7.189 144.1 127.0 0.985

9 4-Aminobiphenyl 92-67-1 9.053 170.1 152.0 0.983

IS Rhodamine B 81-88-9 11.712 443.2 399.1 N.A.

10 3-3’-Dichlorobenzidine 91-94-1 12.075 254.0 154.0 0.983

11 4-Aminoazobenzene 60-09-3 12.257 198.1 77.0 0.979

12 4-4’-Methylene-bis-2-chloroaniline 101-14-4 12.387 268.1 232.0 0.954

13 o-Amino-azo-toluene 97-56-3 13.955 226.3 91.0 0.982

Regulatory Analysis

• Analysis Method: Triple Quadrupole LCMS (QqQ-LCMS)

• Sample Preparation: The PAA mixture was diluted to 0.1 ng/mL to 1 ng/mL to construct

calibration curves

• Results: ppt level detection and quantitaions of PAAs

• Product deformulation through qualitative and quantitative analysis;

• Testing for batch-to-batch reproducibility, inconsistent performance, and other

product problems;

• Determination the root cause of product failures;

• Inspection of pigments compositions;

• Analysis of product for regulatory requirements.

23

Summary

Combine the power of all techniques, analytical chemistry could provide:

Questions?