appendix:thecassiniorbiter,behindthescenes(operations engineer). right column: adrian hitchman...

23
Appendix: The Cassini Orbiter, Behind the Scenes In the pages that follow are pictures of Cassini orbiter operations personnel, beginning with those working at Caltech’s Jet Propulsion Laboratory (JPL) (Cassini’s Mission Operations Center), and then moving to pictures of operations personnel at each of the sites based outside of JPL where individual science instrument operations take place. The people depicted herein represent a subset of all of the people who have been part of the Cassini-Huygens Mission, from developing it as a candidate planetary-exploration mission in the early 1980s, to eventually being responsible for its design, construction, launch and flight. It is hoped that the knowledge exposited within this book will represent a small token of appreciation for the prodigious efforts of all of the people that have been involved with the Cassini-Huygens Mission. It is they who have made Cassini-Huygens a shining success, and their tireless efforts will continue to bear important scientific and cultural fruit far into the future. 1 The Cassini Mission Operations Center at Caltech’s Jet Propulsion Laboratory 1.1 The Cassini Program-Office Management, Resource Management, Mission Planning, and Outreach Teams Fig. 1 Row 1, left to right: M. Pao, J. Jones, C. Martinez, R. Pappalardo, S. Chatterjee, R. Zimmerman-Brachman, K. Chan; Row 2, left to right: G. Yee, D. Matson, C. Vetter, J. Nelson, E. Manor-Chapman, S. Payan; Row 3, left to right: K. Munsell, L. Spilker, A. Wessen, R. Woodall, V. Barlow, S. McConnell; Row 4: J. Smith, D. Bradford, R. Mitchell, D. Seal 783

Upload: others

Post on 08-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Appendix: The Cassini Orbiter, Behind the Scenes

In the pages that follow are pictures of Cassini orbiter operations personnel, beginning with those working at Caltech’s JetPropulsion Laboratory (JPL) (Cassini’s Mission Operations Center), and then moving to pictures of operations personnel ateach of the sites based outside of JPL where individual science instrument operations take place.

The people depicted herein represent a subset of all of the people who have been part of the Cassini-Huygens Mission,from developing it as a candidate planetary-exploration mission in the early 1980s, to eventually being responsible for itsdesign, construction, launch and flight. It is hoped that the knowledge exposited within this book will represent a small tokenof appreciation for the prodigious efforts of all of the people that have been involved with the Cassini-Huygens Mission. Itis they who have made Cassini-Huygens a shining success, and their tireless efforts will continue to bear important scientificand cultural fruit far into the future.

1 The Cassini Mission Operations Center at Caltech’s Jet Propulsion Laboratory

1.1 The Cassini Program-Office Management, Resource Management, Mission Planning,and Outreach Teams

Fig. 1 Row 1, left to right: M. Pao, J. Jones, C. Martinez, R. Pappalardo, S. Chatterjee, R. Zimmerman-Brachman, K. Chan; Row 2, left to right:G. Yee, D. Matson, C. Vetter, J. Nelson, E. Manor-Chapman, S. Payan; Row 3, left to right: K. Munsell, L. Spilker, A. Wessen, R. Woodall,V. Barlow, S. McConnell; Row 4: J. Smith, D. Bradford, R. Mitchell, D. Seal

783

Page 2: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

784 Appendix: The Cassini Orbiter, Behind the Scenes

1.2 The Cassini Navigation Team

Fig. 2 Row 1, left to right: E. Gist, I. Roundhill, J. Pojman, P. Antreasian, J. Frautnick, D. Vaughan; Row 2, left to right: M. Wang, R. Ionacescu,P. Thompson, J. Costello, S. Wagner, P. Williams; Row 3, left to right: K. Criddle, J. Jones, C. Ballard, F. Pelletier, B. Buffington, S. Gillam,S. Nolet; Row 4: V. Legerton, D. Roth, R. Jacobson, T. Goodson, P. Stumpf; Row 5, left to right: N. Strange, M. Wong, B. Stavert

1.3 The Cassini Mission Support Services Office

Fig. 3 Row 1, left to right: O. Castillo, N. Patel, V. Trinh, T. Fujii, B. Wilson, M. Carranza, M. Rubio; Row 2, left to right: V. Villa, J. Ibanez,C. Wong, P. Smith, R. Aguilar, D. Coppedge, J. Kesterson; Row 3, left to right: R. Jobsky, C Lush, G. Eller, M. Weisenfelder, B. Elgin, D. Doan;Row 4, left to right: B. Mogensen, D. Doody, L. Mellinger, G. Chin

Page 3: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Appendix: The Cassini Orbiter, Behind the Scenes 785

1.4 The Cassini Science Planning Team

Fig. 4 Row 1, left to right: J. Pitesky, K. Steadman, A. Aguinaldo, R. Lopes, N. Vandermey, A. Hendrix, S. Edgington; Row 2, left to right:B. Larsen, L. Cheng, R. Lange, T. Ray, K. Grazier, B. Paczkowski, M. Burton, N. Kelly

1.5 The Cassini Instrument Operations Team (1)

Fig. 5 Row 1, left to right: E. Martinez, J. Yoshimizu, C. To, P. Lee; Row 2, left to right: P. Andres, S. Linick, P. Callahan, H. Mortensen,D. Fleishman; Row 3: A. Culver, O. Harrison, C. Acton

Page 4: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

786 Appendix: The Cassini Orbiter, Behind the Scenes

1.6 The Cassini Instrument Operations Team (2)

Fig. 6 Row 1, left to right: L. Ly-Hollins, K. Kelleher, Y. Anderson; Row 2, left to right: A. Stevenson, B. Brooks, A. Tinio, R. Boehmer,P. Meegyeong; Row 3, left to right: C. Cordell, J. Gerhard, A. Anabtawi, E. Barbinis, M. Roy; Row 4, left to right: F. Loaiza, C. Avis, F. Leader,D. Kahan, S. Asmar, R. West

1.7 The Cassini Science and Uplink Office

Fig. 7 Row 1, left to right: K. Weld, N. Rouse, C. Chouinard, B. Landry, K. Yetter, D. Tong; Row 2, left to right: R. Espinueva, J. Boyer, S. Goo,J. Berkeley, S. Chatterjee, L. Nakamura; Row 3, left to right: K. Magee, D. Conner, S. Javidnia, W. Heventhal, J. Carter, J. Krueger

Page 5: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Appendix: The Cassini Orbiter, Behind the Scenes 787

1.8 The Cassini Spacecraft Operations Office

Fig. 8 Row 1, left to right: R. Lin, L. Burke, K. Garcia, E. Wang, S. Adamiak; Row 2, left to right: J. Webster, K. Herman, P. Meakin, R. Lim,P. Morgan, M. Luna, J. Brown, A. Lee; Row 3, left to right: A. Ging, J. Wertz-Chen, C. Lee, T. Burke, M. Pellegrin, C. Mittelsteadt, S. Sarani,J. Millard, D. Beach; Row 4, left to right: C. Kirby, D. Bates, F. Chrisney, D. Morgan, R. Jurenko

1.9 The Cassini Spacecraft Operations Team

Fig. 9 Row 1, left to right: G. Yang, R. Somawardhana, N. Grenander, C. Huynh, R. Mukai; Row 2, left to right: P. Yoder, C. Sagoian,K. Baddarudin, A. Thomas, R. Weaver; Row 3, left to right: L. Christodoulou, T. Barber, T. Zorn, S. Clark

Page 6: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

788 Appendix: The Cassini Orbiter, Behind the Scenes

2 The Cassini Plasma Spectrometer (CAPS) Operations Group

Fig. 10 The CAPS Operations Group. Left to right: Frank Crary, Prachet Mokashi, Greg Ferris and Judith Furman

3 The Cosmic Dust Analyzer (CDA) Operations Group

Fig. 11 The CDA Operations Group: From left to right: S. Hsu (bottom), G. Matt, S. Helfert (top), G. Linkert, S. Kempf (top), D. Linkert, R. Srama(bottom), F. Postberg, E. Grün, G. Moragas-Klostermeyer (bottom), U. Beckmann

Page 7: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Appendix: The Cassini Orbiter, Behind the Scenes 789

4 The Composite Infrared Spectrometer (CIRS) Operations Group

Fig. 12 The CIRS Operations Group. Left to right, at Goddard Spaceflight Center: N. Gorius, G. Bjoraker, M. Segura, C. Nixon, D. Jennings,S. Albright, R. Achterberg, J. Pearl, A. Simon-Miller, A. Mamoutkine, E. Guandique, C. Anderson, J. Brasunas, R. Carlson, M. Kaelberer,J. Tingley; not pictured: V. Kunde and P. Romani; at the Jet Propulsion Laboratory: S. Edgington, S. Brooks, C. Roumeliotis; at the Observatoirede Paris-Meudon: E. Lellouch; at Oxford University, United Kingdom: S. Calcutt and N. Bowles

5 The Ion and Neutral Mass Spectrometer (INMS) Operations Group

Fig. 13 The INMS Operations Group: Back row, left to right: David Gell (Analysis), Rob Thorpe (Ground System). Front row, left to right: GregFletcher (Operations team Lead), Aimee Cardenes (Operations Engineer), June Dunkelburger (Operations Engineer)

Page 8: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

790 Appendix: The Cassini Orbiter, Behind the Scenes

6 The Imaging Science Subsystem (ISS) Group

Fig. 14 The ISS Group. Left to right: Joe Spitale, Andre Brahic, Josh Riley, Robert Jacobson, Joseph Veverka, Andrew Ingersoll, Joe Ferrier,Tilmann Denk, Doug Dawson, Michael Evans, Gerhard Neukum (front), Ben Knowles (back), Thomas Roatsch (middle), Torrence Johnson(back), Henry “Luke” Dones, Carolyn Porco, Peter Thomas, Carl Murray, Sebastien Charnoz, Joseph Burns, Elizabeth “Zibi” Turtle, John Weiss,Emma Birath, Jason Perry, Preston Dyches, Daren Wilson, Paul Helfenstein, Ashwin Vasavada, Anthony DelGenio, Matthew Tiscareno, MichaelBelanger

Fig. 15 Individuals not included in the photo above. Top row, left to right: Emily Baker, Kevin Beurle (deceased), Bobby DiDia, Daiana DiNino;Bottom row, left to right: Pauline Helfenstein, Nicole Martin, Joe Mason

Page 9: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Appendix: The Cassini Orbiter, Behind the Scenes 791

7 The Magnetospheric Imaging Instrument (MIMI) Operations Group

Fig. 16 The MIMI Operations Group. Left to right: Jon Vandegriff, Analysis and Display Software Engineer; John Aiello, Science PlanningEngineer; David LaVallee, Operations Team Lead (uplink); Martha Kusterer, Downlink Lead Engineer, INCA Display Software Engineer; LindaBurke, Operations Team Engineer (uplink and downlink); Scott Turner, INCA, SPICE, Science Planning Tool, and Command Automation SoftwareEngineer; Stuart Nylund, Operations Team Engineer (uplink)

8 The Cassini Magnetometer (MAG) Operations Group

Fig. 17 The MAG Operations Group: Top row, left to right: Steve Kellock (Instrument Manager), Nick Achilleos (Operations Engineer), Leah Al-concel (Operations Engineer). Bottom row, left to right: Charlotte Dunford (Archive Engineer), Tim Seears (Operations Engineer), Peter Slootweg(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer).All personnel except JW and LL are current and former associates of Imperial College London. JW is associated with the Jet Propulsion Laboratoryand LL with University of California, Los Angeles

Page 10: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

792 Appendix: The Cassini Orbiter, Behind the Scenes

9 The Cassini RADAR Operations Group

Fig. 18 The RADAR Operations Group: Front row, left to right: Young Gym, Alice Le Gall, Yanhua Anderson, Kathleen Kelleher. Back row, leftto right: Richard West, Mike Janssen, Bill Johnson, Phil Callahan, Bryan Stiles, Gary Hamilton

10 The Radio and Plasma Wave Science (RPWS) Operations Group

Fig. 19 The RPWS Operations Group. Front row: Robert Johnson, Terry Averkamp, Don Kirchner, George Hospodarsky; Back row: Bill Kurth,Bill Robison, Larry Granroth, Jessica Swanner, Ann Persoon, Chris Piker

Page 11: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Appendix: The Cassini Orbiter, Behind the Scenes 793

11 The Radio Science Subsystem (RSS) Operations Group

Fig. 20 The RSS Operations Group. From left to right: Sami Asmar (supervisor), John Klose, Elias Barbinis, Aseel Anabtawi (technical lead),Daniel Kahan, Don Fleischman

12 The Ultraviolet Imaging Spectrometer (UVIS) Operations Group

Fig. 21 The UVIS Operations Group. From left to right: Michelle Kelly, Darren Osborne, David Judd, Alain Jouchoux, Heather Buck, CrystalSalcido, and John Donnelly

Page 12: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

794 Appendix: The Cassini Orbiter, Behind the Scenes

13 The Visual and Infrared Mapping Spectrometer (VIMS) Operations Group

Fig. 22 The VIMS Operations Group. From left to right: Dyer Lytle, Virginia Pasek, John Ivens, Bob Watson and Dan Moynihan

Page 13: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Index

AAbsortive occultation(s), 182Abundance, 83–86, 88–98, 100–104, 106, 107Acceleration, 344, 350, 353, 354, 356, 357, 359–361, 364, 365, 369,

370Accretion, 425, 433, 442, 445–449, 537, 538, 541, 542, 544, 545, 547,

548, 552–557, 559–562, 564, 566, 568Accretional heating, 589–590Acetylene (C2H2/, 92, 94, 97, 100, 101, 103, 107, 122, 130, 131, 153,

182, 183, 186, 337ACS. See Advanced camera for surveysActivity

endogenic, 641, 642, 647geologic, 638, 657tectonic, 640, 669, 672volcanic, 640

Adhesion, 416, 435, 451Adiabatic acceleration

adiabatic energization, 311butterfly distributions, 311, 312invariants, 310isotropic invariant, 312pancake/trapped distribution shapes, 311phase space density (PSD), 311–313pitch angle distribution shapes, 311, 312

Advanced camera for surveys (ACS), 335, 337Aerosol(s), 85, 86, 90, 92, 96, 97, 104, 107, 161–178Aerosol structure

Earth-based telescopes, 17–19pioneer/voyager era measurements, 16–17

Aggregate formation, 447Aggregate particles, 460, 484, 496, 497, 500AKR. See Auroral kilometric radiation26Al, 61, 70, 71Albedo (geometric), 660, 683, 697, 700, 704–706, 716Albedo-wind relationship, 138Alfvén wings, 289Alkali halide, 90Amalthea, 63, 64Ammonia (NH3/, 11–12, 88, 89, 92, 95–98, 106, 107, 653–658,

664–667, 672, 673, 688, 690, 692, 703, 704, 711, 716Ammonia hydrate, 667Ammonia ice, 162–166, 175, 178Ammonium hydrosulfide (NH4SH), 88, 96, 97, 162, 163Ammonium salt, 95–97Amorphization, 660Amorphous carbon, 486

Amorphous ice, 476, 497Angular momentum, 414, 425, 430, 435, 436, 438, 439, 443–445, 449Annular rings, 136Anthe, 523, 532, 53340Ar, 690, 695, 713, 717A rings, 375–381, 383–387, 391–399, 401–403, 473, 474, 478–486,

489, 492, 496, 501, 502Arsine (AsH3/, 10, 13–14, 89, 90, 92, 106Asteroid belt, 57, 59, 64Atlas, 381, 386, 399, 438, 448Atmosphere and auroral emission

infrared observations, 27–29ultraviolet observations, 26–27

Atmospheric dynamics, 23–25, 749–751Aurora, 98, 99, 104, 106, 228, 242, 264, 275, 333–335, 337–341, 343,

345–353, 360–369Auroral arc, 336, 340, 341, 346, 347, 361Auroral chemistry, 104, 106Auroral current systems, 335Auroral electrons, 337, 353Auroral energy, 337–338Auroral field lines, 334, 344–346, 351, 357Auroral footprint, 334Auroral hiss detection, 322Auroral kilometric radiation, 333Auroral morphology, 335–336Auroral oval, 334–336, 338, 339, 340, 346, 348, 351, 352, 358, 360,

364, 365, 367, 369, 370Auroral/polar ionosphere, 29Auroral power, 349, 350, 369Azimuthal brightness variation, 426, 429

BBallistic transport, 430, 435Barnard gap, 397Beaming, 343–346, 366, 369Bending waves, 377–380, 387, 388, 392, 398, 401, 407, 436, 446Benzene (C6H6/, 14, 92, 94, 98, 100, 106, 107Bessel gap, 397Bimodal optical depth variations, 434Binary encounters, 421, 422Birkeland current, 353Birkeland current systems, 298Boltzmann equation, 418Bond gap, 400Bound water, 655, 658, 672Bow shock, 204, 237, 238, 242–246

795

Page 14: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

796 Index

Branching ratio, 98, 99, 104, 107Brightness asymmetry, 428, 429, 438, 443, 452B ring core, 462, 463, 496B rings, 375, 377, 381, 383, 384, 386–397, 399–401, 407, 408, 471,

474, 476–492, 494, 496–498, 502, 503, 511, 512, 514, 518–521,533

Broadband electromagnetic noise, 353Bulk densities, 62–64Bulk viscosity, 420, 421, 432, 445Butterfly distributions, 311

CCalcium aluminum inclusions (CAIs), 56, 64, 70, 71Callisto, 61, 63, 64, 66, 68–70Capture probability, 448Carbon, 62, 65–67, 83, 86–89, 94, 95, 97, 106Carbon dioxide (CO2/, 94, 95, 100, 104, 105, 651, 652, 654–656, 672,

684, 688, 703, 704, 708, 710, 711, 715, 718Carbon monoxide (CO), 10, 13–14, 89, 94–96, 99, 100, 104, 105, 106Cartographic mapping

high-resolution atlases, 766–768, 771–776ISS images, 766–775Saturnian satellites, 764–766south polar region, 779VIMS data, 770–779

Cassini division, 375–381, 386, 392, 394–401, 407, 408, 436, 438,463–465, 468, 470–472, 474, 476–482, 485, 488, 489, 493, 494,496, 497, 502, 518, 654, 655, 672

Cassini dust analyzer (CDA), 246Cassini Equinox mission, 154, 369Cassini Extended mission

Equinox mission design, 726–727Equinox mission science objectives, 727–729Equinox mission trajectory, 732–740operational and safety constraints, 729–730spacecraft subsystems, 725tour design and development process, 730–732

Cassini/Huygens, 55, 62, 68, 69Cassini-Huygens mission

atmospheric composition, 748–749atmospheric dynamics, 23–25, 749–751clouds and aerosols, 16–19composition, 10–16exploration, 756–757icy satellites, 41–46interior, 16, 746–747low-density giant planets, 747–748magnetosphere, 752–753planetary magnetic field and magnetosphere, 29–36ring system, 36–41, 753–755Solar system, 755–756temperature, 19–23

Cassini magnetometer (MAG), 218, 228, 243, 246Cassini plasma spectrometer (CAPS), 214–221, 231, 232, 235–243,

245, 247, 260–262, 270, 273, 274Cassini Solstice mission, 154Catastrophic disruption, 625–626Centaurs and ecliptic comets, 615Centrifugal acceleration mechanism, 315–316Centrifugal interchange instability

Cassini orbits, 301, 302“injection/dispersion” signatures, 300–301magnetic equatorial plane, 298, 300potential energy, 300Rice Convection Model (RCM) simulation, 302, 303ring current impoundment, 300

C2H2. See Acetylene (C2H2/

C2H4. See Ethylene (C2H4/

Chaotic particle motion, 439Chapman-Ferraro current, 211Charged dust, 511, 519, 521Charge exchange, 193, 197, 355, 370Charon, 63, 66, 68CH3D/CH4 ratio measurements, 14–15Chemical lifetime, 194Chemistry, 83–107Chorus emissions, 322–323Chromophore, 107CIR. See Corotating interaction regions (CIRs)Circulation, 94, 99, 103, 104, 107Circumplanetary disk, 60–62Circumplanetary nebula, 499Circumstellar disk, 58, 60CIRS. See Composite infrared spectrometer (CIRS)Clathrate, 688, 699, 704, 713, 715, 717Closed field line, 335, 348, 360, 361, 363–370Cloud(s), 83, 84, 86–88, 91, 96, 97, 103, 106, 107, 161–178Cloud decks

ammonia, 115, 118ammonium hydrosulfide, 118water, 118

Cloud microphysical models, 162Cloud particle properties, 163, 164, 166Clouds and aerosols

Earth-based telescopes, 17–19pioneer/voyager era measurements, 16–17

Cloud top levelinfrared (5 micron), 122near-infrared/visible, 119, 122ultraviolet, 121

Cloud vertical structure, 168Clustering, 418CMI. See Cyclotron maser instability (CMI)Coagulation, 418, 419, 452Coefficient of restitution, 414–417, 422, 424, 428, 447, 448, 450Cohesion, 417Cohesive force, 417, 447Collision, 539–543, 545, 546, 549, 556, 558, 559, 561–563, 565–567,

569, 570Collisional cascade, 548, 557Collisional cooling, 420, 440Collisional evolution, 67, 540, 563, 568, 570Collision frequency, 414, 418, 423, 430, 441, 442, 445Collision integrals, 416, 418, 419Colombo gap, 399Column density, 189Cometary chronology, 618Cometary impact, 94, 95, 106, 107Comet-like interactions, 288–289Comets, 58, 63, 64, 621–626Compaction state, 661Composite infrared spectrometer (CIRS), 85–91, 93–95, 97, 100–102,

104, 106, 107, 116, 119, 123, 124, 126–135, 139, 141–143, 145,146, 152, 153, 339, 639, 640, 663

Composition, 83–107ionosphere, 193upper atmosphere, 181–182

Compositional maps, VIMS datadata processing, 770–771Dione, 771, 776, 777Enceladus, 776, 778–779Rhea, 776–778

Page 15: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Index 797

Compton-Getting effect, 264Condensate, 65–68Condensate clouds, 162, 169Condensation, 83, 92, 94, 96–98, 560–562, 569, 650, 703, 713–715,

717Condensation levels, 118–120, 137–139, 144, 152–154Condensible, 83, 88Conduction, heat transfer, 590Contamination, 663–668, 672, 673Continuum filter, 121Convection, 90

evolution of, 594–595heat transfer, 590–593onset of, 593–594

Convective cloudsdiscrete, 137, 140dragon storm, 137, 138great white spot, 137–140

Cooling rates, 191Co-orbital satellites, 438Core nucleated accretion model, 57Coriolis acceleration, 189, 302Coriolis force(s), 447Coronal mass ejection (CME), 273Corotating interactions regions (CIRs), 273, 274, 334, 365Corotating plasma, 335Corotation, 189, 257–261, 267–270, 274, 336, 338, 348, 360, 361,

363–365, 370, 435Corotation resonance(s), 444Cosmic dust analyzer (CDA), 514, 524–528, 530, 532, 533Cosmic rays, 655Cosmic recycling, 538, 544–545, 548, 570Cratering chronology, 618–619Craters, 683, 684, 686, 693, 694, 696–699, 701, 703, 705, 718Crater statistics and interpretation

Enceladus, Tethys, Dione and Rhea, 629Gyr, 628–629Hyperion and Phoebe, 630R-plot, 626–627size-frequency distribution (SFD), 627–630

C rings, 375–377, 381, 386–389, 394–402, 407, 408, 462–464, 468,470, 471, 476–482, 485–490, 492, 494, 496, 497, 502, 503

Cryovolcanism/cryovolcanic, 70, 683–720Crystalline ice, 476, 477, 498Crystallization, 660Cryvolcanic eruption, 650Current generation

curvature vector, 316force balance, Jupiter and Saturn, 317–318gradient and curvature drifts, 316ring current, 317

Cusp, 336, 340, 349, 360, 366, 367, 369Cyclotron maser instability (CMI), 342, 345

DDamping scale, 438Daphnis, 377, 381, 382, 408, 440–442, 448Dark material, 639, 640, 652–659, 663, 664, 666–668, 672, 673Dawes gap, 400Dawn, 191, 192, 194, 195Dayglow, 182, 185Deep atmosphere, 114, 117–120Deformation radius, 119, 135, 148, 149Density(ies), 55, 57, 60–70, 639, 640, 642–644, 650, 657, 660, 663,

664, 666, 671, 673

Density profilesatomic hydrogen, 182, 185, 190, 197electron, 181, 185, 191–195, 197, 199ion, 189–191, 194–197, 199molecular hydrogen, 199

Density waves, 375, 377–383, 386, 387, 390, 392, 393, 396–399, 401,407, 429, 430, 435–439, 452

Deuterium, 88, 106Diacetylene (C4H2/, 14, 92, 94, 98, 100, 101, 107Diamagnetic current, 316Dichotomy, 640, 656–658, 666, 667, 673Dielectric constant, 667Differential rotation, 423Differentiation, 686Diffuse aurora, 336, 369Diffuse rings, 511–533, 538, 539, 568–570Diffusion instability, 430, 433Diffusive separation, 181Dione, 4–5, 44, 69, 523, 524, 526, 528–530, 686, 691, 692, 716, 720

ISS basemaps, 766, 768, 772, 775thermal evolution and internal structure, 604–605VIMS composition map, 771, 776, 777

Diphosphine, 162, 163, 178Direction-finding, 346Discrete aurora, 361, 363, 369Dispersion relation, 431, 432, 437, 438, 452Disruption, 446, 448, 449Dissipative collisions, 413, 414, 417, 420Dissociative recombination, 195Diurnal variation, 192, 194–196, 199D ring, 511, 514–518, 533Dst index, 228Dungey cycle, 205, 207, 208, 247, 258, 267, 268, 273, 274, 361–363,

365, 366, 370Dungey process, 258Dusk, 191, 192, 194Dust, 684, 705, 707, 711, 716, 717, 720Dust streams, 511, 512, 530–532Dynamical ephemeral bodies, 446, 541, 556Dynamical regime, 114Dynamic pressure, 421Dynamics, 83, 86, 88, 103, 107Dynamic viscosity, 417, 418

EEarth-orbiting spacecraft, 9–10Eccentricity, 643Eddy diffusion, 96, 99, 100, 186Eddy momentum flux, 127, 137–139, 147, 152, 153Ejecta, 435Electromagnetic cyclotron waves (EMIC), 314Electron collisions, 193Electron cyclotron frequency, 343, 354Electron cyclotron harmonic (ECH) emissions, 319–321Electron-impact excitation, 339Electron-induced processes, 288Electron-neutral collisions, 286ENAs. See Energetic neutral atoms (ENAs)Enceladus, 42–43, 64, 65, 69–71, 511, 514, 523–533

ISS basemaps, 766–767, 773VIMS composition map, 776, 778–779

Enceladus flybys, 733Enceladus orbiter, 720Enceladus plume, 538, 570Enceladus torus, 287, 288

Page 16: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

798 Index

Encke gap, 376, 377, 381, 382, 385, 395, 396, 399, 408, 429, 436, 438,440, 441, 443, 464, 470, 472, 480

Energetic neutral atoms (ENAs), 3, 36–37, 222, 224, 225, 227–229,235, 260, 264, 267–270, 272, 273, 286, 287, 342, 350, 357

Energetic particles, 222, 223, 225, 227, 229–231, 235, 241, 244, 246electron counting rates, 33–34energy intervals, 32–33equatorial field stress calculations, 34–35phase-space density, 34–35radial dependences, 32–34spectrograms, 32–33

Energy balance, 188–191Energy cascade, 139, 148, 149Enskog factor, 419Enskog’s theory, 418Epics, ISS images, 766, 770Epicyclic frequency, 423, 436Epicyclic length, 415Epimetheus, 375, 377, 381, 386, 390, 392, 393, 396, 397, 407, 436,

438, 443, 452, 523, 532Equation of state, 419, 420Equatorial ridge, 640, 642, 644, 648, 649, 670Equilibrium condensation, 64–68Equinox and Solstice missions, 7Equinox mission, 684–686

Bi-and mono-propellant profile, 740–741Cassini end-of-mission, 742–743design overview, 726–727icy satellite objectives, 728magnetosphere, 728ring, 728–729Saturn, 729seasonal declination, 741trajectory, 732–740

Equipartition, 418, 421, 450, 451E ring, 511, 512, 514, 521, 523–532, 683–684, 688, 704–706, 711,

712, 715–717, 719Eris, 63, 66Erosion, 435, 449Escape speed, 422Ethane (C2H6/, 14–15, 89, 92–94, 98–104, 106, 107, 122, 125,

130–132, 134, 153, 337Ethylene (C2H4/, 92, 94, 98, 100, 101, 107, 183, 186Evander, 642, 672Evaporation, 713–715Excess variance, 446Extraordinary (R-X) mode, 345

FFar Ultraviolet Spectroscopic Explorer (FUSE), 337Fast Fourier transform, 438Fast rotators, 451Field-aligned current (FACs), 335, 351, 353, 354, 357, 358, 360–367Field-aligned potentials, 345, 357Flow shear, 348, 364, 366Flux tube interchange, 208, 237Flyby, Phoebe, 757Focusing, 418Formation, 83, 84, 88, 89, 90, 96–98, 106Fourier’s law, 420Fragmentation, 418, 419, 445, 448, 449, 452Frequency–time spectrogram

dynamic injection event, 319–321high planetary latitude, 319, 320Saturn’s equatorial plane, 319, 320

Friction, 416, 418, 419, 445, 447, 448, 450, 451

F ring, 375–377, 396, 401–406, 408F-ring clumps, 554, 566–568F-ring spiral, 568F-ring strands, 567, 568FUSE. See Far Ultraviolet Spectroscopic Explorer (FUSE)

GGalilean satellites, 64, 70Ganymede, 63, 64, 68, 69Gap formation, 60, 62Gas instability model, 57, 58Gas-kinetics, 419Geometric thickness, 416, 417, 422, 429Germane (GeH4/, 10, 13–14, 89, 90, 92, 95–98, 106Geyser, 645, 651, 660Giant planets, 55–62, 64, 65, 68, 70Global evolution

Iapetus, 601–603icy satellite, 599–600lithosphere, 600–601shape, 601

Global MHD models, 237Graben, 639, 641, 645, 647, 648, 669, 670Gradient drift, 350Granular flow(s), 420Granular temperature, 419, 420Gravitational accretion, 425, 447, 448Gravitational encounters, 418, 422, 440Gravitational instability, 421, 554Gravitational potential, 420Gravitational stirring, 421Gravitational torques, 425, 443Gravitational viscosity, 421, 425–427, 435Gravitational wakes, 460, 472, 473Gravity field and shape, 75–76Gravity waves, 195, 199Great White Spot (GWS), 24–25G ring, 511–514, 521–524, 532, 533Ground state, 181, 182, 193, 196

HH, 181, 184, 185, 191, 193H+, 185, 193, 195, 196H2, 181–186, 193–197, 199H2+, 195H3+, 188, 189, 192–193Hapke theory, 484Hard spheres, 419Haze, 86, 90, 91, 96, 97, 100, 106

particle properties, 127vertical structure, 168

He, 181–183, 193Heat flow, 419Heat flux, 420Heating rate, 190Heat sources

radioactivity, 585–586tidal heating, 586–588

Heat transport, 686, 690, 691, 713, 714Heavy elements, 84Helium (He), 10–11, 83–86, 99, 106Helium partitioning problem, 79–80Hematite, 655, 656, 672Herschel, 638, 642, 645, 665, 668, 671Herschel gap, 396Hexagon, 115, 134, 141–144

Page 17: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Index 799

Hexagonal wave structure, 24Hill approximation, 446Hill potential, 447Hill radius, 421, 446Hill scale, 440Hill sphere, 59, 61, 404, 442, 447, 448History, 10H3 + molecular ion, 27–28H2O, 182, 185, 194, 196Homopause, 83, 99, 100, 107, 181, 183–188, 198Hopf bifurcation, 431HST. See Hubble Space Telescope (HST)Hubble Space Telescope (HST), 23–24, 114–116, 122, 123, 127–129,

136–138, 141, 145, 268, 274, 275, 333–337, 339, 340, 343,346–349, 351, 358, 359, 361, 363, 365–368

Huygens gap, 395, 396, 518Hydrocarbon haze, 162–164Hydrocarbons, 14–15, 84, 92–95, 97–107, 184, 185, 187, 193, 334Hydrodynamic equations, 419Hydrogen (H2/, 10–12, 84–91, 95, 97–99, 104–106, 655, 660, 661Hydrogen corona, 185Hydrogen escape, 190Hydrogen peroxide (H2O2), 703Hydrogen (D/H) ratio, 15–16Hydrostatic, 69, 182–184, 188Hyperion, 44–45Hypervelocity impacts, 435

IIapetus, 4, 45, 61, 62, 64, 67, 68, 70, 71, 397

global evolution, 601–603ISS basemaps, 766, 769, 772

Ice-II, 63Ice III, 63Icy satellites, 4–5

Ansa-to-Ansa occultations (T62–T68), 738–739cartography, 763–779comets, 621–626cratering chronology, 618–619dimensions, densities and rotational properties, 41Dione, 44dynamical evolution, 598–603Enceladus, 42–43Equinox mission science objectives, 728geology, 42heat sources, 585–590heat transfer, 590–595heavy bombardments, 617–618Hyperion, 44–45Iapetus, 45impactor populations, 615–617laboratory data, 605–606Mimas orbits, 42Mimas, Tethys and Dione, 604–605modeling, 606Phoebe, 603–604physics and scaling laws, 619–621porosity effect, 596processes, 606Rhea, 44rock thermal conductivity, 595–596satellite properties, 579–585small satellites, 45–46space, 605statistics and interpretation, 626–630structural evolution, 596–598

surface compositions and optical properties, 41–42Tethys, 43–44thermal conductivity, 595voyager color image, 42–43voyager era, 613–615

I/F. See ReflectivityImaging Science Subsystem (ISS), 116, 117, 119, 121–125, 127–130,

137–139, 143–146, 152, 339, 639, 640, 657, 658, 663, 667–671Imaging science subsystem (ISS), 763–779IMF. See Interplanetary magnetic field (IMF)Impact basins, 59, 70, 71Impact bombardment, 642Impact cratering and age determination

comets, 621–626cratering chronology, 618–619heavy bombardments, 617–618impactor populations, 615–617physics and scaling laws, 619–621statistics and interpretation, 626–630voyager era, 613–615

Impact cratersbright ray crater, 640, 669, 671central pit craters, 642complex craters, 642ejecta, 640, 642, 666, 669, 671

Impact frequency, 421Impacts, 517, 521, 524, 525, 527–530, 532INCA. See Ion and Neutral Camera (INCA)Incompressibility, 420Inertial-acoustic wave, 432Infrared (IR), 333, 338–341, 352, 364, 369, 370Infrared auroral observations, 27–29Infrared space observatory (ISO), 87–90, 92, 94, 100, 101Infrared telescope facility (IRTF), 338Inhomogeneous cloud structure, 19Injection, 259–261Injection energization, 315–316Injection events, 222, 228, 230, 231, 238, 239, 335Instability

Arnol’d II, 134, 135baroclinic, 125, 138, 139, 141, 142, 145, 147, 149, 150, 152, 153barotropic, 125, 134, 140–143, 148Charney-Stern, 149convective, 117

Interchange, 365Internal heat source, 114, 118, 136International ultraviolet explorer (IUE), 26Interplanetary magnetic field (IMF), 204, 242, 243, 246, 305, 336, 348,

349, 363, 365–367Ion and neutral camera (INCA), 260, 261, 269, 270, 273, 340, 351,

353–356Ion and neutral mass spectrometer (INMS), 215, 219Ion conics, 353, 355, 357, 358Ion cyclotron waves, 344Ion drag, 189, 190Ion–neutral collisions, 286Ionosphere, 257, 262, 267, 268, 270, 271, 275

equatorial, 191, 192polar, 189

Ionospheric conductivity, 204, 240Ion phase space holes, 344Ion pickup, 237IR. See Infrared (IR)IR aurora, 338–339Irregular satellites, 59, 66ISO/SWS spectrum, 11

Page 18: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

800 Index

Isothermal, 420, 430Isotopic ratios, 15–16ISS. See Imaging Science Subsystem (ISS)ISS basemaps, 766

Dione, 766, 768, 772, 775Enceladus, 766–767, 773Epics, 766, 770Iapetus, 766, 769, 772Mimas, 766–767Phoebe, 766, 770, 771Rhea, 766, 769Tethys, 766, 768, 774

Ithaca Chasma, 638, 645, 646, 649, 669, 670

JJanus, 375, 377, 381, 383, 386, 390–393, 396, 397, 401, 407, 436, 438,

443, 452, 523, 532Jeffreys gaps, 394, 396Jets

eastward, 115, 122–124, 126, 127, 132, 134, 136–145, 152, 154equatorial, 115–118, 123, 124, 127, 128, 140, 147, 149–151, 153westward, 116, 117, 122–125, 134, 136, 137, 139, 146, 150, 152

Joule heating, 189, 191, 197Julian–Toomre wakes, 423Juno, 275Jupiter, 79–80

KKa-band, 462, 463Keeler gaps, 375, 377, 381–382, 408, 440, 452, 464, 470, 472, 523Kepler speed, 421KiloRayleigh, 334, 336, 337, 365Kinematic viscosity, 414, 417, 426Kinetic equation, 418, 419Kinetic theory, 418–419, 421Kuiper Belt Objects (KOBs), 63, 615–616Kzz, 186

LLagrangian points, 447Langrangian orbits, 639Laplace gaps, 396, 397, 518Lapse rate, 118, 119, 137, 139, 140Late Heavy Bombardment (LHB), 56, 59, 70, 71, 547, 563, 566, 570Libration, 444Life, 717–719Lightning, 136–140Lindblad resonance(s), 376, 377, 379, 381, 382, 391, 395, 401, 436,

443–445Liouville’s theorem, 418Lithosphere, 642, 672Local thermodynamic equilibrium (LTE), 181Local viscosity, 414, 417, 418, 425, 426, 428, 433Loss-cone distribution, 345L-shell, 640Lyman continuum, 336Lyman series, 336

MMAG. See Magnetometer (MAG)Magnetic field

earth, 204equatorial, 204, 207Gauss coefficients, 209, 210induced, 289, 293intrinsic, 203, 209–211Jupiter, 207

Magnetic field perturbations, 292Magnetic flux transport, 208Magnetodisk, 263, 266, 272, 273, 274Magnetometer (MAG), 348Magnetopause, 204, 205, 207, 208, 211–213, 219, 221, 222, 226, 228,

230, 231, 234, 237, 238, 242, 247–248, 257, 260, 264, 265,267–269, 274, 336, 347, 351, 361–363, 365, 368, 370

compressibility, 247–248shape, 248standoff distance, 228, 230, 247

Magnetopause reconnectiondayside magnetopause, 305interplanetary magnetic field (IMF), 305pre-Cassini study, 306–307proxy estimation, Earth, 306

Magnetosheath, 246Magnetosphere, 3, 6, 333, 335, 342, 343, 347–350, 352, 353, 360–370

corotation breakdown, 204, 207, 208corotation lag, 204current sheet, 206, 212, 213, 226Earth, 213Equinox mission science objectives, 728hinging distance, 212Jupiter, 211plasma environment, 31–32, 36–37plasma sheet, 212, 220, 231–234

Magnetosphere–ionosphere (M–I) coupling, 297–298Magnetospheric and plasma science group (MAPS), 737Magnetospheric dynamics, 258, 274, 347–351, 361, 365Magnetospheric Imaging Instrument (MIMI), 206, 222–225, 227–231,

235, 243–245, 336, 340, 350, 352, 353, 356Magnetospheric plasma

composition, 220corotation, 12, 31, 33, 34, 38Enceladus source, 220losses, 19source rate, 3, 16, 19, 36, 38sources, 204, 206, 207, 211, 214, 215, 219

Magnetotail, 204, 207, 212, 213, 231, 234–237, 239, 258, 264,267–273, 275, 343, 347, 350, 363, 366

current, 213lobes, 234

Magnitude (opposition), 638Main-belt asteroids, 615Mass flux, 6–7Mass loading interactions

candidate process, 295cryovolcanic plume, 2943D hybrid code, 294draping pattern, magnetic field, 293, 294electric current distribution, 295plasma flow vectors, 294, 295

Mass point, 416Mass transfer, 297Maximum entropy methods, 438Maxwell gap, 399, 518Maxwellian distribution, 290Mean free path, 415–417Meridian line projections, 30Meteoritic bombardment, 657, 659, 673Meteoroid bombardment, 460, 492–497, 537, 543–545, 549–551, 557,

559, 560, 567, 568, 570Meteoroid mass flux, 496, 501Meteoroids, 521, 525, 527, 532Methane (CH4/, 10–11, 85–89, 92, 95–101, 103, 107, 183, 184,

186–188, 337, 358, 688, 710, 711, 715, 718, 719

Page 19: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Index 801

Methane absorption, 164, 168, 172Methane band filters, 121, 128, 137, 143Methone, 523, 532, 533Methylacetylene (CH3C2H), 14, 92, 94, 100, 101Methyl radical (CH3/, 14, 92, 94, 97, 98, 100, 101, 105–107Micrometeorite, 705Micro-meteoroids, 435Microprobe, 758Mimas, 42, 64, 375, 377, 392, 395, 396, 400, 401, 436, 438, 439, 692,

716ISS basemaps, 766–767thermal evolution and internal structure, 604–605

Mimas gap, 304MIMI. See Magnetospheric Imaging Instrument (MIMI)Miscellaneous acceleration mechanisms, 316Mixing (atmospheric), 186, 187, 198Models of the general circulation

Boussinesq, 151chemistry-diffusion, 153deep cylinders, 146–1473D general circulation models, 1532D transport models, 153shallow water, 149, 151shallow weather layers, 149two-layer, 149

Molecular conduction, 190, 191Molecular oxygen, radiolytic production, 285–286Moment equations, 419Monolayer, 416, 445Moonlet(s), 436, 439–445, 448–450Moon–magnetosphere interactions

Alfvén wings, 289internal magnetic fields, 289–290Keplerian motion, 290magnetohydrodynamic (MHD) waves, 289mass loading interactions, 293–295physical process, 290plasma absorbing interactions, 290–293plasma flow, 289

Morphology, 640–651, 671Multilayer, 416Multiple scattering, 461, 468, 473, 475, 476, 483, 484, 488, 500Multi ring basins, 642Multi-scale expansion, 432

NNanohematite, 488, 489, 497Narrowband Saturn kilometric radiation (n-SKR), 345Narrowband Saturn myriametric radiation (n-SMR), 345Nearly isotropic comets (NICs), 625Negative ions, 5Neukum lunar chronology, 618Neutral loadings, 287Neutral scattering, 288Newtonian, 420, 432, 435Nice model, 56–59, 62, 67, 70Nice model chronology, 619Nitrogen (N2/, 684, 688, 710, 711, 715, 716, 720Nitrogen ions, 206, 219Non-local viscosity, 433Non-Newtonian, 421, 435North polar spot, 115, 136, 141–143n-SKR. See Narrowband Saturn kilometric radiation (n-SKR)n-SMR. See Narrowband Saturn myriametric radiation (n-SMR)

OOblateness, 444Obliquity, 129Occultation, 84–87, 93, 94, 98–101, 106, 107, 684, 685, 707–710, 712,

717, 720Ocean, 686–689, 692, 693, 704, 715, 718, 719Odysseus, 638, 642, 645, 646, 650, 651, 669OH, 684, 716, 717Open-closed field line boundary, 360, 363–367, 369, 370Open field line, 347, 360, 363–366Opposition effect, 484, 501–503Optical constants, 653, 661Optical depth (Ë), 163, 165, 167–171, 174, 414, 417, 418, 421–423,

425, 427–439, 441, 442, 445, 450, 451, 511–514, 516, 518, 520,529

Orbital eccentricity, 588Orbital evolution, 686, 692, 693, 719Orbital period, 643Orbiter, 757–758Ordinary mode, 345, 346Organics, 459, 476, 486–488, 497–500, 656, 660, 672Organic tholins, 486, 498Oxygen, 15, 83, 84, 88, 94–96, 100, 101, 104–107, 655, 656, 660

PPallene, 523, 532Pan, 377, 381, 382, 396, 398, 408, 440–442, 448, 449Pandora, 377, 381, 386, 387, 391, 392, 396, 398, 402–404, 436, 439,

443, 452Pan wakes, 440, 441Para fraction, 86, 91Para-hydrogen fraction, 127Particles

composition, 163–165scattering phase function, 165, 166single scattering albedo, 170, 172

Particle spin, 419, 445, 449–451Pedersen current, 362–364Periodicity, 258, 261–264, 266Phase-mixing, 439Phase space density (PSD), 311–313Phoebe, 45, 55, 63, 65, 66, 68

ISS basemaps, 766, 770, 771thermal evolution and internal structure, 603–604

Phosphine (PH3/, 13, 89–91, 95–98, 106, 107, 122, 127Photochemical haze, 161, 164Photochemical model, 186, 187, 198Photochemistry, 14–15, 83, 84, 90, 96–101, 104–107Photodissociation, 493Photoelectrons, 193, 196, 197Photolysis, 90–92, 97–100, 107, 493, 658, 661Photosputtering, 492Physics and scaling laws, 619–621Pickup acceleration

electron and ion plasma distributions, 314, 315Jupiter’s inner magnetosphere, 313pickup energization, 314

Pickup energization, 286Pioneer, 55, 64, 334Pioneer 11 observations, 209, 211, 221, 228, 246, 248Planetary magnetic field, 29–31Planetary magnetospheres, 296, 297Planetary migration, 57–59Planetesimals, 57–62, 65, 67, 446Plasma absorbing interactions

cold plasma response, 290–291

Page 20: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

802 Index

energetic particle response, 292–293magnetic field response, 291–292Rhea’s gravity, 293

Plasma absorptionmacrosignatures, 223microsignatures, 223, 224

Plasma diffusion, 221Plasma drag, 449Plasma transport, 238, 241Plasma waves, 37–38Plasmoid, 207, 208, 235, 236, 258, 268, 270–273Plume, 639, 640, 650, 651, 656, 660, 663, 673, 684–686, 688, 690,

693, 698–700, 703–720Pluto, 63, 65, 66, 68Poisson’s equation, 420, 422Polar cap, 334, 347, 348, 363, 364, 366Polarization, 639, 663–666Polar stratospheric haze, 2Polycyclic aromatic hydrocarbons (PAHs), 487, 488, 494, 497, 499,

500Porosity, 63, 64, 66Potential vorticity, 118, 128, 133–135, 140, 145, 150, 153Poynting flux, 357Poynting-Robertson drag, 449Precipitating electrons, 337, 358Pressure tensor, 418, 420, 421Probes, 758Production rate, 197Prograde rotation, 450Prometheus, 375, 377, 381, 386, 391, 392, 397, 402–406, 436, 439,

443, 448, 452Propane (C3H8/, 92, 94, 98, 100, 101, 104, 107Propeller(s), 375, 377, 382–386, 403, 429, 436, 440–443, 445, 446,

449, 451Propeller belt, 443Propeller objects, 473–474Protoplanet, 56, 57, 60Protoplanetary disk, 446

RRadar, 116, 119, 120, 140, 154Radau–Darwin relation, 75–76Radial diffusion coefficient, 303, 304Radial diffusion equation, 303Radiation, 660, 661, 672, 673Radiation belts, 221–225Radiation pressure, 511, 518, 519, 529, 533Radiative heating, 177Radiative recombination, 193Radiative time scale, 127Radio and plasma wave science (RPWS), 339, 342–345, 348, 356Radio and plasma wave science (RPWS) instrument, 259, 262, 273Radio and plasma wave spectrometer (RPWS), 206, 215, 216, 218,

221, 241Radio emissions, 339, 341–347, 369Radiogenic heating, 69, 70, 689, 693Radiogenic heat production, 643Radio occultation observations, 181, 188, 191, 196Radio occultations, 462, 466–473, 475, 477, 500Radio science subsystem (RSS), 639Ramps in optical depth, 435Random walk, 440Rayleigh scattering, 166–169, 177, 654–657, 673Reconnection, 264, 267–270, 274, 275, 335, 336, 347, 348, 350,

361–363, 365, 366, 368, 369

magnetopause, 207, 208, 247X-line, 208

Reflectivity, 483, 496, 497, 500Regolith, 417, 418, 429, 442, 447, 659–662, 664–666, 671Regolith grain size, 475, 483–487, 497Regolith radiative transfer, 483–485, 497, 500Regular satellite system, 55, 60, 61, 66Remote sensing, 162Resonance(s), 413, 436–439, 443–445, 449, 452Restitution coefficient, 416, 417, 450Resurfacing, 642, 650, 651Rhea, 4, 44, 69, 70

ISS basemaps, 766, 769VIMS composition map, 776–778

Rhines scale, 148, 149, 153Ribbon, 115, 134, 141, 144, 145Ring atmosphere

composition, 492, 500oxygen, 460, 487, 492–496, 500

Ring color, 474, 480, 481, 483, 487, 497Ring current, 206, 211, 213, 225–231, 234, 239, 248, 264, 267, 268,

273, 274, 340, 351, 355, 360, 363Ring darkening, 542, 544, 545, 548, 560, 570Ring ionosphere, 206Ring many-particle-thick models, 466, 483, 501Ring-moon interactionRing-moons, 436, 440, 442, 474Ring optical depth, 460, 462, 463, 465, 467, 472, 473, 474, 475,

479–481, 486, 494, 496, 502, 503Ring parent body, 498Ring particle albedo, 460, 479, 481–483, 496, 497, 500, 502Ring particle composition, 459–503Ring particle maximum size, 461, 476Ring particle phase function, 461, 475, 484, 497, 500, 502Ring particle regoliths, 478, 483–484, 486, 502Ring particle size, 459–503Ring particle size distribution, 459–503Ring radiative transfer models, 483, 485, 486, 497, 500Ring “red bands,” 480Rings, 55, 62, 64, 66, 69, 71Rings-age, 496, 500, 501, 545, 546, 548, 570Rings and KBOs, 498Rings and satellites, 476, 477, 484, 488–492, 496–500Ring’s density, 541, 544, 548, 552, 554, 555, 558Ring shadows, 194Rings-mass, 460, 474, 495–497, 501, 541–542, 545, 546, 548, 550,

567, 570Rings-origin, 459, 489, 497–499, 538, 539, 547–548, 558, 559,

566–571Rings-parent, 473–474, 489, 497, 498Ring spectrum, 477, 483, 486, 490Ring surface mass densities, 459, 474, 496, 497Rings working group (RWG), 737Ring system

A and B rings, 36–37Cassini-Huygens mission, 753–755C ring, 37–38E, F and G rings, 38Enke and Keeler gaps, 37Equinox mission science objectives, 728–729origin and evolution, 40–41particle size distribution, 38–39ring particle composition, 39–40voyager image, 36–37

Ring temperature, 481–483, 486, 493Ring thickness, 468, 473

Page 21: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Index 803

Ring UV absorber, 460, 476, 478, 480, 481, 486, 488, 497–500Ring UVIS spectra, 479Ring vertical structure, 461, 472, 483Ring VIMS spectra, 476–481, 488Roche division, 375, 511, 517–518, 533Roche ellipsoids, 448Roche limit, 446, 538–542, 553, 555, 556, 558, 559, 563–566Roche zone, 375, 377, 446–449Rock/ice fraction, 64–68Rock-poor models, 599Rock-rich models, 599Rock thermal conductivity, 595–596Rope structure, 440Rossby number, 118, 142, 143, 149Rossby waves, 115, 128, 131, 134, 135, 140, 142, 143, 148, 150Rotation, 686, 690

modulation, 261–267period, 117–118, 135, 141, 154state and equations, 76–78

Rotational degrees of freedom, 418Rotational energy, 419Rotational levels, 182, 185Rotational modulation, 341, 348Rotational period, 639Roughness, 661–663, 673RPWS. See Radio and plasma wave science (RPWS)Rubble piles, 541, 565Russell gaps, 394

SSample return, 720Satellite accretion, 60–62Satellite migration, 23Satellite properties

density, 579, 581gravitational field, 588–590physical and dynamical properties, 579–580porosity, 581–582Rhea’s gravitational field, 583–585rock composition, 583size and shape, 579, 581volatile composition, 582–583

Satellite system, 7Saturn

atmosphere, 2, 5–6detailed evolutionary models, 79–80evolution, 78–79interior, 16, 75–80ring system, 3–4, 6–7, 36–41system prior, 1–2

Saturn electrostatic discharges (SEDs), 137, 192Saturn Equinox (T52–T62), 738Saturn Equinox Mission (SEM), 275Saturnian rings (E-, F-), 638, 639, 650, 653–656, 658–660, 663, 664,

666, 668, 670, 672, 673Saturnian satellites

Albiorix, 638Atlas, 652, 653Calypso, 652Dione, 651, 665, 673Enceladus, 645, 649, 650Epimetheus, 638, 652, 653, 672Helene, 638Hyperion, 651, 652, 659Iapetus, 638, 642, 651, 668Janus, 638, 652

Mimas, 638, 651Paaliaq, 638Pan, 638Pandora, 638, 652Phoebe, 638Prometheus, 638, 653Rhea, 638, 669Telesto, 638, 652Tethys, 638Titan, 638

Saturn Kilometric Radiation (SKR), 3, 26, 117, 118, 123, 206, 209,210, 211, 227, 235, 247, 258, 261–265, 267, 269, 273, 274, 333,334, 341, 343, 351, 361

Saturn longitude system (SLS), 263, 264Saturn Orbit Insertion (SOI), 474, 476, 480, 481, 492, 493, 495Saturnshine, 475, 476, 500Saturn’s ionosphere, 207, 214, 220, 234, 241Saturn’s magnetosphere, fundamental plasma processes

adiabatic acceleration and related processes, 310–313Cassini ultraviolet imaging spectrograph (UVIS) imaging, 282, 283centrifugal interchange instability, 300–303corotation lag, 298–299current generation, 316–318dominant particle populations, 282magnetopause reconnection, 305–307magnetosphere–ionosphere coupling, 297–298moon–magnetosphere interactions, 290–295neutral gas, 286–289pickup acceleration, 313–314radial diffusion formalism, 303–304rotational vs. solar-wind drivers, 296–297suprathermal ion composition and abundances, 283, 284surfaces, 284–286tail reconnection, 307–310water dissociation and ionization, 284wave particle interactions, 318–323

Saturn’s rings, 468, 469, 474–476, 485, 488, 490, 495, 498, 501–503S-band, 462, 463, 468Scale height, 181, 186, 190, 191, 199, 418, 433Season, 86, 101–103Seasonality, 114, 129Secondary ionization, 197SEDs. See Saturn electrostatic dischargesSelective instability, 433, 434Self-gravity potential, 420Self-gravity wakes, 375, 377, 378, 380, 383–386, 388, 391–393, 407,

413, 421, 423–430, 433, 435, 438, 440–443, 452Semi-annual oscillation (SAO), 129, 132, 147Semi-major axis, 421, 437, 438Shear flow, 414, 436Shear rate, 414, 424, 430, 435–436Shear stress, 414–416, 430, 435Shear viscosity, 414–415, 420, 421, 430, 431, 433Shepherding, 443Sidereal period, 638Single scattering phase function, 661Size-frequency distribution (SFD)

comets, 624–625crater statistics and interpretation, 627–630impactor populations, 616voyager, 614

SKR. See Saturn kilometric radiation (SKR)SKR period, 342, 350, 351Slow rotators, 451SLS3 longitude, 336, 342, 369Smooth plains, 641, 642, 646, 651, 669

Page 22: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

804 Index

Snow line, 65Sodium, 688, 711, 712, 715Solar composition, 57, 64–68, 84, 86, 87, 88, 106Solar composition condensate, 66Solar nebula, 56, 57, 64–66, 68, 70, 84Solar occultations, 188Solar system, 755–756Solar wind, 257–259, 265–271, 273–275, 333–336, 338–340, 343,

347–351, 361, 363, 365, 366, 368–370dynamic pressure, 212, 228, 229, 237, 242, 243, 246, 247interaction, 206, 207, 234, 242

Solar wind dynamic pressure, 334, 343, 348, 361, 365Solar wind shock, 349Solstice mission (SM), 275, 685South polar region, 69, 70South polar vortex, 143–144Space telescope imaging spectrograph (STIS), 333–337, 339, 367Spectrograms, 32–33Spokes, 511, 512, 514, 519–521, 532, 533Sputtering, 639, 640, 658, 660, 668, 673, 704, 705, 710, 716Standing waves, 432Stellar occultations, 182–188, 190, 197, 466, 468–470, 473STIS. See Space telescope imaging spectrograph (STIS)Stratosphere, 84, 92, 94, 95, 98–101, 103–105, 107, 114–116, 119,

121–123, 125, 126, 128–130, 132, 134, 143, 153, 154Stratospheric composition

hydrocarbons and photochemistry, 14–15isotopic ratios, 15–16oxygen supply, 15

Stratospheric haze, 127Streamline(s), 437, 438, 440, 442–445String of pearls, 145, 146Structural evolution

melting and differentiation, 597porosity, 596–597rock core, 597–598

Subcorotation, 240–242, 258, 259, 260, 270Sublimation, 707Subnebula, 60, 61, 66, 67Substorm, 366Sulfur, 83, 88, 95, 97, 106Surface ages, 690, 701, 705, 719Surface friction, 418, 419, 447, 448, 450Surface irregularities, 419Surface sticking, 555–557Surface temperature, 703, 705, 712Swing amplification, 423Synchronization, 445Synchronous orbit, 435System III, 123, 127, 135, 136, 141–143

TTail reconnection

circulation pattern, plasma, 307, 308dipolarization, 308field geometry, 307magnetic signatures, 308, 309plasmoid formation, 308Saturnian plasmoid, 310tail stretching and growth phase, 308

Tangential friction, 416, 450TEC, 193Tectonic, 70Tectonic structures

faults, 639, 668graben, 647, 669

grooves, 641, 669Tectonism, 694, 697, 701, 702Temperature

electron, 193, 194, 197ion, 191, 197ionospheric, 193–197mesopause, 182, 183, 187, 190plasma, 191, 197polar, 189thermospheric, 183–184, 188–190, 197upper atmosphere, 188–191

Temperature knee, 129Temperature profile

para/ortho-H2 ratio, 20–21spatial variations, 20stratosphere, 22–23troposphere, 19–20voyager, 20–21

Tethys, 43–44, 64, 523–526, 528ISS basemaps, 766, 768, 774thermal evolution and internal structure, 604–605

Thermal equilibrium, 416, 428, 433Thermal evolution, 642, 643, 649, 668Thermal evolution and internal structure

dynamical evolution, 598–603geology, 578heat sources, 585–590ice thermal conductivity, 595laboratory data, 605–606midsize icy satellites, 578Mimas, Tethys and Dione, 604–605modeling, 606Phoebe, 603–604porosity effect, 596processes, 606rock thermal conductivity, 595–596satellite properties, 579–585space, 605structural evolution, 596–598transfer, 590–595

Thermal inertia, 451, 705Thermal profile, 188Thermal radiation, 429, 451Thermal relaxation time, 451Thermal stability, 415–416, 450Thermal torques, 449Thermal waves, 115, 141, 148Thermal wind, 124, 127–130, 133, 146, 147, 151, 152Thermochemistry, 83, 95–96Thermospheric dynamics, 338Tholin, 476, 487–489, 494, 497–499Three-body problem, 446Tidal deformation, 643Tidal force(s), 421, 425, 435, 446Tidal heating, 685–693, 719Tidally disrupted comet, 564–566Tidally modified accretion, 554–555, 557Tidal migration, 547Tiger stripes, 69, 671, 684, 685, 689, 693, 696, 698–707, 712, 713, 717Time dependent model, 194Titan, 55, 63, 65–71, 357, 366, 399–401, 436, 443, 444Titan and Enceladus Mission (TANDEM), 720Titan groundtracks, 735, 737Toomre factor, 554Toomre parameter, 383, 423, 431Toomre wakes, 421, 423

Page 23: Appendix:TheCassiniOrbiter,BehindtheScenes(Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer)

Index 805

Topography, 640–651, 658, 670, 687, 688, 690, 700Torque density, 439Tour design and development process, 730–732Trajectory phases

apoapsis and periapsis profiles, 733, 736ascending and descending node crossing profiles, 733, 736cassini extended mission encounters, 732–7338-day Pi-transfer (T51–T52), 738Enceladus flybys, 733equinox viewing phase, 737high inclination phase (T45–T51), 733–734, 737–738high northern Titan groundtracks (T68–T70), 740icy satellites and Ansa-to-Ansa occultations (T62–T68), 738–739plume penetration passes, 733–734Saturn Equinox (T52–T62), 738Titan groundtracks, 735, 737

Transmission spectra, 182, 183Transport coefficients, 419, 420Traveling waves, 432Triton, 63, 65, 67, 68Trojans, 615Tropopause, 90, 97, 98Troposphere, 84, 86, 88–92, 95–98, 104, 107Tropospheric composition

ammonia,water and hydrogen sulfide, 11–12disequilibrium species, 13–14

Tropospheric haze, 116, 121, 123, 137, 140, 146, 154Troughs, 194Type III migration, 443

UUltraviolet (UV), 333–335, 337–340, 347, 349–351, 358, 364, 365,

369Ultraviolet aurora (UV aurora), 333–335, 337, 338, 340, 343, 346–350,

352, 358, 359, 360, 369Ultraviolet auroral observations, 26–27Ultraviolet imaging spectrograph (UVIS), 86, 94, 99–101, 106, 107,

337, 339–340, 350, 352, 639, 640, 653, 658United Kingdom infrared telescope (UKIRT), 339Upper hybrid resonance (UHR) emissions, 319, 322Upper troposphere, 114–116, 118, 119, 121–123, 125–129, 133–136,

140–142, 145, 146, 151–154Upstream ions, 204, 243UV. See Ultraviolet (UV)UV aurora. See Ultraviolet aurora (UV aurora)UVIS. See Ultraviolet imaging spectrograph (UVIS)UV spectrometer (UVIS), 181–188, 190, 197–199

VVapor transport, 713Vasyliunas cycle, 207, 208, 249, 336, 361–363, 370,Velocity dispersion, 414, 416–418, 420, 422–425, 428, 431–433,

438–440, 450, 452Velocity dispersion tensor, 419Velocity distribution function, 418Vertical density distributions, 182Vibrational excitation, 196, 197Vibrational populations, 182, 193Vibrational temperatures, 191, 193–196, 199VIMS. See Visual and infrared mapping spectrometer (VIMS)VIMS composition map

Dione, 771, 776, 777

Enceladus, 776, 778–779Rhea, 776–778

Visco-elastic dissipation, 417Viscosity, 413–415, 417, 418, 420–423, 425–433, 435, 437–439, 441,

445, 452, 543, 549, 552, 559Viscous cooling, 420, 421, 440Viscous diffusion, 435, 440Viscous instability, 417, 418, 431, 433–434, 436, 451Viscous overstability, 387, 391, 407, 413, 430–433, 444, 452Viscous relaxation, 638, 644, 694Viscous spreading, 537, 542–543, 545, 547, 548, 559Viscous stirring, 418Viscous torque, 439Visual and infrared mapping spectrometer (VIMS), 90, 91, 99, 100,

107, 116, 119–124, 128–130, 136, 138–146, 152, 338–341, 639,640, 651–654, 657–659, 661, 663, 665, 666, 673, 763–779

Volatiles, 650, 657–660, 671Vortices, 135–136, 142, 143, 145, 149Voyager, 55, 62, 64, 69, 84–87, 89, 92, 94, 96, 99, 100, 101, 106,

114–119, 123–125, 127–129, 135–137, 140–146, 333, 334, 341,343, 344, 352, 361, 363, 462, 465, 467–473, 475, 479–481, 483,487, 497, 501, 503, 511, 512, 514–517, 519–521, 524, 525, 528,529, 533, 683, 686, 693, 694, 697, 705

aerosol structure, 16–19atmosphere, 2icy satellites, 42–43impact cratering and age determination, 613–615magnetospheric plasma environment, 31–32observations, 210, 214, 217, 219, 224temperature profile, 20–21

WWakes, 539, 541–543, 554Water, 11–12, 84, 88, 94–96, 100, 104–106, 162, 163Water group ions, 206, 214–218, 221, 232, 240, 242, 2445Water ice (H2O), 638, 639, 650–658, 660, 661, 663, 664, 667, 671, 672Water ice band depths, 480–482, 484–486, 491, 496, 497Water ice laboratory spectra, 460, 484Water influx, 191, 194–196Wave activity, 191Wavelet transform, 438Wave particle interactions

ECH, UHR, and narrowband radio emissions, 319–321Langmuir waves, 319miscellaneous plasma waves, 323resonant energy exchange, 318whistler-mode emissions, 322–323

Whistler mode, 354, 357Winds, 86, 99, 103, 104, 106

anticyclonic/cyclonic shear, 145meridional circulation, 127vertical shear, 127vertical velocity, 127zonal jets, 127

XX-band, 462, 467, 470“X” line, 258

YYarkovsky effect, 449Yarkovsky-Schach effect, 449

ZZonostrophic regime, 148