appendix - springer978-1-349-15482-1/1.pdf · 216 appendix subclass cnidosporidia: spore with polar...

27
Appendix AN OUTLINE CLASSIFICATION OF THE ANIMAL KINGDOM, SHOWING THE SYSTEMATIC POSITION OF ORDERS AND GENERA CITED IN THE TEXT PHYLUM PROTOZOA: acellular animals Subphylum PLASMODROMA Class MASTIGOPHORA (=FLAGELLATA): with one or more flagella throughout life, intermittently or in young stages Subclass PHYTOMASTIGINA: generally with chromatophores; marine and freshwater. Six orders e.g. Order CRYPTOMONADINA: Chilomonas 0. EUGLENOIDINA: Euglena, Peranema Subclass ZOOMASTIGINA: no chromatophores; marine, fresh- water, ecto- and endoparasitic. Four orders e.g. 0. RHIZOMASTIGINA: Mastigin!l 0. PROTOMONADINA: Bodo, Leishmania, Trypanosoma Class SARCODINA: with pseudopodia Subclass RHIZOPODA: with lobopodia, rhizopodia or filopodia; freshwater, marine, terrestrial and parasitic. Five orders e.g. 0. AMOEBINA: Amoeba, Entamoeba, PeloTT!)Ixa 0. TESTACEA: Arcella, Difflugia 0. FORAMINIFERA: Globigerina 0. PROTEOMYXA: Vampyrella Subclass ACTINOPODA: with axopodia, marine and freshwater. Two orders 0. HELIOZOA: Actinosphaerium 0. RADIOLARIA Class SPOROZOA: parasitic, form spores Subclass TELOSPORIDIA: spores with or without a membrane, forming one to many sporozoites. Three orders 0. GREGARINIDA: Monocystis 0. COCCIDIA: Eimeria 0. HAEMOSPORIDIA: Plasmodium Subclass ACNIDOSPORIDIA: spore with membrane, one sporozoite. Three orders 215

Upload: lengoc

Post on 17-Apr-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

Appendix

AN OUTLINE CLASSIFICATION OF THE ANIMAL KINGDOM, SHOWING THE SYSTEMATIC POSITION

OF ORDERS AND GENERA CITED IN THE TEXT

PHYLUM PROTOZOA: acellular animals Subphylum PLASMODROMA

Class MASTIGOPHORA (=FLAGELLATA): with one or more flagella throughout life, intermittently or in young stages

Subclass PHYTOMASTIGINA: generally with chromatophores; marine and freshwater. Six orders

e.g. Order CRYPTOMONADINA: Chilomonas 0. EUGLENOIDINA: Euglena, Peranema

Subclass ZOOMASTIGINA: no chromatophores; marine, fresh­water, ecto- and endoparasitic. Four orders

e.g. 0. RHIZOMASTIGINA: Mastigin!l 0. PROTOMONADINA: Bodo, Leishmania, Trypanosoma

Class SARCODINA: with pseudopodia Subclass RHIZOPODA: with lobopodia, rhizopodia or filopodia; freshwater, marine, terrestrial and parasitic. Five orders

e.g. 0. AMOEBINA: Amoeba, Entamoeba, PeloTT!)Ixa 0. TESTACEA: Arcella, Difflugia 0. FORAMINIFERA: Globigerina 0. PROTEOMYXA: Vampyrella

Subclass ACTINOPODA: with axopodia, marine and freshwater. Two orders

0. HELIOZOA: Actinosphaerium 0. RADIOLARIA

Class SPOROZOA: parasitic, form spores Subclass TELOSPORIDIA: spores with or without a membrane, forming one to many sporozoites. Three orders

0. GREGARINIDA: Monocystis 0. COCCIDIA: Eimeria 0. HAEMOSPORIDIA: Plasmodium

Subclass ACNIDOSPORIDIA: spore with membrane, one sporozoite. Three orders

215

216 Appendix Subclass CNIDOSPORIDIA: spore with polar filament. Three orders

Subphylum CILIOPHORA Class CILIATA: with cilia throughout life, two or more nuclei

Subclass PROTOCILIATA: nuclei all alike; parasitic One family: Opalina Subclass EUCILIATA: macro- and micronuclei; marine, fresh­water, commensal and parasitic. Four orders

e.g. 0. HOLOTRICHA: Didinium, Paramecium 0. PERITRICHA: Vorticella 0. SPIROTRICHA: Balantidium

Class SUCTORIA: cilia only while young, adult with tentacles; marine, freshwater and a few parasitic. Seven families: Acineta, Podophyra

PHYLUM PORIFERA: the sponges. Cellular but no organs or systems Class CALCAREA: calcareous; marine. Two orders

e.g. 0. HETEROCOELA: Grantia Class HEXACTINELLIDA: siliceous; marine. Two orders Class DEMOSPONGIAE: siliceous or horny, or both; marine and freshwater. Seven orders

e.g. 0. HALICHONDRINA: Halichondria 0. HAPLOSCLERINA: Spongilla

PHYLUM COELENTERATA ( =CNIDARIA): tissue grade of con­struction, with nematocysts and radial, biradial or radio-bilateral symmetry

Class HYDROZOA: polymorphic with both polypoid and medu­soid forms, or entirely medusoid, or entirely polypoid; marine and freshwater. Five orders

e.g. 0. HYDROIDA: Hydra, Obelia Class SCYPHOZOA or SCYPHO MEDUSAE: the jellyfish, poly­poid form absent or ofscyphistoma type; marine. Five orders

e.g. 0. SEMAEOSTOMEAE: Aurelia Class ANTHOZOA: exclusively polypoid; marine

Subclass ALCYONARIA: polyp with eight pinnate tentacles, colonial. Six orders Subclass ZOANTHARIA: polyp with simple tentacles, not eight, solitary or colonial. Five orders

e.g. 0. ACTINARIA: the sea anemones: Actinia, Sagartia, Tealia 0. MADREPORARIA: the corals: Porites

Appendix 217 PHYLUM CTENOPHORA: no nematocysts, biradial symmetry, eight rows of ciliary plates; marine

Class TENTACULATA: with tentacles. Four orders Class NUDA: no tentacles. One order

PHYLUM PLATYHELMINTHES: bilaterally symmetrical, acoelo­mate, without a definitive anus

Class TURBELLARIA: free living flatworms, generally a ciliated epidermis with rhabdoids, life cycles simple; marine freshwater, terrestrial and a few commensal or parasitic. Five orders

0. ACOELA: Convoluta 0. RHABDOCOELA 0. ALLOEOCOELA 0. TRICLADIDA: Orthodemus, Polycelis 0. POLYCLADIDA: C',ycloporus, Leptoplana

Class MONOGENEA (formerly linked with Digenea as orders of the Class Trematoda) : mostly ectoparasites of aquatic vertebrates, a few endoparasites. Two orders

0. MONOPISTHOCOTYLEA 0. POLYOPISTHOCOTYLEA: Diclidophora, Diplozoon, Poly stoma

Class DIGENEA: endoparasites, complicated life cycle involving at least two host species. Two orders

0. GASTEROSTOMATA 0. PROSOSTOMATA: Cercorchis, Diplodiscus, Fasciola, Haplometra, Opisthioglyphe, Schistosoma

Class CESTODA: The tapeworms. Parasitic, life cycle complicated; majority of adults live in intestine of vertebrates

Subclass CESTODARIA: no scolex, body undivided. Two orders Subclass EUCESTODA: scolex, body generally divided into segments. Nine orders

e.g. 0. DIPHYLLIDEA: Echinobothrium 0. PSEUDOPHYLLIDEA: Diphyllobothrium, Schistocephalus 0. T AENIIDEA: Taenia

PHYLUM RHYNCHOCOELA ( =NEMERTINI): acoelomate, with proboscis, blood system and definitive anus. Two main groups, differences not meriting rank of classes; marine, a few freshwater, terrestrial or commensal

H

Subclass ANOPLA: mouth posterior to brain. Two orders 0. PALAEONEMERTINI 0. HETERONEMERTINI: Lineus

218 Appendix Subclass ENOPLA: mouth anterior to brain. Two orders

0. HOPLONEMERTINI 0. BDELLONEMERTINI

PHYLUM NEMATODA: unsegmented, cylindrical, pseudocoelo­mates. Gut straight, with terminal mouth and almost terminal anus; marine, freshwater, terrestrial and parasitic in plants and animals

Class SECERNENTEA (=PHASMIDIA): sense organs or phas­mids in post-anal region. Five or more orders

e.g. 0. RHABDITIDA (split into a further five orders by some authorities): Anrylostoma, Ascaris, Rhabditis 0. SPIRURIDA: Wuchereria 0. TYLENCHIDA: Tylenchus

Class ADENOPHORA (=APHASMIDIA): lack phasmids. At least seven orders

PHYLUM ROTIFERA: pseudocoelomate, with anterior end modified into a ciliary organ or corona; marine and freshwater. At least three orders

e.g. 0. MONOGONONTA: Hydatina ( =Epiphanes)

PHYLUM ENTOPROCTA: pseudocoelomate, solitary or colonial, with distal circlet of ciliated tentacles. Digestive tract looped with mouth and anus opening inside tentacular circlet; marine, one genus in fresh­water. Three families

PHYLUM BRACIUOPODA: lamp shells. Coelomate with bilaterally symmetrical bivalved shell, with lophophore of ciliated tentacles; ex­clusively marine. Two classes

PHYLUM PHORONIDA: coelomate, lophophore of ciliated tentacles; exclusively marine. Two genera.

PHYLUM ECTOPROCTA (=BRYOZOA): coelomate, colonial, lophophore of ciliated tentacles, gut looped, anus outside lophophore

Class GYMNOLAEMATA: mostly marine. Five orders. Class PHYLACTOLAEMATA: exclusively. freshwater. Four families: Lophopus

PHYLUM ANNELIDA: metamerically segmented coelomates, gut straight, with mouth and anus, well developed blood system

Class POLYCHAETA: pair of appendages (parapodia) on each body segment, bearing numerous bristles or chaetae; mostly marine.

Appendix 219

Fourteen orders e.g. 0. CAPITELLIDA: Armicola

0. PHYLLODOCIDA: Aphrodite, Glycera, Nereis 0. SABELLIDA: Pomatoceros, Sabella, Spirorbis 0. SPIONIDA: Chaetopterus

Class OLIGOCHAETA: with few chaeta; mostly terrestrial and freshwater, some marine. Four orders

e.g. 0. PLESIOPORA PLESIOTHECATA: Aeolosoma, Stylaria 0. PROSOPORA: Pheritima 0. OPISTHOPORA: Lumbricus

Class HIRUDINEA: the leeches. Carnivorous or ectoparasitic, mostly freshwater, also terrestrial and a few marine species. Four orders

e.g. 0. GNATHOBDELLAE: Haemadipsa, Haemopis, Hirudo Class ARCHIANNELIDA: marine. Three families

PHYLUM MOLLUSCA: coelomate, basically bilaterally symmetrical, extremely diverse in body form, well developed organs and systems

Class MONOPLACOPHORA: one living genus Neopilina; marine Class AMPHINEURA: the·chitons; marine

Subclass POL YPLACOPHORA: two orders Subclass APLACOPHORA: two orders

e.g. 0. NEOMENIOMORPHA: Neomenia Class GASTROPODA: well developed head, primitively with broad creeping foot, shell in one piece, exhibit various degrees of torsion; marine, freshwater, terrestrial and a few parasitic

Subclass PROSOBRANCHIA: show pronounced torsion, spiral shell in free living forms closed by an operculum. Three ordns

0. ARCHAEOGASTROPODA: Patella, Vermetus 0. MESOGASTROPODA; Cassis, CrejJidula, Enteroxenus, Littorina, Thyca 0. NEOGASTROPODA: Buccinum, Murex, Thais ( =Nu­cella)

Subclass OPISTHOBRANCHIA: show varying degrees of de­torsion and reduction of shell, returning to external bilatera symmetry. Eight orders

e.g. 0. ANASPIDEA ( =APLYSIOMORPHA): Aj1lysia 0. CEPHALASPIDEA ( =BULLAMORPHA): Bulla, Scaphander 0. NUDIBRANCHIA: Doris, Tritonia

Subclass PULMONATA: mantle cavity vascularized to form lung, shell primitively spiral. Two orders

220 Appendix e.g. 0. STYLOMMATOPHORA: Helix, Testacella

Class SCAPHOPODA: elephant tusk shells, marine Class LAMELLIBRANCHIA: bilaterally symmetrical, two calci­fied shell valves hinged dorsally, ctenidia enlarged, ciliary feeders; marine and freshwater. Seven orders

e.g. 0. ADEPODONTA: Teredo 0. ANISOMYARIA: Mytilus 0. HETERODONTA: Donax 0. PROTOBRANCHIA: Nucula 0. SCHIZODONTA: Anodonta

Class CEPHALOPODA: bilaterally symmetrical with circle of tentacles around head, exhalant current from mantle used for jet propulsion; exclusively marine

Subclass NAUTILOIDEA: one living genus Nautilus Subclass AMMONOIDEA: extinct Subclass COLEOIDEA: three orders

e.g. 0. DECAPODA: Sepia 0. OCTOPODA: Octopus

PHYLUM PENTASTOMIDA: vermiform, lack respiratory and circu­latory systems; parasitic in vertebrates. Affinities uncertain

PHYLUM ONYCHOPHORA: soft-bodied, segmented, many arthro­podan features; terrestrial: Peripatus

PHYLUM ARTHROPODA: bilaterally symmetrical, metamerically segmented with paired jointed appendages on all or some segments, chitinous cuticle strengthened by thickening, tanning or calcification to form an exoskeleton; marine, freshwater, terrestrial, aerial, ecto- and endoparasitic

Subphylum TRILOBITOMORPHA: extinct Subphylum CHELICERATA: body in two regions, single pair of pre-oral appendages form prehensile chelicerae

Class MEROSTOMATA: marine; two orders e.g. 0. XIPHOSURA: Limulus

Class ARACHNIDA: four pairs of walking legs; mostly terrestrial. Ten orders

e.g. 0. ACARINA: the mites and ticks: Demodex, Hydrarachna, Sarcoptes, Boophilus 0. ARANEIDA: the spiders 0. SCORPIONIDA: the scorpions: Scorpio, Androctonus

Subphylum MANDIBULATA: first pair of appendages, and second if present, form antennae, next pair form jaws (mandibles), next one or two pairs form additional jaws (maxillae)

Appendix 221 Class CRUSTACEA: primitively two pairs of antennae, three pairs of mouthparts

Subclass CEPHALOCARIDA Subclass BRANCHIOPODA: five orders

e.g. 0. ANOSTRACA: Chirocephalus 0. CLADOCERA: Daphnia 0. LIPOSTRACA: Lepidocaris 0. NOTOSTRACA: Apus

Subclass OSTRACODA Subclass COPEPODA: Calanus, G_yclops Subclass BRANCHIURA: Argulus Subclass CIRRIPEDIA: five orders

e.g. 0. THORACICA: Balanus 0. RHIZOCEPHALA: Sacculina

Subclass MALACOSTRACA: at least ten orders, which may be grouped within variou~ series and super orders

e.g. 0. AMPHIPODA 0. DECAPOD A: Astacus, Carcinus, Homarus, Maja 0. ISOPODA 0. NEBALIACEA: Nebalia 0. STOMATOPODA: Squilla

Class CHILOPODA: centipedes: Lithobius Class DIPLOPODA: millipedes Class INSECTA: one pair of antennae, body divided into head, thorax and abdomen. Thorax of three segments with walking legs and usually one or two pairs of wings

Subclass APTER YGOT A: wingless insects, metamorphosis absent or only slight Subclass PTERYGOTA: winged insects or secondarily wingless Division EXOPTERYGOTA ( =HEMIMETABOLA): meta­morphosis simple, immature stages generally nymphs resembling adults to varying extents; sixteen orders

e.g. 0. ANOPLURA: sucking lice: HaematojJinus, Pediculus 0. DICTYOPTERA: cockroaches, mantids (formerly placed in 0. Orthoptera): Blatta, Periplaneta 0. EPHEMEROPTERA: mayflies: Chirotenetes, Cloeon 0. HEMIPTERA: bugs: Aphis, Cimex, Myzus, Notonecta, Rhodnius 0. ISOPTERA: termites or white ants 0. ODONAT A: dragonflies 0. ORTHOPTERA: grasshoppers, locusts, crickets

Division ENDOPTERYGOTA ( =HOLOMETABOLA): Meta-

222 Appendix morphosis complex with pupal instar, immature stages larvae and markedly different from adults. Nine orders

e.g. 0. COLEOPTERA: beetles: Dytiscus, Tenebrio 0. DIPTERA: flies and mosquitoes: Aedes, Anopheles, Calliphora, Chrysops, Culex, Glossina, Lucilia, Mansonia, Musca, Tabanus, Simulium, Theobaldia 0. HYMENOPTERA: ants, bees, wasps: Apis 0. LEPIDOPTERA: butterflies and moths: Lymantria, s_)•nanthedon 0. NEUROPTERA: alder flies, lace wings, ant lions: Myrmeleon 0. SIPHONAPTERA: fleas: Pulex, Xenopsylla

PHYLUM ECHINODERMATA: coelomates, generally with penta­merous symmetry, calcareous skeleton beneath epidermis, often with external spines; exclusively marine

Subphylum PELMATOZOA: attached as young, or throughout life, to substratum either directly (in extinct classes) or by a stalk

Class CRINOIDEA: four orders, only one living Subphylum ELEUTHEROZOA: unattached, move with oral surface downwards by means of tube feet

Class ASTEROIDEA: starfish: flattened, mostly pentamerous, arms radiating symmetrically from central disc. Three orders

e.g. 0. FORCIPULATA: Asterias Class OPHIUROIDEA: brittle stars: pentamerous, arms sharply demarcated from central disc. Two orders

e.g. 0. OPHIUREA: Ophiura, Ophiocoma Class ECHINOIDEA: sea urchins: body spherical, oval or discoid

Subclass REGULARIA: globular, usually spherical but may be oval. Three orders

e.g. 0. DIADEMATOIDA: Echinus Subclass IRREGULARIA: generally flattened. Four orders

Class HOLOTHUROIDEA: elongated, sausage shaped, body wall leathery, skeleton reduced. Five orders

e.g. 0. ASPIDOCHIROTA: Holothuria

PHYLUM CHORDATA: coelomates, with pharyngeal wall perforated by gill slits in early stages (persist to adult stage up to and including fishes), hollow dorsal nerve cord dilated anteriorly to form a brain, dorsal noto­chord beneath nerve cord

Subphylum UROCHORDAT A: chordate features confined to larvae except for hypertrophied gill clefts which open into a peripharyngeal chamber; marine

Appendix Class LARV ACEA: pelagic

223

Class ASCIDIACEA: sessile, permanently attached, solitary or colonial: two orders

e.g. 0. ENTEROGONA: Ascidia, Ciona Class THALIACEA: pelagic. Three orders

Subphylum HEMICHORDATA: body and coelom in three regions, tubiculous, colonial or vermiform

Class PTEROBRANCHIA: with tentaculated lophophore. Two orders

e.g. 0. CEPHALODISCIDA: Cephalodiscus Class ENTEROPNEUSTA: vermiform, solitary, no lophophore: Balanoglossus

Subphylum CEPHALOCHORDATA: metamerically segmented, notochord and nerve cord persist into adult stage; marine. Amphioxus Subphylum CRANIATA (=VERTEBRATA): metamerically seg­mented, high degree of cephalization, brain enclosed in a neuro­cranium, notochord and nerve cord enclosed in skeletal tissue, skeleton of cartilage or bone

Class AGNATHA: branchial arches not modified as jaws Subclass OSTEOSTRACI: extinct Subclass HETEROSTRACI: extinct Subclass CYCLOSTOMATA: living Agnatha, parasitic, the hagfishes and lampreys; marine and freshwater. Two orders

Class PLACODERMI: primitive jawed vertebrates, extinct Class HOLOCEPHALI: mainly extinct, a few living species Class SELACHII (=CHONDRICHTHYES or ELASMO­BRANCHII) : cartilaginous fishes without airbladder or lungs: largely marine, a few freshwater representatives

Subclass EUSELACHII: sharks, dogfishes and rays. Six orders e.g. 0. LAMNIFORMES: Scyliorhinus ( =Scyllium), Cetorhinus

0. SQUALIFORMES: Squaius Class OSTEICHTHYES: bony fishes, generally with air bladder or lung; marine and freshwater

Subclass DIPNOI: lungfishes. Two living orders Subclass CROSSOPTERYGII: one living genus Subclass BRACHIOPTERYGII: two living genera Subclass ACTINOPTERYGII: the teleosts and their allies; freshwater and marine

Infraclass PALAEONISCOIDEI: extinct Infraclass CHONDROSTEI: the sturgeons and their allies. Polyodon (paddle fish) Infraclass HOLOSTEI: freshwater, two living genera

224 Appendix Infraclass TELEOSTEI: freshwater and marine. Numerous orders e.g. 0. CLUPEIFORMES: Clupea (herring)

0. GADIFORMES: Gadus (cod) 0. PERCIFORMES: Sphyraena (barracuda), Pomatomus (blue fish) 0. PLEURONECTIFORMES: Pleuronectes (plaice) 0. SALMONIFORMES: Esox (pike)

Class AMPHIBIA: tetrapods, generally with aquatic larval stage, skin moist

Subclass LABYRINTHODONTIA: extinct. Four orders Subclass LEPOSPONDYLI: extinct. Four orders Subclass LISSAMPHIBIA: Living amphibians. Three orders

e.g. 0. ANURA: Rana (frog) 0. URODELA: Salamandra (salamander), Triturus (newt)

Class REPTILIA: gills and larval stages absent, skin dry with ectodermal scales; terrestrial and secondarily aquatic

Subclass ANAPSIDA: two extinct orders, one living (0. CHELONIA, the tortoises and turtles) Subclass LEPIDOSAURIA: one extinct order, two living

e.g. 0. SQUAMATA: the lizards and snakes: Chameleon, Crotalus (rattlesnake), Python, Tropidonotus (grass snake)

Subclass ARCHOSAURIA. Four extinct orders, one living (0. CROCODILIA) Subclass ICHTHYOPTERYGIA: one order, extinct Subclass EURYAPSIDA: two orders, extinct Subclass SYNAPSIDA: two orders, extinct

Class AVES: homoiothermic, skin with feathers, generally aerial, skull with beak, teeth generally absent, oviparous

Subclass ARCHAEORNITHES: extinct Subclass NEORNITHES: numerous orders

e.g. 0. ANSERIFORMES: Anas (duck) 0. CICONIIFORMES: Herons, storks, spoonbill 0. COLUMBIFORMES: Columba (pigeon) 0. PHOENICOPTERIFORMES: flamingoes

Class MAMMALIA: homoiothermic, skin with hair, viviparous, a few oviparous, female suckles young, terrestrial, secondarily aquatic, a few aerial

Subclass PROTOTHERIA: primitive. Two orders Subclass ALLOTHERIA: extinct Subclass THERIA: all viviparous (presumed for extinct forms)

Infraclass PANTOTHERIA: three orders, extinct

H2

Appendix 225 Infraclass MET A THERIA: one living order

0. MARSUPIALIA: young born at very early stage and suckled in pouch or marsupium, kangaroos, opossums, wallabies, etc.

lnfraclass EUTHERIA ( =PLACENTALIA): viviparous, with allantoic placenta. Generally classified into cohorts, super­orders and orders, but only these last shown here e.g. 0. ARTIODACTYLA: Bos (cattle), Ovis (sheep), Cervus

(red deer), Sus (pig), Hippopotamus 0. CARNIVORA: Canis (dog), Felis (cat), Ursus (bear), Phoca (seal), Meles (badger) 0. CETACEA: whales 0. CHIROPTERA: bats: Desmodus, Diphylla 0. LAGOMORPHA: rabbits and hares 0. PERISSODACTYLA: Equus (horse, zebra) 0. PRIMATES: Homo (man), Gorilla, Pan (Chimpanzee), Pongo (orang-utan) 0. PROBOSCIDEA: elephants 0. RODENTIA: Cavia (guinea pig), Rattus (rat), Sciurus (squirrel)

Suggested Further Reading

Comprehensive reviews of single topics: Handbook of Physiology: Section 6: Alimentary Canal. 5 vols. (eds. C. F. Code and W. Heidel). American Physiological

Society, Washington, D.C., 1968. Vol. I Control of food and water intake (Chapters 1-31) Vol. II Secretion (Chapters 32-61) Vol. III Absorption (Chapters 62-78) Vol. IV Motility (Chapters 79-109) Vol. V Biliary systems, digestion, rumen physiology (Chapters

110--139)

Feeding mechanisms and general nutrition of invertebrates: BARRINGTON, E. J. W., Invertebrate Structure and Function, Thomas

Nelson and Sons, London, 1967. NICOL, J. A. C., Biology of Marine Animals, 2nd ed., Sir Isaac Pitman

and Sons, London, 1967.

Gastrointestinal physiology: DAVENPORT, H. W., Physiology of the Digestive Tract, 2nd ed. Year

Book Medical Publishers, Chicago, 1966. GLAss, G. B. J., Introduction to Gastrointestinal Physiolog)', Prentice Hall,

Englewood Cliffs. New Jersey, 1968.

227

Bibliography

1. AscHNER, M., Studies on the symbiosis of the body louse, Parasitology 26, 309-14 (1934).

2. ANNISON, E. F. and LEWIS, D., Metabolism in the Rumen, Associated Book Publishers Ltd. (Methuen), London, 1959.

3. BALDWIN, E., Dynamic Aspects of Biochemistry, 3rd ed., Cambridge University Press, London, 1959.

4. BARNES, R. D., Invertebrate Zoology, W. B. Saunders, Philadelphia, 1963. 5. BARNETT, A.]. G. and REID, R. L., Reactions in the Rumen, E. Arnold,

London, 1961. G. BARRINGTON, E. J. W., Gastric digestion in the lower vertebrates, Biol.

Rev. 17, 1-27 (1942). 7. BARRINGTON, E. ]. W., The alimentary canal and digestion, in The

Physiology of Fishes, 1, Academic Press, New York, 195 7. 8. BARRNETT, R. ]., The demonstration with the electron microscope of the

end products of histochemical reactions in relation to the fine structure of cells, Exper. Cell Res., Suppl. 7, 65-89 (1959).

9. BAYLISS, L. E. and STARLING, E. H., On the uniformity of the pancreatic mechanism in Vertebrata,]. Physiol. 29, 174-80 (1903).

10. BAYLISS, L. E., Digestion in the plaice (Pleuronectes platessa), J. Mar. Bioi. Ass. U.K. 20, 73-91 (1935).

II. BoRRADAILE, L.A., PoTTS, F. A., EASTHAM, L. E. S. and SAUNDERS, J. T., The Invertebrata, 3rd ed., rev. G. A. Kerkut, Cambridge University Press, London, 1959.

12. BoRRADAILE, L. A., Manual of Elementary Zoology, 13th ed., rev. W. B. Yapp, Oxford University Press, London, 1958.

13. BuCHNER, P., Tier und Pflan:::e in intracellularer Symbiose, Gebriider Born­traeger, Berlin, 1930.

14. BuRGER,]. W. and HEss, W. N., Function of the rectal gland in the spiny dogfish, Science, 131,670-71 (1960).

15. CARDELL, R. R., BADENHAUSEN, S. and PORTER, K. R., Intestinal tri­glyceride absorption in the rat: an electron microscopical study, J. Cell Biol., 34, 123-155 (1967).

!G. CLARK, S. L., Jr., The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice, ]. Biophys. Biochem. Cytol. 5, 41-50 (1959).

17. COLE, F. ]. and JoHNSTONE, ]., Pleuronectes, L.M.B.C. Memoirs, VIII, Williams & Norgate, London, 1901.

18. CORNWALL, I. W., Bones for the Archaeologist, Phoenix House, London, 1956.

229

230 Bibliography 19. CROMBACH, j. j., DE jONG, I. C. and WOLVEKAMP, H. P., Quelques

experiences sur la secretion de pepsine de la grenouille verte (R. esculenta L.) et de la grenouille rousse (R. temporaria L.), Acta Physiol. Pharmac. Nierl. 1, 78--92 (1958).

20. DATTA, S. P. and OTTAWAY, J. H., Aids to Biochemistry, 5th ed., Bailliere, Tindall & Cox, London, 1960.

21. DAwsoN, A. M., Absorption of fats, Brit. Med. Bull., 23, 247-251 (1967).

22. DAY, M. F. and PowNING, R. F., A study of the processes of digestion in certain insects, Aust.J. sci. Res., Ser. B. 2, 175-215 (1949).

23. DusPIVA, F., Beitrage zur Histophysiologic des lnsektendarmes, Proto­plasma, 32,211-50 (1938).

24. FARNER, D. S., Digestion and the digestive system, in Biology and Com­parative Physiology of Birds, lst ed., A. J. Marshall, Academic Press, New York, 1960.

25. FRAZER, A. C., The absorption of triglyceride fat from the intestine, Physiol. Rev. 26, 103-19 (1946).

26. FRAZER, A. C., Transport oflipid through cell membranes, Symp. Soc. Exp. Biol. 8, 490--501 (1954).

27. FRAZER, A. C., Further studies on the mechanism of fat absorption, in Biochemistry of Lipids, Pergamon Press, Oxford, 1960.

28. FRIEDMANN, T. E., KMIECIAK, T. C., KEEGAN, P. K. and SHEFT, B. B., The absorption, destruction and excretion of orally administered thiamin by human subjects, Gastroenterology, 11, 100-14 (1948).

29. FRUTON, J. S. and SIMMONDS, S., General Biochemistry, 2nd ed., Wiley, New York, 1958.

30. GLOVER, J., GooDWIN, T. W. and MoRTON, R. A., Studies in vitamin A. 8. Conversion of fl-carotene into vitamin A in the intestine of the rat. Biochem. ]. 43, 512-18 (1948).

31. GooDMAN, L. S. and GILMAN, A., The Pharmacological Basis of Therapeutics, 2nd ed., Macmillan, London and New York, 1958.

32. GREAVES, J. D. and ScHMIDT, C. L. A., The role played by bile in the absorption of vitamin Din the rat,]. Biol. Chem. 102, 101-12 (1933).

33. GROSSMAN, M. I., GREENGARD, H. and IVY, A. C., The effect of dietary composition on pancreatic enzymes, Am.]. Physiol. 138, 676--82 ( 1943).

34. HALTON, D. W., Some hydrolytic enzymes in two digenetic trematodes, Proc. XVI Int. Congr. Zool., Washington, D.C., 1, 29 (1963).

35. HILKER, D., SHERMAN, H. J. and WHITE, A. G. C., Starch hydrolysis by Entamoeba histolytica, Exp. Parasitol. 6, 459-64 (1957).

36. HoBSON, R. P., Studies on the nutrition of blow-fly larvae, J. Exp. Bioi. 8, 109-23 (1931).

37. HoLTER, H., Distribution of some enzymes in the cytoplasm of Amoebae, Proc. Roy. Soc. Lond., B, 142, 140--46 (1954).

38. HoLTER, H. and L0VTROP, S., Proteolytic enzymes in Chaos chaos, C.R. Lab. Carlsberg Sir. Chim. 27, 27-62 (1949).

39. HYMAN, L. H., The Invertebrates: Protozoa through Ctenophora, McGraw-Hill, New York, 1940.

40. IMMS, A. D., Outlines of Entomology, 4th ed., Methuen, London, 1949.

Bibliography 231 41. lMMS, A. D., A General Textbook of Entomology, 9th ed., rev. 0. W. Richards

and R. G. Davis, Methuen, London, 1957. 42. jENNINGs,j. B., Studies on feeding, digestion and food storage in free-living

flatworms (Platyhelminthes: Turbellaria), Biol. Bull. 112,63-80 (1957). 43. jENNINGS, j. B., Observations on the nutrition of the land planarian Ortho­

demus terrestris (0. F. Muller), Biol. Bull. 117, 119-24 (1959). 44. jENNINGS, j. B., Studies on digestion in the monogenetic trematode Poly­

stoma integerrimum, ]. Helminth. 33, 197-204 ( 1959). 45. jENNINGs,J. B., Observations on the nutrition of the rhynchocoelan Lineus

ruber (0. F. Muller), Biol. Bull. 119, 189-96 (1960). 46. jENNINGs, j. B., A histochemical study of digestion and digestive enzymes

in the rhynchocoelan Lineus ruber (0. F. Muller), Biol. Bull. 122, 63-72 (1962).

47. jENNINGS, j. B., Further studies on feeding and digestion in triclad Tur­bellaria, Biol. Bull. 123,571-81 (1962).

48. jENNINGs, j. B., Some aspects of nutrition in the Turbellaria, Trematoda and Rhynchocoela, in The Lower Metazoa (Proc. 2nd Ann. Symp. Comp. Bioi., Kaiser Foundation, Pacific Grove, California) (ed., E. C. Dougherty et al.), University of California Press, 1963.

49. jENNINGs, j. B., Platyhelminthes: Nutrition, in Chemical ,Zoology, 2 (Eds. M. Florkin and B. T. Scheer), 303-326, Academic Press, New York, 1968.

50. jENNINGs, j. B., Ultrastructural observations on the phagocytic uptake of food materials by the ciliated cells of the rhynchocoelan intestine, Biol. Bull., 137,476-485 (1969).

51. jENNINGs, j. B. and GIBSON, R., Observations on the nutrition of seven species ofrhynchocoelan worms, Biol. Bull., 136,405-433 (1969).

52. jOHNSTON, j. M., Mechanism of fat absorption, in Handbook <if Physiology, Section 6, 3, Chapter 70. American Physiological Society, Washington, D.C., 1968.

53. KEMPER, H., Beitrage zur Biologie der Bettwanze, ,Zeitschr. Morph. Okol. Tiere, 24,491-518 (1932).

54. KoscHTOJANZ, C. S., et al., Secretin from lower vertebrates, ,Zeitschr. vergl. Physiol.18, 112-15 (1932).

55. LEHNINGER, A. L., Role of metal ions in enzyme systems, Physiol. Rev. 30, 393-429 (1950).

56. LLOYD, F. E., Some behaviours of Vampyrella laterita and the response of Spirogyra to its attack, Pap. Mich. Acad. Sci. 7, 395-416 (1927).

57. MANSOUR-BEK, J. j., Die proteolytischen enzyme von Maja squinado. Zeitschr. vergl. Physiol. 17, 153-208 (1932).

58. lVIANSOUR-BEK, j. j., The digestive enzymes in Invertebrata and Proto­chordata, Tabulae Biologicae, 21, Pt. 3, No. 24 (1954).

59. MAST, S. 0., The food-vacuole in Paramecium, Biol. Bull. 92, 31-72 (1947). 60. MATTSON, F. H., MEHL,J. W. and DEUEL, H.J.Jr., Studies on carotenoid

metabolism. VII. Site of conversion of carotene to vitamin A in the rat, Arch. Biochem. Biophys. 15, 65-73 (1947).

61. MILLOTT, N., The visceral nervous system of the earthworm. III. Nerves controlling secretion of protease in the anterior intestine, Proc. Roy. Soc., B, 132, 200-12 (1944).

232 Bibliography 62. MoORE, J. A., Principles of Zoology, Oxford University Press, New York,

1957. 63. MuLLER, F. P., Die Verdauung bei nahe verwandten Kiifern mit ver­

schneidener Erniihrungsweise, Zoo. Jahrb. Jena Syst. 71, 291-318 (1938). 64. NEWEY, H. and SMYTH, D. H., The intestinal absorption of some dipep­

tides,J. Physiol. 145,48-56 (1959). 65. NEWEY, H., PARSONS, B.J. and SMYTH, D. H., The site of action of phlorizin

in inhibiting intestinal absorption of glucose, J. Physiol. 148, 83-92 ( 1959). 66. NEWEY, H. and SMYTH, D. H., Intracellular hydrolysis ofdipeptides during

intestinal absorption,]. Physiol.152, 367-80 (1960). 67. OLSON, J. A., The effect of sodium glycocholate on the in vitro conversion

of/3-carotene to vitamin A ester, Fed. Proc. 19,412 (1960). 68. PARKER, H. W., Snakes, Robert Hale, London, 1963. 69. PALAY, S. L. and KARLIN, L. J., An electron microscopic study of the

intestinal villus: 2. The pathway of fat absorption, J. Biophys. Biochem. Cytol., 5, 373-384 (1959).

70. PALAY, S. L. and REVEL,]. P., The morphology of fat absorption. In Proc. Intern. Symp. Lipid Transport. (ed. H. C. Meng), Springfield, Illinois, 1964.

71. PoRTER, K. R., Independence of fat absorption and pinocytosis, Proc. 52nd Ann. Meeting Fed. Am. Socs. Exp. Biol., 28, 35-40 (1969).

72. PYCRAFT, W. P., A History of Birds, Methuen, London, 1910. 73. QmcK, A. J. and COLLENTINE, G. E., Role of vitamin Kin the synthesis

of prothrombin, Am.]. Physiol. 164,716-21 (1951). 74. RAo, K. H. and jENNINGS, J. B., The alimentary system of a pentastomid

from the Indian water snake Natrix piscator Schneider, J. Parasitol. 45, 299-300 (1959).

75. ROMER, A. S., The Vertebrate Body, 3rd ed., W. B. Saundei:S, Philadelphia, 1962.

76. RosE, W. C., OESTERLING, M. J. and WoMACK, M., Comparative growth on diets containing ten and nineteen amino acids, with further observa­tions upon the role of glutamic and aspartic acids, J. Biol. Chem. 176, 753-62 (1948).

77. SANDERS, E. and AsHWORTH, C. T., A study of particulate intestinal absorption and hepatocellular uptake. Use of polystyrene latex particles, Ex. Cell Res. 22, 137-45 (1961).

78. SEAMAN, G. R., in Biochemistry and Physiology of Protozoa, 2 (eds. S. H. Hutner and A. Lwoff), Academic Press, New York, 1955.

79. SIMMONDS, W. J., Effect of bile salts on the rate of fat absorption. Am. J. clin. Nutrition, 22, 266-272 (1969).

80. SMITH, E. L., The glycyl-glycine dipeptidases of skeletal muscle and human uterus,]. Biol. Chem. 173,571-84 (1948).

81. SNoDGRAss, R. E., Principles of Insect Morphology, 1st ed., McGraw-Hill, New York, 1935.

82. SQUIREs, B. T., Human salivary amylase secretion in relation to diet, J. Physiol. 119, 153-56 (1953).

83. STOBER, W. K., Nutrition in Lepidoptera, Zeitschr. vergl. Physiol., Abt. C, 6, 530-65 (1927).

Bibliography 233 84. STRAuss, E. R., Morphological aspects of triglyceride absorption, in

Handbook of Physiology, Section 6, 3, Chapter 71. American Physiological Society, Washington, D.C., 1968.

85. STUMP, A. B., Observations on the feeding of Difflugia, Pontigulasia and Lesquercusia, Bioi. Bull. 69, 136--45 (1935).

86. TAYLOR,N.B., WELD, C. B. andSYKEs,J. F., The relation ofbile to the absorption of vitamin D, Brit. J. Exp. Path. 16, 302-9 (1935).

87. THOMPSON, S. Y., GANGULY, J. and KoN, S. K., The conversion of fJ­carotene to vitamin A in the intestine, Brit. J. Nutr. 3, 50-78 (1949).

88. UGOLEV, A., Influence of the surface of the small intestine on enzymatic hydrolysis of starch by enzymes, Nature, London, 188,588-9 (1960).

89. UGOLEv, A., Bull. Exp. Biol. and Med. 49, 1-12 (1960). 90. UGOLEV, A., Membrane (Contact) Digestion, Physiol. Rev., 45, 555-595

(1965). 91. VoNK, H. J., Digestion and Metabolism, in The Physiology of Crustacea, 1

(ed. T. H. Waterman), Academic Press, New York, 1960. 92. WEICHERT, C. K., Anatomy of the Chordates, 2nd ed., McGraw-Hill, New

York, 1958. 93. WESTERN,]. R. H., Studies on the diet, feeding mechanism and alimentary

tract in two closely related teleosts, the freshwater Cottus gobio L. and the marine Parenophrys bubalis Euphrasen, Acta -?,ool., Stockh., 50, 185-285 (1969).

94. WIGGLESWORTH, V. B., Digestion in the cockroach, Biochem. J. 21, 797-811 (1927).

95. WIGGLESWORTH, V. B., Digestion in the tsetse-fly: a study of structure and function, Parasitology 21,288-321 (1929).

96. WIGGLESWORTH, V. B., Digestion in Chrysops silacea Aust. (Diptera: Tabanidae), Parasitology 23, 73-6 (1931).

97. WIGGLESWORTH, V. B., Symbiotic bacteria in the blood-sucking insect, Rhodnius prolixus Stal. (Hemiptera: Triatomidae), Parasitology 28, 284--9 (1936).

98. WIGGLESWORTH, V. B., The Principles of Insect Physiology, 4th ed., Methuen, London, 1950.

99. WILSON, T. H., Intestinal Absorption, W. B. Saunders, Philadelphia, 1962. 100. YoNGE, C. M., Feeding mechanisms in the invertebrates, Biol. Rev. 3,

21-76 (1928). 101. YoNGE, C. M., Evolution and adaptation in the digestive system of the

metazoa, Biol. Rev. 12, 87-115 (1937). 102. YoNGE, C. M., Feeding mechanism in the Invertebrata, Tabulae Bio­

logicae 21, Pt. 3, No. 22 (1954).

Abomasum 117, 118 Absorption

dipeptides 202 inorganic salts 212 mechanism of 203, 205 modifications of intestine for

126 f. monosaccharides 205 products of lipolysis 209-11 vitamins 212 water 213

Acarina 81, 220 Acidic phase of digestion 96 Acid phosphatase 180 Acineta 86, 87, 216 Acoela 176, 217 At:oelomate phyla

alimentary systems 97-8 feeding and digestion 175 f.

Actinia 49, 50, 215 Actinosphaerium 22, 23, 215 Activation of enzymes 148 Adaptation in digestive enzymes

in Man 166 inter-specific 163 intra-specific 164-5 to diet 163 f.

Aedes 85, 222 Aeolosoma 30, 219 Alimentary systems

cellular specialization in 96-7 chordate 116, 122 classification of regions 98 cockroach Ill

Index mammal 117-20, 122-5, 128-32 pigeon 95, 106, 137 receiving portion 99 regional specialization in 97 water-absorbing region 136

Alkaline phase of digestion 96 Alkaline phosphatase 180, 186 Amino acid

essential requirements 5 structure 2

p-Aminobenzoic acid l4 Amino group 2, 151 f. Aminopeptidases 153 f., 181, 189,

202 Amoeba 21, 175, 215 Amphibia 224

changes in alimentary system 165 feeding 52

Amphineura 88, 219 Amphioxus 116, 140, 223 Amylases

action of 157 chloride ions and 14 7 in contact digestion 206 invertebrate 159 pancreatic 147, 159 salivary 102, 147, 159, 191

Amylopectin 15 7 Amylose 157 Anal pore 172 Anas 45, 55, 224 Antylostoma 88, 218 Androctonus 59, 220 Annelida 218

conducting and storage regions alimentary system 109, 114 feeding 30, 45, 49, 51, 73 see also individual genera

105 f. digestive regions l 08 f. evolution of 94 f. guinea pig 123 insect 110-12

Anodonta 33, 220 Anopheles 85, 222 Anticipatory response 167

235

236 Index Anti-coagulants 101, 102 f. Anus 96, 176,213 Aphis 77, 221 Aphrodite 51, 114, 219 Apis 102, 107, 222 Aplysia 102, 107, 158, 219 Apus 58, 221 Arachnida 58, 69, 73, 220 Arcella 21, 215 Arenicola 46, 219 Argulus 74, 221 Arthropoda 220, see individual classes,

orders or genera Artiodactyla 63, 117, 225

see also Ruminants Ascaris 88, 218 Ascidia 127, 140, 223 Ascorbic acid 15 Astacus 221

digestion 189 f. feeding 58 gastric mill 109, 110

Asterias 69, 163, 222 Aurelia 49, 216 Autocatalysis 148, 149 Autodigestion, prevention of 142,

153 Aves 224

alimentary system 95, 106-8, 113 feeding 55, 56

Bacteria, proteinases in 152 see also Symbionts

Balanoglossus 39, 127, 223 Balantidium 28, 216 Balanus 42, 43, 221 Baleen 45 Beak, modifications of 55, 56 Beri-beri 13 Bile 124-5, 195, 208 Biotin 14 Blatta, 112, 221 Blood

anti-clotting agents 101, 102 f. clot formation 17, 102 f. clotting agents 100

Blood-sucking insects, feeding 74 f.

Bodo 23, 24, 215 Bolus 105, 198 Boophilus 82, 220 Bos 64,225 Brachiopoda 36, 218 Brunner's glands 129, 132 Buccal cavity 99 Buccinum 47, 102, 219 Bulla 52, 219

Caecum 122, 123, 135 Calanus 42, 221 Calciferol 15 Calliphora 70, 102, 164, 222 Canines 62 Carbohydrases 150, 157 f. Carbohydrates

absorption 205 classification 7 digestion 157-60, 205 structure 6

Carbonic anhydrase 183, 185, 200 Carboxyl group 2, 151 f. Carboxypeptidases 153 f., 189, 202 Carcinus 58, 2 21 Cardia 117 Carnassial 66 Carnivora 65, 225 Carotene 12 Casein 200 Cassis 101, 219 Catalyst

enzymes as 145 mucous membrane as 206-7

Cathepsins 152, 156, 175 Cavia 225

alimentary system 123 vitamin C requirements 15

Cellu1ases, occurrence 158 Cellulose, digestion by symbionts

119, 135 Cement 65 Cepha1ochordata 26, 223 Cephalodiscus 39, 223 Cephalopoda 220

digestion 163, 168 feeding 57, 69

Index 237 Cercorchis 87, 183, 217 Cestoda 92,217 Cetacea 225

feeding 44, 55 stomach 120

Cetorhinus 44, 223 Chaetopterus 30, 219 Chameleon 53, 224 Cheilitis 14 Chelae 58 Chilo monas 91, 215 Chirocephalus 42, 221 Chiroptera 72, 82, 103, 225 Chirotenetes 42, 221 Chloride ions and amylase activity

148 Choanocytes 24 Cholecystokinin 170, 201 Choline 14 Chordata 222

alimentary system 99 f. digestion 193 f. feeding 44, 52 f. see also individual classes or genera

Chrysops 74, 75, 164, 222 Chyle 202 Chylomicrons 210-212 Chyme 201 Chymotrypsin 152, 202 Chymotrypsinogen 152, 202 Ciliary feeding 25 f. Cimex 79, 134, 221 Ciona 36, 37, 223 Cirripedia 42, 43, 93, 221 Cloaca 137 Cloiion 143, 221 Clupea 44, 224 Cobalamin 14 Cockroach see Periplaneta and Blatta Coelenterata 216

digestion 97, 163 feeding 29, 49

Co-enzyme 148 Coleoptera 48, 69, 112, 222 Collagenase 152 Colon 122, 123, 213 Columba 95, 137, 224 Condensation 2, 7

Contact digestion 206-7 Control and co-ordination

of alimentary secretions 166 f. of movement within the gut 140

Convoluta 176, 217 Coprodeum 137 Crepidula 34, 219 Crop 105 f. Crustacea 220

digestion 121, 189 f. endoparasitic, nutrition of 93 feeding 42, 57, 73

Crypt of Lieberkiihn 129, 132 Crystalline style 115-16 Ctenidia 30-4 Ctenophora 21 7 Culex 75, 82, 222 Cycloporus 73, 217 Cyclops 42, 93, 221 Cyclosis 1 72 Cyclostomata 105, 193, 223 Cytopharynx 28, 171 Cytostome 28, 171

Daphnia 42, 221 Deamination 125, 204 Deficiency diseases 11 f. 7-Dehydrocholesterol 15 Demodex 82, 220 Dentine 65 Dentition, mammals 61 f. Desmodus 82, 225 Dextrins 15 7 Diabetes mellitus 126 Diastema 62 Diclidophora 8 7, 21 7 Didinium 49, 216 Diet

adaptation of enzymes to 163 f. and length of gut 122 essential components 1 f. symbionts in relation to 132 f.

Dijflugia 21, 159, 215 Digestion

and digestive enzymes 144 f. carbohydrate 157-60, 205 f. Crustacea 121, 189 f.

Index

Digestion (cont.) extracellular 95 f., 178, 187, 192 Insecta 191 f. intracellular 94, 179-182, 187-

188, 202 lipid 160-2, 207 f. protein 150-7, 198 f. Protozoa 1 71 f. Rhynchocoela 183 f. ruminant 117-119 Teleostei 194 f. Turbellaria 17 5 f. Mammalia 197 f.

Digestive diverticula 109, 114-16 Digestive enzymes

classification 150 control of secretion 166 f. extracellular 152, 155, 159, 162 intracellular 152, 156, 159, 162 properties 144 f. specificity 145

Digestive glands 114-15 Digestive juices, daily volume in

Man 199 Diglycerides 8, 161, 208 Dipeptidases 153 f., 175, 189, 192,

202 Dipeptide 2, 154, 202 Diphylla 82, 225 Diphyllobothrium 92, 217 Diplodiscus 8 7, 217 Diplozoon 87, 217 Diptera 69, 75 f., 89, 222 Disaccharides 6, 159 Dogfish see Scyllium and Squalus Donax 115, 220 Doris 47, 219 Duodenum 122, 123 Dytiscus 70, 139, 163, 222

Echinobothrium 92, 21 7 Echinodermata 222

digestive enzymes 163 feeding 36, 39, 46, 48, 52, 68

Echinus 163, 222 Ectodermal components of alimentary

system 138

Ectoparasi tes 71 Ectoprocta 36, 218 Eimeria 92, 215 Elasmobranchii 223

feeding 44, 52, 60 intestine 127-8

Emulsification during fat digestion 208

Enamel 62, 65 Endoparasi tes

nutrition 71, 91 transmission of 83 f., 92

Endopeptidases 150 f., 178, 198 Endoplasmic reticulum 210 Endostyle 36 Entamoeba 175, 215 Enterocrinin 170, 201 Enterogastrone 170, 201 Enterokinase 152, 196, 202 Enteroxenus 93, 219 Entoprocta 36, 218 Equus 64, 225 Esox 52,224 Essential amino acids 5 Esterases 163 Euglena 23, 215 Evolution of alimentary systems and

extracellular digestion 94 f. Exopeptidases 150, 153 f., 181, 187

Faeces 96 Fasciola 88, 182, 217 Fats see Lipids Fatty acids 8, 158, 160, 210 Feeding mechanisms

classification 18 f. for fluids or soft tissues 71 f. for large particles or masses 45 f. for small particles 20 f.

Felis 65, 225 Fibrinogen 17, 103 Fibrinolysin 152 Flagellate feeding 23-5 Flagellated chambers 24, 25 Flamingo 44, 224 Folic acid 14 Food chain 93

Index 239 Food reserves 8, 12, 125 Food storage in crop 105 f. Food vacuole 94,171 f., 179,185 Fructose 7, 160

Gadus. 52, 224 Gall bladder 169 Gastric mill 109-10, 189 Gastric shield 115 Gastrin 169, 198 Gastrodermis 178, 185 Gastropoda 219

crystalline style 116 digestion 163 feeding 34, 52, 57, 89, 93

Gill slits in feeding 36 f. in respiration 105

Gizzard 108 f., 192 Globigerina 22, 215 Glossina 76, 85, 134, 164, 222 Glucose 6--7, 158 Glycera 51, 219 Glycerol 8, 160, 210 Glycogen 125, 157 Glycosidases 157 Gnathobases 59 Goblet cell 142 Grantia 25, 216 Guinea pig see Cavia

HaeTfUJtopinus 80, 221 HaeTfUJdipsa 106, 219 Haemolysins 101 Haemopoietic factor 200 Haemopsis 51, 219 Haemorrhagins 10 I Halichondria 25, 216 Haplometra 87, 183,217 Helix 47, 102, 107, 158, 219 Hemichordata 26, 39, 223 Heparin 103 Hepatic caeca 191 Hepatic portal vein 124, 204 Hepatopancreas 115 Hereditary transmission of symbionts

134

Herbivorous mammals 63 f. Hirudinea 73, 219 Hirudo 103, 219 Histamine 103 Holocrine 191 Holothuria 41, 222 Homarus 58, 221 Homo see Man Honey 107 Hormones controlling secretion

166 f. Housefly 90 Hyaluronidase 101 Hydatina 109, 218 Hydra 49, 216 Hydrarachna 81, 220 Hydrochloric acid

function 148, 152, 198 production 200 stimulation of 169, 198

Hydrogen ion concentration see pH in acid formation 183, 200

H ydrolases 150

7, 157 144

144

Hydrolysis carbohydrate ester linkages glycosidic bond lipids 9, 160-1 peptide bond 4, 144, 150, 154

Hymenoptera 107, 112, 222 Hyperglycaemia 126

Ileum 122, 123 Incisors 61 Inorganic salts

absorption 212 dietary essentials I 0

Inositol 14 Insecta 221

adaptation in digestive enzymes 163 f.

alimentary system 110 f. as vectors 83 f. digestion 191 f. feeding 48, 60, 69, 74 f.

Insulin 125, 206

Index Inter-chain linkage 3 Intermediate host 92 Intestine 108, 121 f. Invertase 159 Ions and enzyme activity 147, 155,

158, 189 Islets of Langerhans 125 Isoptera 48, 112, 133, 221

Jaw suspension, modifications in snakes 53

Kangaroo 61, 120, 225 Kerkring, folds of 128, 131

Lactase 160, 165 Lacteal 129, 130 Lagomorpha 61, 135, 225 Lamellibranchia 220

digestion 114-15, 121 feeding 30 f.

Larval forms, feeding 39 Leeches 73 Leishmania 91, 215 Lepidocaris 42, 221 Lepidoptera 48, 89, 164, 222 Leptoplana 68, 217 Leucine aminopeptidase 155, 181 Limulus 58, 60, 220 Lineus, digestion 183 f., 217 Lipases 150, 160-2, 181, 189, 191,

196, 208 Lipids

absorption 208 f. digestion 160-1, 207 f. structure 8

Lipolysis 144, 160-1 Lipolytic theory of fat digestion 208 Lithobius 60, 221 Littorina 34, 47, 219 Liver

control of secretions 169 function 124-5 ongm 116, 124

Lophopus 35, 218

Lucilia 70, 102, 164, 222 Lumbricus 219

alimentary system 107, 127 feeding 46

Lumen 96 Lymantria 164, 222

MoJa 189, 221 Malpighian tubules 138 Maltase 159 Maltose 7, 157 Maltotriose 157 Mammalia 224

absorption 203, 205, 208 digestion 197 f. feeding 60 f.

Man 225 adaptation in salivary amylase

166 digestion 197 f. intestine in 131 vitamin requirements 11 f.

Mandible 46, 63 Mansonia 85, 222 Marsupialia 225

feeding 61 stomach 120

Mastax 109 Mastication 57 f. Mastigina 23, 215 Mastigophora 23, 215 Membrane digestion 206-7 Merocrine 191 Merostomata 58, 220 Micelle 211 Microvilli 130, 131, 204, 206-7, 209 Milk 12, 165 Molars 61 Mollusca 219, see also individual

classes or genera Monocystis 92, 215 Monoglycerides 8, 161, 208 Monosaccharides 6, 205 Mosquitoes 74, 85, 222 Mouth 25, 170, 194, 198 Movement of food through gut 140 Mucin 99

Mucus 27, 39, 41, 99, 142 Mucoid feeding 41 Mucous membrane

intestine 194 role in digestion 206 f. stomach 194

Murex 102, 219 Musca 90, 222 Myrmeleon 70, 222 Mytilus 33, 47, 220 Myzus 85, 221

Nebalia 58, 221 Nectar 89 Nematocysts 49 Nematoda 72, 86, 88, 218 Neomenia 88, 219 Nereis 51, 219 Nerves controlling secretion 166 f.,

198 Neurotoxin 100 Niacin 14 Nicotinic acid 14 Night blindness 13 Notonecta 79, 221 Nucella( =Thais) 47, 219 Nucleases 162 Nucleosidases 162 Nucleotidases 162 Nucula 34, 220

Obelia 49, 216 Octopoda 52, 220 Odonata 112, 221 Oesophageal sac 171 Oesophagus 105 Omasum 117, 118 Omnivores 66, 135, 163, 197 Opalina 28, 91, 216 Ophiocoma 52, 222 Ophiura 52, 222 Opisthioglyphe 8 7, 217 Orang-utan 67, 225 Orthodemus 50, 176, 179,217

Index Orthoptera 48, 112, 221 Osteomalacia 16 Oxyntic cells

production of acid in 200 stimulation of 169

Palmito-oleo-stearin 8 Pancreas

adaptive response to diet 166 control of 169 enzymes produced 152, 155, 159,

162 in teleosts 195 origin 124

Pancreozymin 169, 201 Pantothenic acid 14 Paramecium 216

digestion 174 f. feeding 28, 171

Parasites nutrition 71 f., 91 transmission of 83 f., 92

Parietal cells production of acid in 200 stimulation of 169

"Parlip" sequence 211 Patella 47, 219 Pediculus 81, 134, 221 Pellagra 14 Pelomyxa 175, 215 Pendulum movement 141 Pentastomida 91, 220 Pepsin 148, 152, 198 Pepsinogen 148, 152, 198 Peptic glands 195, 198 Peptidases 150 f. Peptide bond

formation 2 hydrolysis 144, 150 f.

Peranema 23, 24, 215 Periplaneta 221

alimentary canal 111 digestion 163, 191 f. saliva 102

Perissodactyla 225 feeding 63 symbionts and digestion 135

Peristalsis 141 Peritrophic membrane 142-3, 192 Pernicious anaemia 14, 200-201 Peyer's patches 132 pH

changes in food vacuoles 173-4, 178

effect on enzyme activity 146-7 Phagocytosis 94, 178 f .. 185 Pheritima 46, 219 Phlorizin 205 Phoronida 36, 218 Phospholipids 8 Photosynthesis 6 Pilocarpine 195 Pinocytosis 203-4, 209 Placental mammals 61, 225 Plasmodium 85, 92, 215 Platyhelminthes 216

digestion 97, 175 feeding 51, 73, 86-88, 92

Pleuronectes 60, 194 f., 224 Podophyra 86, 216 Polycelis 217

feeding and digestion 178 f. Polyodon 44, 223 Polypeptides

hydrolysis 150 f. structure 3

Polysaccharases 157 Polysaccharides

digestion 157 formation 6

Polystoma 87, 182,217 Pomatoceros 30, 219 Pomatomus 52, 224 Porifera 24, 216 Porites 30, 216 Precursor 148 Premolars 61 Primates 66, 225 Proboscidea 67, 225 Proboscis 51, 75, 183 Procarboxypeptidases 155, 202 Proctodea! invagination 138 Proctodeum 137 Proteases 150 f., 189, 191, 195 Protection of gut lining 142

Index Proteins

absorption 203 classification 4 digestion 150 f., 198 intracellular synthesis 156 structure 2-5

Proteolysis 144, 150 f. Protozoa 215

cellulase in 158 digestion 94, 97, l 71 f. feeding 21, 23, 27, 86, 91, 158

Proventriculus 110 Pseudopodia! feeding 21 Ptyalin 159 Pulex 81, 222 Purines 162 Pyloric caeca 115, 128, 195 Pylorus 117 Pyridoxine 14 Pyrimidines 162 Pythnn 53, 224

Radula 34, 46 Rana 53, 122, 224 Rattlesnake 54, 224 Rectal glands 138 Rectum 136 Rennin 165 Reptilia 53-4, 224 Respiratory trees 139 Reticulum 117, 118 Rhabditis 88, 218 Rhodnius 79, 134, 221 Rhynchocoela 21 7

alimentary system 97 digestion 183 f. feeding 51

Rickets 16 Rodentia 225

adaptations for gnawing 62-3 symbionts 135

Rotifera 36, 109, 218 Rumen 117, 118 Ruminants

feeding 64-5 subdivision of stomach in 117 f.

Index 243 Sabella 219

digestion 121 feeding 29, 30

Sacculina 93, 221 Sacculus rotundus 122 Sagartia 30, 216 Salamandra 53, 224 Saliva

adaptation in enzyme content 166 control of constituents 167-9 specialization of constituents 99 f.

Salivary glands 99 f. Saprozoic 23, 91 Sarcoptes 82, 220 Scapho.nder 52, 219 Schistocephalus 92, 217 Schistosoma 87, 217 Sciurus 63, 225 Scorpio 58, 220 Scurvy 15 Scyllium 52, 223 Secretin 169, 170, 201 Secretion of enzymes, factors con-

trolling 166 f. Segmentation 141 Separation of phases of digestion 96 Sepia 57, 220 Setous feeding 42 Simulium 44, 222 Siphonaptera 112, 222 Sodium chloride

in production of HCl 200 secretion in rectum 139

Sorting mechanisms, stomach, mol­luscs and arthropods 113

Specificity carbohydrases 157 digestive enzymes in general 145 lipases 160 peptidases 150 f.

Sphyraena 52, 224 Spiral valve 127, 128 Spirogyra 159 Spirorbis 30, 219 Spongilla 25, 216 Sporozoa 92, 215 Squalus 128, 139, 223 Squilla 58, 221

Starch 6, 157 Stomach 108, 116 f. Stomodeal invagination 138 Striated border 130, 191 Stylaria 51, 139, 219 Substrate 145 Succus entericus 201 Sucrase 159 Sucrose 7, 160 Suctoria 86, 216 Sulphydryl groups as activators 148,

152-3, 180 Symbionts

in rumen intestinal

119 132 f.

vitamin production by 11, 133 Symbiosis 11 Synanthedon 90, 222

Tabanus 75, 164, 222 Taenia 92, 217 Taste buds 104 Tealia 49, 216 Teeth

Chordata 52 mammalian 61 f.

Teleostei 223 digestion 194 f. feeding 44, 52, 60

Temperature, effect on enzymic activity 146

Tenebrio 138, 222 Tentacular feeding 39 Teredo 48, 158, 220 Termites see Isoptera Thais ( =Nucella) 47, 219 Testacella 52, 219 Theobaldia 85, 222 Thoracic duct 212 Thyca 89, 219 Thyroxin 10 Tocopherol 16 Tongue 57, 103, 198 Tracheae 138 Trichite 24 Triglycerides

hydrolysis 160-1, 207

244 Index Triglycerides (cont.)

structure 8 Tripalmitin 8 Tripeptides 3 Trisaccharides 6 Tritonia 101, 219 Trituration 108 f. Triturus 53, 224 Trophic sac 80 Tropidonotus 53, 224 Trypanosoma 24, 91, 215 Trypsin 152, 196, 202 Trypsinogen 152, 202 Tsetse-fly see Glossina Turbellaria 217

alimentary system 97 digestion 175 f. feeding 51, 73 movement of food in 140

Tylenchus 88, 218 Typhlosole 127 Tyramine 103

Urea 125, 204 Urochordata 26, 36, 222 Urodeum 137

Valvulae conniventes see Kerkring, folds of

Vampyrella 158, 215 Vectors, feeding habits of 83 f. Venom 100 Vermetus 41, 219 Vermiform appendix 122, 123 Vertebrata 223 Villus 118, 127, 129, 131, 203 Vitamins

A-K 11 f. absorption 15, 212 production by symbionts 133

Vorticella 28, 216

Wallaby 61, 120, 225 Water

absorption 136 f. as a dietary essential 9 "metabolic" 10 sources of, in the body 9-10 storage 120

Whales feeding 44, 55 stomach 120

Wuchereria 85, 88, 218

Xenopsylla 81, 85, 222

Vampire bat 72, 82, 103, 225 Zymogen cells 193