appendix - home - springer978-1-4615-5363...table 2 (continued) z nuclide percentage relative atomic...

59
APPENDIX 495

Upload: others

Post on 15-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

APPENDIX

495

Page 2: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 1 The values of the most important constants

Name Notation, S1 CGS Other practical units

definition

Speed of light c 2.997924 108 mls 1010 cmls

in empty space

Normal molar Vo=RToIPo 2.241383 1O-2m3/mo 104 cm3/mol 22.41381/mol volume of

the ideal gas

Avogadro NA 6.022045 1023/mol 1023 /mol constant

Loschmidt NL 2.68726 1025 1m3 1019 /cm-3

constant

o point of the To 273.15 K Celsius scale

Molar gas R=poVoITo 8.31441 l/(Kmol) 107erg/(Kmol) 8.2057 latmJ(moIK) constant

Faraday F=NAe 9.648456 104C/moi 2.89261 el.st.u. */mol constant

Elementary e 1.602189 10-19 C 4.80298xlO-IO e1.st.u. charge

Planck h 6.626176 10-34 Js 10-27 erg s constant

Boltzmann k=RlNA 1.380662 1O-23 11K 10-16 erglK 8.617 35xlO-8 eV/K constant

Bohr magneton I-lB 9.274078 10-24 liT 10-21 ergiG

Nuclear, I-lN 5.050824 10-27 liT 1O-24 ergiG magneton

496

Page 3: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 1 (continued)

Name Notation, SI CGS Other practical units definition

Classical re 2.817938 1O-15 m 10-13 cm

electron radius

Ratio of the mplme 1.836lx103

proton and electron masses

Ratio of the mnlme 1.8386x103

neutron and electron masses

Atomic mass amu=(1 0-3kg/mo12)/N A 1.660565 10-27 kg 931.5016 MeV unit

Rest mass of me 9.109534 10-31 kg 10-28 g 5.84580xl0-4 amu; the electron 0.511003 MeV

Rest mass of mp 1.672648 10-27 kg 10-24 g 1.007276 amu; the proton 9.38279xl02 MeV

Rest mass of mn 1.674954 10-27 kg 10-24 g 1.008665 amu; the neutron 9.39573x102 MeV

Rest mass of mH 1.673559 10-27 kg 10-24 g 1.007825 amu; the hydrogen 9.38790xl02 MeV atom

Rest mass of md 3.348513 10-27 kg 10-24 g 2.016490 amu; the deuteron 1.87836x103 MeV

Rest mass of ma 6.697026 10-27 kg 10-24 g 4.032980 amu; the a-particle 3.7567x103 MeV

497

Page 4: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 2

Stable nuclides

Z Nuclide Percentage Relative Z Nuclide Percentage Relative atomic mass atomic mass

IH 99.985 1.007825 20 40Ca 96.94 39.96259 2H 0.Ql5 2.0141 42Ca 0.64 4l.95863

2 3He 0.00013 3.01603 43Ca 0.135 42.95877 4He 100 4.00260 44Ca 2.086 43.95549

3 6Li 7.5 6.01512 46Ca 0.004 45.95369 7Li 92.5 7.01600 48Ca 0.18 47.95253

4 9Be 100 9.01218 21 45Sc 100 44.95592 5 lOB 19.9 10.0129 22 46Ti 8.25 45.95263

"B 80.1 11.00931 47Ti 7.44 46.95176 6 12C 98.89 12 48Ti 73.72 47.94795

13C 1.11 13.00335 49Ti 5.41 48.94787 7 14N 99.63 14.00307 50Ti 5.18 49.9448

15N 0.37 15.00011 23 50y* 0.24 49.9472 8 160 99.762 15.99491 51y 99.76 50.9440

170 0.038 16.99913 24 50Cr 4.34 49.9461 180 0.200 17.99916 52Cr 83.79 5l.9405

9 19F 100 18.99840 53Cr 9.50 52.9407 10 2DNe 90.48 19.99244 54Cr 2.38 53.9389

21Ne 0.257 20.99384 25 55Mn 100 54.9381 22Ne 9.25 21.99138 26 54Fe 5.84 53.9396

11 23Na 100 22.98977 56Fe 91.75 55.9349 12 24Mg 78.99 23.98504 57Fe 2.12 56.9354

25Mg 10.00 24.98584 58Fe 0.28 57.9333 26Mg 11.01 25.98259 27 59Co 100 58.9332

13 27AI 100 26.98153 28 58Ni 68.08 57.9353 14 28Si 92.23 27.97693 6DNi 26.23 59.9307

29Si 4.70 28.97649 61Ni 1.14 60.9310 30Si 3.09 29.97376 62Ni 3.66 61.9283

15 31p 100 30.97376 64Ni 0.93 63.9280 16 32S 95.02 31.97207 29 63Cu 69.17 62.9298

33S 0.76 32.97146 65Cu 30.83 64.9278 34S 4.22 33.96786 30 64Zn 48.63 63.9291 36S 0.02 35.96709 66Zn 27.92 65.9260

17 35CI 75.77 34.96885 67Zn 4.11 66.9271 37CI 24.23 36.96590 68Zn 18.84 67.9249

18 36Ar 0.337 35.96755 70Zn 0.62 69.9253 38Ar 0.063 37.96272 31 69Ga 60.11 68.9257 4°Ar 99.60 39.96238 71Ga 39.89 70.9249

19 39K 93.26 38.96371 32 70Ge 21.23 69.9243 4oK* 0.0117 39.96399 72Ge 27.66 71.9221 41K 6.70 40.96182 73Ge 7.73 72.9234

* Primordial nuclides (or primary natural radionuclides) having lifetimes commensurable with that of the Earth (-4.5x109 a) are marked with asterisks.

498

Page 5: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 2 (continned)

Z Nuclide Percentage Relative Z Nuclide Percentage Relative

atomic mass atomic mass

32 74Ge 35.94 73.9212 44 101Ru 17.0 100.9056 76Ge 7.44 75.9214 102Ru 31.6 101.9043

33 75As 100 74.9215 lO4Ru 18.7 103.9054

34 74Se 0.89 73.9225 45 103Rh 100 102.9055 76Se 9.36 75.9192 46 102Pd 1.02 101.9056 77Se 7.63 76.9199 104Pd 11.14 103.9040 78Se 23.78 77.9173 lO5Pd 22.33 104.9051 80Se 49.61 79.9165 106Pd 27.33 105.9035 82Se 8.73 81.9167 108Pd 26.46 107.9039

35 79Br 50.69 78.9183 lloPd 11.72 109.9052 81Br 49.31 80.9163 47 107Ag 51.839 106.9051

36 78Kr 0.35 77.9204 109Ag 48.161 108.9048 80Kr 2.27 79.9164 48 106Cd 1.25 105.9065 82Kr 11.61 81.9135 108Cd 0.88 107.9040 83Kr 11.50 82.9141 lloCd 12.49 109.9030 84Kr 57.00 83.9115 lllCd 12.80 110.9042 86Kr 17.32 85.9106 112Cd 24.13 111.9028

37 85Rb 72.16 84.9117 113 Cd 12.22 112.9044 87Rb* 27.83 86.9092 114Cd 28.73 113.9036

38 84Sr 0.56 83.9134 116Cd 7.49 115.9050 86Sr 9.86 85.9094 49 113In 4.29 112.9041 87Sr 7.02 86.9089 115In* 95.72 114.9039 88Sr 82.56 87.9056 50 112Sn 0.97 111.9048

39 89y 100 88.9059 114Sn 0.66 113.9028 40 90Zr 51.46 89.9043 115Sn 0.34 114.9035

91Zr 11.23 90.9053 116Sn 14.54 115.9017 92Zr 17.15 91.9050 117Sn 7.68 116.9030 94Zr 17.38 93.9061 118Sn 24.22 117.9016 96Zr 2.80 95.9082 119Sn 8.58 118.9034

41 93Nb 100 92.9060 120Sn 32.59 119.9022 42 92Mo 14.84 91.9068 122Sn 4.63 121.9034

94Mo 9.25 93.9051 124Sn 5.79 123.9053 95Mo 15.92 94.9058 51 121Sb 57.21 120.9038 96Mo 16.68 95.9046 123Sb 42.79 122.9042 97Mo 9.55 96.9059 52 l20Te 0.096 119.9040 98Mo 24.13 97.9055 122Te 2.60 121.9030 looMo 9.63 99.9076 123Te* 0.91 122.9042

44 96Ru 5.52 95.9076 124Te 4.82 123.9028 98Ru 1.87 97.9055 125Te 7.14 124.9044 99Ru 12.72 98.9061 126Te 18.95 125.9033 looRu 12.6 99.9042 128Te 31.69 127.9045

* Primordial nuclides (or primary natural radionuclides) having lifetimes commensurable with that of the Earth (~4.5x109 a) are marked with asterisks.

499

Page 6: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 2 (continued)

Z Nuclide Percentage Relative Z Nuclide Percentage Relative atomic mass atomic mass

52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226

53 1271 100 126.9045 156Gd 20.47 155.9221

54 124Xe 60.10 123.9059 157Gd 15.65 156.9239 126Xe 0.090 125.9042 158Gd 24.84 157.9241 128Xe 1.92 127.9035 160Gd 21.86 159.9271 129Xe 26.4 128.9048 65 159Tb 100 158.9253 130Xe 4.1 129.9035 66 156Dy 0.06 155.9238 l3lXe 21.2 130.9051 158Dy 0.10 157.9244 132Xe 26.9 131.9042 160Dy 2.34 159.9252 134Xe 10.4 133.9054 161Dy 18.92 160.9269 136Xe 8.9 135.9072 162Dy 25.53 161.9268

55 133Cs 100 132.9054 I 63Dy 24.92 162.9287 56 130Ba 0.106 129.9061 164Dy 28.22 163.9292

132Ba 0.101 131.9057 67 165Ho 100 164.9303 134Ba 2.42 133.9043 68 162Er 0.141 161.9288 135Ba 6.59 134.9056 I64Er 1.61 163.9293 136Ba 7.85 135.9044 166Er 33.62 165.9304 137Ba 11.23 136.9058 167Er 22.95 166.9320 138Ba 71.70 137.9050 168Er 26.82 167.9324

57 138La* 0.089 137.9071 170Er 14.92 169.9355 139La 99.91 138.9063 69 169Tm 100 168.9342

58 136Ce 0.19 135.9071 70 168Yb 0.131 167.9339 138Ce 0.25 137.9057 170Yb 3.05 169.9349 140Ce 88.48 139.9053 171Yb 14.32 170.9365 142Ce 11.08 141.9090 I72Yb 21.93 171.9366

59 141Pr 100 140.9076 173Yb 16.13 172.9383 60 142Nd 27.13 141.9077 174Yb 31.84 173.9390

143Nd 12.18 142.9098 176Yb 12.72 175.9427 144Nd* 23.80 143.9101 71 175Lu 97.41 174.9409 145Nd 8.30 144.9126 72 176Hf 5.21 175.9414 146Nd 17.19 145.9131 177Hf 18.61 176.9432 148Nd 5.76 147.9169 178Hf 27.30 177.9437 150Nd 5.64 149.9209 179Hf 13.63 178.9458

62 144Sm 3.1 143.9120 180Hf 35.10 179.9465 149Sm 13.8 148.9172 73 181Ta 99.99 180.9480 150Sm 7.4 149.9173 74 180W 0.12 179.9467 152Sm 26.7 151.9197 182W 26.50 181.9483 154Sm 22.7 153.9222 I83W 14.31 182.9503

63 151Eu 47.8 150.9198 184W 30.64 183.9510 153Eu 52.2 152.9212 186W 28.43 185.9543

64 154Gd 2.18 153.9209 75 185Re 37.40 184.9530

* Primordial nuclides (or primary natural radionuclides) having lifetimes commensurable with that of the Earth (-4.5xI09 a) are marked with asterisks.

500

Page 7: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 2 (continued)

Z Nuclide Percentage Relative Z Nuclide Percentage Relative atomic mass atomic mass

75 187Re" 62.60 186.9558 80 196Hg 0.15 195.9658 76 1840s 0.02 183.9526 198Hg 9.97 197.9668

1860S" 1.588 185.9539 199Hg 16.87 198.9683 1870s 1.61 186.9557 200Hg 23.10 199.9683 1880s 13.32 187.9558 201Hg 13.18 200.9703 1890s 16.13 188.9581 202Hg 29.86 201.9706 1900s 26.44 189.9584 204Hg 6.87 203.9735 1920s 41.03 191.9615 81 203T! 29.52 202.9723

77 191Ir 37.35 190.9606 205T! 70.48 204.9744 193Ir 62.75 192.9629 82 204Pb 1.41 203.9730

78 194Pt 32.96 193.9628 206Pb 24.11 205.9745 195Pt 33.86 194.9648 207Pb 22.11 206.9759 196Pt 25.36 195.9650 208Pb 52.41 207.9766 198Pt 7.22 197.9679 83 209Bi 100 208.9804

79 197Au 100 196.9666

* Primordial nuclides (or primary natural radionuclides) having lifetimes commensurable with that of the Earth (~4.5xI09 a) are marked with asterisks.

501

Page 8: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3

The most important radionuclides

Z Nuclide Tin Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

3H 12.32a ~- 0.018-100% 5Li(n,a)

2 6He 807ms ~- 3.5-100%

8He 119ms ~- 13-88% 0.981-84%

n 12% 0.477-5%

3 8Li 844ms ~- 12.5-100%

4 7Be 53.28d EC 0.48-10.4% 12C(p,3p3n)

7Li(p,n)

5 8B 770ms ~+ 13.7-93% ann. rad.

6 llC 20.3min ~+ 0.96--99% ann. rad. lOB(d,n)

EC

14C 5715a ~- 0.156--100% 14N(n,p)

7 13N 9.97min ~+ 1.2-100% ann. rad. 12C(d,n)

8 150 122.2s ~+ 1.723-100% ann. rad. 14N(d,n)

9 18F 1.83h ~+ 0.64-97% ann. rad. 16O(a,np) EC

10 18Ne 1.67s ~+ 3.416--92% 1.042-78% ann. rad.

25Ne 602ms ~- 6.30 0.090--96% 7.30 0.980--3.7%

11 22Na 2.6a ~+ 0.545-90% ann. rad. 24Mg(d,a) EC 1.28-100%

24Na 15h ~- 1.39-100% 1.37-100% 23Na(n,y)

2.75-100%

502

Page 9: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1/2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

12 27Mg 9.45min ~- 1.8-58% 0.83-70% 26Mg(n,y)

1.59-41% 0.171-{).8%

28Mg 20.9h ~- 0.459-95% 0.032-95% 37CI(p,6p4n) 28AI

0.40-36%

0.95-36%

1.35-54%

13 26AI 7.1x105a ~+ 1.16 ann. rad. 26Mg(d,2n)

EC 1.83-100% 25Mg(d,n)

28AI 2.25min ~- 2.87-100% 1.78-100% 27AI(n,y)

14 31Si 2.62h ~- 1.47-100% 1.26-{).07% 3OSi(n,y)

IS 32p 14.28d ~- 1.71-100% 31P(n,y)

32S(n,p)

33p 2S.3d ~- 0.25-100% 33S(n,p)

16 35S 87.2d ~- 0.167-100% 35CI(n,p)

34S(n,y)

17 36CI 3xl05 a EC 0.115-{).02% 35CI(n,y)

~- 0.714-98%

38CI 37.2 min ~- 1.11-31% 1.60-31% 37Cl(n,y)

2.77-11% 2.16-42%

4.91-S8%

18 37Ar 3S.0d EC 40Ca(n,a)

41Ar 1.82 h ~- 1.20 1.29-99.1% 4°Ar (n,y)

19 40K 1.26x109a ~- 1.32-89% ann. rad.

~+ I.SO-11 % 1.46-11%

EC

42K 12.36 h ~- 2.0-19% 0.32-{).3% 41K(n,y)

3.6.-81% 1.52-18%

503

Page 10: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1I2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeY) nuclide

19 43K 22.3 h ~~ 0.47-8% 0.22-3% 40Ar(a,p)

0.83~·87% 0.37-88%

1.24-3.5% 0.39-11%

1.81-1.3% 0.61-81%

20 4SCa 162.7 d ~~ 0.26--100% 44Ca(n,y)

47Ca 4.53 d p~ 0.66--83% 1.30-75% 4SCa(n,y)

1.94-17%

49Ca 8.72 min p~ 0.89-7% 3.10-92% 48Ca(n,y)

1.95-92% 4.05-7%

21 46SC 83.81 d p~ 0.36--100% 0.89-100% 4SSc (n,y)

1.12-100%

47SC 3.35 d p~ 0.45--69% 0.16--68% 46Ca (n,y)47Ca

0.61-31% -J, ~~ 47SC

49Sc 57.3 min p~ 2.0-100% 1.76-0.05% 48Ca (n,y)49Ca -J, \3~ 49Sc

22 slTi 5.76 min p~ 1.5-92% 0.32-93% sOTi (n,y)

2.13 0.61

0.93

23 48y 15.97 d p+ 0.70-50% ann. rad. Ti (P,xn) EC 0.99-100%

1.31

2.40

S2y 3.76 min p~ 2.47 1.45-100% Sly (n,y)

24 SICr 27.7 d EC 0.323-10% SOCr(n,y)

25 s2Mn 5.59 d \3+ 0.58 ann. rad. s6Fe (p,an) EC 0.744-90%

1.432-100%

504

Page 11: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continned)

Z Nuclide TII2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

25 54Mn 312.2 d EC 0.84-100% 56Fe (d,a)

56Mn 2.58 h ~- 0.72-18% 0.845-99% 55Mn (n,y)

1.03-34% 1.81-27%

2.12-15%

26 52Fe 8.28 h ~+ 0.80 ann. rad. 52Cr (a,4n)

EC 0.168-99%

55Fe 2.73 a EC 0.0059 54Fe(n,y)

59Fe 44.51 d ~ 0.273-48% 1.10-57% 58Fe (n,y)

0.47-51% 1.29-43%

27 56CO 77.3 d W 1.46--18% ann. rad. 56Fe (d,2n)

EC 0.845-100% 56Fe (p, n)

1.24-68%

(0.26--3.61 )

57CO 271.8 d EC 0.122-85.6% 56Fe (d,n)

0.014-0.706% 60Ni (p,a)

58Co 70.88 d EC 0.81-99% 58Ni (n,p)

~' ann. rad. 6~i (p,a)

60mco 10.5 min IT 99.8% 0.059 59CO (n,y) 6OCO

~- 1.56--0.2%

60CO 5.27 a ~- 0.31-100% 1.17-100% 59Co (n,y)

1.33-100%

28 63Ni 100 a ~- 0.067 62Ni(n,y)

65Ni 2.52 h ~- 0.65-30% 0.37-5% 64FeNi(n,y)

l.02-11% 0.11-16%

2.14-58% l.49-23%

29 64CU 12.7 h ~- 0.57-39% ann. rad. 63CU (n,y)

~+ 0.66--19% 1.34-0.6%

EC

505

Page 12: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1/2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

29 66Cu 5.1 min ~- 1.65-6% 0.83--0.2% 65Cu (n,y)

2.7-94% \.04-9%

67CU 2.58 d ~- 0.40-56% 0.93-7% 64Ni (a,p)

0.48-23% 0.185-47%

0.58-20%

30 65Zn 243.8 d ~+ 0.325 ann. rad. 64Zn (n)

EC 1.11-51% 65CU (p,n)

65Cu (d,2n)

69mZn 13.8 h IT 0.44-95% 68Zn( n, y )69m Zn ,j,

69Zn

69Zn 56 min ~- 0.191-100% 0.32

31 66Ga 9.5 h ~+ 0.74-1% ann. rad. 66Zn(d,2n)

EC 1.84-54% \.04-38%

4.15-51% 2.75-23%

(0.28-5.01)

67Ga 3.26d EC 0.092-37% 63Cu(a,y)

0.182-20%

0.30-17%

(0.09-0.89)

68Ga \.13 h ~+ \.83% ann. rad. 69Ga(p,2n)68Ge

EC \.08-3% ,j,EC

(0.57-2.33) 68Ga

70Ga 21.1 min ~- \.65-99% 0.17--0.2% 69Ga(n,y)

EC 1.04--0.5%

73Ga 74.87 h ~- 0.053-10% 7IGa(n,y)

0.30-47% (0.01-\.00)

32 68Ge 270.8 d EC GaKX-rad. 69Ga(p,2n)

71Ge 11.2 d EC 70Ge(n,y)

506

Page 13: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide TI/2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

32 75Ge 82.5 min ~- 0.92-11% 0.20-2% 74Ge(n,y)

1.19-87% 0.27-11%

77Ge 11.3 h ~- 0.71-23% 0.21-29% 76Ge(n,y)17mGe 77As

1.38-35% 0.22-27% IT(46%) {.

2.20-42% 0.27-51% 77Ge

(0.15-2.35)

33 72As 26.0h ~+ 1.88-12% ann. rad. 69Ga(u,n)

2.50-62% 0.835-80%

3.34-19% (0.1-4.0)

74As 17.78 d ~- 0.72-16% 0.635-15% 75Ga(u,n)

~+ 0.94-26% ann. rad. 74Ge(d,2n)

EC 1.36-16% 0.596--60%

1.53-3%

76As 26.3 h ~- 0.54-3% 0.56-45% 75As(n,y)

1.78-8% 0.66--6.3%

2.41-36% 1.21-3.4%

2.97-51% (0.3-2.6)

77As 38.8 h ~- 0.70-98% 0.245-1.6%

0.270-0.4%

0.525-0.4%

34 72Se 8.5d EC 0.046-57% 70Ge( u,2n)

75Se 120 d EC 0.14-55% 74Se(n,y)

0.27-58%

35 81mSe 57.3 min IT 0.10-9.7%

81Se 18.6 min ~- 1.6-98% 0.28-0.85%

80mBr 4.4 h IT BrKX-rad. 79Br(n,y)80mBr

0.04-39% {.IT

0.05-0.3% 79Br( n, y)80Br

507

Page 14: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1I2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

35 80Br 17.6 min ~- 1.4-7.6% 0.62--6.7% 79Br(n;y)80mBr

~+ 2.0-82% ann. rad. ,J,IT

Ee 0.87-3% 79Br(n,y)80Br

82Br 1.47 d ~- 0.44-100% 0.55-71% 8IBr(n,y)

0.62-43%

0.78-83%

(0.013-1.96)

36 85rnKr 4.48h IT 0.305 84Kr(n,y)

~- 0.82-79% 0.15

85Kr 10.76 a ~- 0.15-0.4% 0.51 U(n,f)-+85Kr

37 84Rb 32.9d ~- 0.89 0.88--68% 84Kr(d,2n)

~+ 0.8-11% ann. rad. 81 Br(a,n)

Ee 1.658-11% (1.02-1.9)

86Rb 18.65 d ~- 1.77-8.8% 1.08-8.8% 85Rb(n,y)

87Rb 5xl01O a ~- 0.275-100%

88Rb 17.7 min ~- 5.31 0.90-14% 87Rb(n,y)

1.84-21%

(0.34-4.85)

38 85Sr 64.85 d Ee 0.51-99% 85Rb(d,2n) 85rnRb

87mSr 2.81 h IT 0.39 86Sr(n,y)

89Sr 50.52 d ~- 1.49-100% 0.91 88Sr(n,y)

90Sr 29.1 a /3- 0.54-100% U(n,f)-+90Sr !lOy

39 88y 106.6 d ~+ 0.76 ann. rad.

Ee 0.90 88Sr(d,2n)

1.85

2.76

508

Page 15: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide TII2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

39 90y 2.67d (l- 2.28 89y(n,y)

91y 58.5 d (l- 1.54 1.21 U(n,f)--+9Iy

40 9SZr 64.02 d (l- 0.36-55% 0.73 94Zr(n,y)

0.40-44% 0.76

97Zr 16.8 h (l- 1.91 0.75-98% 96Zr(n,y)

U(n,f)--+97Zr

41 94mNb 6.26 min IT NbKX-rad. 93Nb(n,y)

(l- 0.041

0.871

9SNb 35.0 d (l- 0.16 0.76 94Zr(n,y)9SZr ,j, (l-9SNb

97Nb 1.23 h (l- 1.27-98% 0.48 %Zr(n,y)97Zr

0.66 ,j, p-97Nb

42 99Mo 2.75 d (l- 0.45-14% 0.14 98Mo(n,y)

0.84-2% 0.36 U(n,f)--+99Mo

1.21-84% 0.74

IOIMo 14.6 min p- 2.23 0.19 lOOMo(n,y) IOITc

0.59 (0.08-2.405)

43 99Tc 2.12xlOs a p- 0.290-100% 98Mo(n,y)99Mo ,j, (l-

99Jc U(n,f)--+99Tc

IOITc 14.2 min (l- 1.32 0.127 lOOMo(n,y)IOIMo

0.186 ,j, p-0.307 IOITc

0.545

(0.073-0.969)

509

Page 16: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1I2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

44 97Ru 2.9d Ee TcKX-rad. 96Ru(n,y) 97Tc

0.22

0.32

0.46

I03Ru 39.3 d ~- 0.21 0.50 I02Ru(n,y)

0.61

(0.04-1.6)

IOsRu 4.4 h ~- 1.11-22% 0.26 I04Ru(n,y) IOSRh

1.13-13% 0.32

1.19-49 0.48

0.67

0.73

(0.1-1.8)

106Ru 1.0 a ~- 0.039-100% U(n,f)~I06Ru

45 104mRh 4.4 min IT RhKX-rad. I 03Rh(n,y) I 04mRh

0.051 -l. IT ~- 1.3 0.097;0.556 103Rh(n,y)I 04Rh

I04Rh 43 s ~- 1.88-2% 0.358

Ee 2.44-98% 0.556

1.237

(0.35-1.8)

I05Rh 35.4 h ~- 0.25-30% 0.28 I 04Ru(n,y) I 06Ru

0.56-70% 0.31 -l. ~-IOSRh

I06Rh 30 s ~- 2.4-2% 0.51 3.0-12% 0.62 3.6-79%

46 103Pd 17d Ee RhKX-rad. 102Pd(n,y) 103Rh

0.04 103Rh( d,2n)

0.36

0.50

I09pd 13.47 h ~- 1.03-100% 0.088 108Pd(n,y) 109Ag

510

Page 17: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continned)

Z Nuclide T1/2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

47 I08Ag 2.39 min ~+ 0.88-0.3% ann. rad. 107Ag(n,y)

~- 1.65-96% 0.43

EC 0.63

IIOmAg 249.8 d ~- 0.530 0.66 109Ag(n,y)

IT 0.087 0.71

0.76

0.88

0.94

1.38

(0.45-1.56)

IIOAg 24.6 s ~- 2.22-5% 0.66 I09Ag(n,y)

2.89-95% 0.82

IIIAg 7.5 d ~- 1.04-93% 0.247 I IOPd(n,y) I IIPd

0.340 ,!.Jr II lAg

48 I09Cd 462d EC AgKX-rad. I09Ag(d,2n)

0.088

115mCd 44.6d ~- 0.68-2% 0.49 114Cd(n,y)

IT 1.62-97% 0.94

1.29

115Cd 2.23 d ~- 0.59-42% 0.26 114Cd(n,y)

1.11-58% 0.34 0.49 0.52

I17Cd 2.49h ~- 0.67-51% 0.22 116Cd(n,y)

2.2-10% 0.27 0.34 1.30

49 114mln 49.51 d EC 3% InKX-rad. I 13In(n,y)114mln

IT 97% 0.19 IT,!. 1141n

1141n 72s ~- 1.98 Cd KX-rad.

EC 0.57

1.3

511

Page 18: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide TII2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

49 116mIn 54 min ~- 1.00 In KX-rad. 115In(n,y)

0.138

0.406

1.09

1.29

117In 44 min ~- 0.74-100% 0.160 116Cd(n,y)117"'Cd

0.553 ll7Cd~ ll7In

50 113Sn 115 d EC In KX-rad. 112Sn(n,y)

0.26

0.39

119mSn 250d IT SnKX-rad. 118Sn(n,y)

0.024

121Sn 1.13 d ~- 0.383-100% 120Sn(n,y)

123Sn 129.2 d ~- 1.42-100% 1.08-2% 122Sn(n,y)

51 122Sb 2.72d ~- 1.42-{;5% 0.57 I21Sb(n,y)

EC 1.99-26% 0.69

1.26

1.14

124Sb 60.2d 13- 0.61-52% 0.60-98% 123Sb(n,y) 2.30-23% 0.65-8%

0.72-11%

1.70-48% (0.03-2.09)

I25Sb 2.76 a ~- 0.12-30% 124Sn(n,y)125mSn

0.30-45% ,j, ~-

0.61-13% 125Sb

52 127mTe 109d ~- 0.22-2% TeKX-rad. 126Te(n,y)127mTe

IT 0.088 ,/..IT 126Te(n,y)127Te

127Te 9.4 h ~- 0.70 0.360

512

Page 19: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide TIIZ Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

52 129mTe 33.6 d IT 1.60 Te KX-rad. U(n,t)-+129mTe

~- 0.46 -J..IT 0.69 129Te

129Te l.l6 h ~- 0.99-9% 0.028

1.45-89% 0.460

0.487

132Te 3.26 d ~- 0.22 0.049 U(n,t)-+I32Te 133)

0.112

0.228

53 lZ3) 13.2 h Ee Te KX-rad. 12ISb(a,2n)

0.16

lZ4I 4.2 d ~+ 1.54 TeKX-rad. 12ISb(a,n)

Ee 2.14 ann rad.

0.75 0.60-63%

0.73-10%

1.70-11%

IZ5) 59.4 d Ee Te KX-rad. IZ3Sb(a,2n)

0.035

126) I3d ~- 0.87 Te KX-rad. I23Sb(a,n)

1.25 0.39

~+ l.l3 ann. rad.

Ee 0.66

128) 25 min ~- 2.13 Te KX-rad. 127I(n,y)

Ee 0.46

0.53

1291 1.7xl07 a ~- 0.15-100% Xe KX-rad. U(n,t)-+129I

0.04

13°1 12.36 d ~- 0.60 0.418 129I(n,y)

1.04 0.536

0.668

0.740

513

Page 20: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continned)

Z Nuclide TI/2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

53 1311 8.04d p- 0.61 0.08 130Te(n,y) 131Te

0.28 ,[, p-0.36 1311

0.64 t p-U(n,f)~131Te

1321 2.28 h p- 0.80 1 KX-rad. U(n,f)~132Te

1.03 0.10 ,[, p-1.2 0.51 i32I

1.6 0.52

2.16 0.63

0.65

0.77

0.95

54 133mXe 2.19 d IT XeKX-rad. J32Se(n,y)133mXe

0.23

..J,IT

J33Xe 5.24d p- 0.346-99% Cs KX-rad. J32Xe(n,y)J33Xe

0.081 U(n,f)~J33Xe

0.161

55 131CS 9.7 d EC XeKX-rad. J30Ba(n,y)J3JBa

0.23 ,[,EC

l3lCs

134Cs 2.06 a p 0.09-27% 0.57 J33Cs(n,y)

EC 0.66-70% 0.605 0.80

137CS 30.2 a p- 0.51-95% BaKX-rad. U(n,f)~J37Cs

0.66

56 131Ba 11.7 d EC Cs KX-rad. J30Ba(n,y) J31Cs

0.124 0.216

0.496

i33Ba 10.5 a EC Cs KX-rad. 132Ba(n,y)

0.079

0.358

514

Page 21: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide Tl/2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

56 139Ba 1.396 h p- 2.14-27% 0.16 133Ba(n,y)

2.27-72% 1.25

1.42

140Ba 12.75 d p- 0.48 0.16 U(n,t)~140Ba 140La

1.0 0.30

1.02 0.54

57 140La 1.68 d p- 1.35 0.33-19% 139La(n,y)

1.24 0.49-41%

1.67 0.82-27%

0.92-11%

2.54-4%

58 141Ce 32.5d p- 0.44-69% PrKX-rad. 140Ce(n,y)

0.58-31% 0.145-48%

143Ce 1.38 d p- 1.11-47% PrKX-rad. 142Ce(n,y) 143Pr

1.40 0.29

0.057

144Ce 284.6d p- 0.19-20% PrKX-rad. U(n,t)~I44Ce 143Pr

0.32 0.080

0.133

59 142Pr 19.12 h 13- 0.58-4% 0.509 141Pr(n,y)

2.16-96% 1.576

143Pr 13.6 d p- 0.933 0.742 142Ce(n,y)143Ce

,j.. p-143Pr

144Pr 17.28 min p- 0.807-1% 0.69 U(n,t)~I44Ce

2.29 1.49 ,j.. p-2.99-98% 2.18 144Pr

60 147Nd 11.0 d p- 0.81 PrKX-rad. 146Nd(n,y) 147Pm

0.091

0.53 U(n,t)~147Nd

515

Page 22: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1/2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

60 14'lNd 1.73 h p- 1.03-25% PrKX-rad. 14BNd(n,y) 149Pm

l.l3-26% 0.114-19%

1.42 0.211-27%

(0.06-1.6)

151Nd 12Amin p- 1.2 Pm KX-rad. 15ONd(n,y) 151Pm

l.l17

0.256

l.l80

61 147Pm 2.62 a p- 0.22 0.121 146Nd(n,y)147Nd

0.197 .!. p-147Pm

U(n,f)~147Pm

I 49Pm 2.21 d p- 0.78-9% 0.285 148Nd(n,y)14'lNd

1.07-90% 0.591 .!. p-0.859 149Pm

151Pm 1.18 d p- 0.84 0.167-8% 15ONd(n,y)15INd 151Sm

0.275-7% .!. p-0.340-22% 151Pm

62 153Sm 1.93 d p- 0.64 EuKX-rad. 152Sm(n,y)

0.70 0.07

0.10

155Sm 22.2 min p- 1.50-5% EuKX-rad. I 54Sm(n,y) 155Eu

1.65-95% 0.104-76% 0.142-1% 0.246-3%

63 152mEu 9.3 h p- 0.89 SmKX-rad. 15IEu(n,y)

EC 1.85 0.122

0.84

0.96

152Eu 13.5 a p- 0.69 SmKX-rad. 15IEu(n,y)

EC 1.47 0.12

0.34

lAO (0.25-1.53)

516

Page 23: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide TJi2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

63 154Eu 8.59 a p- 0.15-12% GdKX-rad. I 53Eu(n,y)

EC 0.27-29% 0.123-40%

0.58-38% 0.723-20%

0.84-17% 1.274-36%

0.98-4%

1.87-11%

155Eu 4.76 a p- 0.15 GdKX-rad. 154Sm(n,y)l55Sm

0.086-30% ,j. p-0.105-20% 153Eu

64 l53Gd 241.6 d EC Eu KX-rad. 152Gd(n,y)

0.097

0.103

159Gd 18.6 h p- 0.60-11% TbKX-rad. I 58Gd(n,y)

0.88-26% 0.06

0.94-63% 0.36

65 160Tb 72.3 d p- 0.57-40% DyKX-rad. I 59Tb(n,y)

0.86-27% 0.087

0.298

0.879

0.966

161Th 6.91 d p- 0.46-23% DyKX-rad. 160Gd(n,y)16IGd 0.52-66% 0.025 .j. ~-

0.58-10% 0.049 161Tb

0.074

66 165Dy 2.33 h p- 1.29 HoKX-rad. I 64Dy(n,y)

0.095

67 I 66Ho 1.12 d I}- 1.76-48% ErKX-rad. I 65Ho(n,y)

1.84-51% 0.08

1.38

169Er 9.4 d I}- 0.35-100% TmKX-rad. I 68Er(n,y)

0.109

0.118

517

Page 24: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide TIll Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

68 l7lEr 7.52h ~- TmKX-rad. 170Er(n,y) 171Tm

0.112

0.295

0.308

69 l70Tm 128.6 d ~- 0.88-24% YbKX-rad. 169fm(n,y)

EC 0.97-76% 0.084

70 169Yb 32 d EC TmKX-rad. I 68Yb(n,y)

0.063

0.109

0.177

0.198

175Yb 4.2d ~- 0.071-21% LuKX-rad. I 74Yb(n,y)

0.35-6% 0.396-13%

0.47-73%

177Yb 1.9 h ~- 1.40 LuKX-rad. 176Yb(n,y) I 77Lu

0.15

71 176mLu 3.66h ~- 1.229 HfKX-rad. 175Lu(n,y)

1.317 0.088

I71Lu 6.75d ~- 0.50 0.11 176Yb(n,y)177Yb

0.21 I77Yb~177Lu

0.33

72 I75Hf 70d EC LuKX-rad. 174~n,y)

0.089 0.343

180mHf 5.52h IT HfKX-rad. 179Hf(n,y)

0.22

0.33

0.44

181Hf 42.4 d ~- 0.41 TaKX-rad. 180Hf(n,y)

0.133

0.482

518

Page 25: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1I2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

73 IS2Ta 114.4 d ~- 0.25-30% WKX-rad. lSI Ta(n,y)

0.44--20% 0.068

0.52-40% 0.100

0.121

1.12

1.22

74 IS5W 74.8 d ~ 0.43-100% 0.125 lS4W(n,y)

187W 23.9 h ~- 0.62 Re KX-rad. l86W(n,y)

1.31 0.072

0.479

0.686

75 l86Re 3.72 d ~- 0.973-21% WKX-rad. I 85Re(n,y)

EC 1.07-71% 0.137-9.5%

0.122-0.6%

(0.63--0.77)

IS8Re 16.9 h ~- 1.96-20% Os KX-rad. I 87Re(n,y)

2.12-79% 0.155

0.482

76 191mOS 13.1 h IT Os KX-rad. 1900s(n,y)19lmos 19lmIr

0.074

,/.. IT

1910S 15.4 d ~- 0.143-100% Ir KX-rad. 1900s(n,y)1910s

0.1294

1930S 30.5 h ~- 1.04--20% Ir KX-rad. I 920s(n,y)

0.139

0.46

77 InIr 73.8 d ~- PtKX-rad. 19IIr(n,y)

0.316-83%

0.468-48%

194Ir 19.3 h ~- 1.91-9% 0.293 I 93Ir(n,y)

2.24--86% 0.328

0.643

(0.1-2.2)

519

Page 26: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide TII2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

78 197Pt 18.3 h ~- Au KX-rad. 196Pt(n,y)

0.19

0.27

199Pt 30.8 min ~- 0.89-18% 0.077 198Pt(n,y) 199Au

1.14-14% 0.186

0.317

0.493

0.543

79 195Au 186.1 d EC PtKX-rad. Pt(d,xn)*

198Au 2.70d ~- 0.29-1% HgKX-rad. 197Au(n,y)

0.96--99% 0.412

199Au 3.14 d ~- 0.25-22% HgKX-rad. 198Pt( n,y)199Pt

0.30-72% 0.159 t ~-0.46--6% 0.209 199Au

80 197mHg 23.8 h IT HgKX-rad. 196Hg(n,y) 197mHg

Au KX-rad. tIT 0.133 197Hg

197Hg 2.67d EC Au KX-rad.

0.077

203Hg 46.61 d 13- 0.21-100% TIKX-rad. 202Hg(n,y)

0.279

81 204Tl 3.8 a 13- 0.77-97% HgKX-rad. 203Tl(n,y)

EC

82 210pb 22.6 a ()( 3.72 Naturally ~- 0.017-81% occurring

0.061-19% radioisotope

83 206Bi 6.2d EC PbKX-rad. 206Pb( d,2n)

0.52

0.803

0.88

• The number of neutrons depends on the mass number of the Pt nuclide.

520

Page 27: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide TII2 Mode Particle energy y-energy Production Daughter of decay (MeV) (MeV) nuclide

83 201Bi 35 a EC PbKX-rad. 207Pb(p,n)

0.57

1.06

2 lOBi 5.0d p- 1.17-99% 0.266 209Bi(n,y)

0.352

84 208pO 2.90 a a 5.11-100% 209Bi(p,2n)

Naturally occurring

radioisotope

21OpO 138.4 d a 5.305-100% 0.8 I09Bi(n,y)2IOmBi

-!. p-21OpO

85 196At 0.3 s a 7.06

199At 7.1 s a 6.64 p+ EC

208At 1.63 h a 5.64--0.5% Po KX-rad. p+ 1.177

EC 0.206 0.660

0.685 0.845 1.028

86 222Rn 3.823 d a 5.18-100% 0.510 Naturally occurring radioisotope

87 205Fr 3.9 s a 6.914--100%

211Fr 3.10 min a 6.534 0.220

EC 0.280

0.539

0.917

521

Page 28: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1I2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

88 226Ra 1600 a a 4.60-5.5% RhKX-rad. Naturally

4.780-94% 0.186 occumng

0.262 radioisotope

228Ra 5.76 a ~- 0.014

0.016

89 227Ac 21.77 a a 4.94-1.2% 0.084-23% 226Ra(n,y)227Ra

~- 0.045-54% 0.081-14% ,l. ~-

0.269-13% 227Ac

(0.044-1.27)

90 228Th 1.91 a a 5.211-O.4% Naturally occurring

5.338-27% radioisotope

5.421-73% 225Ra(n,y)227Ra

,l. ~-227 Ac(n,y)228Ac

,l. ~-228Th

232Th 1.41xl01O a a 3.948-23% 0.059 Naturally occurring

4.010-77% 0.124 radioisotope

233Th 22.3 min ~- 1.245-100% PaLX-rad. 232Th(n,y) 233Pa

PaKX-rad.

0.029

0.086

0.459

(0.02-1.2)

91 233Pa 27.0 d ~- 0.15-40% ULX-rad. 232Th(n,y)233Th

0.26-60% UKX-rad. ,l. ~-0.31 233Pa

92 233U l.59x105 a a 4.77-13% ThLX-rad. 232Th(n,y)233Th

4.82-84% 0.042 ,l. ~-

0.097 233Pa~233U

(0.025-1.119)

235U 7.1x108 a a. 4.215-5.7% Th K and L X-rad. Naturally

4.364-11% 0.095-9% occurring

4.395-55% 0.143-12% radioisotope

0.185-55%

522

Page 29: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Table 3 (continued)

Z Nuclide T1/2 Mode Particle energy y-energy Production Daughter

of decay (MeV) (MeV) nuclide

92 238U 4.5x109 a a 4.147-23% Th LX-rad. Naturally

4.196-77% 0.048 occurring

0.113 radioisotope

239U 23.5 min ~- 1.2 0.074 2J8U(n,y) 23'lNp

1.3

523

Page 30: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

en ~

Tab

le 4

Bin

ding

ene

rgie

s o

f orb

ital

ele

ctro

ns i

n el

ectr

onvo

lts

Nuc

lide

11S~

2 1

2SI/2

1

2PlI2

12

P3/2

1

3S1l

2 1

3P1I

2 13

P3/

2 13

d3/2

13

d512

1

4S1I

2 1

4PlI2

14

P3/

2 14

d3/2

14

d512

I 4

f512

I 4

f7/2

LI

Ln

Lm

M

I M

Il M

ill

MIY

M

y NI

N

Il N

m

NIY

Ny

NYI

Nyu

IH

14

2He

25

3Li

55

4Be

111

5B

188

5

6C

284

7 7N

39

9 9

sO

532

24

7

9F

686

31

9 lo

Ne

867

45

18

l1N

a 10

72

63

31

1 12

Mg

1305

89

52

2

13A

l 15

60

118

74

73

1

14Si

18

39

149

100

99

8 3

15P

2149

18

9 13

6 13

5 16

10

16S

2472

22

9 16

5 16

4 16

8

17C

t 28

23

270

202

200

18

7 IS

Ar

3203

32

0 24

7 24

5 25

12

19

K

3608

37

7 29

7 29

4 34

18

20C

a 40

38

438

350

347

44

26

5

21Sc

44

93

500

407

402

54

32

7 22

Ti

4965

56

4 46

1 45

5 59

34

3

23V

54

65

628

520

513

66

38

2

24C

r 59

89

695

584

575

74

43

2

25M

n 65

39

769

652

641

84

49

4

Page 31: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Tab

le 4

(co

nti

nu

ed)

Nuc

lide

11S~

2 1

2S11

2 1

2PII

2 12

P312

1

351/

2 1

3PII

2 1

3P31

2 13

d312

1

3dS1

2 1

451/

2 1

4P1I

2 14

P312

14

d312

1

4dS1

2 1

4fs1

2 1

4f7/

2 Lr

LI

I LU

I M

r M

Il

MU

I M

ry

My

Nr

N

Il NU

I N

ry

Ny

Nyr

N

yu

26Fe

71

14

846

723

710

95

56

6

27C

o 77

09

926

794

779

101

60

3

28N

i 83

33

1008

87

2 85

5 11

2 68

4

29C

u 89

79

1096

95

1 93

1 12

0 74

2

30Z

n 96

59

1194

10

44

1021

13

7 87

9

31G

a 10

367

1298

11

43

1116

15

8 f0

7 10

3 18

1

32G

e 11

104

1413

12

49

1217

18

1 12

9 12

2 29

3

33A

s 11

867

1527

13

59

1323

20

4 14

7 14

1 41

3

34Se

12

658

1654

14

76

1436

23

2 16

8 16

2 57

6

3SB

r 13

474

1782

15

96

1550

25

7 18

9 18

2 70

I

69

27

5

36K

r 14

326

1921

17

27

1675

28

9 22

3 21

4 89

24

11

37R

b 15

200

2065

18

64

1805

32

2 24

8 23

9 11

2 11

1 30

15

I

14

3SS

r 16

105

2216

20

07

1940

35

8 28

0 26

9 13

5 13

3 38

20

39Y

17

039

2373

21

55

2080

39

5 31

3 31

0 16

0 15

8 46

26

3

40Z

r 17

998

2532

23

07

2223

43

1 34

5 33

1 18

3 18

0 52

29

3

41N

b 18

986

2698

24

65

2371

46

9 37

9 36

3 20

8 20

5 58

34

4

I

42M

o 20

000

2866

26

25

2520

50

5 41

0 39

3 23

0 22

7 62

35

2

43T

c 21

044

3043

27

93

2677

54

4 44

5 42

5 25

7 25

3 68

39

2

44R

u 22

117

3224

29

67

2838

58

5 48

3 46

1 28

4 27

9 75

43

2

4SR

h 23

220

3412

31

46

3004

62

7 52

1 49

6 31

2 30

7 81

48

3

~

Page 32: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

~ T

able

4 (

con

tin

ued

)

Nuc

lide

I

ls1l

2 I

2s1l

2 I

2p1I

2 I

2P31

2 I

3S11

2 I

3PII

2 I

3P3/

2 I

3d3/

2 I

3d

5/2

K

~

~

~

~

~

~

~

~

46Pd

24

350

3605

33

31

3173

67

0 55

9 53

1 34

0 33

5 47

Ag

2551

4 38

06

3524

33

51

717

602

571

373

36

7

4SC

d 26

711

4018

37

27

3538

77

0 65

1 61

7 41

1 4

04

49

In

2794

0 42

38

3938

37

30

826

702

664

451

443

50Sn

29

200

4465

41

56

3929

88

4 75

7 71

5 49

4 48

5 51

Sb

3049

1 46

99

4381

41

32

944

812

766

537

528

52T

e 31

814

4939

46

12

4341

10

06

870

819

582

57

2

531

3317

0 51

88

4852

45

57

1072

93

1 87

5 63

1 6

20

54

Xe

3456

1 54

53

5104

47

82

1145

99

9 93

7 68

5 6

72

55

Cs

3598

5 57

13

5360

50

12

1217

10

65

998

740

726

56B

a 37

441

5987

56

24

5247

12

93

1137

10

63

796

781

57L

a 38

925

6267

58

91

5483

13

62

1205

11

24

849

832

5SC

e 40

444

6549

61

65

5724

14

35

1273

11

86

902

88

4

59Pr

41

991

6835

64

41

5965

15

11

1338

12

43

951

931

60N

d 43

569

7126

67

22

6208

15

76

1403

12

98

1000

97

8 61

Pm

4518

5 74

28

7013

64

60

1650

14

72

1357

10

52

1027

62

Sm

4683

5 77

37

7312

67

17

1724

15

42

1421

11

07

1081

63

Eu

4851

9 80

52

7618

69

77

1800

16

14

1481

11

61

1131

64

Gd

5023

9 83

76

7931

72

43

1881

16

89

1544

12

18

1186

65

Th

5199

6 87

08

8252

75

15

1968

17

68

1612

12

76

1242

66

Dy

5378

8 90

47

8581

77

90

2047

18

42

1676

13

32

1295

67

Ho

5561

8 93

95

8919

80

71

2128

19

23

1741

13

91

1351

68

Er

5748

6 97

52

9265

83

58

2207

20

06

1812

14

53

1409

69

Pm

5939

0 10

116

9618

86

48

2307

20

90

1885

15

15

1468

70

Yb

6133

2 10

488

9978

89

43

2397

21

72

1949

15

76

1527

'-

----

--

---

--

--

------

Page 33: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Tab

le 4

(co

ntin

ued)

Nuc

lide

I 18

112

I 28

112

I 2P

1I2

I 2

P3

/2

I 38

112

I 3

PI/

2

I 3

P3

/2

I 3

d3

/2

I 3d

s12

K

Lr

LIl

Lm

Mr

MIl

Mm

M

ry

My

71L

u 63

314

1087

0 10

349

9244

24

91

2264

20

24

1640

15

89

72R

f 65

351

1127

2 10

739

956.

1 26

01

2365

21

08

1716

16

62

73T

a 67

417

1168

0 11

136

9881

27

08

2469

21

94

1793

17

35

74W

69

525

1209

9 11

542

1020

5 28

20

2575

22

81

1872

18

10

75R

e 71

677

1252

7 11

957

1053

5 29

32

2682

23

67

1949

18

83

76°8

73

871

1296

8 12

385

1087

1 30

49

2792

24

58

2031

19

60

77Ir

76

111

1341

9 12

824

1121

5 31

74

2909

25

51

2116

20

41

78Pt

78

395

1388

0 13

273

1156

4 32

98

3027

26

46

2202

21

21

79A

u 80

725

1435

3 13

733

1191

8 34

25

3150

27

43

2291

22

06

80R

g 83

103

1483

9 14

209

1228

4 35

62

3279

28

47

2385

22

95

81T

! 85

531

1534

7 14

698

1265

7 37

04

3416

29

57

2485

23

90

82Pb

88

005

1586

1 15

200

1303

5 38

51

3554

30

67

2586

24

84

83B

i 90

526

1638

8 15

709

1341

8 39

99

3697

31

77

2688

25

80

84Po

93

105

1693

9 16

244

1381

4 41

49

3854

33

02

2798

26

83

85A

t 95

730

1749

3 16

785

1421

4 43

17

4008

34

26

2909

27

87

86R

n 98

404

1804

9 17

337

1461

9 44

82

4159

35

38

3022

28

92

87F

r 10

1137

18

639

1790

6 15

031

4652

43

27

3663

31

36

3000

88R

a 10

3922

19

237

1848

4 15

444

4822

44

90

3792

32

48

3105

89A

c 10

6755

19

840

1908

3 15

871

5002

46

56

3909

33

70

3219

90T

h 10

9651

20

472

1969

3 16

300

5182

48

31

4046

34

91

3332

91Pa

11

2601

21

105

2031

4 16

733

5367

50

01

4174

36

11

3442

92U

11

5606

21

758

2094

8 17

168

5548

51

81

4304

37

28

3552

93N

p 11

8676

22

420

2159

9 17

608

5722

53

66

4435

38

50

3664

94Pu

12

1818

23

102

2226

6 18

057

5933

55

46

4562

39

73

3778

~

95A

m

1250

27

2377

3 22

944

1850

4 61

20

5710

46

67

4092

38

87

......

Page 34: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

~

CD

Tab

le 4

(co

nti

nu

ed)

Nuc

lide

I IS

1/2

I 2S

112

I 2P

II2

I 2P

3/2

I 3S

112

I 3p

II2

I 3P

312

I 3

d3

/2

I 3

ds/

2

K

Lr

Ln

Lnr

Mr

MIl

M

Ill

Mrv

M

v

96C

m

1282

20

2446

0 23

779

1893

0 62

88

5895

47

97

4227

39

71

97B

k

l315

90

2527

5 24

385

1945

2 65

56

6147

49

77

4366

41

32

9SC

f l3

5960

26

110

2525

0 19

930

6754

63

59

5109

44

97

4253

99E

s l3

9490

26

900

2602

0 20

410

6977

65

74

5252

46

30

4374

10

0Fm

14

3090

27

700

2681

0 20

900

7205

67

93

5397

47

66

4498

IO

IMd

1467

80

2853

0 27

610

2139

0 74

41

7019

55

46

4903

46

22

I02N

o 15

0540

29

380

2844

0 21

880

7675

72

45

5688

50

37

4741

I0

3Lr

1543

80

3024

0 29

280

2236

0 79

00

7460

58

10

5150

48

60

lO4U

n q

1583

00

3112

0 30

140

2284

0 81

20

7660

59

10

5240

49

80

Page 35: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Tab

le 4

(co

nti

nu

ed)

Nuc

lide

I 4s1

l2

14P

II2

14P

3/2

14d3

/2

14d5

/2 I 4

f5/2

I 4

f7/2

I 5

s112

1

5PII

2 15

P3/

2 15

d3/2

1

5d5

12 I 6

S112

1

6PII

2 1

6P31

2 16

d3/2

NT

NU

N

m

Nry

N

y N

yr

NyU

Or

O

u O

m

Dry

O

y P

r P

u

Pm

Pry

46Pd

86

51

1

47A

g 95

62

I

56

3 i

48C

d 10

8 67

9

2

49In

12

2 77

16

1

50Sn

13

7 89

24

1

1

51Sb

15

2 99

32

7

2

52T

e 16

8 11

0 40

12

2

53I

186

123

50

14

3

54X

e 20

8 14

7 63

18

7

55C

s 23

1 17

2 16

2 79

I 7

7

23

13

12

56B

a 25

3 19

2 18

0 93

90

40

17

15

57L

a 27

1 20

6 19

2 99

33

15

58C

e 29

0 22

4 20

8 11

1 1

38

20

59Pr

30

5 23

7 21

8 11

4 2

38

23

60N

d 31

6 24

4 22

5 11

8 2

38

22

61Pm

33

1 25

5 23

7 12

1 4

38

22

62Sm

34

7 26

7 24

9 13

0 7

39

22

63E

u 36

0 28

4 25

7 13

4 0

32

22

64G

d 37

6 28

9 27

1 14

1 0

36

21

65T

b 39

8 31

1 28

6 14

8 3

40

26

66D

y 41

6 33

2 29

3 15

4 4

63

26

67H

o 43

6 34

3 30

6 16

1 4

51

20

68E

r 44

9 36

6 32

0 17

7 I

168

4 60

29

69T

m

472

386

337

180

5 53

32

70Y

b 48

7 39

6 34

3 19

7 I

184

6 53

23

~

co

Page 36: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

01

t.

l o

Nuc

lide

7lL

u n

Rf

73T

a 74

W

7SR

e 76

0s

77Ir

78

Pt

79A

u 80

Rg

81 T

l 82

Pb

83B

i 84

Po

8SA

t 86

Rn

87Fr

88

Ra

89A

c 90

Th

91Pa

92

U

93N

p

94Pu

9S

Am

I 4S1

l2

NT

14P

1I2

NIl

506

410

538

437

566

465

595

492

625

518

655

547

690

577

724

608

759

644

800

677

846

722

894

764

939

806

995

851

1042

88

6 10

97

929

1153

98

0 12

08

1058

12

69

1080

13

30

1168

13

87

1224

14

42

1273

15

01

1328

15

58

1377

16

17

1412

14P

3/2

Nm

14

d3/2

N

TY

14dS

/2

Ny

I 4fs

/2

NY

I

359

205

195

380

224

214

19

405

242

230

27

426

259

246

37

445

274

260

47

469

290

273

52

495

312

295

63

519

331

314

74

546

352

334

87

571

379

360

103

609

407

386

122

645

435

413

143

679

464

440

163

705

500

473

740

533

507

768

567

541

810

603

577

879

636

603

890

675

639

968

714

677

344

1007

74

3 70

8 37

1 10

45

780

738

392

1087

81

7 77

3 41

5 11

20

849

801

1136

87

9 82

8

Tab

le 4

(co

nti

nu

ed)

I 4f7

/2

Ny

u I 5S

112

01

15P

1/2

OIl

15P

3/2

Om

15

d3/2

°I

Y

15d

S12

Oy

I 6S11

2 PI

16P

1I2

PII

16

P3/

2 P

m

16

d3/2

P

IV

7 57

28

5

18

65

38

31

7 25

71

45

37

6

34

77

47

37

6 45

83

46

35

4

50

84

58

46

0 60

96

63

51

4

70

102

66

51

2 83

10

8 72

54

3

99

120

81

58

7 11

8 13

7 10

0 76

16

13

13

8 14

8 10

5 86

22

20

3

1 15

8 16

0 11

7 93

27

25

8

3 18

4 17

7 13

2 10

4 31

12

5

210

195

148

115

40

18

8 23

8 21

4 16

4 12

7 48

26

11

26

8 23

4 18

2 14

0 58

34

15

29

9 25

4 20

0 15

3 68

44

19

31

9 27

2 21

5 16

7 80

33

5 29

0 22

9 18

2 95

I

88

60

49

43

360

310

223

94

71

43

33

381

324

260

195

105

96

404

338

283

206

109

101

422

352

279

212

116

105

440

367

290

220

116

103

-----

Page 37: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Tabl

e 4

(con

tinu

ed)

Nuc

lide

I 4s1

l2

14P

II2

14P

3/2

14d3

/2

14d

S12

I 4fs

12

I 4f7

/2

I 5SI

l2

15P

II2

15P

312

15d3

/2

15dS

/2 I 6

s1l2

1

6PII

2 16

P3/

2 16

d3/2

NT

N

n N

m

Nry

N

y N

yr

Ny

n

Or

On

am

°ry

O

y

Pr

PI!

P

m

Pry

96C

m

1643

14

40

1154

38

2

97B

k

1755

15

54

1235

39

8

98C

f 17

91

1616

12

79

419

99E

s 18

68

1680

13

21

435

looF

m

1937

17

47

1366

45

4 IO

IMd

2010

18

14

1410

47

2 10

2No

2078

18

76

1448

48

4 I0

3Lr

2140

19

30

1480

49

0 1

04U

n q

2200

19

70

1510

50

0

~ ...

Page 38: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

SUb.iect Index

IH-13C cross polarization, 264-265, 274, 278,280

3H in meteorites, 405 3He concentration, in groundwater, 443--444 lOBe dating, 383-384 I3C/12C signal, in tree-rings, 462 I3C profile in Tesero, 485 14C, see radiocarbon 32Si,384 36CI dating, 383-384 85Kr

in groundwater, 445--447 enrichment of, 447--448

86Sr/87Sr isotope ratio, 477, 479, 484--485, 488,490,493

206Pb/207Pb dating, 413 2IOPb dating, 390-392, 407-408

Abathomphalus mayaroensis, 481 absorption coefficient, photoelectric, 168 absorption correction methods, 197-199 absorption edge, 168, 185, 188-192 absorption equation, of beta radiation, 67 abundances

of deuterium, 457--460, 479 of isobars, in the Solar System, 56

Acarinina, 481 accelerated ions, nuclear reactions induced

by,53 accelerator, 118

van de Graaff, 435 tandem,436

accelerator facilities, 227

accelerator mass spectrometry, 242-246, 429,435

actinides, 246 actinium (4n+3) series, 32 activation analysis, see neutron activation

analysis activation energy, of nuclear reactions, 44 active volume of detectors, 85 activity, 3, 29 activity concentration, 29 addition method, in qualitative analysis,

198-199 ADOR,403 aerosol, 225, 235, 243 akageneite, 301-302 Alaska, glaciers in, 454, 483 Alfold,134-135 alkaline rocks, 130 almandine, 327 alpha decay, 36-37 alpha-iron, 357, 360 alpha nuclide, 20-21, 57 alpha-particle model of the nucleus, 21 alpha particles

back-scattered, 62-63 interactions of, 60 nuclear reactions induced by, 52 scattering of, 61 slowing of, 61

Alpine glaciers, 473 Amitsoq gneiss, 387 amorphous state, 332 amphibole, 318-320, 325 AMS, see accelerator mass spectrometry analyser crystal, 172

533

Page 39: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

analysis of bulk samples, 145-146 extraterrestrial obj ects, 225, 238 plants, 127, 140-141 small samples, 150, 159 thin samples, 145, 147, 152

analyte line, 165, 186 integrated, 174

analytical sensitivity, 146, 152 ancient carbon cycle, 461 andesite, 134-135 andradite, 311, 315-316 angiosperm floras, 483 angular distribution of neutrons, 46 angular momentum of the nucleus, 13, 16 anisotropy constant, 329 annihilation pair spectrometer, 150, 155-157 annihilation radiation of positrons, 73 anomalous lead, 418 anomaly, in isotope profiles

B-type, 418 J-type, 418

anorthosite, 356-357 Antarctic ice core, 462, 464 Antarctic ice sheet, 459, 463-464,479-480 anti-Compton spectroscopy, 98, 154-155,

157-159 Anticosti Island, Quebec, 489 antiferromagnetism, 322-324, 288 antiparticle, 5 apatite, 385-387 Apollo-II, 354-355, 357 Apollo-17,357 Aquaspirillium magnetotacticum, 331 aquifers, 440, 442, 445 Archean/Proterozoic Transition, 493 Arctic Ocean sediments, 407 argon/argon dating, 378-381, 389, 394 argon laser, 381 argon loss, 393-394 argon release, by laser radiation, 380--381 Arrhenius relationship, 336 artificial radionuclide, 44 assimilation

of zirkon, 130 in magmatic processes, 135-136

asymmetry parameter, 287 atomic mass units atomic nucleus 1-27

quadrupole moment tensor of, 12 skin of, 10

atomic number, 1 Atrypa, 489 attenuation

of gamma-rays, 93, 128 of X-rays, 191-192

534

attenuation coefficient, 67 for gamma-material interactions, 93 for X-rays, 168, 191-192,206

attenuation corection method 140 attenuation method, 198

Auger cascade, 41, 77 Auger effect, 41, 72, 77, 169-170 Auger electron, 41, 77 Auger spectroscopy, 78 augite, 318

BABI, see basaltic achondrite best initial background

caused by fast-neutrons, 148 caused by gamma photons, 152 of gamma energy spectra, 147-150,

153-156 of Mossbauer spectra, 305 in radiation detection, 83 reduction of, 431

backscatter peak, 83 back-scattering ofbeta radiation, 66 Barberton greenstone belt, 403 baryon number, 5 baryons, 3 basalt, 132, 134-135,342,348

lunar, 354 basalt lava, magnetization of, 340 basaltic achondrite best initial, 402 basaltic rock, 345 basic ferric phosphates, 345 bauxite, 132-133, 139

modulus of, 139 becquerel (Bq), 3, 29 Bellerophon Basin, 485 benzene synthesis, 428-429 berthierine, 325 beta back-scattering, 66 beta decay, 24-25

as isobaric transformation, 27 negative, 25 of the neutron, 4-5 positive, 26 without electron emission, see electron

capture beta particles, apparent absorption of, 67 beta radiation, self-absorption of, 68 beta spectrum, 40 beta stability, 23-24 beta-stable nuclei, 17

A vs. Z diagram of, 17 classification of, 18 N vs. Z diagram of, 16

BF3,140 BGO, see bismuth germanate Big Bang, 55

Page 40: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

binding energy characteristics of nuclei, 20 per nucleon, 20-21

binomial distribution, 320 biogenic fractionation, 488-489 biogenic phosphate-water paleotemperature,

453 biogenic silica-water paleotemperature, 453 biogeochemistry, 140 biological isotope effects, 105 bio-mineralization of iron, 331 biomineralogy, 331 biospheric carbon, 462-463 biotite, 230, 313, 325, 327, 380, 385, 387,

393,395,402 bismuth germanate, 94, 149, 154-155 Bloch equation, 256-257, 260 Bohr magneton, 18 Bohr radius, 6, 9 borate minerals, 271 boreholes, 141, 145, 147-151, 159, 161 boron, 145, 149, 161-162 boron carbide, 149 Bose-Einstein statistics, 4 bosons,4 Bq, see becquerel brachiopods, 454, 485, 488-490 Bragg curve, 62 Bragg-Pierce law, 168 Brazilian Event, 415 breccias, 137,357 bremsstrahlung, 54, 62

internal,64 Broecker's time scale, 459-461, 464, 467 Brunhes-Matuyama Boundary, 466 Biikk mountains, 134-135

calcalkaline rocks, 130 calcite, 437-439 calcite compensation depth, 479 calcium carbonate paleothermometer, 457 calcopyrite, 226 calibration of

gamma spectrometers, 150-151 detection efficiency, 150-151 radiocarbon dating, 398

carbon, 147, 151, 156, 162 biospheric, 462-463 dissolved in water, 425, 429, 437-440 inorganic, dating of, 397, 410 organic, dating of, 397

carbon burning, 57 carbon cycle, 425, 437

ancient, 461 carbon-nitrogen cycle, 56 carbonaceous chondrite, 132, 457

carbonate rocks, 438 carbonate thermometer, 110 carbonatites, 231 carrier, 68 carrier-free nuclides, 29 CCD, see calcite compensation depth Ce-anomaly,132 CEMS, see conversion electron Mossbauer

spectroscopy Cerenkov radiation, 65 chain silicates, antiferromagnetic coupling

in, 324 chaotic solar system, 454, 486 characteristic radiation, 167-168, 175-176,

182, 185 charcoal, dating of, 381, 397 charge density, 11

of nuclei, 10 charged particle

beam, 152 reactions induced by, 146, 152

chemical elements, evolution of, 55-59 chemical milieu index, 416 chemical separation, 115-118, 123-125, 140 chemical shielding, 257-258

interaction in NMR spectroscopy, 258 chemical weathering, 385, 393, 415 chemical yield, 115, 123-124 Chicxulub crater, 455 chlorite, 345, 353 chloritization, 137 chondritic meteorites, dating of, 386-387,

402 chondri tic uniform reservoir, 403-404 chromatographic effect of rock layers, 107 chronochrons,393 CHUR, see chondritic uniform reservoir Ci, see curie Cibicidoides, 479 clastic sediments, 137 clay, 226,232-234,237 clay minerals, 272-273 CLIMAP, see climate long-range

investigation and mapping climate forcing, 454, 474 climate long-range investigation and

mapping,454-455,467-470 climathems, 465, 477 climatic changes

during ice ages, 454-455, 470 general circulation models of, 468 Pleistocene/Holocene, 475

climatic data for Albian, 483 Archean,487,490,492-493 Brunhes, 454-455 Campanian, 481

535

Page 41: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Cenozoic, 465, 473,477,486-489 Cretaceous/Tertiary Boundary, 481-484 Devonian, 473, 488-489 Devonian/Carboniferous Boundary, 488 Eocene/Oligocene Boundary, 481 Epiproterozoic, 490 Frasnian/Fammenian Stages Boundary,

488 Hauterivian, 483 Holocene, 454 Jurassic, 483-484 Oligocene, 473, 479-481 Maastrichtian, 481-483 Miocene/Pliocene boundary, 477 Paleozoic, 473-474, 484-485, 487-490 Pennian, 456, 473, 481-485, 488-489 Penno-Carboniferous, 473, 490 Penno-Triassic, 455-456 Phanerozoic, 455, 491 Pleistocene, 455, 463 Plio-Pleistocene Boundary, 466 Precambrian, 453-454, 486-487,

490-492 Proterozoic, 473, 487, 490-493 Quaternary, 459-461, 466, 483, 489 Santonian, 483 Silurian, 473, 488-489 Vendian ice age, 490-491 Wisconsin Glaciation, 460, 469-470

climatic standard, 469 climatic terminations, 459, 464-465 clinopyroxene, 341-342, 354 CO2

past atmospheric CO2, 460-61 volcanic, 437

coal, 148, 161-162,226-227,238,267,273, 278-282

iron minerals in, 347 coal macerals, 238 cogenesis, 136 cold neutrons, see slow neutrons common lead, 415,418 comparator element, 127-128 comparator method, 127 compatible elements, 131-132 compensated semiconductors, 97 compensation method, 197 compound nuclei, 45 Compton edge, 83 Compton effect, 70 Compton scattering, 70--71, 171 Compton suppression, 154-159 concordia, 414-415, 421 conglomerates, 137 conservation laws, 5 contamination, 115, 123-125, 135-136 continental margin, 137

536

continental crust, 393, 399 conversion electron, 44 conversion electron Mossbauer spectroscopy,

296 cosmic abundances of elements, 57 cosmic ray flux, 396 cosmic rays

production of radiocarbon by, 382, 396 cosmogenic radionuclides, 382-384 cotunnite, 407 Coulomb barrier, 8

in nuclear reactions, 44 in proton reactions, 50

Coulomb potential, 6 Coulomb tenn, 22 count rate, 3 critical excitation energy, 168 crocidolite, 322, 324-327

magnetic hyperfine splitting in, 326 magnetic structure for, 322

cronstedtite, 324-325, 327 cross polarization, IH-I3C, 264-265, 274,

278,280 cross section, 72

for induced fission, 49 for neutron capture, 146-147, 149-151 for neutrons, 47, 116, 118-122, 125-126 for thermal neutrons 119

crust of Earth, 124, 135,393-394,399-400, 416-417

continental, 393, 399 crystal monochromator, 172 curie (Ci), 29 cyclotrons, 50,435 cyclic activation, 123

databases for Mossbauer spectroscopy, 304 for X-ray and gamma radiation, 227

dating of charcoal, 381,397 of glacial ice, 382 of groundwater, 382-385, 398, 409-410,

425-448 of human and animal bones, 385 of meteorites, 402-404, 416-417 of polar ice, 243 of sediments, 383-384, 397-398,

404-408 of tektites, 383 of whole rock, 419 of wood, 397-398, 404

dating methods, 102,377-422 lOBe, 383-384 36Cl,383-384 207Pb/206Pb,413

Page 42: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

210Pb,390-392,407-408 argon/argon, 378-381, 389, 394 fission track, 377 krypton, 384 Lu/Hf, 387-388,399 osmium/osmium, 389-390 potassium/argon, 392 potassium/ calcium, 395 radiocarbon, 396-399, 404 rhenium/osmium, 389-390, 399-400 rubidium/strontium, 386-387,400-403 samarium/neodymium, 402 thoriumllead, 414, 418-419 thorium/protactinium, 406 tritium, 377, 383, 404-405 tritium/helium dating, 442-443 uranium/krypton, 419-420, 422 uranium lead, 394, 399, 413-416,

418-421 uranium series disequilibrium, 405 uranium/thorium/lead, 410 uranium/xenon, 419-422

daughter nuclide, 3 DCEMS, see depth-selective conversion

electron Mossbauer spectroscopy dead time, 86

of detectors, 87 overall, 87

de Broglie wave, 37 Debye temperature, 291 decay factor, 122 decay law, 28 decay rate, 29 decay series, 30-32 decomposition, of Mossbauer spectra, 301 Deep See Drilling Project, 470-471, 476-483 de-excitation process, 166-168 delayed neutrons, 139-140 delta parameter, 456 delta value, 103 depletion of

deuterium, in tree rings, 460 oxygen, in tree rings, 460 ozone, 454

depletion zone, of semiconductor detectors, 96-97

depth profiling, 147, 152 depth-selective conversion electron

Mossbauer spectroscopy, 296 detection efficiency, 81-82, 149, 154 detection of nuclear radiation, 80-102 detectors

noise of, 86 response of, 83 resolution of, 116, 118 sensitivity of, 82

deuterium abundance, 457-460, 479

deuteron reactions, 51 Devon Island, 470 diachronism, 474 diagenesis, 130, 137-138 diagenetic alterations, 480, 483 diagram lines, 169 differentiation,

magmatic, 132, 134, 137 mantle-core, 135

digestion of samples, 124-125 dilatancy model, 414 dipole-dipole interaction, in NMR

spectroscopy, 257-259, 269, 272 dipole moment, geomagnetic, 462 discordia, 414, 420, 421 discrimination of detector signals, 85 disequilibrium fractionation, 459 disintegration rate, 29 dissolved inorganic carbon, 425, 437-439 dissolved organic carbon, 429, 439-440 distribution of trace elements, 130-131, 136 dolomite, 437, 439 dose, definition of, 100 dose equivalent, 100 double resonance, 259-265, 278 dps (disintegration per second), see

becquerel DSDP, see Deep See Drilling Project DSDP sites, 476-477 Dye ice core, 460 dynodes, 91, 94

e-process, 58 Earth's crust, 124, 135,393-394,399-400,

416-417 .

continental, 393, 399 Earth's magnetic field, 251, 254, 267

orientation in, 331 Earth's mantle, 135,231,387-388,394-395,

399-400,418-419 lower, 339

EC, see electron capture echoe, in NMR spectroscopy, 259, 262-263 eclogite, 135 EDXRFS, see energy dispersive X-ray

fluorescence spectroscopy effective dose equivalent, 100 effective magnetic field, 256, 288, 323 effective thickness, 305 efficiency, of detectors, 121-123, 127-130 EFG, see electric field gradient electric charge, 11 electric dipole moment, II electric field gradient, 13,257-258, 287 electric quadrupole moment, 11, 253 electromagnetic force, 5

537

Page 43: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

electromagnetic radiation, filtering of, 86 electron capture, 24, 26, 41

energy balance of, 41 electron density in the nucleus, 13 electron radiation, interactions of, 62 electron spin resonance, 377-385 electron transitions, 166--167 elementary pattern, in Mossbauer spectra,

299-300 EI Nino/Southern Oscillation, 399, 460, 474 emission probability, of gamma rays, 146 energetics of proton reactions, 50 energy dispersive X-ray fluorescence

spectroscopy, 165-166 energy released in fission, 49 energy resolution, of gamma energy

spectrometers, 149-151 entrance window of photomultipliers, 94 environmental isotopes, in the hydrosphere,

457,460 epithermal neutrons, 47,121-122,125 equilibrium,

absence of, 35-36 radioactive, 33

erosion, 135, 137 escape peak, 83, 150, 155-158 ESR, see electron spin resonance Eu, isomer shift for, 308 Eu-anomaly,132 evaporites, 484, 490 even-A nuclei, 27

mass parabolas for, 25-26 excited isomers, 76 experimental line width, in Mossbauer

spectroscopy, 289, 294, 296 explosive nucleosynthesis, 58 explosives, 162 external magnetic field, 322 external standard method, 197 external target geometry, 148-149, 153, 155 extraterrestrial objects, analysis of, 225, 238

fast neutrons, 47,118-122,139-141,151 inducing fission, 48 background of, 148

fayalite, 325, 327 Fe, isomer shift for, 307 Fe2+ IFe3+ ratio

determination of, 311 vs. sediment depth, 345

Fe3+ oxihidroxide, 352 feldspar, 131, 230 Fermi contact interaction, 323 Fermi-Dirac statistics, 4 fermions,4 ferric iron, in octahedral position, 311-312

538

ferric phosphates, 345 ferrihydrite, 346 ferrimagnetism, 288, 322-323 ferripyrophyllite, 324-325, 327

magnetic hyperfine splitting in, 326 ferromagnetism, 288, 292, 322-323 ferrous iron, in dodecahedral position, 312 fictitious isochrons, 401-402 field analysis, by PGAA, 147, 150, 161 fill gas, 177

of proportional counters, 89 film badges, 102 filtering of electromagnetic radiation, 86 fingerprint method, 299 fissile nuclei, 42, 49 fissiogenic rare gases, 419-422 fission

energy released in, 49 induced,42 induced by neutrons,"48 spontaneous, 42, 118 threshold energy for, 48

fission barrier, 42 fission products, 49

mass distribution of, 49-50 fission track dating, 385-396 fluid inclusions, 237 fluorescence yield, 78, 169-170 fluorine, 226, 232-234 fluorite, 269-270 flux monitor, for neutrons, 128, 151 foraminifera, 454, 459-461, 464-467,

470-476,479-483 fossil shells, 385 Fourier technique, in Mossbauer

spectroscopy, 303 Fourier transformation, in NMR

spectroscopy, 259-261, 265-266 fractional crystallization, 131-132, 135-136 fractionation, disequilibrium 459 fractionantion and unknown effects, 402 Fram Strait, 467-468 FTD, see fission track dating FTS elements, 132 FUN, see fractionantion and unknown effects fundamental forces, 5 fundamental parameter method, 200 fusion reactions, 54

g-factor, see gyromagnetic factor gabbro, 356--357 gamma abundance, 123' gamma decay, following neutron capture,

148, 150

Page 44: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

gamma-energy spectrum, 83, 128~129, 146--150

background of, 147~150, 153~ 156 gamma line multip1ets, 150, 158 gamma photon yield, 146~147, 150~152 gamma photons,

of high-energy, 150 nuclear ractions induced by, 42, 54

gamma radiation, absorption of, 73 interactions of, 70 mass attenuation coefficient of, 76

garnet structure, 311 Garvallack sequence, 491 gas amplification in proportional counters,

89 gas-ionization detectors, 87~88 Ge and Si(Li) detectros, 97 Geiger~Miiller tubes, 83, 88, 90, 139 Geiger~Nuttallaw, 39 general circulation models, of climatic

changes, 468 geochemical cycle of,

hydrogen isotopes, 104 oxygen isotopes, 105

geochemical isotope cycles, 103 geochemical reference, 162 geochronology, 107~108, 337 geochronometer, 382, 385~386, 409-410 geomagnetic dipole moment, 462 GEOSECS, 408 geostatistical techniques, 13 7 geothermometry, 105, 109~110, 334 germanium crystals, high purity, 95, 98 glacial episodes, 454, 457, 462, 466, 473,

479,489 glacial ice, dating of, 382 glacial terminations, 459 glassy rock samples, 341 glauconite, 325 glimmerites, 231 global carbon cycle, 454, 460, 463 Globigerina eugubina, 481 Globigerina venezuelana, 479 Globigerinoides sacculifer, 465, 481 GM counters, see Geiger~Muller tubes GM tubes, see Geiger~Muller tubes goethite, 328, 346--347, 351 gondite, 347, 350 Gondwana, 415

ice cap of, 484 grain size determination, by Mossbauer

spectroscopy, 328 granite, 346, 349

groundwater evolution in, 384 granitoids, 313 gravitation, 5 gray (Gy), 100

Great Hungarian Plain, 134-135 greenalite, 324-327

magnetic structure for, 327 greenhouse effect, 454, 464, 477 Grenville Province, 393~394 Grenville Series, 490 Groden Formation, 485 groundwater

3He concentration in, 443-444 85Kr in, 445-447 evolution of, in granite, 384

groundwater dating, 382~385, 398,405,409, 410

by argon/argon method, 382 at Stripa, 383~384 by tritium method, 405 by tritium/helium method, 442-443

group silicates, 325 grunerite, 325 Guembelitria tricarinata, 481 Gulf Stream, 467 Gy, see gray gymnosperm floras, 483 gypsum,268~269,437,439

gyromagnetic factor, 20

H-condrites, 362 hadrons,3 half life, 28, 146~148 Hamiltonian operator, magnetic, 254,

257~259

heavy minerals, 131, 140 helium burning, 56 helium extraction, 444 helium isotopes in water, 442-444 helium/neon separation, 445 hematite, 324, 345~347, 351

of different grain size, 329 superparamagnetic, 330

Hertzsprung~Russell diagram, 55 heteronuclear coupling, 257~258, 265 Heterostegina depressa, 459 Hf~ Ta~ Th diagrams, 134, 136 high-energy gamma rays, 150 high-pressure phases, 339 high purity germanium detectors, 95, 98,

149, l54~155 high resolution

gamma-energy spectroscopy, 98 NMR spectroscopy, 257~258, 264~267 X-ray spectroscopy, 98

high-spin iron, 307 Hindeodus parvus, 484 Holmes/Houtermans model, 415-418 homonuclear coupling, 257~258 hornblende, 380, 393

539

Page 45: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

HPGe, see high purity germanium HR diagram, see Hertzsprung-Russell

diagram humic acid, 437 hydrogen, 147, 153,228,230 hydrogen burning, 55 hydrogen capture, 153 hydrogen isotopes, geochemical cycle of,

104 hydrology, 11 0-111 hyperfine field distribution, 303 hyperfine parameters, for silicate minerals,

327

IBA, see ion beam analysis ice, polar, 243 ice ages, 454-457, 463-464, 471-475, 486,

490 concept of, by Agassiz, 463 simulating of, 468-469

ice ages, causes of Agassiz concept, 463 Arctic Ocean, free of ice, 464 astronomical theory, 455, 463

ice core, 245 ice volume effect, 480 icehouse, 454-455 illite, 226, 345, 347, 353 ilmenite, 341-342, 345, 353, 356-360 ilvaite, 324-327

magnetic hyperfine splitting in, 326 inclusions, 131, 139,226-227,237 incompatible trace elements, 131-132,

135-136 incremental heating, 379-381 induced fission, 42, 48 inelastic scattering, 141, 147, 151, 161 inorganic carbon, 397, 410 inorganic scintillators, 92 insertion devices, 217-219 insolation changes, 467 interaction of nuclear radiation with matter,

60-79 interactions in NMR spectroscopy, 257 interference, spectral, 145-147, 150, 161 internal bremsstrahlung, 64 internal conversion, 43, 73

coefficient, 44 internal ionization, via photoelectric effect,

72 internal standard method, 197-198 internal standards, 151, 197-198

in Mossbauer spectroscopy, 306 internal target, 148-149, 155 intrinsic semiconductors, 97 intrinsic spins of subatomic particles, 4

540

ion beam analysis, 226-233 ion exchange, 124 ionium, see thorium ionization chambers, 88 iridium anomaly, 475, 488 iron

bio-mineralization of, 331 Mossbauer parameters for, 315 different coordinations of, 314

iron-bearing phases, in soils, 351 iron meteorites, 323, 361, 399 iron minerals in coal, 347 iron-nickel alloys, in meteorites, 359 iron oxides, 324 iron oxyhidroxides, 324 island arc, 13 7 isobaric transformation, 27 isobars, 2

abundances of, in the Solar System, 56 isochrons, 394-395, 401-403, 406, 415,

417-419 real and fictitious, 401-402

isomer shift, see Mossbauer isomer shift isomeric transition, 42 isotones,2 isotope anomalies, in meteorites, 402 isotope effects, 102 isotope enrichment, 103 isotope ratio variations, 102-111

of carbon, 106 exchange, 437-439 fractionation, 441-442 oflight elements, 103 of sulphur, 106

isotope standards, 456 isotopes, 2 isotopic abundance, 122 isotopic chronostratigraphy, 476-477 isotopic equilibrium, 438, 439 isotopic neutron source, 116-118, 138-139,

150-151,159 isotopic variations scale, 459

jarosite, 347, 352 j-j coupling, 14

K/ Ar dating, see potassium / argon dating K/Ca dating, see potassium/ calcium dating k-factor, 127-128 ko-standardisation, 128, 151 kamacite, 360, 362 kaolinite, 365 Kapp Starostin Formation, 485 kerogen, 440 "kill curve", 482

Page 46: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

kimberlites, 231 kinetics of radioactive decay, 28 krypton dating, 384 Kupferschiefer, 485

L-chondrite, 363 meteorites, 365

laboratory frame of reference, 256, 261 laihunite, 325, 327 Lake Jih Tan, 14C concentrations at, 462 lake sediments, 346 Lambert-Beer equation, 74 lanthanides, 124-125, 131-132

separation of, 124-125 large sample NAA, 140 Larmour frequency, 329-330 later-generation stars, 56, 59 laterite, 337 lava samples, 338 Lawson criterion, 54 layer silicates, 325 lead

development line, 417-418 in iron meteorites, 416 multistage, 418-419

lead dating, see 206Pb and 2JOPb datings LEPD, see low energy photon detector lepton number, 5 level schemes for neutrons and protons, 14 LF, see laboratory frame of reference life cycle of a star, 60 ligand contribution, in quadrupole

interaction, 288 light element, analysis of, by PGAA,

150-153, 161 lignite, 440 LIL elements, 137-138 limonite, 328 linear accelarators, 50 linear attenuation coefficient, 67 linear stopping power for electrons, 64 liquid drop model of nucleus, 10 liquid scintillation, 397

cocktails for, 434-435 liquid scintillators, 91 lithology indicator ratio, 141 Little Ice Age, 454, 469 local field, 251, 257, 261, 269 loess, 463 Lorentzian line, 295, 302 low-energy photon detector, 123, 125 low-spin iron, 307 lower mantle, of the Earth, 339 Lu/Hf dating, 387-388, 399 Luna-16,356-357 Luna-20, 356-357

Luna-24, 357 lunar glasses, Mossbauer hyperfine

parameters of, 358 lunar samples

basalts, 354 geology, 354 glass particles, 360 minerals, 356 plagioclase, 355 pyroxene, 355 regolith, 358 rocks,356 soil, 357

lunar soil, metallic iron in, 357 LUNI,402

mafic minerals, 132-133, 137 maghemite, 323, 338-339, 345-346 magic angle, in Mossbauer spectroscopy, 322 magic numbers,

nuclear, 14-15 of neutrons, 59

magma, oxygen fugacity in, 341 magmatectonic position, 131, 134, 136 magmatic brine, 237 magmatic differentiation, 132, 134, 137 magmatic micas, 230-231 magmatic rocks, 338 magmatic vapor, 237 magnetic dipole moment, 253 magnetic field, of Earth, 251, 254, 267 magnetic field intensity, 252, 277 magnetic hyperfine field distribution, 300 magnetic hyperfine splitting in

crocidolite, 326 ferripyrophillite, 326 greenaiite, 326 ilvaite, 326 minnesotaite, 326

magnetic induction vector, 20, 252 magnetic moment,

dipole, 253 of nucleons, 18 of orbiting particles, 19 orientation of, 322 of subatomic particles, 4

magnetic ordering temperature, 323 for silicates, 325

magnetic relaxation, 324 magnetic resonance imaging, 252 magnetic splitting, 288

origin of, in Mossbauer spectra, 20 magnetic state, characterization of, 322 magnetic structure for

crocidolite, 322 greenalite and minnesotaite, 327

541

Page 47: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

magnetisation of basalt lava, 340 magnetite, 323, 331, 338, 345 magnetosome, 331 magnetotactic bacteria, 331 magnets, 298 main-sequence stars, 55 manganese nodules, 345

beryllium dating of, 382-383 mantle-core differentiation, 135 mantle of Earth, 135,231,387-388,

394-395,399-400,418-419 lower, 339

marcasite, 226 MARID,231 marine sediments, 345, 347 Mars sample analogue, 365-366 martian samples

regolith, 365 rocks, 364

mass attenuation coefficient, 67, 72 mass density of nuclear matter, 10 mass distribution, of fission products, 49-50 mass extinctions, 454-455, 481-482,

484-485 mass number, 2 mass parabolas, 24-26 matrix effect, 182, 192-193 Mauna Loa, 460 mean free path of gamma photons, 75 mean life, 29 Mecsek mountains, 134-135, 137 mediator of strong force, 6 Meliata series, 134 memory effects, 430, 437 mesozoic belemnites, 453 messinian salinity crisis, 477 metallic iron, 357-358

in lunar soil, 357 metamorphic rocks, 338 metamorphic veil, 393-394 metamorphism, 134, 138 meteorites, 225,238, 359

dating of, 402-404, 416-417 isotope anomalies in, 402 iron-nickel alloys in, 359 Murchison meteorite, 387 SNC, 365-366 taenite in, 361 Xinyang and Jilin, 360

meteorology, 11 0-111 methods of coefficient, 201-203 micaschist, 231 microchannel plate, 94 microphonics, 179 Middle Ocean Ridge Basalts, 134-136,388,

391-392 migmatisation, 130

542

mineralogy, systematic, by Miissbauer spectroscopy, 368-373

minerals analysis of, by PGAA, 148, 161-162 separate, 130 NMR spectroscopy of, 268-272

minimum detection limit, 223, 230-231 minnesotaite, 324-325, 327

magnetic structure for, 326-327 missing carbon problem, 454, 463 models for climatic response

cross-spectral, 473, 475-476 dynamic, 473 gain-and-phase, 473 spectral, 473, 476

moderator for neutrons, 147, 151 modulus of bauxite, 139 molar activity, 29 molybdenites, 390, 399 monazite, 131,387,402,420-421 montmorillonite, gamma irradiation of, 352 MORB, see Middle Ocean Ridge Basalts Morozovella, 481 Moseley law, 72 Miissbauer absorbers, 297 Miissbauer databases, 304 Miissbauer isomer shift, 286-287, 306-310

forEu, 308 for Fe, 309-310 origin of, 13 for Sb, 307 for Sn, 308

Miissbauer-Lamb factor, 289 Miissbauer line

apparent broadening,321 intensities, angular dependence of, 292 parameters, 30 I

Mossbauer mineralogy, systematic, 368-373 Miissbauer parameters, 286, 301, 303

magnetic field dependence of, 292 of iron oxides, hydroxides and

oxyhydroxides, 325 ofXinyang and Jilin meteorites, 360 pressure dependence of, 292-293 temperature dependence of, 290-292

Miissbauer patterns, 299 Miissbauer periodic table of elements, 298 Miissbauer photometry, 296 Miissbauersource, 297 Miissbauer spectra, decomposition of, 301 Miissbauer spectrometer, 296-297

developed for the Mars mission, 364 velocity calibration of, 297

Miissbauer spectroscopy, 12, 76 basic principles of, 285 magic angle in, 322 site determination by, 313

Page 48: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

vs. wet chemical analysis, 313 Mossbauer thermal scan method, 296 Mount Pinatubo, carbon anomaly at, 460 MR!, see magnetic resonance imaging mudrock,137 multichannel analysator, 154-155 multichannel wavelength dispersive system,

173 multielement analysis, by PGAA, 151-152,

161 multielement standard, 151 multiplets, of gamma lines, 150, 158 multipole moments, 11 multistage leads, 418-419 multiwire chambers, 89-90 Murchison meteorite, 387 Muschelkalk Conglomerate, 484 muscovite, 230

N vs. Z diagram, of beta-stable nuclei, 16 NAA, see neutron activation analysis NADW, see North Atlantic Deep Water NaI(Tl), 149, 154, 159 NASC, see North American Shale Composite native iron, 324 natural background, 83 natural line width, Mossbauer, 294 negatron,5 neighbor effects, on Mossbauer parameters,

319 Neogene ocean, 484 neptunium (4n+1) series, 30 neutrino,

existence of, 40 in beta decay, 40

neutron absorbers, 149, 153 neutron activation analysis, 47, 115-147,

150-151,154 in situ, 138, 151, 159 large sample, 140

neutron background, 150-151 neutron beam, 147-150, 152-155, 161-162

filter for, 148 neutron capture, 47,148-150 neutron collimator, 148-149 neutron focusing, 145 neutron flux monitor, 128, 151 neutron generator, 139-141, 147-148, 151 neutron guide, 152-153, 158, 162 neutron lens, 154 neutron moderator, 147, 151 neutron reactions, cross section for, 47 neutron sources, 50, 116-119, 138-141,

146-149 isotopic, 116-118, 138-139 nuclear reactors applied as, 147-148

portable, 147, 150 spontaneous fission, 148

neutron yield, 118, 138 neutrons,

beta decay of, 4-5 delayed, 139-140 epithermal, 121-122; 125 fast, 47, 118-122, 139-141 flux of, 116, 118-122, 126, 139 slow, 147, 152-155, 161-162

nickeliferrous deposits, 346 NMR, see nuclear magnetic resonance NMR imaging, 266-267 NMR spectroscopy, 251-282

continuous wave, 259-260, 268 of high resolution, 257-258, 264-267 pulsed, 259-260, 265, 270 two dimensional, 265, 275

noble metals, 123-125, 127 non-linear mapping, 137 non-magnetotactic cells, 332 nontronite, 325 North American Shale Composite, 132 North Atlantic Deep Water, 467, 474 North Atlantic Drift, 467 np junction, 96 nuclear characteristics, 252 nuclear energy levels, 12 nuclear energy shift, 286 nuclear magnetic moment, 13 nuclear magnetic quantum number, 20 nuclear magnetic resonance, 251-282

echoe, 259,262-263 nuclear magneton, 18 nuclear paramagnetism, 255 nuclear quadrupole moment, 287 nuclear radiation,

detection of, 80-102 interactions of, 60-79

nuclear radius, 8-9, 12 nuclear reaction analysis, 227-232, 234 nuclear reaction mechanisms, 45 nuclear reactions, 44-60

activation energy of, 44 endothermic, 44 exothermic, 44 (n,u) , 147, 149-151 (n,p), 147, 151 types of, 47

nuclear reactions induced by, accelerated ions, 53 alpha particles, 52 epithermal neutrons, 47 fast neutrons, 47 gamma photons, 54 neutrons, 47, 145-147, 152, 159 protons, 50

543

Page 49: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

thennal neutrons, 47 nuclear reactors, as neuton sources, 147-148 nuclear resonance absorption, 76 nuclear shape, 9 nuclear spin, 13, 16

quantum number, 17 nuclear nuclear stability, 20 nucleosynthesis, 55-59 nucleus, atomic, 1-27 nuclide, 2

obliquity of Earth's orbit, 454, 464-466, 473-475,486

observed activity, 89 obsidian, 333, 342 octupole moment, 11 odd-A nuclei, 27

mass parabola for, 24 odd-Z elements, cosmic abundances of, 57 oil exploration, 161 olivine, 230-231, 238, 244, 328, 341-342,

346,356-358,360,365 omphacite, 300-301, 320-321 opal,332-333 Oppenheimer-Phillips mechanism, 52 orbital frequency rhythms, 466, 473 order-disorder interexchange, in pyroxenes,

336 ores, 125, 138-140 organic carbon, dating of, 397 organic scintillators, scintillation mechanism

of,92 orthoferrosilite, 325, 327 orthopyroxene, 316,334,337, 346 orthopyroxenes

equilibrium constants for, 335 quadrupole splitting for, 317

osmium-development line, 399 osmium/osmium dating, 389-390 oxygen burning, 57 oxygen fugacity in the magma, 341 oxygen isotope fractionation, 453, 456 oxygen isotopes, geochemical cycle of, 105 Oyashio-Kuroshio convergence, 474 ozone depletion, 454

Pacific Ocean Core, 466 pair production, 73 pairing energy, 17 pairing oflike nucleons, 16 paleotemperature

biogenic phosphate-water, 453 biogenic silica-water, 453

paleothennometer, calcium carbonate as, 457 Pan-African Event, 415

544

panoramic analysis, see multielement analysis

paramagnetic materials, 288, 324 paramagnetic spin fluctuation, 329 paramagnetic spin relaxation, 292 parent nuclide, 3 partial melting, 131, 135-136 particle-induced X-ray emission, 147, 152,

226-228,233-240 particle reactions, 141 partition coefficient, for trace elements 131 past atmospheric CO2, 460-61 pattern analysis, in Mossbauer spectroscopy,

299 Pauli exclusion principle, 4, 13 PDB standard, 453, 456, 461 peak fitting procedures, 150, 154-155 peak-to-background ratio, 194-196,204-205 pegmatite, 231 peridotite, 135, 346, 349 petrogenetic models, 131, 135 PGAA, see prompt gamma activation

analysis phenocryst, 131, 133 phlogopite, 230-231 phosphorus content, of the oceans, 474 photo-emulsions, 102 photocathode, 91, 94 photoelectric absorption coefficient, 168 photoelectric effect, 71, 86 photoelectric peak, 83, 85 photomultiplier tubes, 91, 94 photonuclear reactions, 70 photopeak, see photoelectric peak physical parameters, 290

standard values of, 290 pi meson, 6 PIGE, 145, 152, 161,234,235 pigeonite, 354 pile-up

in radiation monitoring, 88 of detector signals, 86-87

Pinus aristato, calibration of radiocarbon dating by, 398

PIPPS, 152 pisolite, 349 pitchblende, 419-421 PIXE, see particle induced X-ray emission plagioclase, 355, 358, 365, 380, 395, 402

lunar, 355 planar detector configuration, 178 plants, analysis of, 127, 140-141 plastic scintillator, response functions of, 84 plate tectonics, 137 platinum group elements, 125, 140 Pleochroic Haloes, 377, 395-396 Pluto, chaotic motion of, 486

Page 50: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

PMT, see photomultiplier tube pneumatolysis, 418 Polar Front, 474 polarized gamma rays, 292 polynomial distribution, 320 POPOP,92 portable neutron sources, 147, 150 positron, 5

interactions of, 69 positronium, formation of, 69 potassium/argon dating, 392-394 potassium/ calcium dating, 395 potential well, 13 ppi cycle, see proton-proton chain Precambrian, 393,403 Precambrian shields, 414 Precambrian/Cambrian Transition, 486 precessional cycle of Earth's, 464 precipitations,

isotopic composition of, 110 oflanthanides 124-125

preconcentration methods, 180-183 precursor nuclei, 139-140 pressure dependence of Mossbauer

parameters, 292-293 primordial nuclides, 59 prompt gamma activation analysis, 116,

145-162 factory applications of, 159 in field analysis, 147, 150, 161 of geological samples, 162 of small samples, 150, 159

prompt gamma rays, 145, 152, 159 prompt gamma spectrometer, 150, 158 proportional counters, 88-89, 177

for 14C dating, 430 proto lith, 138 proton capture, energy dependence of, 50 proton-proton chain, 55 protons, nuclear reactions induced by, 50 provenance studies, 131, 137

sedimentary, 137 tectonic, 137

Pseudoguembelina, 481 pulse height analysis, 83, 285 pulse heigh spectrum, 83 pulse shape of detectors, 80 pyrite,226,347,352 pyrope,309-310,312 pyroxene,230,325,334,336,345,356-358,

360,365 lunar, 355 structure, 317

pyroxenes order-disorder interexchange in, 336 terrestrial vs. lunar, 354

Q value, 4 quadrupole doublet, in Mossbauer spectra,

288 quadrupole interaction, ligand contribution

in, 288 quadrupole moment, 9

electric, 253 of the nucleus, 12,287 the sign of, 9

quadrupole splitting, 287 distribution, 300 origin of, in Mossbauer spectroscopy, 13 for orthopyroxenes, 317 the sign of, 292

quality factor, 100 quantitative site assignment, 315 quenching gas of proportional counters, 89

r-process, 59 radiation damage, 149, 151 radiation detection, basic principles of, 80 radiation dose, 100, 395

definition of, 100 radiation-dose measurements, 100 radiation effects, 352 radiation-matter interactions, classification

of,61 radiation monitoring, 88, 102 radiation resistance, 149 radiative capture, of neutrons, 141, 147, 151 radiative transition, 167, 169 radioactive decay, 27-44

kinetics of, 28 series, 30-32,405-406,409-410,414

radioactive equilibrium, 33 radioactivity, units of, 29 radiocarbon,

concentration, initial, 437 production of, by cosmic rays, 382, 396,

461 radiocarbon dating, 396-399, 404, 425, 428,

430,435-437 effects of seasonal variations on, 437

radiochemical reactions, 78 radiogenic lead, 412-416, 418, 420 radioisotope, 3 radionuclide, 3

artificial, 44 radionuclide excitation, of atoms, 176, 178,

208 radionuclide X-ray sources, 176 random coincidence rate, 433 range

of alpha particles in air, 39 of strong force, 6 of neutrons, 147

545

Page 51: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

rare earth elements, 124, 130--133, 137-139 Rayleigh scattering, 70, 170 Rb/Sr dating, see rubidium I strontium dating Re/Os dating, see rhenium I osmium dating reaction rate, in neutron activation analysis,

146 reaction threshold, 151-152 REE, see rare earth elements red giant stage, 56 reduced mass, 8 reference spectrum, in Mossbauer

spectroscopy, 303 regolith, 354

lunar, 358 martian, 365

reservoir rock, 230 resolution, of detectors, 116 resonance conditions, for nuclei, 254, 261,

266-267 resonance peaks

in neutron-capture, 47 in proton capture, 50

response functions, of gamma detectors, 84 reversed bias junction, 97 RF, see rotatingframe of reference rhenium/osmium dating, 389-390, 399--400 rhyolite, 134-135 riebeckite, 325 rock forming minerals, 131 rocks, lunar, 356 root respiration, 437 rotating frame of reference, 256-257,

261-262,265 rubidium/strontium dating, 386-387,

400--403 Rugoglobigerina, 481 Russell/Farquhar/Cumming model, 418 Russell/Standton/Farquhsar model, 418 rutherford, (outdated unit ofradiactivity), 29 Rydberg constant, 72

s-process, 59 salinity indicator ratio, 141 samarium/neodymium dating, 402--404 sands, 131 sandstone, 137

provenance of, 137 Sargent rule, 41 satellite line, in X-ray spectrum, 169 saturation factor, 122 Sb, isomer shift for, 307 Schottky-barriers, 98 Schrodinger equation, of hydrogen-like

atoms, 8 scintillation detectors, 91-92, 176-177

design of, 91

546

application of, for gamma spectroscopy, 149, 159

scintillation mechanisms, 92 scintillator

cocktails, 92 crystal, 91

seasonal variations of 14C, 437 secondary target excitation, 173, 176 secular equilibrium, 34-35 sedimentary provenance' study, 137 sedimentary rocks, 131, 137,344,414,416 sedimentary sorting, 137-138 sediments, 127, 137-138, 140

dating of, 383-384, 397-398,404--408 selection rules

for dipole lines, 168 for quadrupole lines, 169

selective activation, 47 self-absorption of beta radiation, 68 semiconductor detectors, 94,122,149-150,

165-166 application of, for PGAA, 154 application of, for X-ray spectroscopy,

177-178 design of, 95 response functions of, 84

semiconductors, types of, 97 sensitivity of

accelerator mass spectrometry, 240--242, 246

detectors, 82 PGAA, 147, 149-150 PIXE, 238, 246 X-ray microscopy, 219, 225-228

sequential X-ray spectrometer, 173 Sequoia gigantea, calibration of radiocarbon

dating by, 398 serpentinite, 232-233 sextet, magnetic, in Mossbauer spectroscopy,

288 shape of atomic nucleus, 9 siderite, 347, 352 signal-to-background ratio, 148-149 silicate glass, 357 silicate minerals, hyperfine parameters for,

327 silicates, magnetic ordering temperatures for,

325 shales, 230 shell model of the nucleus, 13 shielding

against gamma background, 149-151, 153-154

in radiation detection, 83 Si(Li) and Ge detectros, 97 Siegbahn's notation, 166 sievert (Sv), 100

Page 52: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

silicate thermometer, 110 siliclastics, 484 silicon burning, 58 silt, 138 site determination, by Mossbauer

spectroscopy, 313 site occupancy, 315

numbers, 334 skin of the nucleus, 10 SLAP, see Standard Light Atlantic

Precipitation slow neutrons, 147, 152-155, 161-162

inducing fission, 48 Sm/Nd dating, see samarium I neodymium

dating smectite, 365 smoker vents, 366-367 SMOW, see standard mean ocean water Sn, isomer shift for, 308 SNC meteorites, 365-366 snow budget, 463 soft beta radiation, 68 soil

lunar, 357 iron-bearing phases in, 351

soil carbonate, 437-438 solar energy output, 463 solar neutrinos, 55 solvent extraction, 124-125 Southern Oscillation, 399 source background, 85 spallation, 46 specific activity, 29 spectral interference, 145-147, 150, 161 spectrallines, X-ray, 165, 172-173 spessartine, 347 sphene, 385-386 spheroidal nuclei, 12 spin-lattice relaxation, 255, 259, 262, 272,

282,292 spin-locking, 262 spin-orbit coupling, 14 spin-spin relaxation, 262, 324 spinel,356-357 spontaneous fission, 42, 118

condition for, 48 used as neutron source, 148

spot analysis, 174 stable isotopes of

oxygen, 457-458, 469 hydrogen, 458

stalactites, 385 standardisation, 126, 128, 130, 150-152

ko, 128, 151 Standard Light Atlantic Precipitation, 456 Standard Mean Ocean Water, 103,456-457,

489

standard patterns, for Mossbauer spectroscopy, 299

standard reference material, 127, 140 standards

climatic, 469 external, 197 internal, 151 PDB, 453, 456, 461 synthetic, 151, 159

staurolite, 325 stratospheric dust, 225 Stripa, dating of groundwater at, 383-384 stripping technique, 303 strong force, 5

charge independence of, 13 mediator of, 6 range of, 6

subatomic particles, 3-4 successive decays, 30 Suess effect, 398-399 sulphur cycle in nature, 107 sulphur isotopes, 492 superclimathems, 465, 477 superimposed patterns, in Mossbauer spectra,

299-300 supernova explosions, 59 supernova SN1987A, 58-59 superparamagnetic hematite, 330 superparamagnetism, 329 surface barrier detectors, 98, 10 1 surface density of absorbers, 67 Sv, see sievert synchrotron radiation, 217-227

brightness of, 217-219 brilliance of, 217-220, 223 flux of, 219, 221-223, 226

synchrotron radiation facilities, 217-218 synchrotrons, 50 synthetic standards, 151, 159

taenite,360-362 in meteorites, 361

tandem accelerators, 436 tandem mass spectrometer, 397 tectonic provenance, 137 tektites, dating of, 383 terminations, climatic, 459, 464-465 Tesero, l3C profile in, 485 Tethys Ocean, 485 tetrataenite, 359-362 texture, 294, 321-322 Th/Pa dating, see thorium I protactinium

dating Th/Pb dating, see thorium/ lead dating thermal absorption, of neutrons 141 thermal diffusion of tritium, 240-242

547

Page 53: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

thermal neutrons, 47, 118-119, 125, 139-141,147-151,153-154,158,386

inducing fission, 48 thermochrons, 393 thermoluminescence, 377, 404 thermo luminescent detectors, 100, 102 thermonuclear bomb tests, effects of, 377,

382-383,398,404-405 thermonuclear ractions, 54 Thomson scattering, 70 thorite, 131 thorium, 405-407 thorium/lead dating, 414, 418-419 thorium/protactinium dating, 406 thorium (4n) series, 30 threshold energy for fission, 48 threshold reactions, 122 thuringite, 325 tillites, 490-491 timing experiments, detectors for, 92, 94 titanomagnetite, 345, 365 TLD, see thermoluminescent detector todorokite,347 total reflection method, 206-208 tourmaline, 230 trace element analysis, 185,206-208 trace elements, 115-118, 126-127, 130-139,

148, 162 abundance of, 131 distribution of, 130-131, 136 incompatible, 131-132, 135-136 in metamorphism, 138 in minerals, 130 partition of, 131, 133 in sediments, 137 byXRM,225

transformed patterns, of Moss bauer spectra, 299

transient equilibrium, 33-34 transmission integral, 305 transmission Mossbauer experiment,

295-296 transuranium elements, production of, 53

by neutron absorption, 50 tree rings, isotope profiles in, 461, 467 tritium, thermal diffusion of, 240-242 tritium activity, 433, 440-442

initial, 442 tritium dating, 377, 383, 404-405, 440-442 tritium/helium dating, 442-443 troilite, 360, 362, 365 true coincidence, 128 Tungushka event, 454 tunneling, 42 TYPE record, 476

548

U /Kr dating, see uranium/krypton dating u/Pb dating, see uraniumllead dating U ITh/Pb dating, see uranium I thorium I lead

dating U IXe dating, see uraniumlxenon dating units of radioactivity, 29 uranium (4n+2) series, 31 uranium/krypton dating, 419-420, 422 uraniumllead dating, 394, 399, 413-416,

418-421 uranium ore, 139 uranium series disequilibrium dating, 405 uranium/thorium/lead dating, 410 uranium/xenon dating, 419-422 Uvigerina, 479-480

valence state determination, 306 van de Graaff accelerators, 50, 435 vesuvianite, 239 visible universe, 55 vital effects, determining isotope profiles,

459,488-489 vivianite,345-346 volcanic CO2, 437 volcanic glasses, 341-343

wavelength dispersive X-ray fluorescence specrtoscopy, 165-166, 172-174

weathering, chemical, 385, 393, 415 by Mossbauer spectroscopy, 345

weak force, 5 Weizsiicker-Myers-Swiatecki equation, 22 well-type detector, 123 WDXRFS, see wavelength dispersive X-ray

fluorescence specrtoscopy whole rock dating, 419 Witwatersrand glacial sequence, 491 wood, dating of, 397-398, 404

X-ray emission, 41 X-ray fluorescence, 165-174

measurements, 98, 165-174 spectra, 73, 165-174

X-ray fluorescence analysis, 72 X-ray microscopy, 220-226 X-ray photon, 41 X-ray spectroscopy, 95 X-ray spectrometry

energy dispersive, 165-166, 174, 183,205 sample preparation for, 179-183 wavelength dispersive, 172-174, 196

X-ray tube, 165-166, 173-176 X-rays, 65

Page 54: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

attenuation of, 168 energy map of, 209-210 polarized, 205

Xinyang and Jilin meteorites, 363 Mossbauer parameters of, 360

XRM, see X-ray microscopy

Y-zeolite, 277 Yukawa potential, 6 Zeeman energy levels, 254-255 Zeeman splitting, nuclear, 288 zeolites, NMR spectroscopy of, 267,

273-279 zircon, 386,-387, 414, 420-421

549

Page 55: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

Mineralo2ical Index

3R, in meteorites, 405 85Kr, in groundwater, 445-447

actinides, 246 actinolite, 372 aegirine, 371 aeschinite-(Nd), 369 akageneite, 301-302, 369 alkaline rocks, 130 allanite, 371 allophane, 373 almandine,327,370 Amitsoq gneiss, 387 amphibole, 318-320, 325, 372 andalusite, 370 andesite, 134-135 andradite, 311, 315-316, 370 ankerite, 370 annite,372 anorthosite, 356-357 Antarctic ice core, 462, 464 anthophyllite, 372 antigorite, 373 apatite, 370, 385-387 aquifers, 440, 442, 445 Arctic Ocean sediments, 407 arsenates, 370 arsenopyrite, 368 augite, 318, 371 axinite, 371

BAHI, see basaltic achondrite best initial bafertisite, 371

Barberton greenstone belt, 403 basalt, 132, 134-135,342,348

lunar, 354 basalt lava, magnetization of, 340 basaltic achondrite best initial, 402 basaltic rock, 345 basic ferric phosphates, 345 bauxite, 132-133, 139

modulus of, 139 Bellerophon Basin, 485 berthierine, 325, 373 beryl,371 bio-mineralization of iron, 331 biogenic fractionation, 488-489 biogeochemistry, 140 biominera10gy, 331 biotite, 230, 313, 325, 327, 372, 380, 385,

387,393,395,402 bixbyte, 369 borate minerals, 271 borates, 369 boreholes, 141, 145, 147-151, 159, 161 breccias, 137,357 brownmillerite, 369 but1erite, 370

calcalkaline rocks, 130 calcopyrite, 226 carbonaceous chondrite, 132, 457 carbonate rocks, 438 carbonates, 369 carbonatites, 231 carpho1ite, 371

551

Page 56: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

chain silicates, antiferromagnetic coupling in, 324

chalcopyrite, 368 chamosite, 373 charcoal, dating of, 381, 397 chlorite, 345, 353, 373 chloritoide, 371 chondritic meteorites, dating of, 386-387,

402 chondri tic uniform reservoir, 403-404 chrisotile, 373 chromate, 370 chromite, 369 CHUR, see chondritic uniform reservoir clastic sediments, 13 7 clay, 226,232-234,237 clay minerals, 272-273 clinopyroxene, 341-342,354 clintonite, 373 coal, 148, 161-162,226-227,238,267,273,

278-282 iron minerals in, 347

coal macerals, 238 cocquimbite, 370 columbite-group minerals, 369 concordia, 414-415, 421 conglomerates, 137 continental margin, 137 continental crust, 393, 399 cordierite, 371 cotunnite, 407 coulsonite, 369 crocidolite, 322, 324-325, 327, 372

magnetic structure for, 322 cronstedtite, 324-325, 327, 373 crossite, 372 crust of Earth, 124, 135,393-394,399-400,

416-417 continental, 393, 399

cubanite, 368 cummingtonite, 372 cyclosilicates, 371

danalite, 373 daubn!elite, 368 deep-sea smoker vents, 366 deeri te, 372 delafossite, 369 differentiation,

magmatic, 132, 134, 137 mantle-core, 135

diopside, 371 discordia, 414, 420, 421 dolomite, 369,437,439 Dye ice core, 460

552

Earth's crust, 124, 135,393-394,399-400, 416-417

continental, 393, 399 Earth's magnetic field, 251, 254, 267

orientation in, 331 Earth's mantle, 135,231,387-388,394-395,

399-400,418-419 lower, 339

eclogite, 135 elbaite, 371 enstatite, 371 epidote, 371 erosion, 135, 137 eudialite, 371 evaporites, 484, 490 extraterrestrial objects, analysis of, 225, 238

fayalite, 325, 327, 370 Fe3+ oxihidroxide, 352 feldspar, 131,230 ferberite, 369 ferrianni te, 372 ferric phosphates, 345 ferrihydrite, 346 ferriphlogopite, 372 ferripyrophyllite, 324-325, 327, 372 ferrocarpholite, 371 ferrosilite, 371 fibroferrite, 370 fluid inclusions, 237 fluorite, 269-270 foraminifera, 454, 459-461, 464-467,

470-476,479-483 forsterite, 370 frameworksilicates,373 franklinite, 369

gabbro, 356-357 gamet, 370 Garvallack sequence, 491 gedrite, 372 geochemical isotope cycles, 103 geochronology, 107-108,337 geostatistical techniques, 137 geothermometry, 105, 109-110, 334 gillespite, 372 glassy rock samples, 34 i glauconite, 325, 372 glaucophane, 372 glimmerites, 231 goethite, 328, 346, 347, 351, 369 gondite, 347, 350 grafionite, 370 granite, 346, 349

groundwater evolution in, 384

Page 57: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

granitoids, 313 greenalite, 324-325, 327, 373

magnetic structure for, 327 Grenville Series, 490 Groden Fonnation, 485 groundwater

3He concentration in, 443--444 85Kr in, 445--447 evolution of, in granite, 384

group silicates, 325 grunerite, 325, 372 gypsum, 268-269, 437, 439

H-condrites, 362 halogenides, 368 halotrichite, 370 hastingsite, 372 hausmannite, 369 heavy minerals, 131, 140 hedenbergite, 371 helvine,373 hematite, 324, 345-347, 351, 369

of different grain size, 329 superparamagnetic,330

hercynite, 369 holmquistite,372 hornblende, 372, 380, 393 hulsite, 370 humic acid, 437 hydroxides, 368

illite, 226, 345, 347, 353, 373 ilmenite, 341-342, 345, 353, 356--360, 369 ilvaite, 324-327, 371 inclusions, 131, 139,226-227,237 inosilicates, 371 iron

bio-mineralization of, 331 meteorites, 323, 361 minerals in coal, 347

iron oxides, 324 iron oxyhidroxides, 324 iron-bearing phases in soils, 351 iron-nickel alloys in meteorites, 359 iwakiite, 369

jadeite, 371 jakobsite, 369 jarosite, 347, 352, 370 julgoldite,371

kamacite, 360, 362 kaolinite, 365, 373

Kapp Starostin Fonnation, 485 kerogen, 440 kimberlites, 231 kirschteinite,370 Kupferschiefer, 485 kyanite, 370

L-chondrite, 363 meteorites, 365

laihunite, 325, 327, 370 lake sediment, 346 lanthanides, 124-125, 131-132

separation of, 124-125 laterite, 337 lava samples, 338 lawrencite, 368 layer silicates, 325 lead, in iron meteorites, 416 lepidocrocite,369 lignite, 440 limonite, 328 loess, 463 lollingite, 368 lower mantle of the Earth, 339 ludwigite, 370 lunar samples

basalts, 354 geology, 354 glass particles, 358, 360 minerals, 356 plagioclase, 355 pyroxene, 355 regolith, 358 rocks, 356 soil, 357

lunar soil, metallic iron in, 357

mafic minerals, 132-133, 137 maghemite, 323, 338-339, 345-346, 369 magma, oxygen fugacity in, 341 magmatectonic position, 131, 134, 136 magmatic brine, 237 magmatic differentiation, 132, 134, 137 magmatic micas, 230-231 magmatic rocks, 338 magmatic vapor, 237 magnesiochromite, 369 magnesioferrite, 369 magnetite, 323, 331, 338, 345, 369 magnetosome, 331 magneto tactic bacteria, 331 manganese nodules, 345 marcasite, 226, 368 marine sediments, 345, 347 martian samples

553

Page 58: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

regolith, 365 rocks, 364

melanotekite, 371 Meliata series, 134 mesozoic belemnites, 453 metallic iron, 357-358

in lunar soil, 357 metamorphic rocks, 338 metamorphic veil, 393-394 meteorites, 225, 238, 359

dating of, 402--404, 416--417 isotope anomalies in, 402 SNC, 365-366 Murchison, 387 taenite in, 361 Xinyang and Jilin, 360

micaschist, 231 micas, 372 Middle Ocean Ridge Basalts, 134-136,388,

391-392 migmatisation, 130 mineralogy, systematic, by Mossbauer

spectroscopy, 368-373 minerals

analysis of, by PGAA, 148, 161-162 separate, 130 NMR spectroscopy of, 268-272

minnesotaite, 324-327, 372 magnetic structure for, 327

manganase nodules, 345 modulus of bauxite, 139 molybdates, 370 molysite, 368 monazite, 131,387,402,420--421 montmorillonite, 373

gamma irradiation of, 352 MORB, see Middle Ocean Ridge Basalts mudrock, 137 Murchison meteorite, 387 Muschelkalk Conglomerate, 484 muscovite, 230, 372

native iron, 324 neptunite,372 nesosilicates, 370 nickeliferrous deposits, 346 nitrates, 369 noble metals, 123-125, 127 nodules, Mn-Fe, 345 nontronite, 325, 373 nordenskioldine,370

obsidian, 333, 342 olivine, 230-231, 238, 244, 328, 341-342,

346,356-358,360,365

554

omphacite, 300-301, 320-321, 371 opal, 332-333 ores, 125, 138-140 orthoferrosilite, 325, 327 orthopyroxene, 316, 334,337,346,371

equilibrium constants for, 335 osumilite,371 oxides, 368

Pacific Ocean Core, 466 palygorskite, 373 pargasite, 372 parisite-(Ce),370 pegmatite, 231 peridotite, 135, 346, 349 phenocryst, 131, 133 phlogopite, 230-231,372 phosphates, 370 pigeonite, 354 pisolite, 349 pitchblende, 419--421 plagioclase, 355, 358, 365, 373, 380, 395,

402 lunar, 355

plate tectonics, 13 7 platinum group elements, 125, 140 precipitations

isotopic composition of, 110 oflanthanides 124-125

provenance studies, 131, 13 7 sedimentary, 137 tectonic, 137

pseudo brookite, 369 pyrite, 226, 347, 352, 368 pyroaurite,370 pyrolusite, 369 pyrope, 309, 310, 312 pyrophanite, 369 pyrophyllite, 372 pyroxene, 230, 325, 334, 336, 345,356-358,

360, 365 lunar, 355 structure, 317

pyroxene group, 371 pyroxenes, terrestrial vs. lunar, 354 pyrrhotites, 368

regolith, 354 lunar, 358 martian, 365

rhodonite, 372 rhyolite, 134-135 riebeckite, 325 rock forming minerals, 131 rocks, lunar, 356

Page 59: APPENDIX - Home - Springer978-1-4615-5363...Table 2 (continued) Z Nuclide Percentage Relative atomic mass atomic mass 52 l30Te 33.80 129.9062 64 155Gd 14.80 154.9226 53 1271 100 126.9045

rozenite, 370 rutile, 369

salinity indicator ratio, 141 sands, 131 sandstone, 137

provenance of, 137 scapolite, 373 schorl,371 scodorite, 370 sedimentary provenance study, 137 sedimentary rocks, 131, 137,344,414,416 sedimentary sorting, 137-138 sediments, 127, 137-138, 140

dating of, 383-384, 397-398, 404--408 serpentine-group, 373 serpentinite, 232-233 shales, 230 sheets iii cates, 372 siderite, 347, 352, 369 siderophyllite, 373 silicate glass, 357 silicate minerals, 327 silicates, 370

magnetic ordering temperatures for, 325 siliclastics, 484 sillimanite, 370 silt, 138 smectite, 365, 373 smoker vents, 366-367 SNC meteorites, 365-366 soil, 353

lunar, 357 iron-bearing phases in, 351

soil carbonate, 437--438 soils, iron-bearing phases in, 351 sorosilicates, 371 spessartine, 347 sphene, 385-386 spinel,356-357 spinel-group minerals, 369 stalactites, 385 staurolite, 325, 371 stembergite, 368 stibiconite, 369 sulphates, 370 sulphides, 368 szomolnokite, 370

taenite, 360, 362 in meteorites, 361

talc,372 talnakhite, 368 tectonic provenance, 137 tektites, dating of, 383 terrestrial pyroxenes vs. lunar ones, 354 tetrataenite, 359-362 thorite, 131 thuringite, 325, 373 tillites, 490--491 titanomagnetite, 345, 365 todorokite, 347 tourmaline, 230 tourmaline group, 371 trace elements in

metamorphism, 138 minerals, 130 sediments, 13 7

tremolite, 372 trevorite, 369 troilite, 360, 362, 365, 368

ulviispinel, 369 uranium ore, 139

vanadates, 370 vermiculite, 373 vesuvianite, 239, 371 vivianite, 345, 346, 370 volcanic CO2, 437 volcanic glasses, 341-342, 343 voltaite, 370 vonsenite, 370

warwickite, 370 weathering, 345 wolframate, 370 wolframite, 369 wiistite, 369

Xinyang and Jilin meteorites, 360, 363

Y-zeolite,277 yoderite, 370

zeolites, 267, 273-279,373 zircon, 386,-387, 414, 420--421

555