appendix a data on ieee benchmark models - home - …978-1-4615-5633-6/1.pdfappendix a: data on ieee...

22
Appendix A Data on IEEE Benchmark Models A.1 IEEE FIRST BENCHMARK MODEL ( FBM ) IEEE FBM was created by the IEEE Working Group on Subsynchronous Reso- nance in 1977 for the purpose of establishing a benchmark model which can be used as a test bench for the comparison of different methods of computer based analysis and simulation. The system consists of a single generator connected to an infinite bus through a single series compensated line as shown in Fig A .1. XT R XACSYS INF BUS Figure A.I. IEEE FBM system diagram Table A.l gives the network impedances in per unit on the generator MVA base of 892.4 MVA. Table A.l Network Impedances Parameter Positive Sequence Zero Sequence R 0.02 0.50 X T 0.14 0.14 XL 0.50 1.56 X SYS 0.06 0.06 Xc 0.35 0.35 Table A.2 gives the synchronous machine parameters.

Upload: trantuyen

Post on 10-Mar-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

Appendix A Data on IEEE Benchmark Models

A.1 IEEE FIRST BENCHMARK MODEL ( FBM )

IEEE FBM was created by the IEEE Working Group on Subsynchronous Reso­nance in 1977 for the purpose of establishing a benchmark model which can be used as a test bench for the comparison of different methods of computer based analysis and simulation. The system consists of a single generator connected to an infinite bus through a single series compensated line as shown in Fig A .1.

XT R XACSYS INF BUS

Figure A.I. IEEE FBM system diagram

Table A.l gives the network impedances in per unit on the generator MVA base of 892.4 MVA.

Table A.l Network Impedances

Parameter Positive Sequence Zero Sequence

R 0.02 0.50 XT 0.14 0.14 XL 0.50 1.56

X SYS 0.06 0.06 Xc 0.35 0.35

Table A.2 gives the synchronous machine parameters.

240 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

Table A.2 Synchronous machine parameters for IEEE FBM

I Reactance I Value I Time Constant I Value I Xaa 0.130 T~o 4.300 Xd 1.790 Til

dO 0.032 x' d 0.169 T~o 0.850 x" d 0.135 Til

qO 0.050 Xq 1.710 x' q 0.228 x" q 0.200

The reactances are in per unit on the generator base and the time constants are in seconds. From the specified open circuit time constants, the short circuit time constants can be derived from Eqs.(2.74) to (2.77) in chapter 2. These values are given below. T~ = 0.4000, T~' = 0.0259 T~ = 0.1073, T~' = 0.0463

The rotor model of the FBM is shown in Fig . A.2. This is typical of large

668BBB Figure A.2. Rotor model for FBM

turbine-generator which has several turbine sections modelled separately. The data are given in Table A.3.

Table A.3 Shaft inertias and spring constants for the FBM in per unit on the machine base

Inertia I Inertia I Shaft Section I Spring Constant Constant (H) K in p.u T /rad

HP turbine 0.092897 HP - IP 19.303 IP turbine 0.155589 IP - LPA 34.929

LPA turbine 0.858670 LPA - LPB 52.038 LPB turbine 0.884215 LPB - GEN 70.858

Generator 0.868495 GEN - EXE 2.82 Exciter 0.0342165

APPENDIX A: DATA ON IEEE BENCHMARK MODELS 241

The damping data is not provided as part of FBM data.The damping is neglected in the case studies given in chapter 4. Whenever the damping is considered, the following data are assumed. Self damping: DHP = DIP = DLA = DLB = 0.2 Mutual damping: DHI = DIA = DAB = DBG = 0.3, DGE 0.005

A.2 IEEE SECOND BENCHMARK MODEL ( SBM )

The system diagram for SBM is shown in Fig. A.3.

RI XLI Xc

Figure A.3. Second Benchmark Model system

INF BUS

The value of the capacitive reactance, Xc is not specified explicitly. It is specified as a variable taking on values from 10% to 90% of the series inductive reactance of the same line.The network impedance data are given in Table A.4.

Table A.4 Network Impedances in per unit based on 100 MVA for SBM

Parameter I Positive Sequence I Zero Sequence

RT 0.0002 0.0002 X T 0.0200 0.0200 RI 0.0074 0.0220 XLI 0.0800 0.2400 R2 0.0067 0.0186

XL2 0.0739 0.2100 Rsys 0.0014 0.0014 XSYS 0.0300 0.0300

All data are given on a 100 MVA base and the line impedances are on a 500 kV base. The generator is rated at 600 MVA.The reactances and time constants are given in Table A.5.

242 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

Table A.5 Synchronous machine parameters for IEEE SBM

I Reactance I Value I Time Constant I Value I Ra 0.0045 T~o 4.500 Xaa 0.140 Til

dO 0.040 Xd 1.650 T~o 0.550 x' d 0.250 Til

qO 0.090 x" d 0.200 Xq 1.590 x' q 0.460 x" q 0.200

The rotor model is shown in Fig. A.4.

Figure A.4. Rotor model for SSM

It has four masses including the exciter. The data are given in Table A.6.

Table A.6 SBM rotor model data

I Mass I Inertia I Damping I Ibm - ft 2 Ibf-ft-sec/rad

Shaft Section

Spring Constant Ibf-ft/ rad

EXC 1383 4.3 EXC-GEN 4.39 x 106

GEN 176204 547.9 LP-GEN 97.97x 106

LP 310729 966.2 HP-LP 50.12x 106

HP 49912 155.2

The rotor mode shapes are given in Table A.7 and the computed modal quantities are given in Table A.8.

Table A.7 Rotor mode shapes for SBM

I Rotor I Mode 1 I Mode 2 I Mode 3 I EXC 1.307 1.683 -102.600 GEN 1.000 1.000 1.000 LP -0.354 -1.345 -0.1180 HP -1.365 4.813 0.0544

APPENDIX A: DATA ON IEEE BENCHMARK MODELS 243

Table A,8 Computed modal quantities for SBM

I Mode fk Uk Hk

Hz rad/s seconds

1 24,65 0,05 1.55 2 32,39 0,05 9,39 3 51.10 0,05 74,80

Appendix B Calculation of Initial Conditions

In general,the inital conditions (equilibrium values) ofthe system state variables are obtained by solving the algebraic equations

(B.I)

where Ue is the input vector when the system is in equilibrium.lt includes parameters such as input mechanical torque (Tm ) ,infinite bus voltage (Eb), voltage reference to the AVR ( Vre ! ). In power sysem studies,the operating point is established by conducting a power flow analysis;the output from which gives the active power (P), reactive power (Q),voltage magnitude (V) and angle (0) at each bus including the generator bus. This is the starting point for the calculation of the initial conditions of the state variables. Synchronous Generator 1. The armature current (fa ) is calculated from

r = f LA. = Pg - jQg a a 'f' V L-O

9 9

(the subscript 'g' refers to the generator terminal bus) 2. Compute Eq and J from

where Eq is the voltage behind Xq

3. Compute id ,iq , Vd , and Vq from

id = -fa sin(J - c/J)

iq = fa cos(J - c/J) Vd = -Vg sin(J - Og)

Vq = Vgcos(J - Og)

(B.2)

(B.3)

(BA) (B.5) (B.6)

(B.7)

246 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

4. Compute Efd ,E~ ,E~ from

EJd = Eq - (Xd - Xq)id

E~ = EJd + (Xd - X~)id

E~ = -(xq - x~)iq

5. Compute t/Jd and t/Jq from

t/Jd = Xdid + EJd

t/Jq = xqiq

6. Compute t/JJ ,t/Jh ,t/Jg and t/Jk from

X' t/Jf = t/Jd + ( d I)EJd

Xd - xd

7. Calculate VreJ and Tm from

t/Jh = t/Jd

t/Jg = t/Jq

t/Jk = t/Jq

(B.8)

(B.9)

(B.lO)

(B.ll)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

For the rotor system,the slips of the various masses (Sm, SHP, SIP etc) cannot be calculated from the equations describing them.They are assumed to be zero if the rotor speed (w o ) is same as the base speed (w B)' The equilibrium values of the shaft torques can be calculated from the state equations for the rotor system.For example,for the four mass system shown in Fig.2.l6 (chapter 2),the initial condtions of the shaft torques are given by

TLG = Te, TIL = TLG - FLpTm

THI = TIL - F[pTm = FHpTm

(B.19)

(B.20)

If, instead of shaft torques,the modal angles are used as state variables, their initial conditions can be calculated from the state equations. For example,for the system shown in Fig.2.l6, we have,

<11 = (q~ FTm - Te)/ J{1

<12 = (q~FTm - Te)/ J{2

<13 = (q~FTm - Te)/ J{3

<10 = <I - <11 - <12 - <13

(B.2l)

(B.22)

(B.23)

(B.24)

where ql, q2 and q3 are the columns of the [QJ matrix corresponding to torsional modes 1,2 and 3. [FJ is a row vector defined by

F= [FHP ,FIP ,FLP ,OJ (B.25)

APPENDIX 8: CALCULATION OF INITIAL CONDITIONS 247

f{l ,f{2 and f{3 are the modal spring constants. Electrical Network The network equations are given by

(B.26)

If the matrix [AN] is nonsingular,the inital conditions of the network state variables are given by

(B.27)

The input vector UN includes variables such as D-Q components of the gener­ator (armature) currents and infinite bus voltages. For a particular case of a simple network made up of a series R-L-C network con­nected between a genearator and an infinite bus (with no shunt branch),there are only two state variables VCD and vCQ .The initial values of those are com­puted from the complex equation

(VCQ + JVCD) = -jXc(iQ + jiD) (B.28)

where Xc = --L-c and Wo

(B.29)

Appendix C Abbreviations

ac : alternating current AGC : automatic generation control AVR : automatic voltage regulator CA : constant angle CACV : constant ac voltage (control) CC : constant current (control) CDCV : constant dc voltage (control) CEA : constant extinction angle (control) dc : direct current EPC : equidistant pulse control ESS : excitation system stabilizer FACTS: flexible ac transmission system FCL : fault current limiter GPU : gate pulse unit GTO : gate turn-off thyristor H P : high pass (filter) HP : high pressure (turbine) HVDC : high voltage direct current Hz : hertz IGBT : insulated gate bipolar transistor IGE : induction generator effect IP : intermediate pressure (turbine) IPC : individual phase control KVL : Kirchoff's voltage law LP : low pass (filter) LP : low pressure (turbine) MCT : metal oxide semiconductor controlled thyristor MOV : metal - oxide varistor PLL : phase-locked loop PSDC : power swing damping controller

250 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

PSS : power system stabilizer PWM : pulse width modulation rad : radian rms : root mean square s: second SC : synchronous condenser SCR : short circuit ratio SEDC : supplementary excitation damping controller SMC : supplementary modulation controller SR : susceptance regulator SSO : subsynchronous oscillation SSR : subsynchronous resonance SSSC : static synchronous series compensator STATCOM : static synchronous compensator STATCON : static condenser SVC : static var compensator SVR ; synchronous voltage reversal TCBR : thyristor controlled braking resistor TCPAR : thyristor controlled phase angle regulator TCR : thyristor controlled reactor TCSC : thyristor controlled series compensator T-G : turbine generator TI : torsional interaction TSC : thyristor switched capacitor UPFC : unified power flow controller VDCOL : voltage dependent current order limiter VSC : voltage source converter VST : voltage setting terminal

References and Bibliography

Abi-Samra, N. C., Smith, R. F., McDermott, T. E., and Chidester, M. B. (1985). Analysis of thyristor-controlled shunt SSR countermeasures. IEEE Transactions, lO4(3) :584-597.

Agrawal, B. L. and Farmer, R. G. (1979). Use offrequency scanning techniques for subsynchronous resonance. IEEE Transactions, PAS-98(2):341-349.

Akagi, H. (1996). New trends in active filters for power conditioning. IEEE Transactions on Industrial Applications, 32(6):1312-1322.

Alden, R. T. H., Nolan, P. J., and Bayne, J. P. (1977). Shaft dynamics in closely coupled identical generators. IEEE Transactions, PAS-96(3):721-728.

Anderson, P. M., Agrawal, B. L., and Van Ness, J. E. (1990). Subsynchronous Resonance in Power Systems. IEEE Press, New York.

Anderson, P. M. and Fouad, F. F. (1977). Power System Control and Stability. Iowa State University Press, Ames, Iowa.

Andersson, G., Atmuri, R., Rosenquist, R., and Torseng, S. (1984). Influence of hydro unit's generator -to -turbine inertia ratio on damping of subsyn­chronous oscillations. IEEE Transactions, PAS-1 03(8) :2352-2361.

Angquist, L., Ingestrom, G., and Jonsson, H. A. (1996). Dynamical performance of TCSC schemes. CIGRE Paper 14-302.

Angquist, L., Ingestrom, G., and Othman, H. (1994). Synchronous voltage re­versal (SVR) scheme - a new control method for thyristor controlled series capacitors. EPRI FACTS Conference, Baltimore, MD.

Bahrman, M., Larsen, E. V., Piwko, R. J., and Patel, H. S. (1980). Experience with HVDe - turbine generator torsional interaction at Square Butte. IEEE Transactions, PAS-99(3):966-975.

Bayne, J. P., Lee, D. C., and Watson, W. (1977). A power system stabilizer for thermal units based on derivation of accelerating power. IEEE Transactions, PAS-96(6):1777-1783.

Belanger, J., Scott, G., Andersson, T., and Torseng, S. (1984). Gain supervisor for thyristor controlled shunt compensators. CIGRE Paper 38-01.

252 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

Bjorklund, H., Johanson, K. E., and Liss, G. (1980). Damping of subsyn­chronous oscillations in systems containing turbine-generator and HVDC links. CIGRE, Paper 14-01.

Bowler, C. E. J. and Baker, D. H. (1981). Concepts of supplementary tor­sional damping by excitation modulation. IEEE Publication - Symposium on Countermeasures for Subsynchronous Resonance, (81 TH 0086 -9-PWR).

Brandwajn, V. and Dommel, H. W. (1977). A new method for interfacing gen­erator models with an electromagnetic transients program. 10th PICA Con­ference, Toronto:260-265.

Canay, I. M. (1982). A novel approach to the torsional interaction and electrical damping of the synchronous machine, Part I : Theory ,Part II : Application to an arbitrary network. IEEE Transactions, PAS-101(10):3630-3640.

Canay, I. M. (1983). Determination of model parameters of synchronous ma­chines. Proceedings of lEE (London), 130 Pt-B(2):86-94.

Carlsen, K, Lenfest, E. H., and La Forest, J. J. (1975). MANTRAP - Machine and Network Transients Program. PICA, Conference:144-151.

Christl, N., Hedin, R., Sadek, K, Lutzelburger, P., Krause, P. E., McKenna, S. M., Montoya, A. H., and Torgerson, D. (1992). Advanced series compensa­tion (ASC) with thyristor controlled impedance. CIGRE Paper 14/97/98-05.

Concordia, C. and Carter, G. K (1941). Negative damping of electrical ma­chinery. AlEE Transactions, 60:116-119.

DeMello, F. P. and Concordia, C. (1969). Concepts ofsynchronous machine sta­bility as affected by excitation control. IEEE Transactions, PAS-88(4):316-329.

DeMello, F. P., Hannett, L. W., and Undrill, J. M. (1978). Practical approaches to supplementary stabilizing from accelerating power. IEEE Transactions, PAS-97(5):1515-1522.

Dickmander, D., Thorvaldsson, B., Stromberg, G., Osborn, D., Pointras, A., and Fisher, D. (1992). Control system design and performance verification for the Chester, Maine static var compensator. IEEE Transactions on Power Delivery, 7(3):1492-1503.

Dommel, H. W. (1969). Digital computer solution of electromagnetic transients in single and multiphase networks. IEEE Transactions, PAS-89(4):388-399.

Edris, A. A. (1990). Series compensation schemes reducing the potential of subsynchronous resonance. IEEE Transactions on Power Systems, 5(1):219-226.

Edwards, C. W., Nannery, P. R., Mattern, K. E., Stacey, E. J., and Gubernick, J. (1988). Advanced static var generator employing GTO thyristors. IEEE Transactions on Power Delivery, 3(4):1622-1627.

Ekanayake, J. B. and Jenkins, N. (1996). A three level advanced static var compensator. IEEE Transactions on Power Delivery, 11(1):540-545.

Farmer, R. G., Schwalb, A. L., and Katz Eli (1977). Navajo project report on subsynchronous resonance:analysis and solution. IEEE Transactions, PAS-96{ 1): 1226-1232.

REFERENCES AND BIBLIOGRAPHY 253

Fouad, A. A. and Khu, K. T. (1978). Subsynchronous resonance zones in the IEEE benchmark power systems. IEEE Transactions, PAS-97(3):754-762.

Geetha, M. K. (1996). Analysis of torsional interactions in power systems with FACTS controllers. PhD thesis, Indian Institute of Science, Bangalore,India.

Gole, A. M., Menzies, R. W., Turanli, H. M., and Woodford, D. A. (1984). Im­proved interfacing of electrical machine models to electromagnetic transients program. IEEE Transactions, PAS-103(9):2446-2451.

Gross, G. and Hall, M. C. (1978). Synchronous machine and torsional dynamic simulation in the computation of electromagnetic transients. IEEE Transac­tions, PAS-97(4):1074-1086.

Gyugyi, L. (1979). Reactive power generation and control by thyristor circuits. IEEE Transactions on Industrial Applications, IA-15(5):521-531.

Gyugyi, L. (1988). Power electronics in electric utilities: Static var compen­sators. Proceedings of IEEE, 76(4):483-494.

Gyugyi, L. (1992). A unified power flow concept for flexible ac transmission systems. lEE Proceedings, 139 - Pt. C(4):323-331.

Gyugyi, L. (1994). Dynamic compensation of AC transmission lines by solid state synchronous voltage sources. IEEE Transactions on Power Delivery, 9(2) :904-911.

Gyugyi, L., Schauder, C. D., and Sen, K. K. (1997). Static synchronous series compensator: a solid state approach to the series compensation of transmis­sion lines. IEEE Transactions on Power Delivery, 12(1):406-417.

Hall, M. C. and Hodges, D. A. (1976). Experience with 500 kV subsynchronous resonance and resulting turbine generator shaft damage at Mohave gener­ating station. IEEE PES Winter Meeting, Publication CH1066 -O-PWR, (76) :22-30.

Hammad, A. and El-Sadek, M. (1984). Application of a thyristor controlled VAR compensator for damping subsynchronous oscillations in power sys­tems. IEEE Transactions, 103:198-212.

Hannett, L. N. and DeMello, F. P. (1990). Mechanical countermeasures to subsynchronous torsional instability. IEEE Transactions on Power Systems, 5(4):1146-1150.

Hatziadoniu, C. J. and Funk, A. T. (1996). Development ofa control scheme for a series connected solid state synchronous voltage source. IEEE Transactions on Power Delivery, 11(2):1138-1144.

Hedin, R. A., Stump, K. B., and Hingorani, N. G. (1981). A new scheme for subsynchronous resonance damping of torsional oscillations and transient torque - Part II. IEEE Transactions, PAS-100(4):1856-1863.

Hedin, R. A., Weiss, S., Torgerson, D., and Eilts (1995). SSR characteristics of alternative types of series compensation schemes. IEEE Transactions on Power Systems, 10(2):845-852.

Helbing, S. G. and Karady, G. G. (1994). Investigations of an advance form of series compensation. IEEE Transactions on Power Delivery, 9(2):939-946.

254 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

Hingorani, N. G. (1981). A new scheme for subsynchronous resonance damping of torsional oscillations and transient torque - Part I. IEEE Transactions, PAS-100(4):1852-1855.

Hingorani, N. G. (1991). FACTS-Flexible AC Transmission System. lEE Con!, Fifth Int. Conf. on AC and DC transmission, London, (345):1-7.

Hingorani, N. G. (1993). Flexible ac transmission. IEEE Spectrum, 30(4):44-45.

Hingorani, N. G. (1995). Custom power. IEEE Spectrum, 30(6):41-48. Hingorani, N. G., Bhargava, B., Garrigue, G. F., and Rodriguez, G. D. (1987).

Prototype NGH subsynchronous resonance damping scheme Part-I -Field installation and operating experience. IEEE Transactions on Power Systems, PWRS-2( 4) :1034-1039.

IEEE Committee Report (1968). Computer representation of excitation sys­tems. IEEE Transactions, PAS-87:1460-1464.

IEEE Committee Report (1969). Recommended phasor diagram for synchronous machines. IEEE Transactions, PAS-88(1l):1593-161O.

IEEE Committee Report (1973). Dynamic models for steam and hydro turbines in power system studies. IEEE Transactions, PAS-92(6):1904-1915.

IEEE Committee Report (1976). A bibliography for the study of subsynchronous resonance between rotating machines and power systems. IEEE Transac­tions, PAS-95(1):216-218.

IEEE Committee Report (1977). First benchmark model for computer simu­lation of subsynchronous resonance. IEEE Transactions, PAS-96(5): 1565-1570.

IEEE Committee Report (1979). First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems. IEEE Transactions, PAS-98(6):1872-1875.

IEEE Committee Report (1980). Countermeasures to subsynchronous reso­nance. IEEE Transactions, PAS-99(5):1810-1817.

IEEE Committee Report (1981). Excitation system models for power system stability studies. IEEE Transactions, PAS-I00(2) :494-509.

IEEE Committee Report (1982). 'Series capacitor controls and settings as a countermeasure to subsynchronous resonance'. IEEE Transactions, PAS-101 (6): 1281-1287.

IEEE Committee Report (1985a). Second benchmark model for computer sim­ulation of subsynchronous resonance. IEEE Transactions, PAS-104(5): 1057-1066.

IEEE Committee Report (1985b). Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems. IEEE Transactions, PAS-I04(2) :321-327.

IEEE Committee Report (1989). Comparison of SSR calculations and test re­sults. IEEE Transactions on Power Systems, 4(1):336-344.

IEEE Committee Report (1992). Readers guide to subsynchronous resonance. IEEE Transactions on Power Systems, 7(1):150-157.

REFERENCES AND BIBLIOGRAPHY 255

IEEE Task Force (1986). Current usage and suggested practices in power sys­tem stability simulations for synchronous machines. IEEE Transactions on Energy Conversion, EC-1(1):77-93.

IEEE Working Group (1982). Effects of switching network disturbances on turbine-generator shaft systems. IEEE Transactions, PAS-101(9):3151-3157.

IEEE Working Group (1985). Terms,definitions and symbols for subsynchronous oscillations. IEEE Transactions, PAS-104(6):1326-1334.

IEEE Working Group (1994). Static var compensator models for power flow and dynamic performance simulation. IEEE Transactions on Power Systems, 9(1):229-240.

Iravani, M. R. (1989). Torsional oscillations of unequally loaded parallel iden­tical generators. IEEE Transactions, 4(4):1514-1524.

Iravani, M. R. and Maratukulam, D. (1994). Review of semiconductor con­trolled phase shifters for power system applications. IEEE Transactions on Power Systems, 9(4):1833-1839.

Iravani, M. R. and Semlyen, A. (1992). Hopfbifurcations in torsional dynamics. IEEE Transactions on Power Systems, 7 (1) :28-36.

Jackson, W. B. and Winchester, R. 1. (1969). Direct and quadrature axis equiv­alent circuits for solid-rotor turbine generators. IEEE Transactions, PAS-88(7): 1121-1136.

Jalali, S. G., Lasseter, R. H., and Dobson, I. (1994). Dynamic response of a thyristor controlled switched capacitor. IEEE Transactions on Power Deliv­ery,9(3):1609-1615.

Jiang, H., Dorsey, J., Habetlar, T., and Eckroth, K. V. (1994). A cost effective generator brake for improved generator transient response. IEEE Transac­tions on Power Systems, 9(4):1840-1846.

Johnson, R., Krause, P., Montoya, A., Christl, N., and Hedin, R. (1991). Power system studies and modelling for the Kayenta 230 kV substation advanced series compensation. lEE Fifth Int. Conf. on AC and DC Power Transmis­sion, Sept:17-20.

Keri, A. J. F., Ware, B. J., Byron, R. A., Mehraban, A. S., Chamia, M., Halver­son, P., and Angquist, L. (1992). Improving transmission system performance using controlled series capacitors. CIGRE, Paper 14/37/38-07.

Kilgore, L. A., Elliott, L. C., and Taylor Jr., E. R. (1971). The prediction and control of self - excited oscillations due to series capacitors in power systems. IEEE Transactions, PAS-90(3): 1305-1311.

Kilgore, L. A., Ramey, D. G., and Hall, M. C. (1980). Simplified transmis­sion and generation system analysis procedure for subsynchronous resonance. IEEE Transactions, PAS-96(6): 1840-1846.

Kothari, A. G. (1985). Analysis and simulation of HVDC-turbine generator tor­sional interactions. PhD thesis, Indian Institute of Technology, Kanpur,India.

Kulkarni, A. M., , and Padiyar, K. R. Control design and simulation of Unified Power Flow Controller-Paper PE - 172 -PWRD -0-12-1997. To appear in IEEE Transactions on Power Delivery.

256 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

Kulkarni, A. M., , and Padiyar, K. R. (1997). Modelling and transient simula­tion of unified power flow controller for subsynchronous resonance studies. Inti. Conf on Computer Applications in Engineering,Recent Advances, Roor­kee, India:760-765.

Kulkarni, A. M. (1997). Modelling and analysis of voltage source converter based FACTS controllers for real and reactive power control. PhD thesis, Indian Institute of Science, Bangalore,India.

Kundur, P. (1994). Power System Stability and Control. McGraw-Hill, New York.

Larsen, E., Rostamkolai, N., Fisher, D., and Poitors, A. (1993). Design of a sup­plementary modulation control function for the Chester SVC. IEEE Trans­actions on Power Delivery, 8(2):719-724.

Larsen, E. V., Baker, D. H., Imece, A. F., and Gerin-Lajoie, L. (1990). Ba­sic aspects of applying SVC's to series-compensated AC transmission lines. IEEE Transactions on Power Delivery, 5(3): 1466-1473.

Larsen, E. V., Clark, K., Hill, A. T., Piwko, R. J., Beshir, M. J., Bhuiyan, M., Hormozi, F. J., and Braun, K. (1996). Control design for SVC's on the Mead­Adelanto and Mead- Phoenix transmission project. IEEE Transactions on Power Delivery, 11(3):1498-1506.

Larsen, E. V. and Swann, D. A. (1981). Applying power system stabilizers, Parts I, II and III. IEEE Transactions, PAS-100(6):3017-3046.

Lauw, H. K. and Meyer, W. S. (1982). Universal machine modelling for the representation of rotating electric machinery in Electromagnetics Transients Program. IEEE Transactions, PAS-lOl(6):1342-1351.

Lawson, R. A., Swann, D. A., and Wright, G. F. (1978). Minimisation of power system stabiliser torsional interaction on large steam turbine generators. IEEE Transactions, PAS-97(1):183-190.

Lee, D. C., Beaulieu, R. E., and Rogers, G. J. (1985). Effects of governor characteristics on turbo-generator shaft torsionals. IEEE Transactions, PAS-104(6): 1255-1261.

Lee, D. C., Beaulieu, R. E., and Service, J. R. R. (1981). A power system sta­bilizer using speed and electrical power inputs - design and field experience. IEEE Transactions, PAS-I00(9):4151-4167.

Lerch, E., Povh, D., and Xu, 1. (1991). Advanced SVC control for damping power systems oscillations. IEEE Transactions on Power Systems, 6(2):524-535.

Lorden, D. J., Clark, K., and Larsen, E. V. (1992). A digitally based HVDC firing-pulse synchronisation control - description and model development. IEEE Transactions on Power Delivery, 7(3):1405-1414.

Middlebrook, R. D. (1988). Small- signal modeling of pulse width modulated switched-mode power converters. Proceedings of IEEE, 76(4):343-354.

Miller, T. J. E. (1982). Reactive Power Control in Electric Systems. John Wiley, New York.

Minnich, S. H. (1986). Small signals,large signals and saturation in generator modelling. IEEE Transactions on Energy Conversion, 1(1):94-102.

REFERENCES AND BIBLIOGRAPHY 257

Mori, S., Matsuno, K., Hasegawa, T., Ohnishe, S., Takeda, M., Seto, S., Mu­rakami, S., and F., I. (1993). Development of Large Static Var Generator using self-commutated inverter for improving system stability. IEEE Trans­actions on Power Systems, 8( 1) :371-377.

Mortensen, K., Larsen, E. V., and Piwko, R. J. (1981). Field tests and analysis of torsional interaction between the Coal -Creek turbine - generators and the CU HVDC system. IEEE Transactions, PAS-I00(1):336-345.

Mugwanya, D. K. and Van Ness, J. E. (1987). Mode coupling in power systems. IEEE Transactions on Power Systems, 2(2):264-270.

Nolan, P. J., Sinha, N. K., and Alden, R. T. H. (1976). Eigenvalue sensitivities of power systems including network and shaft dynamics. IEEE Transactions, PAS-95( 4):1318-1324.

Okamoto, H., Kurita, A., Clark, K., Larsen, E. V., and Miller, N. W. (1996). Modeling and performance of multi-module TCSCs in ATP. CIGRE Paper 14-307.

Othman, H. A. and Angquist, L. (1996). Analytical modeling of thyristor­controlled series capacitors for SSR studies. IEEE Transactions on Power Systems, 11(1):119-127.

Padiyar, K. R. (1996). Power System Dynamics - Stability and Control. John Wiley, Singapore.

Padiyar, K. R. and Chaurasia, R. K. (1997). Analysis of torsional interactions with thyristor controlled series compensation. Preprint,IASTED Conference on 'High Technology in the Power Industry', Orlando, Florida.

Padiyar, K. R. and Geetha, M. K. (1993). Analysis of torsional interactions with power system stabilizer. Electric Machines and Power Systems, 21(6):767-782.

Padiyar, K. R. and Geetha, M. K. (1995). Analysis of torsional interactions in MTDC systems. Electrical Power and Energy Systems, 17(4):257-266.

Padiyar, K. R., Geetha, M. K., and Rao, K. U. (1996). A novel power flow controller for controlled series compensation. lEE Can! Publication, Sixth Int Can! On AC and DC transmission, London, (423):329-334.

Padiyar, K. R. and Kothari, A. G. (1987). Modelling and simulation of HVDC bridge converters. Electric Machines and Power Systems, 13:285-298.

Padiyar, K. R. and Kothari, A. G. (1988). Study of the HVDC - torsional in­teractions through digital dynamic simulation. Electric Machines and Power Systems, 14:363-375.

Padiyar, K. R. and Kothari, A. G. (1989). Analysis of the HVDC turbine gen­erator torsional interactions. Electric Machines and Power Systems, 16:303-317.

Padiyar, K. R. and Kulkarni, A. M. (1997). Design of reactive current and voltage controller of static condenser. Electrical Power and Energy Systems, 19(6):397-410.

Padiyar, K. R., Raj ashekaram , P., Radhakrishna, C., and Pai, M. A. (1986a). Dynamic stability of power systems through reactive power Modulation. Electric Machines and Power Systems, 11 :281-293.

258 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

Padiyar, K. R. and Rao, K. U. (1995). Investigations of power flow control schemes with controlled series compensation. Proceedings of Conference on EHV Technology, Bangalore,India: 149-152.

Padiyar, K. R. and Rao, K. U. (1997). Discrete control of series compensation for stability improvement in power systems. Electrical Power and Energy Systems, 19(5):311-319.

Padiyar, K. R. and Sachchidanand (1985). Stability of converter control for multiterminal HVDC systems. IEEE Transactions, PAS-I04(3):690-695.

Padiyar, K. R. and Sachchidanand (1986). Stability of converter control using new discrete converter model. Journal of Institution of Engineers (India), 67(EL-3).

Padiyar, K. R., Sachchidanand, and Senthil, J. (1986b). A new technique for interfacing synchronous machine models with electro-magnetic transients program. Platinum Jubilee Conf on Systems and Signal Processing, IISc, Bangalore.

Padiyar, K. R., Sachchidanand, and Senthil, J. (1994). Digital computer study ofthe control oftorsional interactions in HVDC - turbine generators. Electric Machines and Power Systems, 22(1):87-104.

Padiyar, K. R. and Varma, R. K. (1990a). Concepts of static var system control for enhancing power transfer in long transmission lines. Electric Machines and Power Systems, 18:337-358.

Padiyar, K. R. and Varma, R. K. (1990b). Static var system auxiliary controllers for damping torsional oscillations. Electrical Power and Energy Systems, 12(4):271-286.

Padiyar, K. R. and Varma, R. K. (1991). Damping torque analysis of static var system controllers. IEEE Transactions on Power Systems, 6(2):458-465.

Park, R. H. (1929). Two-reaction theory of synchronous machines -Part I : Generalized method of analysis. AlEE Transactions, 48(7):716-730.

Paserba, J. J., Miller, N. W., Larsen, E. V., and Piwko, R. W. (1995). A thyristor controlled series compensation model for power system stability analysis. IEEE Transactions on Power Delivery, 10(3):1471-1478.

Pilotto, L. A. S., Carvalho, A. R., Bianco, A., Long, W. F., Alvarado, F. L., DeMarco, C. L., and Edris, A. (1996). The impact of different TCSC con­trol methodologies on the subsynchronous resonance problem. Proceedings of EPRI FACTS Conference, Washington D.C.

Piwko, R. J. and Larsen, E. V. (1982a). HVDC system control for damping of subsynchronous oscillations. IEEE Transactions, PAS-lO 1 (7) :2203-2211.

Piwko, R. J. and Larsen, E. V. (1982b). HVDC system control for damping subsynchronous oscillations, EPRI report EL 2708.

Piwko, R. J., Wagner, C. A., Kinney, S. J., and Eden, J. D. (1996). Subsyn­chronous resonance performance tests of the Slatt thyristor-controlled series capacitor. IEEE Transactions on Power Delivery, 11 (2): 1112-1119.

Piwko, R. J., Wegner, C. A., Furumasu, B. C., Damsky, B. L., and Eden, J. D. (1994). The Slatt thyristor-controlled series capacitor project- design, installation, commissioning and system testing. GIGRE, Paper 14-104.

REFERENCES AND BIBLIOGRAPHY 259

Putman, T. H. and Ramey, D. G. (1982). Theory of modulated reactance so­lution for subsynchronous resonance. IEEE Trans., PAS-101(6):1527-1535.

Rajaraman, R., Dobson, I., Lasseter, R. H., and Shern, Y. (1996). Computing the damping of subsynchronous oscillations due to a thyristor controlled series capacitor. IEEE Transactions on Power Delivery, 11(2):1120-1127.

Ramey, D. G., Kimmel, D. S., Dorney, J. W., and Kroening, F. H. (1981). Dy­namic Stabilizer verification tests at San-Juan station. IEEE Transactions, PAS-I00( 12) :5011-5019.

Ramey, R. G., Sismour, A. C., and Kung, G. C. (1977). Important parameters in considering transient torques on turbune-generator shaft systems. IEEE Transactions, PAS-99( 1) :311-317.

Ramshaw, R. S. and Padiyar, K. R. (1973). Generalized system model for slipring machines. Proceedings of lEE (London), 120(6):647-658.

Rao, C. and Nagsarkar, T. (1984). Half wave thyristor controlled dynamic brake to improve transient stability. IEEE Transactions, 103(5):1077-1083.

Romegialli, G. and Beeler, H. (1981). Problems and concepts of static compen­sator control. lEE Proceedings, 128, Pt. C(6):382-388.

Rostamkolai, N., Piwko, R. J., Larsen, E. V., Fischer, D. A., Mobarak, M. A., and Poitras, A. E. (1990). Subsynchronous torsional interactions with static var compensators - concepts and practical implications. IEEE Transactions on Power Systems, 5(4):1324-1332.

Rustebakke, H. M. and Concordia, C. (1970). Self - excited oscillations in trans­mission system using series capacitors. IEEE Transactions, 89(7):1504-1512.

Salama, M. M. A., Temraz, H., Chikhani, A. Y., and Bayoumi, M. A. (1993). Fault current limiter with thyristor controlled impedance. IEEE Transac­tions on Power Delivery, 8(3):1518-1528.

Sarkozi, M., Gyugyi, L., Bronfeld, J. D., Nilsson, S., and Damsky, B. (1994). Thyristor switched ZNO voltage limiter. CIGRE Paper 14-302, Paris.

Sauer, P. W. and Pai, M. A. (1998). Power System Dynamics and Stability. Prentice Hall,Upper Saddle River, New Jersey.

Schauder, C., , and Mehta, H. (1993). Vector analysis and control of advanced Static Var Compensator. lEE Proceedings-C, 140(4):299-306.

Schauder, C., Gernhardt, M., Stacey, E., Cease, T. W., Edris, A., Lemak, T., and Gyugyi, L. (1995). Development of ±100 Mvar Static Condenser for volt­age control of transmission systems. IEEE Transactions on Power Delivery, 10(3): 1486-1496.

Schauder, C. D., Gyugyi, L., Lund, M. R., Stacey, E. J., Kovalsky, L. J., Keri, A. J. F., Mehraban, A. S., and Edris, A. A. (1997). Meeting the challenges of implementing the world's first UPFC on the AEP system. EPRI Conference on Future of Power Delivery, La Jolla ,California,U.S.A.

Schlief, F. R., Feeley, R. K., Phillips, W. H., and Torluemke, R. W. (1979). A power system stabilizer application with local mode cancellation. IEEE Transactions, PAS-98(3):1054-1060.

260 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

Senthil, J. (1990). Simulation o/transients in synchronous generators and HVDC links and study o/torsional interactions. PhD thesis, Indian Institute of Tech­nology, Kanpur,India.

Sugimoto, S., Kida, J., Arita, H., Fukui, C., and Yamagiwa, T. (1996). Principle and characteristics of a fault current limiter with series compensation. IEEE Transactions on Power Delivery, 11(2):842-847.

Svensson, S. and Mortensen, K. (1981). Damping of sub synchronous oscillations by an HCDC link - an HVDC simulator study. IEEE Transactions, PAS-100(3): 1431-1437.

Ternes, G. C. and LaPatra, J. W. (1977). Introduction to Circuit Synthesis and Design. McGraw-Hill, New York.

Undrill, J. M. and DeMello, F. P. (1976). Subsynchronous oscillations ,Part-II -Shaft -system dynamic interactions. IEEE Transactions, PAS-95( 4): 1456-1464.

Undrill, J. M. and Kostyniak, T. E. (1976). Subsynchronous oscillations ,Part-I­Comprehensi ve system stabili ty analysis. IEEE Transactions, PAS-95 ( 4): 1446-1455.

Urbanek, J., Piwko, R. J., Larsen, E. V., Damsky, B. L., Furumasu, B. C., Mittelstadt, W., and Eden, J. D. (1993). Thyristor controlled series compen­sation prototype installation at the Slatt 500 kV substation. IEEE Transac­tions on Power Delivery, 8(3):1460-1469.

Vithayathil, J., Taylor, C., Klinger, M., and Mittelstadt, W. (1988). Case stud­ies of conventional and novel methods of reactive power control on ac trans­mission systems. CIGRE, SC 38-02.

Walker, L. (1990). A 10 MW GTO converter for battery peaking service. IEEE Transactions on Industrial Applications, 26( 1) :63-72.

Wasynczuk, O. (1981). Damping subsynchronous resonance using reactive power control. IEEE Trans., PAS-100(3):1096-1104.

Watson, W. and Couites, M. E. (1973). Static exciter stabilizing signals on large generators - mechanical problems. IEEE Transactions, PAS-92( 1) :204-21l.

Wu, C. T., Peterson, K. J., Piwko, R. J., Kankam, M. D., and Baker, D. J. (1988). The Intermountain power project commissioning - subsynchronous torsional interaction tests. IEEE Transactions on Power Delivery, 3(4):2030-2036.

Zhu, W., Spee, R., Mohler, R. R., Alexander, G. C., Mittelstadt, W. A., and Maratukulam, D. (1996). An EMTP study of SSR mitigation using the thyristor controlled series capacitor. IEEE Transactions on Power Delivery, 10(3): 1479-1485.

Index

Acceleration signal, 131 Analysis of Graetz Bridge, 138 Analysis of Induction Generator

Effect(IGE),83 Analysis of TCSC, 208 Analysis of Torsional Interaction(TI), 87 Antiphase mode, 120 Apparent impedance of TCSC, 225 Automatic Generation Control (AGC), 7 Automatic Voltage Regulators (AVR), 7 Back To Back (BTB) links, 145 Band reject filter, 131 Bypass Damping Filter, 113 Bypass, 213 Calculation of initial conditions, 245 Clarke's transformation, 68 Combined system equations, 103 Common mode, 120 Commutation voltage, 141 Composite signal, 134 Constant AC Voltage (CACV), 145 Constant Angle (CA) control, 214 Constant Current (CC), 145 Constant DC Voltage (CDCV), 145 Constant Extinction Angle (CEA), 145 Control of SSSC, 231 Converter control, 144 Countermeasures for SSR, 111 D-axis equivalent circuit, 37 D-Q Axes impedances, 77 D-Q components, 65 D-Q reference frame, 193 Damping torque analysis, 14 Delay angle, 141 Design of PSS, 126 Dynamic stabilizer, 118 Eigenvalue analysis, 96 Electrical analogue for the torsional system,

46 Electrical system equations, 101

Electro-hydraulic governor, 56 Electromagnetic Transients Program, 59 Electromagnetic transients, 78 Energy neutral, 234 Equivalent circuits, 35 Excitation control system, 41 Exciter mode, 129 Extinction angle, 143 FACTS (Flexible AC Transmission System),

8 Fault Current Limiter, 11 Firing angle control, 147 Gain supervisor, 182 Gate Pulse Unit (GPU), 179 Graetz bridge, 138 GTO thyristors, 190 HVDC converter station, 138 HVDC transmission, 137 IEEE First Benchmark Model (FBM), 239 IEEE Second Benchmark Model (SBM), 241 IGBT,190 Immittance functions, 94 Impedance functions, 75 Implicit algorithm, 79 Induction Generator Effect(IGE), 5 Interarea mode, 121 Interface between AC and DC system, 148 Intraplant mode, 121 Kron's transformation, 65 Local swing mode, 121 Lumped multi mass model, 44 Master control, 146 MCT,190 Mechanical system equations, 101 Mechanically switched capacitors (MSC),

169 Metal Oxide Varistor (MOV), 214 Mitigation of SSR, 223 Modal damping, 49 Modal inertia, 48

262 ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS

Modal spring constant, 48 Mode coupling, 13 Mode shapes, 51 Modelling of TCSC, 216 Modelling of transmission network, 64 Module control functions, 213 NGH Damping Scheme, 116 NGH damping, 8 Numerical integration, 78 Operational impedances, 35 Overlap angle, 141 Park's transformation, 22 Per unit quantities, 30 Phase-Locked Loop(PLL)., 147 Pole control, 146 Power angle curve, 174 Power invariant transformation, 28 Power scheduling control, 214 Power Swing Damping Control (PSDC), 215 Power System Stabilizers(PSS), 4, 122 Protective bypass, 213 Pulse Width Modulation (PWM), 190 Q-axis equivalent circuit, 37 Self excitation, 4 Sequence networks

or and (3,69 Series capacitor protection, 112 Short Circuit Ratio (SCR), 145 Speed governor, 55 SSR neutral, 234 Static Blocking Filter (SBF), 113 Static Compensator (STATCOM), 170 Static Condenser (STATCON), 170, 10 Static Synchronous Compensator

(STATCOM), 10 Static Synchronous Series Compensator

(SSSC), 10, 229 Static Var Compensator (SVC), 10, 169,4 Steam turbine, 55 Subsynchronous Damping Control (SSDC),

215 Subsynchronous Damping Controller

(SSDC),167

Subsynchronous oscillations, 3 SubSynchronous Resonance(SSR), 2 Supplementary Excitation Damping

Control(SEDC), 114 Supplementary Modulation Controller

(SMC),170 Susceptance Regulator (SR), 183 SVC Controller, 177 Synchronizing and damping torque, 88 Synchronizing circuit, 151 Synchronous Condenser (SC), 189 Synchronous machine model, 18 Synchronous Voltage Reversal (SVR), 220 System control hierarchy, 146 Thyristor Controlled Phase Angle Regulator

(TCPAR),10 Thyristor Controlled Reactor (TCR), 8, 170 Thyristor controlled series capacitor, 206 Thyristor Controlled Series Compensator

(TCSC), I, 205 Thyristor Switched Capacitor (TSC), 171 Torque angle loop, 15 Torsional filter, 130 Torsional interaction with PSS, 130 Torsional interaction with voltage controller,

200 Torsional interaction, 5 Torsional interactions with SSSC, 234 Transient Stability Control (TSC), 215 Transient torques, 5 Transmission lines, 64 Trapezoidal rule, 79 TSR mode, 213 Turbine generator mechanical system, 43 Unified Power Flow Controller (UPFC), 10,

231 Valve group control, 146 Vernier control, 208 Voltage Dependent Current Order Limiter

(VDCOL), 147 Voltage Source Converters (VSC), 189 Waiting mode, 208