appendices - neshaminy school · pdf fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 ml c. 45.1 km...

139

Click here to load reader

Upload: dinhthu

Post on 30-Jan-2018

365 views

Category:

Documents


38 download

TRANSCRIPT

Page 1: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Appendix A Supplemental Practice Problems . . . . . . . . . . . .871

Appendix B Math Handbook . . . . . . . . . . . . . . . . . . . . . . . . . .887Arithmetic Operations . . . . . . . . . . . . . . . . . . .887Scientific Notation . . . . . . . . . . . . . . . . . . . . .889Operations with Scientific Notation . . . . . . . . .891Square and Cube Roots . . . . . . . . . . . . . . . . . .892Significant Figures . . . . . . . . . . . . . . . . . . . . .893Solving Algebraic Equations . . . . . . . . . . . . . .897Dimensional Analysis . . . . . . . . . . . . . . . . . . .900Unit Conversion . . . . . . . . . . . . . . . . . . . . . . .901Drawing Line Graphs . . . . . . . . . . . . . . . . . . .903Using Line Graphs . . . . . . . . . . . . . . . . . . . . .904Ratios, Fractions, and Percents . . . . . . . . . . . . .907Operations Involving Fractions . . . . . . . . . . . .909Logarithms and Antilogarithms . . . . . . . . . . . .910

Appendix C Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .912C-1 Color Key . . . . . . . . . . . . . . . . . . . . . . . . . . . .912C-2 Symbols and Abbreviations . . . . . . . . . . . . . . .912C-3 SI Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . .913C-4 The Greek Alphabet . . . . . . . . . . . . . . . . . . . .913C-5 Physical Constants . . . . . . . . . . . . . . . . . . . . .913C-6 Properties of Elements . . . . . . . . . . . . . . . . . .914C-7 Electron Configurations of Elements . . . . . . . .917C-8 Names and Charges of Polyatomic Ions . . . . . .919C-9 Ionization Constants . . . . . . . . . . . . . . . . . . . .919C-10 Solubility Guidelines . . . . . . . . . . . . . . . . . . . .920C-11 Specific Heat Values . . . . . . . . . . . . . . . . . . . .921C-12 Molal Freezing Point Depression and

Boiling Point Elevation Constants . . . . . . . . . .921C-13 Heat of Formation Values . . . . . . . . . . . . . . . .921

Appendix D Solutions to Practice Problems . . . . . . . . . . . . . . . . . . .922

Appendix E Try at Home Labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .952

Glossary/Glosario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .965

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .989

Appendices

870 Chemistry: Matter and Change

MathHandbookMath

Handbook

Page 2: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Supplemental Practice Problems 871

CHAPTER ASSESSMENT##APPENDIX Practice ProblemsA Practice!

Pra

ctic

e P

roble

ms

Chapter 2

Section 2-1 1. The density of a substance is 4.8 g/mL. What is the volume of asample that is 19.2 g?

2. A 2.00-mL sample of substance A has a density of 18.4 g/mL and a5.00-mL sample of substance B has a density of 35.5 g/mL. Do youhave an equal mass of substances A and B?

Section 2-2 3. Express the following quantities in scientific notation.a. 5 453 000 m e. 34 800 sb. 300.8 kg f. 332 080 000 cmc. 0.005 36 ng g. 0.000 238 3 msd. 0.012 032 5 km h. 0.3048 mL

4. Solve the following problems. Express your answers in scientificnotation.a. 3 οΏ½ 102 m οΏ½ 5 οΏ½ 102 mb. 8 οΏ½ 10οΏ½5 m οΏ½ 4 οΏ½ 10οΏ½5 mc. 6.0 οΏ½ 105 m οΏ½ 2.38 οΏ½ 106 md. 2.3 οΏ½ 10οΏ½3 L οΏ½ 5.78 οΏ½ 10οΏ½2 Le. 2.56 οΏ½ 102 g οΏ½ 1.48 οΏ½ 102 gf. 5.34 οΏ½ 10οΏ½3 L οΏ½ 3.98 οΏ½ 10οΏ½3 Lg. 7.623 οΏ½ 105 nm οΏ½ 8.32 οΏ½ 104 nmh. 9.052 οΏ½ 10οΏ½2 s οΏ½ 3.61 οΏ½ 10οΏ½3 s

5. Solve the following problems. Express your answers in scientificnotation.a. (8 οΏ½ 103 m) οΏ½ (1 οΏ½ 105 m)b. (4 οΏ½ 102 m) οΏ½ (2 οΏ½ 104 m)c. (5 οΏ½ 10οΏ½3 m) οΏ½ (3 οΏ½ 104 m)d. (3 οΏ½ 10οΏ½4 m) οΏ½ (3 οΏ½ 10οΏ½2 m)e. (8 οΏ½ 104 g) οΏ½ (4 οΏ½ 103 mL)f. (6 οΏ½ 10οΏ½3 g) οΏ½ (2 οΏ½ 10οΏ½1 mL)g. (1.8 οΏ½ 10οΏ½2 g) οΏ½ (9 οΏ½ 10οΏ½5 mL)h. (4 οΏ½ 10οΏ½4 g) οΏ½ (1 οΏ½ 103 mL)

6. Convert the following as indicated.a. 96 kg to g e. 188 dL to Lb. 155 mg to g f. 3600 m to kmc. 15 cg to kg g. 24 g to pgd. 584 οΏ½s to s h. 85 cm to nm

7. How many minutes are there in 5 days?

8. A car is traveling at 118 km/h. What is its speed in Mm/h?

Section 2-3 9. Three measurements of 34.5 m, 38.4 m, and 35.3 m are taken. Ifthe accepted value of the measurement is 36.7 m, what is thepercent error for each measurement?

10. Three measurements of 12.3 mL, 12.5 mL, and 13.1 mL are taken.The accepted value for each measurement is 12.8 mL. Calculate thepercent error for each measurement.

CHAPTER ASSESSMENT##APPENDIX Practice ProblemsA Practice!

Page 3: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

872 Chemistry: Matter and Change

Pra

ctice P

roble

ms

11. Determine the number of significant figures in each measurement.a. 340 438 g e. 1.040 sb. 87 000 ms f. 0.0483 mc. 4080 kg g. 0.2080 mLd. 961 083 110 m h. 0.000 048 1 g

12. Write the following in three significant figures. a. 0.003 085 0 km c. 5808 mLb. 3.0823 g d. 34.654 mg

13. Write the answers in scientific notation.a. 0.005 832g c. 0.000 580 0 kmb. 386 808 ns d. 2086 L

14. Use rounding rules when you complete the following.a. 34.3 m οΏ½ 35.8 m οΏ½ 33.7 mb. 0.056 kg οΏ½ 0.0783 kg οΏ½ 0.0323 kgc. 309.1 mL οΏ½ 158.02 mL οΏ½ 238.1 mLd. 1.03 mg οΏ½ 2.58 mg οΏ½ 4.385 mge. 8.376 km οΏ½ 6.153 kmf. 34.24 s οΏ½12.4 sg. 804.9 dm οΏ½ 342.0 dmh. 6.38 οΏ½ 102 m οΏ½ 1.57 οΏ½ 102 m

15. Complete the following calculations. Round off the answers to thecorrect number of significant figures.a. 34.3 cm οΏ½ 12 cm d. 45.5g οΏ½ 15.5 mL b. 0.054 mm οΏ½ 0.3804 mm e. 35.43 g οΏ½ 24.84 mLc. 45.1 km οΏ½ 13.4 km f. 0.0482 g οΏ½ 0.003 146 mL

Chapter 3

Section 3-2 1. A 3.5-kg iron shovel is left outside through the winter. The shovel,now orange with rust, is rediscovered in the spring. Its mass is3.7 kg. How much oxygen combined with the iron?

2. When 5.0 g of tin reacts with hydrochloric acid, the mass of theproducts, tin chloride and hydrogen, totals 8.1 g. How many gramsof hydrochloric acid were used?

Section 3-3 3. A compound is analyzed and found to be 50.0% sulfur and 50.0%oxygen. If the total amount of the sulfur oxide compound is 12.5 g,how many grams of sulfur are there?

4. Two unknown compounds are analyzed. Compound I contain 5.63 gof tin and 3.37 g of chlorine, while compound II contains 2.5 g oftin and 2.98 g of chlorine. Are the compounds the same?

Chapter 4

Section 4-3 1. How many protons and electrons are in each of the followingatoms?a. gallium d. calciumb. silicon e. molybdenumc. cesium f. titanium

2. What is the atomic number of each of the following elements?a. an atom that contains 37 electronsb. an atom that contains 72 protons

APPENDIX A Practice Problems

Page 4: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Supplemental Practice Problems 873

Pra

ctic

e P

roble

ms

c. an atom that contains 1 electrond. an atom that contains 85 protons

3. Use the periodic table to write the name and the symbol for eachelement identified in question 2.

4. An isotope of copper contains 29 electrons, 29 protons, and 36neutrons. What is the mass number of this isotope?

5. An isotope of uranium contains 92 electrons and 144 neutrons.What is the mass number of this isotope?

6. Use the periodic table to write the symbols for each of thefollowing elements. Then, determine the number of electrons,protons, and neutrons each contains.a. yttrium-88 d. bromine-79b. arsenic-75 e. gold-197c. xenon-129 f. helium-4

7. An element has two naturally occurring isotopes: 14X and 15X. 14Xhas a mass of 14.003 07 amu and a relative abundance of 99.63%.15X has a mass of 15.000 11 amu and a relative abundance of0.37%. Identify the unknown element.

8. Silver has two naturally occurring isotopes. Ag-107 has anabundance of 51.82% and a mass of 106.9 amu. Ag-109 has arelative abundance of 48.18% and a mass of 108.9 amu. Calculatethe atomic mass of silver.

Chapter 5

Section 5-1 1. What is the frequency of an electromagnetic wave that has awavelength of 4.55 οΏ½ 10οΏ½3 m? 1.00 οΏ½ 10οΏ½12 m?

2. Calculate the wavelength of an electromagnetic wave with afrequency of 8.68 οΏ½ 1016 Hz; 5.0 οΏ½ 1014 Hz; 1.00 οΏ½ 106 Hz.

3. What is the energy of a quantum of visible light having afrequency of 5.45 οΏ½ 1014 sοΏ½1?

4. An X ray has a frequency of 1.28 οΏ½ 1018 sοΏ½1. What is the energy ofa quantum of the X ray?

Section 5-3 5. Write the ground-state electron configuration for the following.a. nickel c. boronb. cesium d. krypton

6. What element has the following ground-state electronconfiguration [He]2s2? [Xe]6s24f145d106p1?

7. Which element in period 4 has four electrons in its electron-dotstructure?

8. Which element in period 2 has six electrons in its electron-dotstructure?

9. Draw the electron-dot structure for each element in question 5.

Practice!Practice!APPENDIX A Practice Problems

Page 5: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

874 Chemistry: Matter and Change

Pra

ctice P

roble

ms

Chapter 6

Section 6-2 1. Identify the group, period, and block of an atom with thefollowing electron configuration.a. [He]2s22p1 b. [Kr]5s24d5 c. [Xe]6s25f146d5

2. Write the electron configuration for the element fitting each ofthe following descriptions.a. The noble gas in the first period.b. The group 4B element in the fifth period.c. The group 4A element in the sixth period.d. The group 1A element in the seventh period.

Section 6-3 3. Using the periodic table and not Figure 6-11, rank each maingroup element in order of increasing size.a. calcium, magnesium, and strontiumb. oxygen, lithium, and fluorinec. fluorine, cesium, and calciumd. selenium, chlorine, telluriume. iodine, krypton, and beryllium

Chapter 8

Section 8-2 1. Explain the formation of an ionic compound from zinc and chlorine.

2. Explain the formation of an ionic compound from barium andnitrogen.

Section 8-3 3. Write the chemical formula of an ionic compound composed of thefollowing ions.a. calcium and arsenide b. iron(III) and chloride c. magnesium and sulfide d. barium and iodidee. gallium and phosphide

4. Determine the formula for ionic compounds composed of thefollowing ions.a. copper(II) and acetate b. ammonium and phosphate c. calcium and hydroxide d. gold(III) and cyanide

5. Name the following compounds.a. Co(OH)2 d. K2Cr2O7b. Ca(ClO3)2 e. SrI2c. Na3PO4 f. HgF2

Chapter 9

Section 9-1 1. Draw the Lewis structure for the following molecules.a. CCl2H2 c. PCl3b. HF d. CH4

Section 9-2 2. Name the following binary compounds.a. S4N2 d. NOb. OCl2 e. SiO2c. SF6 f. IF7

APPENDIX A Practice Problems

Page 6: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Supplemental Practice Problems 875

Pra

ctic

e P

roble

ms

3. Name the following acids: H3PO4, HBr, HNO3.

Section 9-3 4. Draw the Lewis structure for each of the following.a. CO d. OCl2b. CH2O e. SiO2c. N2O f. AlBr3

5. Draw the Lewis resonance structure for CO32–.

6. Draw the Lewis resonance structure for CH3CO2οΏ½.

7. Draw the Lewis structure for NO and IF4οΏ½.

Section 9-4 8. Determine the molecular geometry, bond angles, and hybrid ofeach molecule in question 4.

Section 9-5 9. Determine whether each of the following molecules is polar ornonpolar.a. CH2O c. SiH4b. BF3 d. H2S

Chapter 10

Section 10-1 Write skeleton equations for the following reactions.1. Solid barium and oxygen gas react to produce solid barium oxide.2. Solid iron and aqueous hydrogen sulfate react to produce aqueous

iron(III) sulfate and gaseous hydrogen.

Write balanced chemical equations for the following reactions.3. Liquid bromine reacts with solid phosphorus (P4) to produce solid

diphosphorus pentabromide.4. Aqueous lead(II) nitrate reacts with aqueous potassium iodide to

produce solid lead(II) iodide and aqueous potassium nitrate.5. Solid carbon reacts with gaseous fluorine to produce gaseous

carbon tetrafluoride.6. Aqueous carbonic acid reacts to produce liquid water and gaseous

carbon dioxide.7. Gaseous hydrogen chloride reacts with gaseous ammonia to

produce solid ammonium chloride.8. Solid copper(II) sulfide reacts with aqueous nitric acid to produce

aqueous copper(II) sulfate, liquid water, and nitrogen dioxide gas.

Section 10-2 Classify each of the following reactions in as many classes as possible.9. 2Mo(s) οΏ½ 3O2(g) 2MoO3(s)

10. N2H4(l) οΏ½ 3O2(g) 2NO2(g) οΏ½ 2H2O(l)

Write balanced chemical equations for the following decompositionreactions.11. Aqueous hydrogen chlorite decomposes to produce water and

gaseous chlorine(III) oxide.12. Calcium carbonate(s) decomposes to produce calcium oxide(s) and

carbon dioxide(g).

Use the activity series to predict whether each of the following single-replacement reactions will occur:13. Al(s) οΏ½ FeCl3(aq) AlCl3(aq) οΏ½ Fe(s)14. Br2(l) οΏ½ 2LiI(aq) 2LiBr(aq) οΏ½ I2(aq)15. Cu(s) οΏ½ MgSO4(aq) Mg(s) οΏ½ CuSO4(aq)

Practice!Practice!APPENDIX A Practice Problems

Page 7: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

876 Chemistry: Matter and Change

Pra

ctice P

roble

ms

Write chemical equations for the following chemical reactions:16. Bismuth(III) nitrate(aq) reacts with sodium sulfide(aq) yielding

bismuth(III) sulfide(s) plus sodium nitrate(aq).17. Magnesium chloride(aq) reacts with potassium carbonate(aq)

yielding magnesium carbonate(s) plus potassium chloride(aq).

Section 10-3 Write net ionic equations for the following reactions.18. Aqueous solutions of barium chloride and sodium fluoride are

mixed to form a precipitate of barium fluoride.19. Aqueous solutions of copper(I) nitrate and potassium sulfide are

mixed to form insoluble copper(I) sulfide.20. Hydrobromic acid reacts with aqueous lithium hydroxide21. Perchloric acid reacts with aqueous rubidium hydroxide22. Nitric acid reacts with aqueous sodium carbonate.23. Hydrochloric acid reacts with aqueous lithium cyanide.

Chapter 11

Section 11-1 1. Determine the number of atoms in 3.75 mol Fe.

2. Calculate the number of formula units in 12.5 mol CaCO3.

3. How many moles of CaCl2 contains 1.26 οΏ½ 1024 formula units CaCl2?

4. How many moles of Ag contains 4.59 οΏ½ 1025 atoms Ag?

Section 11-2 5. Determine the mass in grams of 0.0458 moles of sulfur.

6. Calculate the mass in grams of 2.56 οΏ½ 10οΏ½3 moles of iron.

7. Determine the mass in grams of 125 mol of neon.

8. How many moles of titanium are contained in 71.4 g?

9. How many moles of lead are equivalent to 9.51 οΏ½ 103 g Pb?

10. Determine the number of moles of arsenic in 1.90 g As.

11. Determine the number of atoms in 4.56 οΏ½ 10οΏ½2 g of sodium.

12. How many atoms of gallium are in 2.85 οΏ½ 103 g of gallium?

13. Determine the mass in grams of 5.65 οΏ½ 1024 atoms Se.

14. What is the mass in grams of 3.75 οΏ½ 1021 atoms Li?

Section 11-3 15. How many moles of each element is in 0.0250 mol K2CrO4.

16. How many moles of ammonium ions are in 4.50 mol (NH4)2CO3?

17. Determine the molar mass of silver nitrate.

18. Calculate the molar mass of acetic acid (CH3COOH).

19. Determine the mass of 8.57 mol of sodium dichromate (Na2Cr2O7).

20. Calculate the mass of 42.5 mol of potassium cyanide.

21. Determine the number of moles present in 456 g Cu(NO3)2.

22. Calculate the number of moles in 5.67 g potassium hydroxide.

23. Calculate the number of each atom in 40.0 g of methanol (CH3OH).

APPENDIX A Practice Problems

Page 8: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Supplemental Practice Problems 877

Pra

ctic

e P

roble

ms

24. What mass of sodium hydroxide contains 4.58 οΏ½ 1023 formula units?

Section 11-4 25. What is the percent by mass of each element in sucrose (C12H22O11)?

26. Which of the following compounds has a greater percent by massof chromium, K2CrO4 or K2Cr2O7?

27. Analysis of a compound indicates the percent composition 42.07%Na, 18.89% P, and 39.04% O. Determine its empirical formula.

28. A colorless liquid was found to contain 39.12% C, 8.76% H, and52.12% O. Determine the empirical formula of the substance.

29. Analysis of a compound used in cosmetics reveals the compoundcontains 26.76% C, 2.21% H, 71.17% O and has a molar mass of90.04 g/mol. Determine the molecular formula for this substance.

30. Eucalyptus leaves are the food source for panda bears. Eucalyptolis an oil found in these leaves. Analysis of eucalyptol indicates ithas a molar mass of 154 g/mol and contains 77.87% C, 11.76% H,and 10.37% O. Determine the molecular formula of eucalyptol.

31. Beryl is a hard mineral which occurs in a variety of colors. A 50.0-gsample of beryl contains 2.52 g Be, 5.01 g Al, 15.68 g Si, and26.79g O. Determine its empirical formula.

32. Analysis of a 15.0-g sample of a compound used to leach goldfrom low grade ores is 7.03 g Na, 3.68 g C, and 4.29 g N.Determine the empirical formula for this substance.

Section 11-5 33. Analysis of a hydrate of iron(III) chloride revealed that in a 10.00-gsample of the hydrate, 6.00 g is anhydrous iron(III) chloride and4.00 g is water. Determine the formula and name of the hydrate.

34. When 25.00 g of a hydrate of nickel(II) chloride was heated, 11.37 gof water were released. Determine the name and formula of thehydrate.

Chapter 12

Section 12-1 Interpret the following balanced chemical equation in terms ofparticles, moles, and mass. 1. Mg οΏ½ 2HCl MgCl2 οΏ½ H22. 2Al οΏ½ 3CuSO4 Al2(SO4)3 οΏ½ 3Cu

3. Write and balance the equation for the decomposition ofaluminum carbonate. Determine the possible mole ratios.

4. Write and balance the equation for the formation of magnesiumhydroxide and hydrogen from magnesium and water. Determinethe possible mole ratios.

Section 12-2 5. Some antacid tablets contain aluminum hydroxide. The aluminumhydroxide reacts with stomach acid according to the equation:Al(OH)3 οΏ½ 3HCl AlCl3 οΏ½ 3H2O. Determine the moles of acidneutralized if a tablet contains 0.200 mol Al(OH)3.

6. Chromium reacts with oxygen according to the equation: 4Cr οΏ½3O 2 2Cr2O3. Determine the moles of chromium(III) oxideproduced when 4.58 moles of chromium is allowed to react.

Practice!Practice!APPENDIX A Practice Problems

Page 9: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

878 Chemistry: Matter and Change

Pra

ctice P

roble

ms

7. Space vehicles use solid lithium hydroxide to remove exhaledcarbon dioxide according to the equation: 2LiOH οΏ½ CO2 Li2CO3οΏ½ H2O. Determine the mass of carbon dioxide removed if thespace vehicle carries 42.0 mol LiOH.

8. Some of the sulfur dioxide released into the atmosphere is con-verted to sulfuric acid according to the equation 2SO2 οΏ½ 2H2O οΏ½O2 2H2SO4. Determine the mass of sulfuric acid formed from3.20 moles of sulfur dioxide.

9. How many grams of carbon dioxide are produced when 2.50 g ofsodium hydrogen carbonate react with excess citric acid according tothe equation: 3NaHCO3 οΏ½ H3C6H5O7 Na3C6H5O7 οΏ½ 3CO2 οΏ½ 3H2O.

10. Aspirin (C9H8O4) is produced when salicylic acid (C7H6O3) reacts withacetic anhydride (C4H6O3) according to the equation: C7H6O3 οΏ½C4H6O3 C9H8O4 οΏ½ HC2H3O2. Determine the mass of aspirinproduced when 150.0 g of salicylic acid reacts with an excess ofacetic anhydride.

Section 12-3 11. Chlorine reacts with benzene to produce chlorobenzene andhydrogen chloride, Cl2 οΏ½ C6H6 C6H5Cl οΏ½ HCl. Determine thelimiting reactant if 45.0 g of benzene reacts with 45.0 g ofchlorine, the mass of the excess reactant after the reaction iscomplete, and the mass of chlorobenzene produced.

12. Nickel reacts with hydrochloric acid to produce nickel(II) chlorideand hydrogen according to the equation Ni οΏ½ 2HCl NiCl2 οΏ½ H2.If 5.00 g Ni and 2.50 g HCl react, determine the limiting reactant,the mass of the excess reactant after the reaction is complete, andthe mass of nickel(II) chloride produced.

Section 12-4 13. Tin(IV) iodide is prepared by reacting tin with iodine. Write thebalanced chemical equation for the reaction. Determine thetheoretical yield if a 5.00-g sample of tin reacts in an excess ofiodine. Determine the percent yield, if 25.0 g SnI4 was actuallyrecovered.

14. Gold is extracted from gold bearing rock by adding sodiumcyanide in the presence of oxygen and water, according to thereaction, 4 Au (s) οΏ½ 8 NaCN (aq) οΏ½ O2 (g)οΏ½ 2H2O(l) 4 NaAu(CN)2(aq) οΏ½ NaOH (aq). Determine the theoretical yield of NaAu(CN)2 if1000.0 g of gold bearing rock is used which contains 3.00% goldby mass. Determine the percent yield of NaAu(CN)2 if 38.790 gNaAu(CN)2 is recovered.

Chapter 13

Section 13-1 1. Calculate the ratio of effusion rates for methane (CH4) and nitrogen.

2. Calculate the molar mass of butane. Butane’s rate of diffusion is3.8 times slower than that of helium.

Section 13-2 3. What is the total pressure in a canister that contains oxygen gas ata partial pressure of 804 mm Hg, nitrogen at a partial pressure of220 mm Hg, and hydrogen at a partial pressure of 445 mm Hg?

APPENDIX A Practice Problems

Page 10: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Supplemental Practice Problems 879

Pra

ctic

e P

roble

ms

4. Calculate the partial pressure of neon in a flask that has a totalpressure of 1.87 atm. The flask contains krypton at a partialpressure of 0.77 atm and helium at a partial pressure of 0.62 atm.

Chapter 14

Section 14-1 1. The pressure of air in a 2.25-L container is 1.20 atm. What is thenew pressure if the sample is transferred to a 6.50-L container?Temperature is constant.

2. The volume of a sample of hydrogen gas at 0.997 atm is 5.00 L.What will be the new volume if the pressure is decreased to 0.977 atm? Temperature is constant.

3. A gas at 55.0Β°C occupies a volume of 3.60 L. What volume will itoccupy at 30.0Β°C? Pressure is constant.

4. The volume of a gas is 0.668 L at 66.8Β°C. At what Celsiustemperature will the gas have a volume of 0.942 L, assuming thepressure remains constant?

5. The pressure in a bicycle tire is 1.34 atm at 33.0Β°C. At whattemperature will the pressure inside the tire be 1.60 atm? Volumeis constant.

6. If a sample of oxygen gas has a pressure of 810 torr at 298 K, whatwill be its pressure if its temperature is raised to 330 K?

7. Air in a tightly sealed bottle has a pressure of 0.978 atm at 25.5Β°C.What will its pressure be if the temperature is raised to 46.0Β°C?

Section 14-2 8. Hydrogen gas at a temperature of 22.0Β°C that is confined in a5.00-L cylinder exerts a pressure of 4.20 atm. If the gas is releasedinto a 10.0-L reaction vessel at a temperature of 33.6Β°C, what willbe the pressure inside the reaction vessel?

9. A sample of neon gas at a pressure of 1.08 atm fills a flask with avolume of 250 mL at a temperature of 24.0Β°C. If the gas istransferred to another flask at 37.2Β°C at a pressure of 2.25 atm,what is the volume of the new flask?

10. What volume of beaker contains exactly 2.23 οΏ½ 10οΏ½2 mol ofnitrogen gas at STP?

11. How many moles of air are in a 6.06-L tire at STP?

12. How many moles of oxygen are in a 5.5-L canister at STP?

13. What mass of helium is in a 2.00-L balloon at STP?

14. What volume will 2.3 kg of nitrogen gas occupy at STP?

Section 14-3 15. Calculate the number of moles of gas that occupy a 3.45-Lcontainer at a pressure of 150 kPa and a temperature of 45.6Β°C.

16. What is the pressure in torr that a 0.44-g sample of carbon dioxidegas will exert at a temperature of 46.2Β°C when it occupies avolume of 5.00 L?

17. What is the molar mass of a gas that has a density of 1.02 g/L at0.990 atm pressure and 37Β°C?

Practice!Practice!APPENDIX A Practice Problems

Page 11: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

880 Chemistry: Matter and Change

Pra

ctice P

roble

ms

18. Calculate the grams of oxygen gas present in a 2.50-L sample keptat 1.66 atm pressure and a temperature of 10.0Β°C.

19. What volume of oxygen gas is needed to completely combust0.202 L of butane (C4H10) gas?

20. Determine the volume of methane (CH4) gas needed to reactcompletely with 0.660 L of O2 gas to form methanol (CH3OH).

Section 14-4 21. Calculate the mass of hydrogen peroxide needed to obtain 0.460 Lof oxygen gas at STP. 2H2O2(aq) 0 2H2O(l) + O2(g)

22. When potassium chlorate is heated in the presence of a catalystsuch as manganese dioxide, it decomposes to form solid potassiumchloride and oxygen gas: 2KClO3(s) 0 2KCl(s) + 3O2(g). How manyliters of oxygen will be produced at STP if 1.25 kg of potassiumchlorate decomposes completely?

Chapter 15

Section 15-1 1. Calculate the mass of gas dissolved at 150.0 kPa, if 0.35 g of thegas dissolves in 2.0 L of water at 30.0 kPa.

2. At which depth, 33 ft. or 133 ft, will a scuba diver have morenitrogen dissolved in the bloodstream?

Section 15-2 3. What is the percent by mass of a sample of ocean water that isfound to contain 1.36 grams of magnesium ions per 1000 g?

4. What is the percent by mass of iced tea containing 0.75 g ofaspartame in 250 g of water?

5. A bottle of hydrogen peroxide is labeled 3%. If you pour out 50mL of hydrogen peroxide solution, what volume is actuallyhydrogen peroxide?

6. If 50 mL of pure acetone is mixed with 450 mL of water, what isthe percent volume?

7. Calculate the molarity of 1270 g K3PO4 in 4.0 L aqueous solution.

8. What is the molarity of 90.0 g NH4Cl in 2.25 L aqueous solution?

9. Which is more concentrated, 25 g NaCl dissolved in 500 mL ofwater or a 10% solution of NaCl (percent by mass)?

10. Calculate the mass of NaOH required to prepare a 0.343M solutiondissolved in 2500 mL of water?

11. Calculate the volume required to dissolve 11.2 g CuSO4 to preparea 0.140M solution.

12. How would you prepare 500 mL of a solution that has a newconcentration of 4.5M if the stock solution is 11.6M?

13. Caustic soda is 19.1M NaOH and is diluted for household use. Whatis the household concentration if 10 mL of the concentratedsolution is diluted to 400 mL?

14. What is the molality of a solution containing 63.0 g HNO3 in0.500 kg of water?

APPENDIX A Practice Problems

Page 12: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Supplemental Practice Problems 881

Pra

ctic

e P

roble

ms

15. What is the molality of an acetic acid solution containing 0.500 mole of HC2H3O2 in 0.800 kg of water?

16. What mass of ethanol (C2H5OH) will be required to prepare a 2.00m solution in 8.00 kg of water?

17. Determine the mole fraction of nitrogen in a gas mixturecontaining 0.215 mol N2, 0.345 mol O2, 0.023 mol CO2, and 0.014 mol SO2. What is the mole fraction of N2?

18. A necklace contains 4.85 g of gold, 1.25 g of silver, and 2.40 g ofcopper. What is the mole fraction of each metal?

Section 15-3 19. Calculate the freezing point and boiling point of a solutioncontaining 6.42 g of sucrose (C12H22O11) in 100.0 g of water.

20. Calculate the freezing point and boiling point of a solutioncontaining 23.7 g copper(II) sulfate in 250.0 g of water.

21. Calculate the freezing point and boiling point of a solutioncontaining 0.15 mol of the molecular compound naphthalene in 175 g of benzene (C6H6).

Chapter 16

Section 16-1 1. What is the equivalent in joules of 126 Calories?

2. Convert 455 kilojoules to kilocalories.

3. How much heat is required to warm 122 g of water by 23.0Β°C?

4. The temperature of 55.6 grams of a material decreases by 14.8Β°Cwhen it loses 3080 J of heat. What is its specific heat?

5. What is the specific heat of a metal if the temperature of a 12.5-gsample increases from 19.5Β°C to 33.6Β°C when it absorbs 37.7 J ofheat?

Section 16-2 6. A 75.0-g sample of a metal is placed in boiling water until itstemperature is 100.0Β°C. A calorimeter contains 100.00 g of waterat a temperature of 24.4Β°C. The metal sample is removed from theboiling water and immediately placed in water in the calorimeter.The final temperature of the metal and water in the calorimeter is34.9Β°C. Assuming that the calorimeter provides perfect insulation,what is the specific heat of the metal?

Section 16-3 7. Use Table 16-6 to determine how much heat is released when 1.00mole of gaseous methanol condenses to a liquid.

8. Use Table 16-6 to determine how much heat must be supplied tomelt 4.60 grams of ethanol.

Section 16-4 9. Calculate οΏ½Hrxn for the reaction 2C(s) οΏ½ 2H2(g) C2H4(g) given thefollowing thermochemical equations:2CO2(g) οΏ½ 2H2O(l) C2H4(g) οΏ½ 3O2(g) οΏ½H οΏ½ 1411 kJC(s) οΏ½ O2(g) CO2(g) οΏ½H οΏ½ οΏ½393.5 kJ2H2(g) οΏ½ O2(g) 2H2O(l) οΏ½H οΏ½ οΏ½572 kJ

Practice!Practice!APPENDIX A Practice Problems

Page 13: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

882 Chemistry: Matter and Change

Pra

ctice P

roble

ms

10. Calculate οΏ½Hrxn for the reaction HCl(g) οΏ½ NH3(g) NH4Cl(s) giventhe following thermochemical equations:H2(g) οΏ½ Cl2(g) 2HCl(g) οΏ½H οΏ½ οΏ½184 kJN2(g) οΏ½ 3H2(g) 2NH3(g) οΏ½H οΏ½ οΏ½92 kJ N2(g) οΏ½ 4H2(g) οΏ½ Cl2(g) 2NH4Cl(s) οΏ½H οΏ½ οΏ½628 kJ

Use standard enthalpies of formation from Table 16-7 and AppendixC to calculate οΏ½HΒ°rxn for each of the following reactions.11. 2HF(g) H2(g) οΏ½ F2(g)12. 2H2S(g) οΏ½ 3O2(g) 2H2O(l) οΏ½ 2SO2(g)

Section 16-5 Predict the sign of οΏ½Ssystem for each reaction or process.13. FeS(s) Fe2οΏ½(aq) οΏ½ S2οΏ½(aq)14. SO2(g) οΏ½ H2O(l) H2SO3(aq)

Determine if each of the following processes or reactions isspontaneous or nonspontaneous.15. οΏ½Hsystem οΏ½ 15.6 kJ, T οΏ½ 415 K, οΏ½Ssystem οΏ½ 45 J/K 16. οΏ½Hsystem οΏ½ 35.6 kJ, T οΏ½ 415 K, οΏ½Ssystem οΏ½ 45 J/K

Chapter 17

Section 17-1 1. In the reaction A 0 2B, suppose that [A] changes from 1.20 mol/Lat time οΏ½ 0 to 0.60 mol/L at time οΏ½ 3.00 min and that [B] οΏ½ 0.00mol/L at time οΏ½ 0.a. What is the average rate at which A is consumed in

mol/(LοΏ½min)?b. What is the average rate at which B is produced in mol/(LοΏ½min)?

Section 17-3 2. What are the overall reaction orders in practice problems 16-18 onpage 545?

3. If halving [A] in the reaction A 0 B causes the initial rate todecrease to one fourth its original value, what is the probable ratelaw for the reaction?

4. Use the data below and the method of initial rates to determinethe rate law for the reaction 2NO(g) οΏ½ O2(g) 0 2NO2(g)

Section 17-4 5. The rate law for the reaction in which one mole of cyclobutane(C4H8) decomposes to two moles of ethylene (C2H4) at 1273 K is Rate οΏ½ (87 sοΏ½1)[C4H8]. What is the instantaneous rate of thisreaction whena. [C4H8] οΏ½ 0.0100 mol/L?b. [C4H8] οΏ½ 0.200 mol/L?

APPENDIX A Practice Problems

Formation of NO2 Data

Trial Initial [NO] Initial [O2] Initial rate(M) (M) (mol/(L s))

1 0.030 0.020 0.0041

2 0.060 0.020 0.0164

3 0.030 0.040 0.0082

Page 14: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Supplemental Practice Problems 883

Pra

ctic

e P

roble

ms

Chapter 18

Section 18-1 Write equilibrium constant expressions for the following equilibria.1. N2(g) οΏ½ O2(g) 3 2NO2. 3O2(g) 3 2O3(g)3. P4(g) οΏ½ 6H2(g) 3 4PH3(g)4. CCl4(g) οΏ½ HF(g) 3 CFCl2(g) οΏ½ HCl(g)

Write equilibrium constant expressions for the following equilibria.5. NH4Cl(s) 3 NH3(g) οΏ½ HCl(g)6. SO3(g) οΏ½ H2O(l) 3 H2SO4(l)

Calculate Keq for the following equilibria.7. H2(g) οΏ½ I2(g) 3 2HI(g)

[H2] οΏ½ 0.0109, [I2] οΏ½ 0.00290, [HI] οΏ½ 0.04608. I2(s) 3 I2(g)

[I2(g)] οΏ½ 0.0665

Section 18-3 9. At a certain temperature, Keq οΏ½ 0.0211 for the equilibrium PCl5(g) 3 PCl3(g) οΏ½ Cl2(g).a. What is [Cl2] in an equilibrium mixture containing 0.865 mol/L

PCl5 and 0.135 mol/L PCl3?b. What is [PCl5] in an equilibrium mixture containing 0.100 mol/L

PCl3 and 0.200 mol/L Cl2?

10. Use the Ksp value for zinc carbonate given in Table 18-3 tocalculate its molar solubility at 298 K.

11. Use the Ksp value for iron(II) hydroxide given in Table 18-3 tocalculate its molar solubility at 298 K.

12. Use the Ksp value for silver carbonate given in Table 18-3 tocalculate [AgοΏ½] in a saturated solution at 298 K.

13. Use the Ksp value for calcium phosphate given in Table 18-3 tocalculate [Ca2οΏ½] in a saturated solution at 298 K.

14. Does a precipitate form when equal volumes of 0.0040M MgCl2and 0.0020M K2CO3 are mixed? If so, identify the precipitate.

15. Does a precipitate form when equal volumes of 1.2 οΏ½ 10οΏ½4M AlCl3and 2.0 οΏ½ 10οΏ½3M NaOH are mixed? If so, identify the precipitate.

Chapter 19

Section 19-1 1. Write the balanced formula equation for the reaction betweenzinc and nitric acid.

2. Write the balanced formula equation for the reaction betweenmagnesium carbonate and sulfuric acid.

3. Identify the base in the reactionH2O(l) οΏ½ CH3NH2(aq) OHοΏ½(aq) οΏ½ CH3NH3

οΏ½(aq)

4. Identify the conjugate base described in the reaction in practiceproblems 1 and 2.

5. Write the steps in the complete ionization of hydrosulfuric acid.

6. Write the steps in the complete ionization of carbonic acid.

Practice!Practice!APPENDIX A Practice Problems

Page 15: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

884 Chemistry: Matter and Change

Pra

ctice P

roble

ms

Section 19-2 7. Write the acid ionization equation and ionization constantexpression for formic acid (HCOOH).

8. Write the acid ionization equation and ionization constantexpression for the hydrogen carbonate ion (HCO3οΏ½).

9. Write the base ionization constant expression for ammonia.

10. Write the base ionization expression for aniline (C6H5NH2).

Section 19-3 11. Is a solution in which [HοΏ½] οΏ½ 1.0 οΏ½ 10οΏ½5M acidic, basic, or neutral?

12. Is a solution in which [OHοΏ½] οΏ½ 1.0 οΏ½ 10οΏ½11M acidic, basic, or neutral?

13. What is the pH of a solution in which [HοΏ½] οΏ½ 4.5 οΏ½ 10οΏ½4M?

14. Calculate the pH and pOH of a solution in which [OHοΏ½] οΏ½ 8.8 οΏ½ 10οΏ½3M.

15. Calculate the pH and pOH of a solution in which [HοΏ½] οΏ½ 2.7 οΏ½ 10οΏ½6M.

16. What is [HοΏ½] in a solution having a pH of 2.92?

17. What is [OH–] in a solution having a pH of 13.56?

18. What is the pH of a 0.000 67M H2SO4 solution?

19. What is the pH of a 0.000 034M NaOH solution?

20. The pH of a 0.200M HBrO solution is 4.67. What is the acid’s Ka?

21. The pH of a 0.030M C2H5COOH solution is 3.20. What is the acid’s Ka?

Section 19-4 22. Write the formula equation for the reaction between hydroiodicacid and beryllium hydroxide.

23. Write the formula equation for the reaction between perchloricacid and lithium hydroxide.

24. In a titration, 15.73 mL of 0.2346M HI solution neutralizes 20.00mL of a LiOH solution. What is the molarity of the LiOH?

25. What is the molarity of a caustic soda (NaOH) solution if 35.00 mLof solution is neutralized by 68.30 mL of 1.250M HCl?

26. Write the chemical equation for the hydrolysis reaction that occurswhen sodium hydrogen carbonate is dissolved in water. Is theresulting solution acidic, basic, or neutral?

27. Write the chemical equation for any hydrolysis reaction that occurswhen cesium chloride is dissolved in water. Is the resulting solutionacidic, basic, or neutral?

Chapter 20

Chapter 20

Section 20-1 Identify the following information for each problem. What element isoxidized? Reduced? What is the oxidizing agent? Reducing agent?1. 2P οΏ½ 3Cl2 2PCl32. C οΏ½ H2O CO οΏ½ H2

APPENDIX A Practice Problems

Page 16: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Supplemental Practice Problems 885

Pra

ctic

e P

roble

ms

3. Determine the oxidation number for each element in thefollowing compounds.a. Na2SeO3b. HAuCl4c. H3BO3

4. Determine the oxidation number for the following compounds orions.a. P4O8b. Na2O2 (hint: this is like H2O2)c. AsO4

οΏ½3

Section 20-2 5. How many electrons will be lost or gained in each of the followinghalf-reactions? Identify whether it is an oxidation or reduction.a. Cr Cr3οΏ½

b. O2 O2οΏ½

c. FeοΏ½2 Fe3οΏ½

6. Balance the following reaction by the oxidation number method: MnO4

οΏ½ οΏ½ CH3OH MnO2 οΏ½ HCHO (acidic). (Hint: assign theoxidation of hydrogen and oxygen as usual and solve for theoxidation number of carbon.)

7. Balance the following reaction by the oxidation number method:Zn οΏ½ HNO3 ZnO οΏ½ NO2 οΏ½ NH3

8. Use the oxidation number method to balance these net ionicequations:a. SeO3

2οΏ½ οΏ½ IοΏ½ Se οΏ½ I2 (acidic solution) b. NiO2 οΏ½ S2O3

2οΏ½ Ni(OH)2 οΏ½ SO32οΏ½ (acidic solution)

Section 20-3 Use the half-reaction method to balance the following redoxequations.9. Zn(s) οΏ½ HCl(aq) 0 ZnCl2(aq) οΏ½ H2(g)

10. MnO4οΏ½(aq) οΏ½ H2SO3(aq) 0 Mn2οΏ½(aq) οΏ½ HSO4

οΏ½(aq) οΏ½ H2O(l) (acidicsolution)

11. NO2(aq) οΏ½ OHοΏ½(aq) 0 NO2οΏ½(aq) οΏ½ NO3

οΏ½(aq) οΏ½ H2O(l)(basic solution)

12. HSοΏ½(aq) οΏ½ IO3οΏ½(aq) 0 IοΏ½(aq) οΏ½ S(s) οΏ½ H2O(l) (acidic solution)

Chapter 21

Section 21-1 1. Calculate the cell potential for each of the following.a. Co2οΏ½(aq) οΏ½ Al(s) Co(s) οΏ½ Al3οΏ½(aq)b. Hg2οΏ½(aq) οΏ½ Cu(s) Cu2οΏ½(aq) οΏ½ Hg(s)c. Zn(s) οΏ½ Br2(l) Br1οΏ½(aq) οΏ½ Zn2οΏ½(aq)

2. Calculate the cell potential to determine whether the reaction willoccur spontaneously or not spontaneously. For each reaction thatis not spontaneous, correct the reactants or products so that areaction would occur spontaneously.a. Ni2οΏ½(aq) οΏ½ Al(s) Ni(s) οΏ½ Al3οΏ½(aq)b. AgοΏ½(aq) οΏ½ H2(g) Ag(s) οΏ½ HοΏ½(aq)c. Fe2οΏ½(aq) οΏ½ Cu(s) Fe(s) οΏ½ Cu2οΏ½(aq)

Practice!Practice!APPENDIX A Practice Problems

Page 17: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

886 Chemistry: Matter and Change

Pra

ctice P

roble

ms

Chapter 22

Section 22-1 1. Draw the structure of the following branched alkanes.a. 2,2,4-trimethylheptaneb. 4-isopropyl-2-methylnonane

Section 22-2 2. Draw the structure of each of the following cycloalkanes.a. 1-ethyl-2-methylcyclobutaneb. 1,3-dibutylcyclohexane

Section 22-3 3. Draw the structure of each of the following alkenes.a. 1,4-hexadieneb. 2,3-dimethyl-2-butenec. 4-propyl-1-octened. 2,3-diethylcyclohexene

Chapter 23

Section 23-1 1. Draw the structures of the following alkyl halides.a. chloroethane d. 1,3-dibromocyclohexaneb. chloromethane e. 1,2-dibromo-3-chloropropanec. 1-fluoropentane

Chapter 25

Section 25-2 1. Write balanced equations for each of the following decayprocesses.a. Alpha emission of 244

96Cmb. Positron emission of 70

33Asc. Beta emission of 210

83Bid. Electron capture by 116

51Sb

2. 4720Ca 0

οΏ½1οΏ½ οΏ½ ?

3. 24095Am οΏ½ ? 243

97Bk οΏ½ 10n

Section 25-3 4. How much time has passed if 1/8 of an original sample of radon-222 is left? Use Table 25-5 for half-life information.

5. If a basement air sample contains 3.64 οΏ½g of radon-222, how much radon will remain after 19 days?

6. Cobalt-60, with a half-life of 5 years, is used in cancer radiationtreatments. If a hospital purchases a supply of 30.0 g, how muchwould be left after 15 years?

APPENDIX A Practice Problems

Page 18: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

CHAPTER ASSESSMENT##APPENDIX Practice ProblemsA

Math

Handbook

Mathematics is a language used in science to express and solve problems.Use this handbook to review basic math skills and to reinforce some mathskills presented in the chapters in more depth.

Arithmetic OperationsCalculations you perform during your study of chemistry require arithmeticoperations, such as addition, subtraction, multiplication, and division, usingnumbers. Numbers can be positive or negative, as you can see in Figure 1.Examine the number line below. Numbers that are positive are greater thanzero. A plus sign (οΏ½) or no sign at all indicates a positive number. Numbersthat are less than zero are negative. A minus sign ( οΏ½ ) indicates a negativenumber. Zero (the origin) is neither positive nor negative.

1. Addition and subtractionAddition is an arithmetic operation. As you can see in Table 1, the result ofaddition is called a sum. When the signs of the numbers you are adding arealike, add the numbers and keep the same sign. Use the number line belowto solve for the sum 5 οΏ½ 2 in which both numbers are positive. To representthe first number, draw an arrow that starts at the origin. The arrow that rep-resents the second number starts at the arrowhead of the first arrow. The sumis at the head of the second arrow. In this case, the sum equals the positivenumber seven.

The process of adding two negative numbers is similar to adding two pos-itive numbers. The negative sign indicates that you must move in the direc-tion opposite to the direction that you moved to add two positive numbers.Use the number line below to verify that the sum below equals οΏ½7. Noticethat the sign of the resulting number when you add two negative numbers isalways negative.

CHAPTER ASSESSMENT##APPENDIX B

Arithmetic Operations

Operation Sign Result

Addition οΏ½ Sum

Subtraction οΏ½ Difference

Multiplication οΏ½ Product

Division οΏ½ Quotient

Table 1

Origin

οΏ½4 10οΏ½10 987654321οΏ½9 οΏ½8 οΏ½1οΏ½2οΏ½3οΏ½5οΏ½6οΏ½7 0

Negative numbers Positive numbers

5 οΏ½ 2 οΏ½ 7

οΏ½4 10οΏ½10 987654321οΏ½9 οΏ½8 οΏ½1οΏ½2οΏ½3οΏ½5οΏ½6οΏ½7 0

οΏ½2οΏ½5

οΏ½7

οΏ½2 οΏ½ 5 οΏ½ οΏ½7οΏ½2 οΏ½(οΏ½5) οΏ½ οΏ½7

οΏ½5

οΏ½7

οΏ½2

οΏ½4 10οΏ½10 987654321οΏ½9 οΏ½8 οΏ½1οΏ½2οΏ½3οΏ½5οΏ½6οΏ½7 0

Figure 1

Water freezes at 32Β°F and 0Β°C.What temperature scale do youthink was used on this sign?Explain.

Math Handbook 887

MathHandbookMath

Handbook

Math Handbook

Page 19: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

888 Chemistry: Matter and Change

Math

Handbook

When adding a negative number to a positive number, the sign of theresulting number will be the same as the larger number.

Suppose you must find the mass of the dozen eggs in Figure 2. You wouldmeasure the mass of the bowl alone. Then, subtract it from the mass of theeggs and the bowl. The result of this subtraction is called the difference. Tofind the difference between numbers, change the sign of the number being sub-tracted and follow the rules for addition. Use a number line to verify that thesign of the resulting number always will be the same as the larger number.

4 οΏ½ 5 οΏ½ 4 οΏ½ (οΏ½5) οΏ½ οΏ½14 οΏ½ (οΏ½5) οΏ½ 4 οΏ½ 5 οΏ½ 9

οΏ½4 οΏ½ (οΏ½5) οΏ½ οΏ½4 οΏ½ 5 οΏ½ 1οΏ½4 οΏ½ (οΏ½5) οΏ½ οΏ½4 οΏ½5 οΏ½ οΏ½9

2. MultiplicationThe result of multiplication is called a product. The operation β€œthree timesthree” can be expressed by 3 οΏ½ 3, (3)(3), or 3 οΏ½ 3. Multiplication is simplyrepeated addition. For example, 3 οΏ½ 3 οΏ½ 3 οΏ½ 3 οΏ½ 3 οΏ½ 9.

Use a number line to show that a negative number multiplied by a positivenumber yields a negative number.

(3)(οΏ½3) οΏ½ οΏ½9(οΏ½3) οΏ½ (οΏ½3) οΏ½ (οΏ½3) οΏ½ οΏ½9

οΏ½ 5 οΏ½ 4 οΏ½ οΏ½1

οΏ½5

οΏ½1

οΏ½4

οΏ½4 10οΏ½10 987654321οΏ½9 οΏ½8 οΏ½1οΏ½2οΏ½3οΏ½5οΏ½6οΏ½7 0

οΏ½3 οΏ½ 8 οΏ½ 5

οΏ½5

οΏ½3οΏ½8

οΏ½4 10οΏ½10 987654321οΏ½9 οΏ½8 οΏ½1οΏ½2οΏ½3οΏ½5οΏ½6οΏ½7 0

3 οΏ½ 3 οΏ½ 3 οΏ½ 3 οΏ½ 3 οΏ½ 9

οΏ½9

οΏ½3 οΏ½3οΏ½3

οΏ½4 10οΏ½10 987654321οΏ½9 οΏ½8 οΏ½1οΏ½2οΏ½3οΏ½5οΏ½6οΏ½7 0

Figure 2

The total mass of the eggs andthe bowl is the sum of their indi-vidual masses. How would youdetermine the total mass of theeggs?

APPENDIX B Math Handbook

Page 20: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Math Handbook 889

Math

Handbook

What happens when a negative number is multiplied by a negative number?The product is always positive.

(οΏ½4)(οΏ½5) οΏ½ 20

3. DivisionDivision is an arithmetic operation whose result is called a quotient. A quo-tient is expressed by οΏ½ or as a ratio.The quotient of numbers that have thesame sign is always positive.

382 οΏ½ 4 and οΏ½

οΏ½342

οΏ½ 8

A negative number divided by a positive number, or a positive number dividedby a negative number always yields a negative number.

οΏ½35

7 οΏ½ οΏ½5 and οΏ½848 οΏ½ οΏ½6

Figure 3

Scientific notation provides aconvenient way to express datawith extremely large or smallnumbers. Express the mass of aproton , the length of theAIDS virus , and the temper-ature of the Sun in scientificnotation.

cb

a

APPENDIX BMath

HandbookMath

Handbook

PRACTICE PROBLEMS1. Perform the following operations.

a. 8 οΏ½ 5 οΏ½ 6 e. 0 οΏ½ 12 i. (οΏ½16)(οΏ½4)

b. οΏ½4 οΏ½ 9 f. οΏ½6 οΏ½ 5 j. (οΏ½32) οΏ½ (οΏ½8)

c. 6 οΏ½ 8 g. οΏ½14 οΏ½ 9

d. 56 οΏ½ 7 h. οΏ½44 οΏ½ 2

Scientific NotationScientists must use extremely small and extremely large numbers to describethe objects in Figure 3. The mass of the proton at the center of a hydrogenatom is 0.000 000 000 000 000 000 000 000 001 673 kg. The length of theAIDS virus is about 0.000 000 11 m. The temperature at the center of the Sunreaches 15 000 000 K. Such small and large numbers are difficult to read andhard to work with in calculations. Scientists have adopted a method of writ-ing exponential numbers called scientific notation. It is easier than writingnumerous zeros when numbers are very large or small. It also is easier to com-pare the relative size of numbers when they are written in scientific notation.

a b c

Page 21: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

890 Chemistry: Matter and Change

Math

Handbook

A number written in scientific notation has two parts.

N οΏ½ 10n

The first part (N) is a number in which only one digit is placed to the left of thedecimal point and all remaining digits to the right of the decimal point. The sec-ond part is an exponent of ten (10n) by which the decimal portion is multiplied.For example, the number 2.53 οΏ½ 106 is written in scientific notation.

The decimal portion is 2.53 and the exponent is 106.

Positive exponentsA positive exponent of ten (n) tells how many times a number must be mul-tiplied by ten to give the long form of the number.

2.53 οΏ½ 106 οΏ½ 2.53 οΏ½ 10 οΏ½10 οΏ½ 10 οΏ½ 10 οΏ½ 10 οΏ½ 10 οΏ½ 2 530 000

You also can think of the positive exponent of ten as the number of placesyou move the decimal to the left until only one nonzero digit is to the left ofthe decimal point.

To convert the number 567.98 to scientific notation, first write the num-ber as an exponential number by multiplying by 100.

567.98 οΏ½ 100

(Remember that multiplying any number by 100 is the same as multiplyingthe number by 1.) Move the decimal point to the left until there is only onedigit to the left of the decimal. At the same time, increase the exponent bythe same number as the number of places the decimal is moved.

Thus, 567.98 written in scientific notation is 5.6798 οΏ½ 102.

Negative exponentsMeasurements also can have negative exponents. See Figure 4. A negativeexponent of ten tells how many times a number must be divided by ten togive the long form of the number.

6.43 οΏ½ 10οΏ½4 οΏ½ οΏ½ 0.0006436.4310 οΏ½ 10 οΏ½ 10 οΏ½ 10

APPENDIX B Math Handbook

2.53 οΏ½ 106

Number between one and ten

Exponent of ten

2 530 000.

The decimal pointmoves

six placesto the left.

5 6798 100οΏ½2 The decimal point moves

two places to the left.

. οΏ½

Figure 4

Because of their short wave-lengths (10οΏ½8 m to 10οΏ½13 m),X rays can pass through someobjects. A micron is 10οΏ½6

meter. Estimate the length ofthis nanoguitar in microns.

b

a

a

b

Page 22: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Math Handbook 891

Math

Handbook

A negative exponent of ten is the number of places you move the decimal tothe right until it is just past the first nonzero digit.

When converting a number that requires the decimal to be moved to theright, the exponent is decreased by the appropriate number. For example, theexpression of 0.0098 in scientific notation is as follows:

Thus, 0.0098 written in scientific notation is 9.8 οΏ½ 10οΏ½3.

Operations with scientific notationThe arithmetic operations performed with ordinary numbers can be donewith numbers written in scientific notation. But, the exponential portion ofthe numbers also must be considered.

1. Addition and subtractionBefore numbers in scientific notation can be added or subtracted, the expo-nents must be equal. Remember that the decimal is moved to the left toincrease the exponent and to the right to decrease the exponent.

(3.4 οΏ½102) + (4.57 οΏ½ 103) οΏ½ (0.34 οΏ½ 103) οΏ½ (4.57 οΏ½ 103)οΏ½ (0.34 οΏ½ 4.57) οΏ½ 103

οΏ½ 4.91 οΏ½ 103

2. MultiplicationWhen numbers in scientific notation are multiplied, only the decimal portionis multiplied. The exponents are added.

(2.00 οΏ½ 103)(4.00 οΏ½ 104) οΏ½ (2.00)(4.00) οΏ½ 103 οΏ½ 4

οΏ½ 8.00 οΏ½ 107

3. DivisionWhen numbers in scientific notation are divided, again, only the decimal por-tion is divided, while the exponents are subtracted as follows:

91..6600

οΏ½

οΏ½

1100

7

4 οΏ½ 91..6600

οΏ½ 107 οΏ½ 4 οΏ½ 6.00 οΏ½ 103

APPENDIX BMath

HandbookMath

Handbook

0 0098

98

100 The decimal point moves

three places to the right.

.

.

οΏ½0 0098 100οΏ½

οΏ½

οΏ½ 3

10 οΏ½ 3

Figure 5

As blood passes through thebody’s tissues, red blood cellsdeliver oxygen and removewastes. There are approximately270 million hemoglobin mole-cules in one red blood cell.

PRACTICE PROBLEMS2. Express the following numbers in scientific notation.

a. 5800 d. 0.000 587 7

b. 453 000 e. 0.0036

c. 67 929 f. 0.000 087 5Continued on next page

Page 23: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

892 Chemistry: Matter and Change

Math

Handbook

Square and Cube RootsA square root is one of two identical factors of a number. As you can see inFigure 6a, the number four is the product of two identical factorsοΏ½two.Thus, the square root of four is two. The symbol , called a radical sign,is used to indicate a square root. Most scientific calculators have a square rootkey labeled .

οΏ½4οΏ½ οΏ½ οΏ½2 οΏ½ 2οΏ½ οΏ½ 2

This equation is read β€œthe square root of four equals two.” What is the squareroot of 9, shown in Figure 6b?

There may be more than two identical factors of a number. You know that2 οΏ½ 4 οΏ½ 8. Are there any other factors of the number 8? It is the product of 2 οΏ½ 2 οΏ½ 2. A cube root is one of three identical factors of a number. Thus,what is the cube root of 8? It is 2. A cube root also is indicated by a radical.

οΏ½3

οΏ½8 οΏ½ οΏ½3

2 οΏ½ 2οΏ½οΏ½ 2οΏ½ οΏ½ 2

Check your calculator handbook for more information on finding roots.

οΏ½oοΏ½

3. Perform the following operations.

a. (5.0 οΏ½ 106) οΏ½ (3.0 οΏ½ 107)

b. (1.8 οΏ½ 109) οΏ½ (2.5 οΏ½ 108)

c. (3.8 οΏ½ 1012) οΏ½ (1.9 οΏ½ 1011)

d. (6.0 οΏ½ 10οΏ½8) οΏ½ (4.0 οΏ½ 10οΏ½9)

4. Perform the following operations.

a. (6.0 οΏ½ 10οΏ½4) οΏ½ (4.0 οΏ½ 10οΏ½6)

b. (4.5 οΏ½ 109) οΏ½ (7.0 οΏ½ 10οΏ½10)

c. 41..55

οΏ½

οΏ½

1100

οΏ½

οΏ½

8

4

d. 19.6.6

οΏ½

οΏ½

1100οΏ½

8

6

e.

f.

5. See Figure 5. If you contain an average of 25 billion red blood cells,how many hemoglobin molecules are in your body?

(6.2οΏ½1012)(5.8οΏ½10οΏ½7)

1.2οΏ½106

(2.5οΏ½106)(7.0οΏ½104)

1.8οΏ½10οΏ½5

2 οΏ½ 2 οΏ½ 4

2 οΏ½ οΏ½ 4 3 οΏ½ 3 οΏ½ 9

3 οΏ½ οΏ½ 9 4 οΏ½ 4 οΏ½ 16

4 οΏ½ οΏ½16

Figure 6

The number four can beexpressed as two groups of two.The identical factors are two.

The number nine can beexpressed as three groups ofthree. Thus, three is the squareroot of nine. Four is thesquare root of 16. Use your cal-culator to determine the cuberoot of 16.

c

b

a

APPENDIX B Math Handbook

a b c

Page 24: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Math Handbook 893

Math

Handbook

Significant FiguresMuch work in science involves taking measurements. Measurements that youtake in the laboratory should show both accuracy and precision. Accuracyreflects how close your measurement comes to the real value. Precisiondescribes the degree of exactness of your measurement. Which ruler inFigure 7 would give you the most precise length? The top ruler with the mil-limeter markings would allow your measurements to come closer to theactual length of the pencil. The measurement would be more precise.

Measuring tools are never perfect, nor are the people doing the measur-ing. Therefore, whenever you measure a physical quantity, there will alwaysbe uncertainty in the measurement. The number of significant figures in themeasurement indicates the uncertainty of the measuring tool.

The number of significant figures in a measured quantity is all of the cer-tain digits plus the first uncertain digit. For example, the pencil in Figure 8has a length that falls between 27.6 and 27.7 cm. You can read the ruler to thenearest millimeter (27.6 cm), but after that you must estimate the next digit inthe measurement. If you estimate that the next digit is 5, you would report themeasured length of the pencil as 27.65 cm. Your measurement has four sig-nificant figures. The first three are certain and the last is uncertain. The rulerused to measure the pencil has precision to the nearest tenth of a millimeter.

How many significant figures?When a measurement is provided, the following series of rules will help youto determine how many significant figures there are in that measurement.1. All nonzero figures are significant.

2. When a zero falls between nonzero digits, the zero is also significant.

3. When a zero falls after the decimal point and after a significant figure,that zero is significant.

4. When a zero is used merely to indicate the position of the decimal, it isnot significant.

5. All counting numbers and exact numbers are treated as if they have aninfinite number of significant figures.

25 26 27 29 cm28242322212019

25 26 27 29282423222120 cm19

Figure 7

The estimated digit must beread between the millimetermarkings on the top ruler. Whyis the bottom ruler less precise?

25 26 27 2824

Figure 8

If you determine that the lengthof this pencil is 27.65 cm, thatmeasurement has four signifi-cant figures.

APPENDIX BMath

HandbookMath

Handbook

Page 25: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

894 Chemistry: Matter and Change

Math

Handbook

EXAMPLE PROBLEM 1How many significant digits are in the measurement 0.00302 g? 5.620 m? 9.80 οΏ½ 102 m/s2?

0.003 02 g

Not significant Significant(Rule 4) (Rules 1 and 2)

The measurement 0.00302 g has three significant figures.60 min

Unlimited significant figures(Rule 5)

5.620 m

Significant(Rules 1 and 3)

The measurement 5.620 m has four significant figures.9.80 οΏ½ 102 m/s2

Significant(Rules 1 and 3)

The measurement 9.80 οΏ½ 102 m/s2 has three significant figures.

Examine each of the following measurements. Use the rules on the previouspage to check that all of them have three significant figures.

245 K 18.0 L 308 km 0.006 23 g 186 000 m

Suppose you must do a calculation using the measurement 200 L. You can-not be certain which zero was estimated. To indicate the significance of dig-its, especially zeros, write measurements in scientific notation. In scientificnotation, all digits in the decimal portion are significant. Which of the fol-lowing measurements is most precise?

200 L has unknown significant figures.2 οΏ½ 102 L has one significant figure.

2.0 οΏ½ 102 L has two significant figures.2.00 οΏ½ 102 L has three significant figures.

The greater the number of digits in a measurement expressed in scientific nota-tion, the more precise the measurement is. In this example, 2.00 οΏ½ 102 L isthe most precise data.

APPENDIX B Math Handbook

Page 26: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX B

Math Handbook 895

Math

Handbook

PRACTICE PROBLEMS

a. 35 g

b. 3.57 m

c. 3.507 km

d. 0.035 kg

e. 0.246 L

f. 0.004 m3

g. 24.068 kPa

h. 268 K

i. 20.040 80 g

j. 20 dozen

k. 730 000 kg

l. 6.751 g

m. 0.157 kg

n. 28.0 mL

o. 2500 m

p. 0.070 mol

q. 30.07 nm

r. 0.106 cm

s. 0.0076 g

t. 0.0230 cm3

u. 26.509 cm

v. 54.52 cm3

w. 2.40 οΏ½ 106 kg

x. 4.07 οΏ½ 1016 m

6. Determine the number of significant figures in each measurement:

RoundingArithmetic operations that involve measurements are done the same way asoperations involving any other numbers. But, the results must correctly indi-cate the uncertainty in the calculated quantities. Perform all of the calcula-tions and then round the result to the least number of significant figures. Toround a number, use the following rules.1. When the leftmost digit to be dropped is less than 5, that digit and any

digits that follow are dropped. Then the last digit in the rounded numberremains unchanged. For example, when rounding the number 8.7645 to3 significant figures, the leftmost digit to be dropped is 4. Therefore, therounded number is 8.76.

2. When the leftmost digit to be dropped is greater than 5, that digit andany digits that follow are dropped, and the last digit in the roundednumber is increased by one. For example, when rounding the number8.7676 to 3 significant figures, the leftmost digit to be dropped is 7.Therefore, the rounded number is 8.77.

3. When the leftmost digit to be dropped is 5 followed by a nonzero num-ber, that digit and any digits that follow are dropped. The last digit inthe rounded number increases by one. For example, 8.7519 rounded to2 significant figures equals 8.8.

4. If the digit to the right of the last significant figure is equal to 5 and 5 isnot followed by a nonzero digit, look at the last significant figure. If it isodd, increase it by one; if even, do not round up. For example, 92.350rounded to 3 significant figures equals 92.4 and 92.25 equals 92.2. Figure 9

Compare the markings on thegraduated cylinder to themarkings on the beaker .Which piece of glassware willyield more precise measure-ments?

ba

a

b

Calculations with significant figuresLook at the glassware in Figure 9. Would you expect to measure a more pre-cise volume with the beaker or the graduated cylinder? When you performany calculation using measured quantities such as volume, it is important to

APPENDIX BMath

HandbookMath

Handbook

Page 27: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX B Math Handbook

896 Chemistry: Matter and Change

Math

Handbook

EXAMPLE PROBLEM 2

EXAMPLE PROBLEM 3

Air contains oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and traceamounts of other gases. Use the known pressures in Table 2 to calculatethe partial pressure of oxygen.

To add or subtract measurements, first perform the operation, thenround off the result to correspond to the least precise value involved.

PO2οΏ½ Ptotal οΏ½ (PN2

οΏ½ PCO2οΏ½ Ptrace)

PO2οΏ½ 101.3 kPa οΏ½ (79.10 kPa οΏ½ 0.040 kPa οΏ½ 0.94 kPa)

PO2οΏ½ 101.3 kPa οΏ½ 80.080 kPa

PO2οΏ½ 21.220 kPa

The total pressure (Ptotal) was measured to the tenths place. It is the leastprecise measurement. Therefore, the result should be rounded to thenearest tenth of a kilopascal. The leftmost dropped digit (1) is less thanfive, so the last two digits can be dropped.

The pressure of oxygen is PO2οΏ½ 21.2 kPa.

Pressure(kPa)

Nitrogen gas 79.10

Carbon dioxide gas 0.040

Trace gases 0.94

Total gases 101.3

Gas Pressures in Air

Table 2

remember that the result never can be more precise than the least precise meas-urement. That is, your answer cannot have more significant figures than theleast precise measurement. Be sure to perform all calculations before drop-ping any insignificant digits.

The following rules determine how to use significant figures in calculationsthat involve measurements.1. To add or subtract measurements, first perform the mathematical opera-

tion, then round off the result to the least precise value. There should bethe same number of digits to the right of the decimal as the measure-ment with the least number of decimal digits.

2. To multiply or divide measurements, first perform the calculation, thenround the answer to the same number of significant figures as the meas-urement with the least number of significant figures. The answer shouldcontain no more significant figures than the fewest number of signifi-cant figures in any of the measurements in the calculation.

The reading on a tire-pressure gauge is 35 psi. What is the equivalentpressure in kilopascals?

P οΏ½ 35 psi οΏ½ 11041..73

pksPia

P οΏ½ 241.1904762 kPa

There are two significant figures in the measurement, 35 psi. Thus, theanswer can have only two significant figures. Do not round up the lastdigit to be kept because the leftmost dropped digit (1) is less than five.

The equivalent pressure is P οΏ½ 240 kPa οΏ½ 2.4 οΏ½ 102 kPa.

A small, hand-held pressuregauge can be used to monitortire pressure.

Page 28: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Math Handbook 897

Math

HandbookSolving Algebraic Equations

When you are given a problem to solve, it often can be written as an alge-braic equation. You can use letters to represent measurements or unspecifiednumbers in the problem. The laws of chemistry are often written in the formof algebraic equations. For example, the ideal gas law relates pressure, vol-ume, amount, and temperature of the gases the pilot in Figure 10 breathes.The ideal gas law is written

PV οΏ½ nRT

where the variables are pressure (P), volume (V), number of moles (n), andtemperature (T ). R is a constant. This is a typical algebraic equation that canbe manipulated to solve for any of the individual variables.

PRACTICE PROBLEMS7. Round off the following measurements to the number of signifi-

cant figures indicated in parentheses.

a. 2.7518 g (3) d. 186.499 m (5)

b. 8.6439 m (2) e. 634 892.34 g (4)

c. 13.841 g (2) f. 355 500 g (2)

8. Perform the following operations.

a. (2.475 m) οΏ½ (3.5 m) οΏ½ (4.65 m)

b. (3.45 m) οΏ½ (3.658 m) οΏ½ (47 m)

c. (5.36 οΏ½ 10οΏ½4 g) οΏ½ (6.381 οΏ½ 10οΏ½5 g)

d. (6.46 οΏ½ 1012 m) οΏ½ (6.32 οΏ½ 1011 m)

e. (6.6 οΏ½ 1012 m) οΏ½ (5.34 οΏ½ 1018 m)

f. 5.36.304οΏ½

οΏ½

110012

11

mm

g.(4.765 οΏ½ 1011 m)(5.3 οΏ½ 10οΏ½4 m)

7.0 οΏ½ 10οΏ½5 m

APPENDIX BMath

HandbookMath

Handbook

Figure 10

Pilots must rely on additionaloxygen supplies at high altitudesto prevent hypoxia–a conditionin which the tissues of the bodybecome oxygen deprived.

Page 29: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

898 Chemistry: Matter and Change

Math

Handbook

When you solve algebraic equations, any operation that you perform onone side of the equal sign must be performed on the other side of the equa-tion. Suppose you are asked to use the ideal gas law to find the pressure ofthe gas (P) in the bottle in Figure 11. To solve for, or isolate, P requires youto divide the left-hand side of the equation by V. This operation must be per-formed on the right-hand side of the equation as well.

PV οΏ½ nRT

PVV οΏ½

nRV

T

The V’s on the left-hand side of the equation cancel each other out.

PVV οΏ½

nRV

T

P οΏ½ VV οΏ½

nRV

T

P οΏ½ 1 οΏ½ nR

VT

P οΏ½ nR

VT

The ideal gas law equation is now written in terms of pressure. That is, P hasbeen isolated.

Order of operationsWhen isolating a variable in an equation, it is important to remember thatarithmetic operations have an order of operations that must be followed. SeeFigure 12. Operations in parentheses (or brackets) take precedence over mul-tiplication and division, which in turn take precedence over addition and sub-traction. For example, in the equation

a οΏ½ b οΏ½ c

variable b must be multiplied first by variablec. Then, the resulting product is added to vari-able a. If the equation is written

(a οΏ½ b) οΏ½ c

the operation in parentheses or brackets mustbe done first. In the equation above, variablea is added to variable b before the sum ismultiplied by variable c.

APPENDIX B Math Handbook

Figure 11

This beverage is bottled underpressure in order to keep carbon dioxide gas in the beverage solution.

Page 30: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX B

Math Handbook 899

Math

Handbook

Figure 12

When faced with an equationthat contains more than oneoperation, use this flow chart todetermine the order in which toperform your calculations.

Examine allarithmetic operations.

Order of Operations

Do all operations insideparentheses or brackets.

Do all multiplicationand division from left

to right.

Perform addition andsubtraction from

left to right.

EXAMPLE PROBLEM 4The temperature on a cold day was 25Β°F. What was the temperature onthe Celsius scale?

Begin with the equation for the conversion from the Celsius toFahrenheit temperature. Celsius temperature is the unknown variable.

Β°F οΏ½ 95

Β°C οΏ½ 32

Rearrange the equation to isolate Β°C. Begin by subtracting 32 fromboth sides.

Β°F οΏ½ 32 οΏ½ 95

Β°C οΏ½ 32 οΏ½ 32

Β°F οΏ½ 32 οΏ½ 95

Β°C

Then, multiply both sides by 5.

5 οΏ½ (Β°F οΏ½ 32) οΏ½ 5 οΏ½95

Β°C

5 οΏ½ (Β°F οΏ½ 32) οΏ½ 9Β°C

Finally, divide both sides by 9.

5 οΏ½ (Β°F

9οΏ½ 32)οΏ½

99Β°C

Β°C οΏ½ 59

(Β°F οΏ½ 32)

Substitute in the known Fahrenheit temperature.

Β°C οΏ½ 59

(Β°F οΏ½ 32)

οΏ½ 59

(25 οΏ½ 32)

οΏ½ οΏ½3.9Β°C

The Celsius temperature is οΏ½3.9Β°C.

To see the difference order of operations makes, try replacing a with 2, bwith 3, and c with 4.

a οΏ½ (b οΏ½ c) οΏ½ 2 οΏ½ (3 οΏ½ 4) οΏ½ 14(a οΏ½ b) οΏ½ c οΏ½ (2 οΏ½ 3) οΏ½ 4 οΏ½ 20

To solve algebraic equations, you also must remember the distributive prop-erty. To remove parentheses to solve a problem, any number outside the paren-theses is β€œdistributed” across the parentheses as follows:

6(x οΏ½ 2y) οΏ½ 6x οΏ½ 12y

PRACTICE PROBLEMSIsolate the indicated variable in each equation.

9. PV οΏ½ nRT for R 12. 2x

οΏ½3 οΏ½ y for x

10. 3 οΏ½ 4(x οΏ½ y) for y 13. 2x

3οΏ½ 1 οΏ½ 6 for x

11. z οΏ½ x(4 οΏ½ 2y) for y

APPENDIX BMath

HandbookMath

Handbook

Page 31: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

The density (D) of aluminum is 2700 kg/m3. Determine the mass (m)of a piece of aluminum of volume (V) 0.20 m3.

The equation for density is

D οΏ½ mV

Multiply both sides of the equation by V and isolate m.

DV οΏ½ mVV

DV οΏ½ VV

οΏ½ m

m οΏ½ DV

Substitute the known values for D and V.

m οΏ½ DV οΏ½ (2700 kg/m3)(0.20 m3) οΏ½ 540 kg

Notice that the unit m3 cancels out, leaving mass in kg, a unitof mass.

Dimensional AnalysisThe dimensions of a measurement refer to the type of units attached to a quan-tity. For example, length is a dimensional quantity that can be measured inmeters, centimeters, and kilometers. Dimensional analysis is the process ofsolving algebraic equations for units as well as numbers. It is a way of check-ing to ensure that you have used the correct equation, and that you have cor-rectly applied the rules of algebra when solving the equation. It also can helpyou to choose and set up the correct equation, as you will see on the next pagewhen you learn how to do unit conversions. It is good practice to makedimensional analysis a habit by always stating the units as well as the numer-ical values whenever substituting values into an equation.

900 Chemistry: Matter and Change

EXAMPLE PROBLEM 5

Aluminum is a metal that is use-ful from the kitchen to the sculp-ture garden.

PRACTICE PROBLEMSDetermine whether the following equations are dimensionally correct.Explain.

14. v οΏ½ s οΏ½ t where v οΏ½ 24 m/s, s οΏ½ 12 m and t οΏ½ 2 s.

15. R οΏ½ PnVT where R is in LοΏ½atm/molοΏ½K, n is in mol, T is in K, P is in atm,

and V is in L.

16. t οΏ½ vs

where t is in seconds, v is in m/s and s is in m.

17. sοΏ½a2t2 where s is in m, a is in m/s2, and t is in s.

Math

Handbook

APPENDIX B Math Handbook

Page 32: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Math Handbook 901

Math

Handbook

Unit ConversionRecall from Chapter 2 that the universal unit system used by scientists iscalled Le SystΓ¨me Internationale d’UnitΓ©s or SI. It is a metric system basedon seven base unitsβ€”meter, second, kilogram, kelvin, mole, ampere, andcandelaβ€”from which all other units are derived. The size of a unit in a met-ric system is indicated by a prefix related to the difference between that unitand the base unit. For example, the base unit for length in the metric systemis the meter. One tenth of a meter is a decimeter where the prefix deci- meansone tenth. And, one thousand meters is a kilometer. The prefix kilo- meansone thousand.

You can use the information in Table 3 to express a measured quantity indifferent units. For example, how is 65 meters expressed in centimeters?Table 3 indicates one centimeter and one-hundredth meter are equivalent, thatis, 1 cm οΏ½ 10οΏ½2 m. This information can be used to form a conversion fac-tor. A conversion factor is a ratio equal to one that relates two units. You canmake the following conversion factors from the relationship between metersand centimeters. Be sure when you set up a conversion factor that the meas-urement in the numerator (the top of the ratio) is equivalent to the denomi-nator (the bottom of the ratio).

1 οΏ½ 110οΏ½

c2mm

and 1 οΏ½ 110οΏ½

c

2

mm

Recall that the value of a quantity does not change when it is multiplied byone. To convert 65 m to centimeters, multiply by a conversion factor.

65 m οΏ½ 110οΏ½

c2mm

οΏ½ 65 οΏ½ 102 cmοΏ½6.5 οΏ½ 103 cm

Note the conversion factor is set up so that the unit meters cancels and theanswer is in centimeters as required. When setting up a unit conversion, usedimensional analysis to check that the units cancel to give an answer in thedesired units. And, always check your answer to be certain the units makesense.

Common SI Prefixes

Prefix SymbolExponential

notation

Peta P 1015

Tera T 1012

Giga G 109

Mega M 106

Kilo k 103

Hecto h 102

Deka da 101

Prefix SymbolExponential

notation

Deci d 10οΏ½1

Centi c 10οΏ½2

Milli m 10οΏ½3

Micro οΏ½ 10οΏ½6

Nano n 10οΏ½9

Pico p 10οΏ½12

Femto f 10οΏ½15

Table 3

MathHandbookMath

Handbook

APPENDIX B

Page 33: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

EXAMPLE PROBLEM 6One mole of manganese (Mn) in the photo has a mass of 54.94 g. Howmany atoms are in two moles of manganese?

You are given the mass of one mole of manganese. In order to convertto the number of atoms, you must set up a conversion factor relatingthe number of moles and the number of atoms.

and

Choose the conversion factor that cancels units of moles and gives ananswer in number of atoms.

2.0 mole οΏ½ οΏ½ 12.04 οΏ½ 1023 atoms

οΏ½ 1.2 οΏ½ 1024 atoms

The answer is expressed in the desired units (number of atoms). It isexpressed in two significant figures because the number of moles (2.0)has the least number of significant figures.

6.02 οΏ½ 1023 atoms

1 mole

6.02 οΏ½ 1023 atoms

1 mole1 mole

6.02 οΏ½ 1023 atoms

902 Chemistry: Matter and Change

Math

Handbook

You make unit conversions everyday when you determine how many quar-ters are needed to make a dollar or how many feet are in a yard. One unit thatis often used in calculations in chemistry is the mole. Chapter 11 shows youequivalent relationships among mole, grams, and the number of representa-tive particles (atoms, molecules, formula units, or ions). For example, onemole of a substance contains 6.02 οΏ½ 1023 representative particles. Try the nextexample to see how this information can be used in a conversion factor todetermine the number of atoms in a sample of manganese.

APPENDIX B Math Handbook

PRACTICE PROBLEMS18. Convert the following measurements as indicated.

a. 4 m οΏ½ ______cm

b. 50.0 cm οΏ½ ______m

c. 15 cm οΏ½ ______mm

d. 567 mg οΏ½ _____g

e. 4.6 οΏ½ 103 m οΏ½ _____mm

f. 8.3 οΏ½ 104 g οΏ½ ______kg

g. 7.3 οΏ½ 105 mL οΏ½ _____L

h. 8.4 οΏ½ 1010 m οΏ½ _____km

i. 3.8 οΏ½ 104 m2 οΏ½ _____mm2

j. 6.9 οΏ½ 1012 cm2 οΏ½ _____m2

k. 6.3 οΏ½ 1021 mm3 οΏ½ _____cm3

l. 9.4 οΏ½ 1012 cm3 οΏ½ _____m3

How many significant figuresare in this measurement?

Page 34: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

A (x,y)

Dep

end

ent

vari

able

Independent variable

Graph of Line with Point A

Origin0

0

A (x,y)

x axis

y axis

Math Handbook 903

Math

Handbook

Drawing Line GraphsScientists, such as the one in Figure 13a, as well as you and your classmates,use graphing to analyze data gathered in experiments. Graphs provide a wayto visualize data in order to determine the mathematical relationship betweenthe variables in your experiment. Most often you use line graphs.

Line graphs are drawn by plotting variables along two axes. See Figure 13b.Plot the independent variable on the x-axis (horizontal axis), also called theabscissa. The independent variable is the quantity controlled by the persondoing the experiment. Plot the dependent variable on the y-axis (vertical axis),also called the ordinate. The dependent variable is the variable that dependson the independent variable. Label the axes with the variables being plottedand the units attached to those variables.

Determining a scaleAn important part of graphing is the selection of a scale. Scales should beeasy to plot and easy to read. First, examine the data to determine the high-est and lowest values. Assign each division on the axis (the square on thegraph paper) with an equal value so that all data can be plotted along the axis.Scales divided into multiples of 1, 2, 5, or 10, or decimal values, often arethe most convenient. It is not necessary to start at zero on a scale, nor is itnecessary to plot both variables to the same scale. Scales must, however, belabeled clearly with the appropriate numbers and units.

Plotting dataThe values of the independent and dependent variables form ordered pairs ofnumbers, called the x-coordinate and the y-coordinate (x,y), that correspondto points on the graph. The first number in an ordered pair always correspondsto the x-axis; the second number always corresponds to the y-axis. The orderedpair (0,0) always is the origin. Sometimes the points are named by using aletter. In Figure 13b, point A corresponds to the point (x,y).

APPENDIX BMath

HandbookMath

Handbook

Figure 13

Once experimental data has been collected, it must beanalyzed to determine the relationships between the measured variables.

Any graph of your datashould include labeled x-and y-axes, a suitable scale, and a title.

b

aa b

Page 35: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

904 Chemistry: Matter and Change

Math

Handbook

After the scales are chosen, plot the data. To graph or plot an ordered pairmeans to place a dot at the point that corresponds to the values in the orderedpair. The x-coordinate indicates how many units to move right (if the num-ber is positive) or left (if the number is negative). The y-coordinate indicateshow many units to move up or down. Which direction is positive on the y-axis? Negative? Locate each pair of x- and y-coordinates by placing a dotas shown in Figure 14a. Sometimes, a pair of rulers, one extending from thex-axis and the other from the y-axis, can ensure that data is plotted correctly.

Drawing a curveOnce the data is plotted, a straight line or a curve is drawn. It is not neces-sary to make it go through every point plotted, or even any of the points, asshown in Figure 14b. Graphing of experimental data is an averaging process.If the points do not fall along a line, the best-fit line or most probable smoothcurve through the points should be drawn. When drawing the curve, do notassume it will go through the origin (0,0).

Naming a graphLast but not least, give each graph a title that describes what is being graphed.The title should be placed at the top of the page, or in a box on a clear areaof the graph. It should not cross the data curve.

Once the data from an experiment has been collected and plotted, thegraph must be interpreted. Much can be learned about the relationship betweenthe independent and dependent variables by examining the shape and slopeof the curve.

Using Line GraphsThe curve on a graph gives a great deal of information about the relationshipbetween the variables. Four common types of curves are shown in Figure 15.Each type of curve corresponds to a mathematical relationship between theindependent and dependent variables.

APPENDIX B Math Handbook

Mas

s (g

)

Volume (mL)

Density of Water

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

Mas

s (g

)

Volume (mL)

Experimental Data

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

Figure 14

To plot a point on a graph,place a dot at the location foreach ordered pair (x,y) deter-mined by your data. In thisexample, the dot marks theordered pair (40 mL, 40 g).

Generally, the line or curvethat you draw will not includeall of your experimental datapoints.

b

a

a b

Page 36: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX B

Math Handbook 905

Math

Handbook

Linear curvey οΏ½ x

Exponential curvey οΏ½ xn

(n οΏ½ 1)

Inverse curvey οΏ½

Root curvey οΏ½

(n οΏ½ 1)

οΏ½x1

xn

Figure 16

Half-life is the amount of time ittakes for half of a sample of aradioactive isotope to decay(Chapters 4 and 25). Notice thatas the number of half-livesincreases, the amount of sampledecreases.

a b

c d

Figure 15

The shape of the curve formedby a plot of experimental dataindicates how the variables arerelated.

Direct and inverse relationshipsIn your study of chemistry, the most common curves are the linear, repre-senting the direct relationship (y x), and the inverse, representing the inverserelationship (y 1/x), where x represents the independent variable andy represents the dependent variable. In a direct relationship, y increasesin value as x increases in value or y decreases when x decreases. Inan inverse relationship, y decreases in value as x increases in value.

An example of a typical direct relationship is the increase in vol-ume of a gas with increasing temperature. When the gases inside ahot air balloon are heated, the balloon gets larger. As the ballooncools, its size decreases. However, a plot of the decrease in pressureas the volume of a gas increases yields a typical inverse curve.

You also may encounter exponential and root curves in your studyof chemistry. See Figure 15c and d. What types of relationshipsbetween the independent and dependent variables do the curvesdescribe? How do the curves differ from a and b? An exponentialcurve describes a relationship in which one variable is expressed byan exponent. And, a root curve describes a relationship in which one variableis expressed by a root. What type of relationship is described by the curve inFigure 16?

The linear graphThe linear graph is useful in analyzing data because a linear relationship canbe translated easily into equation form using the equation for a straight line

y οΏ½ mx οΏ½ b

where y stands for the dependent variable, m is the slope of the line, x standsfor the independent variable, and b is the y-intercept, the point where the curvecrosses the y-axis.

1 2 3 4

Stro

nti

um

-90

rem

ain

ing

(%

)

12.5

25

50

100

Number of half-lives(1 half-life = 29 years)

10.0g

5.00g

2.50g

1.25g

00

APPENDIX BMath

HandbookMath

Handbook

Page 37: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

906 Chemistry: Matter and Change

Math

Handbook

The slope of a linear graph is the steepness of the line. Slope is defined asthe ratio of the vertical change (the rise) to the horizontal change (the run) asyou move from one point to the next along the line. See Figure 17. To calcu-late slope, choose any two points on the line, (x1,y1) and (x2,y2). The two pointsneed not be actual data points, but both must fall somewhere on the straightline. Once two points have been selected, calculate slope m using the equation

m οΏ½ rriusne

οΏ½ οΏ½

οΏ½

yx οΏ½

yx

2

2

οΏ½οΏ½

yx

1

1, where x1 οΏ½ x2

where the symbol οΏ½ stands for change, x1 and y1 are the coordinates or val-ues of the first point, and x2 and y2 are the coordinates of the second point.

Choose any two points along the graph of mass vs. volume in Figure 18and calculate its slope.

m οΏ½ οΏ½ 2.7 g/cm3

Note that the units for the slope are the units for density. Plotting a graph ofmass versus volume is one way of determining the density of a substance.

Apply the general equation for a straight line to the graph in Figure 18.

y οΏ½ mx οΏ½ bmass οΏ½ (2.7 g/cm3)(volume) οΏ½ 0

mass οΏ½ (2.7 g/cm3)(volume)

This equation verifies the direct relationship between mass and volume. Forany increase in volume, the mass also increases.

Interpolation and extrapolationGraphs also serve functions other than determining the relationship betweenvariables. They permit interpolation, the prediction of values of the inde-pendent and dependent variables. For example, you can see in the table inFigure 18 that the mass of 40.0 cm3 of aluminum was not measured. But,you can interpolate from the graph that the mass would be 108 g.

Graphs also permit extrapolation, which is the determination of pointsbeyond the measured points. To extrapolate, draw a broken line to extend the

135 g οΏ½ 54 g50.0 cm3 οΏ½ 20.0 cm3

APPENDIX B Math Handbook

Figure 17

A steep slope indicates that thedependent variable changes rap-idly with a change in the inde-pendent variable. What wouldan almost flat line indicate?

(x2,y2)

Run

Mas

s (g

)Volume (mL)

0 10 20 30 40 50 60 700

10

20

30

40

50

60

70

Density of Water

(x1,y1)

Rise

Page 38: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX B

Math Handbook 907

Math

Handbook

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

Volume (mL)

Mas

s (g

)Density of Aluminum

00

Volume(mL)

Mass(g)

20.030.050.0

54.081.0135.0

Data

Figure 18

Interpolation and extrapolationwill help you determine the val-ues of points you did not plot.

PRACTICE PROBLEMS19. Plot the data in each table. Explain whether the graphs represent

direct or inverse relationships.

Ratios, Fractions, and PercentsWhen you analyze data, you may be asked to compare measured quantities.Or, you may be asked to determine the relative amounts of elements in a com-pound. Suppose, for example, you are asked to compare the molar masses ofthe diatomic gases, hydrogen (H2) and oxygen (O2). The molar mass of hydro-gen gas equals 2.00 g/mol; the molar mass of oxygen equals 32.00 g/mol. Therelationship between molar masses can be expressed in three ways: a ratio, afraction, or a percent.

Effect of Pressure on Gas

Pressure Volume (mm Hg) (mL)

3040 5.0

1520 10.0

1013 15.0

760 20.0

Table 4

Effect of Pressure on Gas

Pressure Temperature(mm Hg) (K)

3040 1092

1520 546

1013 410

760 273

Table 5

curve to the desired point. In Figure 18, you can determine that the mass at10.0 cm3 equals 27 g. One caution regarding extrapolationβ€”some straight-line curves do not remain straight indefinitely. So, extrapolation should onlybe done where there is a reasonable likelihood that the curve doesn’t change.

APPENDIX BMath

HandbookMath

Handbook

Page 39: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

908 Chemistry: Matter and Change

Math

Handbook

RatiosYou make comparisons using ratios in your daily life. For example, if the massof a dozen limes is shown in Figure 19a, how does it compare to the massof one lime? The mass of one dozen limes is twelve times larger than the massof one lime. In chemistry, the chemical formula for a compound comparesthe elements that make up that compound. See Figure 19b. A ratio is a com-parison of two numbers by division. One way it can be expressed is with acolon (:). The comparison between the molar masses of oxygen and hydro-gen can be expressed as follows.

molar mass (H2):molar mass (O2)2.00 g/mol:32.00 g/mol

2.00:32.001:16

Notice that the ratio 1:16 is the smallest integer (whole number) ratio. It isobtained by dividing both numbers in the ratio by the smaller number, andthen rounding the larger number to remove the digits after the decimal. Theratio of the molar masses is one to sixteen. In other words, the ratio indicatesthat the molar mass of diatomic hydrogen gas is sixteen times smaller thanthe molar mass of diatomic oxygen gas.

FractionsRatios are often expressed as fractions in simplest form. A fraction is a quo-tient of two numbers. To express the comparison of the molar masses as afraction, place the molar mass of hydrogen over the molar mass of oxygenas follows:

mm

oollaarr

mm

aassss

HO

2

2 οΏ½ 3

22.0.000

gg//mm

ooll οΏ½ 3

22.0.000 οΏ½ 1

16

In this case, the simplified fraction is calculated by dividing both the numer-ator (top of the fraction) and the denominator (bottom of the fraction) by 2.00.This fraction yields the same information as the ratio. That is, diatomic hydro-gen gas has one-sixteenth the mass of diatomic oxygen gas.

APPENDIX B Math Handbook

Figure 19

The mass of one lime wouldbe one-twelfth the mass of onedozen limes. In a crystal oftable salt (sodium chloride),each sodium ion is surroundedby chloride ions, yet the ratio ofsodium ions to chloride ions isone:one. The formula forsodium chloride is NaCl.

b

a

a b

Page 40: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

9 οΏ½ 108

3 οΏ½ 10οΏ½4Quotient οΏ½

Dividend(numerator)

Divisor(denominator)

Math Handbook 909

Math

Handbook

PercentsA percent is a ratio that compares a number to 100. The symbol for percentis %. You also are used to working with percents in your daily life. The num-ber of correct answers on an exam may be expressed as a percent. If youanswered 90 out of 100 questions correctly, you would receive a grade of 90%.Signs like the one in Figure 20 indicate a reduction in price. If the item’s reg-ular price is $100, how many dollars would you save? Sixty-five percentmeans 65 of every 100, so you would save $65. How much would you saveif the sign said 75% off?

The comparison between molar mass of hydrogen gas and the molar massof oxygen gas described on the previous page also can be expressed as a per-cent by taking the fraction, converting it to decimal form, and multiplying by100 as follows:

mm

oollaarr

mm

aassss

HO

2

2οΏ½ 100 οΏ½ 3

22.0.000

gg//mm

ooll οΏ½ 100 οΏ½ 0.0625 οΏ½ 100 οΏ½ 6.25%

Thus, diatomic hydrogen gas has 6.25% of the mass of diatomic oxygen gas.

Operations Involving FractionsFractions are subject to the same type of operations as other numbers.Remember that the number on the top of a fraction is the numerator and thenumber on the bottom is the denominator. See Figure 21.

1. Addition and subtractionBefore two fractions can be added or subtracted, they must have a commondenominator. Common denominators are found by finding the least commonmultiple of the two denominators. Finding the least common multiple oftenis as easy as multiplying the two denominators together. For example, the leastcommon multiple of the denominators of the fractions 1/2 and 1/3 is 2 οΏ½ 3or 6.

12 οΏ½

13 οΏ½ οΏ½

33 οΏ½

12οΏ½ οΏ½ οΏ½

22 οΏ½

13οΏ½ οΏ½

36 οΏ½

26 οΏ½

56

Sometimes, one of the denominators will divide into the other, whichmakes the larger of the two denominators the least common multiple. Forexample, the fractions 1/2 and 1/6 have 6 as the least common multipledenominator.

12 οΏ½

16 οΏ½ οΏ½

33 οΏ½

12οΏ½ οΏ½

16 οΏ½

36 οΏ½

16 οΏ½

46

In still other situations, both denominators will divide into a number thatis not the product of the two. For example, the fractions 1/4 and 1/6 have thenumber 12 as their least common multiple denominator, rather than 24, theproduct of the two denominators. This can be deduced as follows:

16 οΏ½

14 οΏ½ οΏ½

44 οΏ½

16οΏ½ οΏ½ οΏ½

66 οΏ½

14οΏ½ οΏ½ 2

44 οΏ½ 2

64 οΏ½ 1

22 οΏ½ 1

32 οΏ½ 1

52

Because both fractions can be simplified by dividing numerator and denom-inator by 2, the least common multiple must be 12.

APPENDIX BMath

HandbookMath

Handbook

Figure 20

Would the savings be large atthis sale? How would you deter-mine the sale price?

Figure 21

When two numbers are divided,the one on top is the numeratorand the one on the bottom isthe denominator. The result iscalled the quotient. When youperform calculations with fractions, the quotient may beexpressed as a fraction or a decimal.

Page 41: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

910 Chemistry: Matter and Change

Math

Handbook

2. Multiplication and divisionWhen multiplying fractions, the numerators and denominators are multipliedtogether as follows:

12 οΏ½

23 οΏ½

12

οΏ½οΏ½

23 οΏ½

26 οΏ½

13

Note the final answer is simplified by dividing the numerator and denomi-nator by two.

When dividing fractions, the divisor is inverted and multiplied by the dividend as follows:

23

οΏ½ 12

οΏ½ 23

οΏ½ 21

οΏ½ 23

οΏ½οΏ½

21 οΏ½

43

APPENDIX B Math Handbook

Figure 22

Carbon-dating of this skull isbased on the radioactive decayof carbon-14 atoms which ismeasured in half-lives.

Logarithms and AntilogarithmsWhen you perform calculations, such as using half-life of carbon to deter-mine the age of the skull in Figure 22 or the pH of the products in Figure23, you may need to use the log or antilog function on your calculator. A log-arithm (log) is the power or exponent to which a number, called a base, mustbe raised in order to obtain a given positive number. This textbook uses com-mon logarithms based on a base of 10. Therefore, the common log of anynumber is the power to which ten is raised to equal that number. ExamineTable 4. Note the log of each number is the power of ten for the exponent ofthat number. For example, the common log of 100 is two and the commonlog of 0.01 is οΏ½2.

log 102 οΏ½ 2log 10οΏ½2 οΏ½ οΏ½2

A common log can be written in the following general form.

If 10n οΏ½ y, then log y οΏ½ n.

In each example in Table 4, the log can be determined by inspection. Howdo you express the common log of 5.34 οΏ½ 105? Because logarithms are expo-nents, they have the same properties as exponents. See Table 5.

log 5.34 οΏ½ 105 οΏ½ log 5.34 οΏ½ log 105

PRACTICE PROBLEMS20. Perform the indicated operation:

a. 23

οΏ½ 34

e. 13

οΏ½ 34

b. 45

οΏ½ 130 f.

35

οΏ½ 27

c. 14

οΏ½ 16

g. 58

οΏ½ 14

d. 78

οΏ½ 56

h. 49

οΏ½ 38

Comparison BetweenExponents and Logs

Exponent Logarithm

100 οΏ½ 1 log 1 οΏ½ 0

101 οΏ½ 10 log 10 οΏ½ 1

102 οΏ½ 100 log 100 οΏ½ 2

10οΏ½1 οΏ½ 0.1 log 0.1 οΏ½ οΏ½1

10οΏ½2 οΏ½ 0.01 log 0.01 οΏ½ οΏ½2

Table 4

Page 42: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX B

Math Handbook 911

Math

Handbook

Figure 23

Ammonia is a base. That means,its hydrogen ion concentration isless than 10οΏ½7M.

PRACTICE PROBLEMS21. Find the log of each of the following numbers:

a. 367 c. Xn

b. 4078 d. (12

)t/T

22. Find the antilog of each of the following logs:

a. 4.663 c. 0.371

b. 2.367 d. οΏ½1.588

Properties of Exponents

Exponential Notation Logarithm

10A οΏ½ 10B οΏ½ 10A οΏ½ B log (A οΏ½ B) = log A οΏ½ log B

10A οΏ½ 10B οΏ½ 10A οΏ½ B log (A οΏ½ B) οΏ½ log A οΏ½ log B

AB (log A) οΏ½ B

Most scientific calculators have a button labeled and, in most cases, thenumber is simply entered and the log button is pushed to display the log ofthe number. Note that there is the same number of digits after the decimal inthe log as there are significant figures in the original number entered.

log 5.34 οΏ½ 105 οΏ½ log 5.34 οΏ½ log105 οΏ½ 0.728 οΏ½ 5 οΏ½ 5.728

Suppose the pH of the aqueous ammonia in Figure 23 is 9.54 and you areasked to find the concentration of the hydrogen ions in that solution. By def-inition, pH οΏ½ οΏ½log [HοΏ½]. Compare this to the general equation for the com-mon log.

Equation for pH: pH οΏ½ οΏ½log [HοΏ½]General equation: y οΏ½ log 10n

To solve the equation for [HοΏ½], you must follow the reverse process and cal-culate the antilogarithm (antilog) of οΏ½9.54 to find [HοΏ½].

Antilogs are the reverse of logs. To find the antilog, use a scientific cal-culator to input the value of the log. Then, use the inverse function and pressthe log button.

If n οΏ½ antilog y, then y οΏ½ 10n.Thus, [HοΏ½] οΏ½ antilog(οΏ½9.54) οΏ½ 10οΏ½9.54 οΏ½ 100.46 οΏ½(οΏ½10)

οΏ½ 100.46 οΏ½ 10οΏ½10

οΏ½ 2.9 οΏ½ 10οΏ½10M

Check the instruction manual for your calculator. The exact procedure to cal-culate logs and antilogs may vary.

log

APPENDIX BMath

HandbookMath

Handbook

Table 5

Page 43: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX C Tables

912 Chemistry: Matter and Change

APPENDIX C

Table

s

Tables

Symbols and Abbreviations

οΏ½ οΏ½ rays from radioactive materials, helium nuclei

οΏ½ rays from radioactive materials, electrons

οΏ½ οΏ½ rays from radioactive materials, high-energy quanta

οΏ½ οΏ½ change inοΏ½ οΏ½ wavelengthοΏ½ οΏ½ frequencyA οΏ½ ampere (electric current)amu οΏ½ atomic mass unitBq οΏ½ becquerel (nuclear

disintegration)Β°C οΏ½ Celsius degree (temperature)C οΏ½ coulomb (quantity of electricity)c οΏ½ speed of lightcd οΏ½ candela (luminous intensity)c οΏ½ specific heatD οΏ½ density

E οΏ½ energy, electromotive forceF οΏ½ forceG οΏ½ free energyg οΏ½ gram (mass)Gy οΏ½ gray (radiation)H οΏ½ enthalpyHz οΏ½ hertz (frequency)h οΏ½ Planck’s constanth οΏ½ hour (time)J οΏ½ joule (energy)K οΏ½ kelvin (temperature)Ka οΏ½ ionization constant (acid)Kb οΏ½ ionization constant (base)Keq οΏ½ equilibrium constantKsp οΏ½ solubility product constantkg οΏ½ kilogram (mass)M οΏ½ molaritym οΏ½ mass, molalitym οΏ½ meter (length)mol οΏ½ mole (amount)

min οΏ½ minute (time)N οΏ½ newton (force)NA οΏ½ Avogadro’s numbern οΏ½ number of molesP οΏ½ pressure, powerPa οΏ½ pascal (pressure)q οΏ½ heatR οΏ½ ideal gas constantS οΏ½ entropys οΏ½ second (time)Sv οΏ½ sievert (absorbed radiation)T οΏ½ temperatureV οΏ½ volumeV οΏ½ volt (electric potential)v οΏ½ velocityW οΏ½ watt (power)w οΏ½ workX οΏ½ mole fraction

Table C-2Table C-2

Color Key

Carbon Bromine Sodium/Other metals

Hydrogen Iodine Gold

Oxygen Sulfur Copper

Nitrogen Phosphorus Electron

Chlorine Silicon Proton

Fluorine Helium Neutron

Table C-1Table C-1

Page 44: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Tables 913

Table

s

APPENDIX C Tables

SI Prefixes

Prefix Symbol Scientificnotation

femto f 10οΏ½15

pico p 10οΏ½12

nano n 10οΏ½9

micro οΏ½ 10οΏ½6

milli m 10οΏ½3

centi c 10οΏ½2

deci d 10οΏ½1

deka da 101

hecto h 102

kilo k 103

mega M 106

giga G 109

tera T 1012

peta P 1015

Table C-3Table C-3The Greek Alphabet

Alpha οΏ½ Nu οΏ½

Beta οΏ½ Xi οΏ½

Gamma οΏ½ Omicron οΏ½

Delta Pi

Epsilon οΏ½ Rho οΏ½

Zeta Sigma οΏ½

Eta οΏ½ Tau οΏ½

Theta οΏ½ Upsilon οΏ½

Iota οΏ½ Phi οΏ½

Kappa οΏ½ Chi οΏ½

Lambda οΏ½ Psi οΏ½

Mu οΏ½ Omega οΏ½

Table C-4Table C-4

Physical Constants

Quantity Symbol Value

Atomic mass unit amu 1.6605 οΏ½ 10οΏ½27 kg

Avogadroβ€˜s number N 6.022 οΏ½ 1023 particles/mole

Ideal gas constant R 8.31 LοΏ½kPa/molοΏ½K0.0821 LοΏ½atm/molοΏ½K62.4 mm HgοΏ½L/molοΏ½K

62.4 torrοΏ½L/molοΏ½K

Mass of an electron me 9.109 οΏ½ 10οΏ½31 kg5.48586 οΏ½ 10οΏ½4 amu

Mass of a neutron mn 1.67492 οΏ½ 10οΏ½27 kg1.008 665 amu

Mass of a proton mp 1.6726 οΏ½ 10οΏ½27 kg1.007 276 amu

Molar volume of ideal gas at STP V 22.414 L/mol

Normal boiling point of water Tb 373.15 K100.0οΏ½C

Normal freezing point of water Tf 273.15 K0.00οΏ½C

Planckβ€˜s constant h 6.626 076 οΏ½ 10οΏ½34 JοΏ½s

Speed of light in a vacuum c 2.997 925 οΏ½ 108 m/s

Table C-5Table C-5

Page 45: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

914 Chemistry: Matter and Change

Table

s

APPENDIX C Tables

Pro

pert

ies

of

Ele

men

ts

Tabl

e C-

6

Actin

ium

Ac89

[227

]10

5033

0010

.07

203

499

(3οΏ½

)οΏ½2.

1314

.30.

120

293

trace

3οΏ½Al

umin

umAl

1326

.981

539

660.

3725

17.6

2.69

914

357

7.5

(3οΏ½

)οΏ½1.

6710

.71

0.90

2529

0.8

8.1

3οΏ½Am

erici

umAm

95[2

43]

1176

2607

13.6

718

357

9(3

οΏ½)οΏ½

2.07

10β€”

238.

5β€”

2οΏ½,3

οΏ½,4

οΏ½An

timon

ySb

5112

1.76

063

0.7

1587

6.69

716

183

4(3

οΏ½)οΏ½

0.15

19.5

0.20

7219

32

οΏ½10

οΏ½5

3οΏ½,5

οΏ½Ar

gon

Ar18

39.9

48οΏ½

189.

37οΏ½

185.

860.

0017

8498

1521

β€”1.

180.

5203

36.

524

οΏ½10

οΏ½6

Arse

nic

As33

74.9

2159

816

615

5.77

812

194

7(3

οΏ½)οΏ½

0.24

27.7

0.32

89β€”

1.9

οΏ½10

οΏ½4

3οΏ½,5

οΏ½(2

840

kPa)

(sub

limes

)(s

ublim

es)

Asta

tine

At85

[210

]30

035

0β€”

β€”91

6(1

οΏ½)οΏ½

0.2

23.8

β€”90

.3tra

ce1οΏ½

,5οΏ½

Bariu

mBa

5613

7.32

772

6.9

1845

3.62

222

502.

9(2

οΏ½)οΏ½

2.92

8.01

20.

2044

140

0.03

92οΏ½

Berk

eliu

mBk

97[2

47]

986

β€”14

.78

170

601

(3οΏ½

)οΏ½2.

01β€”

β€”β€”

β€”3οΏ½

,4οΏ½

Bery

llium

Be4

9.01

2182

1287

2468

1.84

811

289

9.5

(2οΏ½

)οΏ½1.

977.

895

1.82

429

7.6

2οΏ½

10οΏ½

42οΏ½

Bism

uth

Bi83

208.

9803

727

1.4

1564

9.78

151

703

(3οΏ½

)οΏ½0.

317

10.9

0.12

2117

98

οΏ½10

οΏ½7

3οΏ½,5

οΏ½Bo

hriu

mBh

107

[264

]β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”Bo

ron

B5

10.8

1120

8039

272.

4685

800.

6(3

οΏ½)οΏ½

0.89

50.2

1.02

650

4.5

9οΏ½

10οΏ½

43οΏ½

Brom

ine

Br35

79.9

04οΏ½

7.25

59.3

53.

1028

119

1139

.9(1

οΏ½)οΏ½

1.06

510

.571

0.47

362

29.5

62.

5οΏ½

10οΏ½

41οΏ½

,1οΏ½

,3οΏ½

,5οΏ½

Cadm

ium

Cd48

112.

411

320.

877

08.

6515

186

7.7

(2οΏ½

)οΏ½0.

4025

6.19

0.23

1110

01.

6οΏ½

10οΏ½

52οΏ½

Calci

umCa

2040

.078

841.

514

841.

5519

758

9.8

(2οΏ½

)οΏ½2.

848.

540.

6315

155

4.66

2οΏ½Ca

lifor

nium

Cf98

[251

]90

0β€”

β€”18

660

8(3

οΏ½)οΏ½

2β€”

β€”β€”

β€”3οΏ½

,4οΏ½

Carb

onC

612

.011

3620

4200

2.26

677

1086

.5(4

οΏ½)οΏ½

0.13

210

4.6

0.70

9971

10.

018

4οΏ½,2

οΏ½,4

οΏ½Ce

rium

Ce58

140.

115

804

3470

6.77

318

1.8

541

(3οΏ½

)οΏ½2.

345.

20.

1923

313

0.00

73οΏ½

,4οΏ½

Cesiu

mCs

5513

2.90

543

28.4

674.

81.

926

237

5.7

(1οΏ½

)οΏ½2.

923

2.08

70.

2421

672.

6οΏ½

10οΏ½

41οΏ½

Chlo

rine

Cl17

35.4

527

οΏ½10

1οΏ½

340.

0032

1491

1255

.5(1

οΏ½)οΏ½

1.35

836.

410.

4782

020

.41

0.01

31οΏ½

,1οΏ½

,3οΏ½

,5οΏ½

Chro

miu

mCr

2451

.996

119

0726

797.

212

865

2.8

(3οΏ½

)οΏ½0.

7420

.50.

4491

339

0.01

2οΏ½,3

οΏ½,6

οΏ½Co

balt

Co27

58.9

332

1495

2912

8.9

125

758.

8(2

οΏ½)οΏ½

0.27

716

.192

0.42

1038

20.

0028

2οΏ½,3

οΏ½Co

pper

Cu29

63.5

4610

8525

708.

9212

874

5.5

(2οΏ½

)οΏ½0.

3413

.38

0.38

452

304

0.00

581οΏ½

,2οΏ½

Curiu

mCm

96[2

47]

1340

3540

13.5

117

458

1(3

οΏ½)οΏ½

2.06

β€”β€”

β€”β€”

3οΏ½,4

οΏ½Da

rmst

adtiu

mDs

110

[281

]β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

Dubn

ium

Db10

5[2

62]

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”Dy

spro

sium

Dy66

162.

514

0726

008.

536

178.

157

2(3

οΏ½)οΏ½

2.29

10.4

0.17

3325

06

οΏ½10

οΏ½4

2οΏ½,3

οΏ½Ei

nste

iniu

mEs

99[2

52]

860

β€”β€”

186

619

(3οΏ½

)οΏ½2

β€”β€”

β€”β€”

3οΏ½Er

bium

Er68

167.

2614

9729

009.

045

176.

158

9(3

οΏ½)οΏ½

2.32

17.2

0.16

8129

33.

5οΏ½

10οΏ½

43οΏ½

Euro

pium

Eu63

151.

965

826

1596

5.24

520

8.4

547

(3οΏ½

)οΏ½1.

9910

.50.

1820

176

2.1

οΏ½10

οΏ½3

2οΏ½,3

οΏ½Fe

rmiu

mFm

100

[257

]β€”

β€”β€”

β€”62

7(3

οΏ½)οΏ½

1.96

β€”β€”

β€”β€”

2οΏ½,3

οΏ½Fl

uorin

eF

918

.998

4032

οΏ½21

9.7

οΏ½18

8.2

0.00

1696

6916

81(1

οΏ½)οΏ½

2.87

0.51

0.82

386.

540.

0544

1οΏ½Fr

anciu

mFr

87[2

23]

2765

0β€”

280

393

β€”2

β€”63

.6tra

ce1οΏ½

Gad

olin

ium

Gd

6415

7.25

1312

3000

7.88

618

0.4

592

(3οΏ½

)οΏ½2.

2915

.50.

2355

311.

76.

3οΏ½

10οΏ½

43οΏ½

Gal

lium

Ga

3169

.723

29.7

722

035.

904

134

578.

8(3

οΏ½)οΏ½

0.52

95.

590.

3709

256

0.00

181οΏ½

,3οΏ½

Ger

man

ium

Ge

3272

.64

945

2850

5.32

312

376

1.2

(4οΏ½

)οΏ½0.

124

31.8

0.32

1533

4.3

1.5

οΏ½10

οΏ½4

2οΏ½,4

οΏ½

* [

] ind

icate

s m

ass

of lo

nges

t-liv

ed is

otop

e.

Element

Symbol

Atomic Number

Atomic Mass* (amu)

Melting Point (Β°C)

Boiling Point (Β°C)

Density (g/cm3

)

(gases measured at STP) Atomic Radius (p

m) First Ionization Energy (kJ/m

ol)

Standard Reduction

Potential (V) (f

or elements

from or to

oxidation

state indicated) Enthalpy of Fusio

n (kJ/mol)

Specific H

eat(J/g

οΏ½CΒ°)

Enthalpy of Vaporization

(kJ/mol)

Abundance in Earth’s

Crust (%)

Major Oxidation States

Page 46: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Tables 915

Table

s

APPENDIX C Tables

Pro

pert

ies

of

Ele

men

ts (

con

tin

ued

)

Tabl

e C-

6Ta

ble

C-6

Gol

dAu

7919

6.96

654

1064

2856

19.3

214

488

9.9

(3οΏ½

)οΏ½1.

5212

.40.

1290

532

4.4

3 οΏ½

10οΏ½

71οΏ½

,3οΏ½

Hafn

ium

Hf72

178.

4922

2746

0313

.28

159

654.

4(4

οΏ½)οΏ½

1.56

29.2

880.

1442

661

3 οΏ½

10οΏ½

44οΏ½

Hass

ium

Hs10

8[2

77]

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”He

lium

He2

4.00

2602

οΏ½26

9.7

οΏ½26

8.93

0.00

0178

4731

2372

β€”0.

025.

1931

0.08

4β€”

(253

6 kP

a)Ho

lmiu

mHo

6716

4.90

3214

6126

008.

7817

6.2

581

(3οΏ½

)οΏ½2.

3317

.10.

1646

251

1.5

οΏ½10

οΏ½4

3οΏ½Hy

drog

enH

11.

0079

4οΏ½

259.

19οΏ½

252.

760.

0000

899

3713

12(1

οΏ½)

0.00

000.

117

14.2

980.

904

β€”1

οΏ½,1

οΏ½In

dium

In49

114.

818

156.

6120

807.

2916

755

8.2

(3οΏ½

)οΏ½0.

3382

3.26

0.24

0723

1.8

2 οΏ½

10οΏ½

51οΏ½

,3οΏ½

lodi

neI

5312

6.90

447

113.

618

4.5

4.93

138

1008

.4(1

οΏ½)οΏ½

0.53

5515

.517

0.21

448

41.9

54.

6 οΏ½

10οΏ½

51

οΏ½,1

οΏ½,5

οΏ½,7

οΏ½Iri

dium

Ir77

192.

2224

4745

5022

.65

135.

588

0(4

οΏ½)οΏ½

0.92

626

.40.

1306

563.

61

οΏ½10

οΏ½7

3οΏ½,4

οΏ½,5

οΏ½Iro

nFe

2655

.845

1536

2860

7.87

412

675

9.4

(3οΏ½

)οΏ½0.

413

.807

0.44

9435

05.

82οΏ½

,3οΏ½

Kryp

ton

Kr36

83.8

0οΏ½

157.

2οΏ½

153.

350.

0037

493

112

1351

β€”1.

640.

2480

9.03

β€”La

ntha

num

La57

138.

9055

920

3420

6.17

187

538

(3οΏ½

)οΏ½2.

378.

50.

1952

402

0.00

353οΏ½

Law

renc

ium

Lr10

3[2

62]

β€”β€”

β€”β€”

β€”(3

οΏ½)οΏ½

2.06

β€”β€”

β€”β€”

3οΏ½Le

adPb

8220

7.2

327

1746

11.3

4214

671

5.6

(2οΏ½

)οΏ½0.

1251

4.77

0.12

7617

80.

0013

2οΏ½,4

οΏ½Li

thiu

mLi

36.

941

180.

513

470.

534

156

520.

2(1

οΏ½)οΏ½

3.04

53

3.56

914

80.

002

1οΏ½Lu

tetiu

mLu

7117

4.96

716

5233

279.

8417

3.8

524

(3οΏ½

)οΏ½2.

311

.90.

1535

414

8 οΏ½

10οΏ½

53οΏ½

Mag

nesiu

mM

g12

24.3

0565

011

051.

738

160

737.

8(2

οΏ½)οΏ½

2.35

68.

477

1.02

412

7.4

2.76

2οΏ½M

anga

nese

Mn

2554

.938

0512

4620

617.

4312

771

7.5

(2οΏ½

)οΏ½1.

1812

.058

0.47

9121

9.7

0.1

2οΏ½,3

οΏ½,4

οΏ½,6

οΏ½,7

οΏ½M

eitn

eriu

mM

t10

9[2

68]

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”M

ende

levi

umM

d10

1[2

58]

β€”β€”

β€”β€”

635

β€”β€”

β€”β€”

β€”2οΏ½

,3οΏ½

Mer

cury

Hg80

200.

59οΏ½

38.9

357

13.5

3415

110

07(2

οΏ½)οΏ½

0.85

352.

2953

0.13

950

59.1

2 οΏ½

10οΏ½

61οΏ½

,2οΏ½

Mol

ybde

num

Mo

4295

.94

2623

4679

10.2

813

968

5(6

οΏ½)

0.11

436

0.25

0859

01.

2 οΏ½

10οΏ½

44οΏ½

,5οΏ½

,6οΏ½

Neo

dym

ium

Nd

6014

4.24

1024

3111

7.00

318

1.4

530

(3οΏ½

)οΏ½2.

327.

130.

1903

283.

70.

004

2οΏ½,3

οΏ½N

eon

Ne

1020

.179

7οΏ½

248.

61οΏ½

246.

050.

0008

999

7120

81β€”

0.34

1.03

011.

77β€”

Nep

tuni

umN

p93

[237

]64

039

0020

.45

155

597

(5οΏ½

)οΏ½0.

919.

46β€”

336

β€”2οΏ½

,3οΏ½

,4οΏ½

,5οΏ½

,6οΏ½

Nick

elN

i28

58.6

934

1455

2883

8.90

812

473

6.7

(2οΏ½

)οΏ½0.

257

17.1

50.

4442

375

0.00

752οΏ½

,3οΏ½

,4οΏ½

Nio

bium

Nb

4192

.906

3824

7748

588.

5714

666

4.1

(5οΏ½

)οΏ½0.

6526

.90.

2648

690

0.00

24οΏ½

,5οΏ½

Nitr

ogen

N7

14.0

067

οΏ½21

0οΏ½

195.

80.

0012

409

7514

02(3

οΏ½)οΏ½

0.09

20.

721.

0397

5.58

0.00

23οΏ½

,2οΏ½

,1οΏ½

,1οΏ½

,2οΏ½

,3οΏ½

,4οΏ½

,5οΏ½

Nob

eliu

mN

o10

2[2

59]

β€”β€”

β€”β€”

642

(2οΏ½

)οΏ½2.

5β€”

β€”β€”

β€”2οΏ½

,3οΏ½

Osm

ium

Os

7619

0.23

3045

5025

22.5

713

584

0(4

οΏ½)οΏ½

0.68

731

.70.

130

627.

62

οΏ½10

οΏ½7

4οΏ½,6

οΏ½,8

οΏ½O

xyge

nO

815

.999

4οΏ½

218.

8οΏ½

183

0.00

1429

6013

13.9

(2οΏ½

)1.

229

0.44

0.91

738

6.82

45.5

2οΏ½,1

οΏ½Pa

lladi

umPd

4610

6.42

1552

2940

11.9

913

780

5(2

οΏ½)

0.91

517

.60.

2441

362

3 οΏ½

10οΏ½

72οΏ½

,4οΏ½

Phos

phor

usP

1530

.973

762

44.2

280.

51.

823

109

1012

(3οΏ½

)οΏ½0.

063

0.65

90.

7696

849

.80.

113οΏ½

,3οΏ½

,5οΏ½

Plat

inum

Pt78

195.

078

1769

3824

21.4

113

8.5

868

(4οΏ½

)οΏ½1.

1519

.70.

1326

510.

41

οΏ½l0

οΏ½6

2οΏ½,4

οΏ½Pl

uton

ium

Pu94

[244

]64

032

3019

.86

162

585

(4οΏ½

)οΏ½1.

252.

80.

138

343.

5β€”

3οΏ½,4

οΏ½,5

οΏ½,6

οΏ½Po

loni

umPo

84[2

09]

254

962

9.4

164

813

(4οΏ½

)οΏ½0.

733.

810.

125

103

β€”2οΏ½

,2οΏ½

,4οΏ½

,6οΏ½

Pota

ssiu

mK

1939

.098

363

.276

6.4

0.86

223

141

8.8

(1οΏ½

)οΏ½2.

925

2.33

40.

7566

76.9

1.84

1οΏ½Pr

aseo

dym

ium

Pr59

140.

9076

593

535

206.

782

182.

452

2(3

οΏ½)οΏ½

2.35

11.3

0.19

3033

2.6

9.1

οΏ½10

οΏ½4

3οΏ½,4

οΏ½Pr

omet

hium

Pm61

[145

]10

4230

007.

218

3.4

536

(3οΏ½

)οΏ½2.

298.

17β€”

293

β€”3οΏ½

* [

] ind

icate

s m

ass

of lo

nges

t-liv

ed is

otop

e.

Element

Symbol

Atomic Number

Atomic Mass* (amu)

Melting Point (Β°C)

Boiling Point (Β°C)

Density (g/cm3

)

(gases measured at STP) Atomic Radius (p

m) First Ionization Energy (kJ/m

ol)

Standard Reduction

Potential (V) (f

or elements

from or to

oxidation

state indicated) Enthalpy of Fusio

n (kJ/mol)

Specific H

eat(J/g

οΏ½CΒ°)

Enthalpy of Vaporization

(kJ/mol)

Abundance in Earth’s

Crust (%)

Major Oxidation States

Page 47: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

916 Chemistry: Matter and Change

Table

s

APPENDIX C Tables

Pro

pert

ies

of

Ele

men

ts (

con

tin

ued

)

Tabl

e C-

6

Prot

actin

ium

Pa91

231.

0358

815

5242

2715

.37

163

568

(5οΏ½

)οΏ½1.

1914

.6β€”

481

trace

3οΏ½,4

οΏ½,5

οΏ½Ra

dium

Ra88

[226

]70

016

305

228

509.

1(2

οΏ½)οΏ½

2.91

68.

36β€”

136.

8β€”

2οΏ½Ra

don

Rn86

[222

]οΏ½

71οΏ½

620.

0097

314

010

37β€”

16.4

β€”16

.4β€”

Rhen

ium

Re75

186.

207

3180

5650

21.2

3213

776

0(7

οΏ½)οΏ½

0.34

33.4

0.13

6870

71

οΏ½10

οΏ½7

3οΏ½,4

οΏ½,6

οΏ½,7

οΏ½Rh

odiu

mRh

4510

2.90

5519

6037

2712

.39

134

720

(3οΏ½

)οΏ½0.

7621

.60.

2427

494

1οΏ½

10οΏ½

73οΏ½

,4οΏ½

,5οΏ½

Rubi

dium

Rb37

85.4

678

39.5

697

1.53

224

840

3(1

οΏ½)οΏ½

2.92

52.

190.

3634

469

.20.

0078

1οΏ½Ru

then

ium

Ru44

101.

0723

1041

1912

.41

134

711

(4οΏ½

)οΏ½0.

6825

.50.

2381

567.

8β€”

2οΏ½,3

οΏ½,4

οΏ½,5

οΏ½Ru

ther

ford

ium

Rf10

4[2

61]

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”Sa

mar

ium

Sm62

150.

3610

7218

007.

536

180.

454

2(3

οΏ½)οΏ½

2.3

8.9

0.19

6519

17

οΏ½10

οΏ½4

2οΏ½,3

οΏ½Sc

andi

umSc

2144

.955

9115

3928

313

162

631

(3οΏ½

)οΏ½2.

0315

.77

0.56

7730

4.8

0.00

223οΏ½

Seab

orgi

umSg

106

[266

]β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

β€”β€”

Sele

nium

Se34

78.9

622

168

54.

7911

794

0.7

(2οΏ½

)οΏ½0.

924

5.43

0.32

1226

.35

οΏ½10

οΏ½6

2οΏ½,2

οΏ½,4

οΏ½,6

οΏ½Si

licon

Si14

28.0

855

1411

3231

2.33

611

878

6.5

(4οΏ½

)οΏ½0.

143

50.2

0.71

2135

927

.22οΏ½

,4οΏ½

Silv

erAg

4710

7.86

8296

121

9510

.49

144

730.

8(1

οΏ½)οΏ½

0.79

9111

.65

0.23

502

255

8οΏ½

10οΏ½

61οΏ½

Sodi

umN

a11

22.9

8976

897

.83

897.

40.

968

186

495.

9(1

οΏ½)οΏ½

2.71

42.

602

1.22

897

.42.

271οΏ½

Stro

ntiu

mSr

3887

.62

776.

913

822.

621

554

9.5

(2οΏ½

)οΏ½2.

897.

4308

0.30

113

70.

0384

2οΏ½Su

lfur

S16

32.0

6511

5.2

444.

72.

0810

399

9.6

(2οΏ½

)οΏ½0.

451.

7272

0.70

609.

620.

032οΏ½

,4οΏ½

,6οΏ½

Tant

alum

Ta73

180.

9479

3017

5458

16.6

514

676

0.8

(5οΏ½

)οΏ½0.

8136

.57

0.14

0273

72

οΏ½10

οΏ½4

4οΏ½,5

οΏ½Te

chne

tium

Tc43

[98]

2157

4265

11.5

136

702

(6οΏ½

)οΏ½0.

8323

.0β€”

577

β€”2οΏ½

,4οΏ½

,6οΏ½

,7οΏ½

Tellu

rium

Te52

127.

6045

099

06.

2513

886

9(2

οΏ½)οΏ½

1.14

17.4

0.20

1650

.62

οΏ½10

οΏ½7

2οΏ½,2

οΏ½,4

οΏ½,6

οΏ½Te

rbiu

mTb

6515

8.92

534

1356

3230

8.27

217

7.3

564

(3οΏ½

)οΏ½2.

3110

.30.

1819

293

1οΏ½

10οΏ½

43οΏ½

,4οΏ½

Thal

lium

Tl81

204.

3833

303.

514

5711

.85

170

589.

1(1

οΏ½)οΏ½

0.33

634.

270.

1288

162

7οΏ½

10οΏ½

51οΏ½

,3οΏ½

Thor

ium

Th90

232.

0381

1750

4787

11.7

817

958

7(4

οΏ½)οΏ½

1.83

16.1

10.

1177

543.

98.

1οΏ½

10οΏ½

44οΏ½

Thul

ium

Tm69

168.

9342

115

4519

509.

318

175.

959

6(3

οΏ½)οΏ½

2.32

18.4

0.16

0021

35

οΏ½10

οΏ½5

Tin

Sn50

118.

710

232

2623

7.26

514

170

8.4

(4οΏ½

)οΏ½0.

151

7.07

0.22

7429

62.

1οΏ½

10οΏ½

42οΏ½

,4οΏ½

Tita

nium

Ti22

47.8

6716

6633

584.

514

765

8.1

(4οΏ½

)οΏ½0.

8614

.146

0.52

2642

50.

632οΏ½

,3οΏ½

,4οΏ½

Tung

sten

W74

183.

8434

2255

5519

.313

977

0.4

(6οΏ½

)οΏ½0.

0935

.40.

1320

806

1.2

οΏ½10

οΏ½4

4οΏ½,5

οΏ½,6

οΏ½Un

unbi

umUu

b11

2[2

85]

Unun

quad

ium

Uuq

114

[289

]Un

unun

ium

Uuu

111

[272

]Ur

aniu

mU

9223

8.02

8911

3041

3119

.05

156

597

(6οΏ½

)οΏ½0.

8312

.60.

1161

842

32.

3οΏ½

10οΏ½

43οΏ½

,4οΏ½

,5οΏ½

,6οΏ½

Vana

dium

V23

50.9

415

1917

3417

6.11

134

650.

3(4

οΏ½)οΏ½

0.54

22.8

40.

4886

459.

70.

0136

2οΏ½,3

οΏ½,4

οΏ½,5

οΏ½Xe

non

Xe54

131.

293

οΏ½11

1.8

οΏ½10

8.09

0.00

5897

121

811

70β€”

2.29

0.15

832

12.6

4β€”

Ytte

rbiu

mYb

7017

3.04

824

1196

6.97

319

3.3

603

(3οΏ½

)οΏ½2.

227.

660.

1545

155

3.4

οΏ½10

οΏ½4

2οΏ½,3

οΏ½Yt

trium

Y39

88.9

0585

1530

3264

4.5

180

600

(3οΏ½

)οΏ½2.

3717

.15

0.29

8439

30.

0035

3οΏ½Zi

ncZn

3065

.39

419.

690

77.

1413

490

6.4

(2οΏ½

)οΏ½0.

7626

7.32

20.

3884

115

0.00

762οΏ½

Zirc

oniu

mZr

4091

.224

1852

4400

6.51

160

640

(4οΏ½

)οΏ½1.

720

.92

0.27

8059

0.5

0.01

624οΏ½

* [

] ind

icate

s m

ass

of lo

nges

t-liv

ed is

otop

e.

Element

Symbol

Atomic Number

Atomic Mass* (amu)

Melting Point (Β°C)

Boiling Point (Β°C)

Density (g/cm3

)

(gases measured at STP) Atomic Radius (p

m) First Ionization Energy (kJ/m

ol)

Standard Reduction

Potential (V) (f

or elements

from or to

oxidation

state indicated) Enthalpy of Fusio

n (kJ/mol)

Specific H

eat(J/g

οΏ½CΒ°)

Enthalpy of Vaporization

(kJ/mol)

Abundance in Earth’s

Crust (%)

Major Oxidation States

Page 48: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Tables 917

Table

s

APPENDIX C Tables

Electron Configurations of Elements

SublevelsElements 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 6f 7s

1 Hydrogen 12 Helium 2

3 Lithium 2 14 Beryllium 2 25 Boron 2 2 16 Carbon 2 2 27 Nitrogen 2 2 38 Oxygen 2 2 49 Fluorine 2 2 5

10 Neon 2 2 6

11 Sodium 2 2 6 112 Magnesium 2 2 6 213 Aluminum 2 2 6 2 114 Silicon 2 2 6 2 215 Phosphorus 2 2 6 2 316 Sulfur 2 2 6 2 417 Chlorine 2 2 6 2 518 Argon 2 2 6 2 6

19 Potassium 2 2 6 2 6 120 Calcium 2 2 6 2 6 221 Scandium 2 2 6 2 6 1 222 Titanium 2 2 6 2 6 2 223 Vanadium 2 2 6 2 6 3 224 Chromium 2 2 6 2 6 5 125 Manganese 2 2 6 2 6 5 226 Iron 2 2 6 2 6 6 227 Cobalt 2 2 6 2 6 7 228 Nickel 2 2 6 2 6 8 229 Copper 2 2 6 2 6 10 130 Zinc 2 2 6 2 6 10 231 Gallium 2 2 6 2 6 10 2 132 Germanium 2 2 6 2 6 10 2 233 Arsenic 2 2 6 2 6 10 2 334 Selenium 2 2 6 2 6 10 2 435 Bromine 2 2 6 2 6 10 2 536 Krypton 2 2 6 2 6 10 2 6

37 Rubidium 2 2 6 2 6 10 2 6 138 Strontium 2 2 6 2 6 10 2 6 239 Yttrium 2 2 6 2 6 10 2 6 1 240 Zirconium 2 2 6 2 6 10 2 6 2 241 Niobium 2 2 6 2 6 10 2 6 4 142 Molybdenum 2 2 6 2 6 10 2 6 5 143 Technetium 2 2 6 2 6 10 2 6 5 244 Ruthenium 2 2 6 2 6 10 2 6 7 145 Rhodium 2 2 6 2 6 10 2 6 8 146 Palladium 2 2 6 2 6 10 2 6 1047 Silver 2 2 6 2 6 10 2 6 10 148 Cadmium 2 2 6 2 6 10 2 6 10 249 Indium 2 2 6 2 6 10 2 6 10 2 150 Tin 2 2 6 2 6 10 2 6 10 2 251 Antimony 2 2 6 2 6 10 2 6 10 2 352 Tellurium 2 2 6 2 6 10 2 6 10 2 453 Iodine 2 2 6 2 6 10 2 6 10 2 554 Xenon 2 2 6 2 6 10 2 6 10 2 6

Table C-7Table C-7

Page 49: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

918 Chemistry: Matter and Change

Table

s

APPENDIX C Tables

Electron Configurations of Elements (continued)

SublevelsElements 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 6f 7s 7p

55 Cesium 2 2 6 2 6 10 2 6 10 2 6 156 Barium 2 2 6 2 6 10 2 6 10 2 6 257 Lanthanum 2 2 6 2 6 10 2 6 10 2 6 1 258 Cerium 2 2 6 2 6 10 2 6 10 2 2 6 259 Praseodymium 2 2 6 2 6 10 2 6 10 3 2 6 260 Neodymium 2 2 6 2 6 10 2 6 10 4 2 6 261 Promethium 2 2 6 2 6 10 2 6 10 5 2 6 262 Samarium 2 2 6 2 6 10 2 6 10 6 2 6 263 Europium 2 2 6 2 6 10 2 6 10 7 2 6 264 Gadolinium 2 2 6 2 6 10 2 6 10 7 2 6 1 265 Terbium 2 2 6 2 6 10 2 6 10 9 2 6 266 Dysprosium 2 2 6 2 6 10 2 6 10 10 2 6 267 Holmium 2 2 6 2 6 10 2 6 10 11 2 6 268 Erbium 2 2 6 2 6 10 2 6 10 12 2 6 269 Thulium 2 2 6 2 6 10 2 6 10 13 2 6 270 Ytterbium 2 2 6 2 6 10 2 6 10 14 2 6 271 Lutetium 2 2 6 2 6 10 2 6 10 14 2 6 1 272 Hafnium 2 2 6 2 6 10 2 6 10 14 2 6 2 273 Tantalum 2 2 6 2 6 10 2 6 10 14 2 6 3 274 Tungsten 2 2 6 2 6 10 2 6 10 14 2 6 4 275 Rhenium 2 2 6 2 6 10 2 6 10 14 2 6 5 276 Osmium 2 2 6 2 6 10 2 6 10 14 2 6 6 277 Iridium 2 2 6 2 6 10 2 6 10 14 2 6 7 278 Platinum 2 2 6 2 6 10 2 6 10 14 2 6 9 179 Gold 2 2 6 2 6 10 2 6 10 14 2 6 10 180 Mercury 2 2 6 2 6 10 2 6 10 14 2 6 10 281 Thallium 2 2 6 2 6 10 2 6 10 14 2 6 10 2 182 Lead 2 2 6 2 6 10 2 6 10 14 2 6 10 2 283 Bismuth 2 2 6 2 6 10 2 6 10 14 2 6 10 2 384 Polonium 2 2 6 2 6 10 2 6 10 14 2 6 10 2 485 Astatine 2 2 6 2 6 10 2 6 10 14 2 6 10 2 586 Radon 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6

87 Francium 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 188 Radium 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 289 Actinium 2 2 8 2 6 10 2 6 10 14 2 6 10 2 6 1 290 Thorium 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2 291 Protactinium 2 2 6 2 6 10 2 6 10 14 2 6 10 2 2 6 1 292 Uranium 2 2 6 2 6 10 2 6 10 14 2 6 10 3 2 6 1 293 Neptunium 2 2 6 2 6 10 2 6 10 14 2 6 10 4 2 6 1 294 Plutonium 2 2 6 2 6 10 2 6 10 14 2 6 10 6 2 6 295 Americium 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 296 Curium 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 1 297 Berkelium 2 2 6 2 6 10 2 6 10 14 2 6 10 9 2 6 298 Californium 2 2 6 2 6 10 2 6 10 14 2 6 10 10 2 6 299 Einsteinium 2 2 6 2 6 10 2 6 10 14 2 6 10 11 2 6 2

100 Fermium 2 2 6 2 6 10 2 6 10 14 2 6 10 12 2 6 2101 Mendelevium 2 2 6 2 6 10 2 6 10 14 2 6 10 13 2 6 2102 Nobelium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 2103 Lawrencium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 1 2104 Rutherfordium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 2 2?105 Dubnium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 3 2?106 Seaborgium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 4 2?107 Bohrium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 5 2?108 Hassium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 6 2?109 Meitnerium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 7 2?110 Darmstadtium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 8 2?111 Unununium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 9 2?112 Unumbium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2?114 Ununquadium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2? 2?

Table C-7

Page 50: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Tables 919

Table

s

APPENDIX C Tables

Names and Charges of Polyatomic Ions

Table C-8

Ionization Constants

Substance IonizationConstant

HCOOH 1.77 οΏ½ 10οΏ½4

CH3COOH 1.75 οΏ½ 10οΏ½5

CH2ClCOOH 1.36 οΏ½ 10οΏ½3

CHCl2COOH 4.47 οΏ½ 10οΏ½2

CCl3COOH 3.02 οΏ½ 10οΏ½1

HOOCCOOH 5.36 οΏ½ 10οΏ½2

HOOCCOOοΏ½ 1.55 οΏ½ 10οΏ½4

CH3CH2COOH 1.34 οΏ½ 10οΏ½5

C6H5COOH 6.25 οΏ½ 10οΏ½5

H3AsO4 6.03 οΏ½ 10οΏ½3

H2AsO4οΏ½ 1.05 οΏ½ 10οΏ½7

H3BO3 5.75 οΏ½ 10οΏ½10

H2BO3οΏ½ 1.82 οΏ½ 10οΏ½13

Substance IonizationConstant

HBO3οΏ½2 1.58 οΏ½ 10οΏ½14

H2CO3 4.5 οΏ½ 10οΏ½7

HCO3οΏ½ 4.68 οΏ½ 10οΏ½11

HCN 6.17 οΏ½ 10οΏ½10

HF 6.3 οΏ½ 10οΏ½4

HNO2 5.62 οΏ½ 10οΏ½4

H3PO4 7.08 οΏ½ 10οΏ½3

H2PO4οΏ½ 6.31 οΏ½ 10οΏ½8

HPO42οΏ½ 4.17 οΏ½ 10οΏ½13

H3PO3 5.01 οΏ½ 10οΏ½2

H2PO3οΏ½ 2.00 οΏ½ 10οΏ½7

H3PO2 5.89 οΏ½ 10οΏ½2

H2S 9.1 οΏ½ 10οΏ½8

Substance IonizationConstant

HSοΏ½ 1.00 οΏ½ 10οΏ½19

HSO4οΏ½ 1.02 οΏ½ 10οΏ½2

H2SO3 1.29 οΏ½ 10οΏ½2

HSO3οΏ½ 6.17 οΏ½ 10οΏ½8

HSeO4οΏ½ 2.19 οΏ½ 10οΏ½2

H2SeO3 2.29 οΏ½ 10οΏ½3

HSeO3οΏ½ 4.79 οΏ½ 10οΏ½9

HBrO 2.51 οΏ½ 10οΏ½9

HClO 2.9 οΏ½ 10οΏ½8

HIO 3.16 οΏ½ 10οΏ½11

NH3 5.62 οΏ½ 10οΏ½10

H2NNH2 7.94 οΏ½ 10οΏ½9

H2NOH 1.15 οΏ½ 10οΏ½6

Table C-9

1οΏ½ 2οΏ½ 3οΏ½ 4οΏ½

Acetate, CH3COOοΏ½ Carbonate, CO32οΏ½ Arsenate, AsO4

3οΏ½ Hexacyanoferrate(II),Amide, NH2

οΏ½ Chromate, CrO42οΏ½ Arsenite, AsO3

3οΏ½ Fe(CN)64οΏ½

Astatate, AtO3οΏ½ Dichromate, Cr2O7

2οΏ½ Borate, BO33οΏ½ Orthosilicate, SiO4

4οΏ½

Azide, N3οΏ½ Hexachloroplatinate, Citrate, C6H5O7

3οΏ½ Diphosphate, P2O74οΏ½

Benzoate, C6H5COOοΏ½ PtCl62οΏ½ Hexacyanoferrate(III),Bismuthate, BiO3

οΏ½ Hexafluorosilicate, SiF62οΏ½ Fe(CN)6

3οΏ½

Bromate, BrO3οΏ½ Molybdate, MoO4

2οΏ½ Phosphate, PO43οΏ½

Chlorate, ClO3οΏ½ Oxalate, C2O4

2οΏ½ Phosphite, PO33οΏ½

Chlorite, ClO2οΏ½ Peroxide, O2

2οΏ½

Cyanide, CNοΏ½ Peroxydisulfate, S2O82οΏ½ 1οΏ½ 2οΏ½

Formate, HCOOοΏ½ Ruthenate, RuO42οΏ½ Ammonium, NH4

οΏ½ Mercury(I), Hg22οΏ½

Hydroxide, OHοΏ½ Selenate, SeO42οΏ½ Neptunyl(V), NpO2

οΏ½ Neptunyl(VI), NpO22οΏ½

Hypobromite, BrOοΏ½ Selenite, SeO32οΏ½ Plutonyl(V), PuO2

οΏ½ Plutonyl(VI), PuO22οΏ½

Hypochlorite, ClOοΏ½ Silicate, SiO32οΏ½ Uranyl(V), UO2

οΏ½ Uranyl(VI), UO22οΏ½

Hypophosphite, H2PO2οΏ½ Sulfate, SO4

2οΏ½ Vanadyl(V), VO2οΏ½ Vanadyl(IV), VO2οΏ½

Iodate, IO3οΏ½ Sulfite, SO3

2οΏ½

Nitrate, NO3οΏ½ Tartrate, C4H4O6

2οΏ½

Nitrite, NO2οΏ½ Tellurate, TeO4

2οΏ½

Perbromate, BrO4οΏ½ Tellurite, TeO3

2οΏ½

Perchlorate, ClO4οΏ½ Tetraborate, B4O7

2οΏ½

Periodate, IO4οΏ½ Thiosulfate, S2O3

2οΏ½

Permanganate, MnO4οΏ½ Tungstate, WO4

2οΏ½

Perrhenate, ReO4οΏ½

Thiocyanate, SCNοΏ½

Vanadate, VO3οΏ½

Page 51: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

920 Chemistry: Matter and Change

Table

s

APPENDIX C Tables

Solubility Guidelines

Table C-10Table C-10

Aluminum S S β€” S S β€” I S S I S I S D

Ammonium S S S S S S S S S β€” S S S S

Barium S S P S S I S S S S S I I D

Calcium S S P S S S S S S P S P P P

Copper (II) S S β€” S S β€” I β€” S I S I S I

Hydrogen S S β€” S S β€” β€” S S S S S S S

Iron(II) β€” S P S S β€” I S S I S I S I

Iron(III) β€” S β€” S S I I S S I S P P D

Lead(II) S S β€” S S I P P S P S I P I

Lithium S S S S S ? S S S S S P S S

Magnesium S S P S S S I S S I S P S D

Manganese(II) S S P S S β€” I S S I S P S I

Mercury(I) P I I S I P β€” I S I S I P I

Mercury(II) S S β€” S S P I P S P S I D I

Potassium S S S S S S S S S S S S S S

Silver P I I S I P β€” I S P S I P I

Sodium S S S S S S S S S D S S S S

Strontium S S P S S P S S S S S I P S

Tin(II) D S β€” S S I S D I S I S I

Tin(IV) S S β€” β€” S S I D β€” I S β€” S I

Zinc S S P S S P P S S P S I S I

S – soluble P – partially soluble I – insoluble D – decomposes

A substance is considered soluble if more than three grams of the substance dissolves in 100 mL ofwater. The more common rules are listed below.

1. All common salts of the group 1A elements and ammonium ions are soluble.2. All common acetates and nitrates are soluble.3. All binary compounds of group 7A elements (other than F) with metals are soluble except

those of silver, mercury(I), and lead.4. All sulfates are soluble except those of barium, strontium, lead, calcium, silver, and mercury(I).5. Except for those in Rule 1, carbonates, hydroxides, oxides, sulfides, and phosphates are insoluble.

Solubility of Compounds in Water

Acet

ate

Brom

ide

Carb

onat

eCh

lora

teCh

lorid

eCh

rom

ate

Hydr

oxid

eIo

dide

Nitr

ate

Oxid

e

Perc

hlor

ate

Phos

phat

eSu

lfate

Sufid

e

Page 52: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Tables 921

Table

s

APPENDIX C Tables

Specific Heat Values (J/gοΏ½K)

Substance c

AlF3 0.8948BaTiO3 0.79418BeO 1.020CaC2 0.9785CaSO4 0.7320CCl4 0.85651CH3OH 2.55CH2OHCH2OH 2.413CH3CH2OH 2.4194CdO 0.3382CuSO4οΏ½5H2O 1.12

Substance c

Fe3C 0.5898FeWO4 0.37735HI 0.22795K2CO3 0.82797MgCO3 0.8957Mg(OH)2 1.321MgSO4 0.8015MnS 0.5742Na2CO3 1.0595NaF 1.116

Substance c

NaVO3 1.540Ni(CO)4 1.198PbI2 0.1678SF6 0.6660SiC 0.6699SiO2 0.7395SrCl2 0.4769Tb2O3 0.3168TiCl4 0.76535Y2O3 0.45397

Table C-11Table C-11

Molal Freezing Point Depression and Boiling Point Elevation Constants

Kfp Freezing Point Kbp Boiling PointSubstance (CΒ°kg/mol) (Β°C) (CΒ°kg/mol) (Β°C)

Acetic acid 3.90 16.66 3.22 117.90Benzene 5.12 5.533 2.53 80.100Camphor 37.7 178.75 5.611 207.42Cyclohexane 20.0 6.54 2.75 80.725Cyclohexanol 39.3 25.15 -- --Nitrobenzene 6.852 5.76 5.24 210.8 Phenol 7.40 40.90 3.60 181.839Water 1.86 0.000 0.512 100.000

Table C-12Table C-12

Heat of Formation Values

Substance οΏ½HfΒ°Ag(s) 0AgCl(s) οΏ½127.068AgCN(s) 146.0Al2O3 οΏ½1675.7BaCl2(aq) οΏ½871.95BaSO4 οΏ½1473.2BeO(s) οΏ½609.6BiCl3(s) οΏ½379.1Bi2S3(s) οΏ½143.1Br2 0CCI4(l) οΏ½128.2CH4(g) οΏ½74.81C2H2(g) 226.73C2H4(g) 52.26C2H6(g) οΏ½84.68CO(g) οΏ½110.525CO2(g) οΏ½393.509CS2(l) 89.70Ca(s) 0CaCO3(s) οΏ½1206.9CaO(s) οΏ½635.1Ca(OH)2(s) οΏ½986.09Cl2(g) 0Co3O4(s) οΏ½891CoO(s) οΏ½237.94Cr2O3(s) οΏ½1139.7

Substance οΏ½HfΒ°CsCl(s) οΏ½443.04Cs2SO4(s) οΏ½1443.02CuI(s) οΏ½67.8CuS(s) οΏ½53.1Cu2S(s) οΏ½79.5CuSO4(s) οΏ½771.36F2(g) 0FeCl3(s) οΏ½399.49FeO(s) οΏ½272.0FeS(s) οΏ½100.0Fe2O3(s) οΏ½824.2Fe3O4(s) οΏ½1118.4H(g) 217.965H2(g) 0HBr(g) οΏ½36.40HCl(g) οΏ½92.307HCl(aq) οΏ½167.159HCN(aq) 108.9HCHO οΏ½108.57HCOOH(l) οΏ½424.72HF(g) οΏ½271.1HI(g) 26.48H2O(l) οΏ½285.830H2O(g) οΏ½241.818H2O2(l) οΏ½187.8H3PO4(l) οΏ½595.4

Substance οΏ½HfΒ°H3PO4(aq) οΏ½1279.0H2S(g) οΏ½20.63H2SO3(aq) οΏ½608.81H2SO4(aq) οΏ½814.0HgCl2(s) οΏ½224. 3Hg2Cl2(s) οΏ½265.22Hg2SO4(s) οΏ½743.12I2(s) 0K(s) 0KBr(s) οΏ½393.798KMnO4(s) οΏ½837.2KOH οΏ½424.764LiBr(s) οΏ½351.213LiOH(s) οΏ½484.93Mn(s) 0MnCl2(aq) οΏ½555.05Mn(NO3)2(aq) οΏ½635.5MnO2(s) οΏ½520.03MnS(s) οΏ½214.2N2(g) 0NH3(g) οΏ½46.11NH4Br(s) οΏ½270.83NO(g) 90.25NO2(g) 33.18N2O(g) 82.05Na(s) 0

Substance οΏ½HfΒ°NaBr(s) οΏ½361.062NaCl(s) οΏ½411.153NaHCO3(s) οΏ½950.8NaNO3(aq) οΏ½447.48NaOH(s) οΏ½425.609Na2CO3(s) οΏ½1130.7Na2S(aq) οΏ½447.3Na2SO4(s) οΏ½1387.08NH4CI(s) οΏ½314.4O2(g) 0P4O6(s) οΏ½1640.1P4O10(s) οΏ½2984.0PbBr2(s) οΏ½278.7PbCl2(s) οΏ½359.41SF6(g) οΏ½1220.5SO2(g) οΏ½296.830SO3(g) οΏ½454.51SrO(s) οΏ½592.0TiO3(s) οΏ½939.7TlI(s) οΏ½123.5UCl4(s) οΏ½1019.2UCl5(s) οΏ½1059Zn(s) 0ZnCl2(aq) οΏ½488.19ZnO(s) οΏ½348.28ZnSO4(aq) οΏ½1063.15

οΏ½HfΒ° (kJ/mol) (concentration of aqueous solutions is 1M)

Table C-13Table C-13

Page 53: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

922 Chemistry: Matter and Change

Solu

tions

Chapter 1No practice problems

Chapter 2 1. density οΏ½

vomluamss

e

volume οΏ½ 41 mL οΏ½ 20 mL οΏ½ 21 mL

density οΏ½ 21147

mgL

οΏ½ 7.0 g/mL

2. volume οΏ½ dmen

assisty

volume οΏ½ 42g0/mg

L οΏ½ 5 mL

3. density οΏ½ vo

mluamss

e

density οΏ½ 520

cmg

3 οΏ½ 4 g/cm3

The density of pure aluminum is 2.7 g/cm3, so thecube cannot be made of aluminum.

12. a. 7 οΏ½ 102 mb. 3.8 οΏ½ 104 mc. 4.5 οΏ½ 106 md. 6.85 οΏ½ 1011 me. 5.4 οΏ½ 10οΏ½3 kgf. 6.87 οΏ½ 10οΏ½6 kgg. 7.6 οΏ½ 10οΏ½8 kgh. 8 οΏ½ 10οΏ½10 kg

13. a. 3.6 οΏ½ 105 sb. 5.4 οΏ½ 10οΏ½5 sc. 5.06 οΏ½ 103 sd. 8.9 οΏ½ 1010 s

14. a. 7 οΏ½ 10οΏ½5 mb. 3 οΏ½ 108 mc. 2 οΏ½ 102 md. 5 οΏ½ 10οΏ½12 me. 1.26 οΏ½ 104 kg οΏ½ 0.25 οΏ½ 104 kg οΏ½ 1.51 οΏ½ 104 kgf. 7.06 οΏ½ 10οΏ½3 kg οΏ½ 0.12 οΏ½ 10οΏ½3 kg

οΏ½ 7.18 οΏ½ 10οΏ½3 kgg. 4.39 οΏ½ 105 kg οΏ½ 0.28 οΏ½ 105 kg οΏ½ 4.11 οΏ½ 105 kgh. 5.36 οΏ½ 10οΏ½1 kg οΏ½ 0.740 οΏ½ 10οΏ½1 kg

οΏ½ 4.62 οΏ½ 10οΏ½1 kg

15. a. 4 οΏ½ 1010 cm2

b. 6 οΏ½ 10οΏ½2 cm2

c. 9 οΏ½ 10οΏ½1 cm2

d. 5 οΏ½ 102 cm2

16. a. 3 οΏ½ 101 g/cm3

b. 2 οΏ½ 103 g/cm3

c. 3 οΏ½ 106 g/cm3

d. 2 οΏ½ 10οΏ½1 g/cm3

17. a. 360 s οΏ½ 100

10sms

οΏ½ 360 000 ms

b. 4800 g οΏ½ 1100

k0gg

οΏ½ 4.8 kg

c. 5600 dm οΏ½ 10

1dm

m οΏ½ 560 m

d. 72 g οΏ½ 100

10gmg οΏ½ 72 000 mg

18. a. 245 ms οΏ½ 100

10sms

οΏ½ 0.245 s

b. 5 m οΏ½ 10

10mcm οΏ½ 500 cm

c. 6800 cm οΏ½ 10

10mcm οΏ½ 68 m

d. 25 kg οΏ½ 10

10M0

gkg

οΏ½ 0.025 Mg

19. 24 h οΏ½ 60

1mh

in οΏ½

16m0

isn

οΏ½ 86 400 s

20. 119.

m3

Lg

οΏ½ 10

1dg

g οΏ½

10010LmL

οΏ½ 193 000 dg/L

21. 90.0

1 hkm οΏ½

01.62

kmmi

οΏ½ 60

1mh

in οΏ½ 0.930 mi/min

29. 01..1599

οΏ½ 100 οΏ½ 11.9%

01..0599

οΏ½ 100 οΏ½ 5.66%

01..1549

οΏ½ 100 οΏ½ 8.80%

30. 01..1519

οΏ½ 100 οΏ½ 6.92%

01..1509

οΏ½ 100 οΏ½ 6.29%

01..1529

οΏ½ 100 οΏ½ 7.55%

31. a. 4b. 7c. 5d. 3

32. a. 5b. 3c. 5d. 2

33. a. 84 790 kgb. 38.54 gc. 256.8 cmd. 4.936 m

APPENDIX C TablesAPPENDIX D Solutions

Page 54: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 923

Solu

tions

34. a. 5.482 οΏ½ 10οΏ½4 gb. 1.368 οΏ½ 105 kgc. 3.087 οΏ½ 108 mmd. 2.014 mL

35. a. 142.9 cmb. 768 kgc. 0.1119 mg

36. a. 12.12 cmb. 2.10 cmc. 2.7 οΏ½ 103 cm

37. a. 78 m2

b. 12 m2

c. 2.5 m2

d. 81.1 m2

38. a. 2.0 m/sb. 3.00 m/sc. 2.00 m/sd. 2.9 m/s

Chapter 3 6. massreactants οΏ½ massproducts

massreactants οΏ½ masswater electrolyzed

massproducts οΏ½ masshydrogen οΏ½ massoxygen

masswater electrolyzed οΏ½ masshydrogen οΏ½ massoxygen

masswater electrolyzed οΏ½ 10.0 g οΏ½ 79.4 g οΏ½ 89.4 g

7. massreactants οΏ½ massproducts

masssodium οΏ½ masschlorine οΏ½ masssodium chloride

masssodium οΏ½ 15.6 g

masssodium chloride οΏ½ 39.7 g

Substituting and solving for masschlorine yields,15.6 g οΏ½ masschlorine οΏ½ 39.7 g

masschlorine οΏ½ 39.7 g οΏ½ 15.6 g οΏ½ 24.1 g used in thereaction.

Because the sodium reacts with excess chlorine,all of the sodium is used in the reaction; that is,15.6 g of sodium are used in the reaction.

8. The reactants are aluminum and bromine. Theproduct is aluminum bromide. The mass ofbromine used in the reaction equals the initialmass minus the mass remaining after the reactionis complete. Thus,

massbromine reacted οΏ½ 100.0 g οΏ½ 8.5 g οΏ½ 91.5 g

Because no aluminum remains after the reaction,you know that all of the aluminum is used in thereaction. Thus, massaluminum οΏ½ initial mass of aluminum οΏ½ 10.3 g

To determine the mass of aluminum bromideformed, use conservation of mass.

massproducts οΏ½ massreactants

massaluminum bromide οΏ½ massaluminum οΏ½ massbromine

massaluminum bromide οΏ½ 10.3 g οΏ½ 91.5 g οΏ½ 101.8 g

9. Magnesium and oxygen are the reactants.Magnesium oxide is the product.

massreactants οΏ½ massproducts

massmagnesium οΏ½ massoxygen οΏ½ massmagnesium oxide

massmagnesium οΏ½ 10.0 g

massmagnesium oxide οΏ½ 16.6 g

Substituting and solving for massoxygen yields,10.0 g οΏ½ massoxygen οΏ½ 16.6 g

massoxygen οΏ½ 16.6 g οΏ½ 10.0 g οΏ½ 6.6 g

APPENDIX D Solutions to Practice Problems

Page 55: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

924 Chemistry: Matter and Change

Solu

tions

20. percent by masshydrogen οΏ½ mm

aassss

c

h

o

y

m

d

p

ro

o

g

u

e

n

n

d οΏ½ 100

percent by masshydrogen οΏ½ 1728..40

gg

οΏ½ 100 οΏ½ 15.9%

21. masscompound οΏ½ 1.0 g οΏ½ 19.0 g οΏ½ 20.0 g

percent by masshydrogen οΏ½ mm

aassss

c

h

o

y

m

d

p

ro

o

g

u

e

n

n

d οΏ½ 100

percent by masshydrogen οΏ½ 210.0.0

gg

οΏ½ 100 οΏ½ 5.0%

22. massxy οΏ½ 3.50 g οΏ½ 10.5 g οΏ½ 14.0 g

percent by massx οΏ½ mm

aassss

x

x

y οΏ½ 100

percent by massx οΏ½ 31.45.00

gg

οΏ½ 100 οΏ½ 25.0%

percent by massy οΏ½ mm

aassss

x

y

y οΏ½ 100

percent by massy οΏ½ 1104..50

gg

οΏ½ 100 οΏ½ 75.0%

23. Compound Imasscompound οΏ½ 15.0 g οΏ½ 120.0 g οΏ½ 135.0 g

percent by masshydrogen οΏ½ mm

aassss

c

h

o

y

m

d

p

ro

o

g

u

e

n

n

d οΏ½ 100

percent by masshydrogen οΏ½ 11355.0.0

gg

οΏ½ 100 οΏ½ 11.1%

Compound IImasscompound οΏ½ 2.0 g οΏ½ 32.0 g οΏ½ 34.0 g

percent by masshydrogen οΏ½ mm

aassss

c

h

o

y

m

d

p

ro

o

g

u

e

n

n

d οΏ½ 100

percent by masshydrogen οΏ½ 324.0.0

gg

οΏ½ 100 οΏ½ 5.8%

The composition by percent by mass is not thesame for the two compounds. Therefore, theymust be different compounds.

24. No, you cannot be sure. The fact that two com-pounds have the same percent by mass of a singleelement does not guarantee that the compositionof the two compounds is the same.

Chapter 411. Element Protons Electrons

a. boron 5 5

b. radon 86 86

c. platinum 78 78

d. magnesium 12 12

12. dysprosium

13. silicon

14. Protons Neutrons Isotope Symboland electrons

b. 20 26 calcium-46 4620Ca

c. 8 9 oxygen-17 178O

d. 26 31 iron-57 5726Fe

e. 30 34 zinc-64 6430Zn

f. 80 124 mercury-204 20480Hg

15. For 10B: mass contribution οΏ½ (10.013 amu)(0.198)οΏ½ 1.98 amu

For 11B: mass contribution οΏ½ (11.009 amu)(0.802)οΏ½ 8.83 amu

Atomic mass of B οΏ½ 1.98 amu οΏ½ 8.83 amu οΏ½ 10.81 amu

16. Helium-4 is more abundant in nature because the atomic mass of naturally occurring helium iscloser to the mass of helium-4 (approximately 4 amu) than to the mass of helium-3 (approxi-mately 3 amu).

17. For 24Mg: mass contribution οΏ½(23.985 amu)(0.7899) οΏ½ 18.95 amu

For 25Mg: mass contribution οΏ½(24.986 amu)(0.1000) οΏ½ 2.498 amu

For 26Mg: mass contribution οΏ½(25.982 amu)(0.1101) οΏ½ 2.861 amu

Atomic mass of Mg οΏ½18.95 amu οΏ½ 2.498 amu οΏ½ 2.861 amu οΏ½ 24.31 amu

APPENDIX D Solutions to Practice Problems

Page 56: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 925

Solu

tions

Chapter 51. c οΏ½ οΏ½οΏ½

3.00 οΏ½ 108 m/s οΏ½ (4.90 οΏ½ 10οΏ½7 m)οΏ½

οΏ½ οΏ½ 34..0900

οΏ½οΏ½

1100

8

οΏ½7m

m/s

οΏ½ 6.12 οΏ½ 1014 sοΏ½1

2. c οΏ½ οΏ½οΏ½

3.00 οΏ½ 108 m/s οΏ½ (1.15 οΏ½ 10οΏ½10 m)οΏ½

οΏ½ οΏ½ 13..1050

οΏ½οΏ½

1100

οΏ½

8

1m0 m

/s οΏ½ 2.61 οΏ½ 1018 sοΏ½1

3. The speed of all electromagnetic waves is 3.00 οΏ½ 108 m/s.

4. c οΏ½ οΏ½οΏ½

94.7 MHz οΏ½ 9.47 οΏ½ 107 Hz

3.00 οΏ½ 108 m/s οΏ½ οΏ½(9.47 οΏ½ 107 Hz)

οΏ½ οΏ½ 39..0407

οΏ½οΏ½

1100

8

7msοΏ½

/1s

οΏ½ 3.17 m

5. a. Ephoton οΏ½ hοΏ½ οΏ½(6.626 οΏ½ 10οΏ½34 JοΏ½s)(6.32 οΏ½ 1020 sοΏ½1)Ephoton οΏ½ 4.19 οΏ½ 10οΏ½13 J

b. Ephoton οΏ½ hοΏ½ οΏ½(6.626 οΏ½ 10οΏ½34 JοΏ½s)(9.50 οΏ½ 1013 sοΏ½1)Ephoton οΏ½ 6.29 οΏ½ 10οΏ½20 J

c. Ephoton οΏ½ hοΏ½ οΏ½(6.626 οΏ½ 10οΏ½34 JοΏ½s)(1.05 οΏ½ 1016 sοΏ½1)Ephoton οΏ½ 6.96 οΏ½ 10οΏ½18 J

6. a. gamma ray or X rayb. infraredc. ultraviolet

18. a. bromine (35 electrons): [Ar]4s23d104p5

b. strontium (38 electrons): [Kr]5s2

c. antimony (51 electrons): [Kr]5s24d105p3

d. rhenium (75 electrons): [Xe]6s24f145d5

e. terbium (65 electrons): [Xe]6s24f9

f. titanium (22 electrons): [Ar]4s23d2

19. Sulfur (16 electrons) has the electron configura-tion [Ne]3s23p4. Therefore, 6 electrons are inorbitals related to the third energy level of thesulfur atom.

20. Chlorine (17 electrons) has the electron configura-tion [Ne]3s23p5, or 1s22s22p63s23p5. Therefore, 11electrons occupy p orbitals in a chlorine atom.

21. indium (In)

22. barium (Ba)

23. a.

b.

c.

d.

e.

f.

Chapter 6 7. Electron Group Period Block

configuration

a. [Ne]3s2 2A 3 s-block

b. [He]2s2 2A 2 s-block

c. [Kr]5s24d105p5 7A 5 p-block

8. a. [Ar]4s2

b. [Xe]c. [Ar] 4s23d10

d. [He]2s22p4

9. a. Sc, Y, La, Acb. N, P, As, Sb, Bic. Ne, Ar, Kr, Xe, Rn

16. Largest: NaSmallest: S

17. Largest: XeSmallest: He

18. No. If all you know is that the atomic number ofone element is 20 greater than that of the other,then you will be unable to determine the specificgroups and periods that the elements are in.Without this information, you cannot apply theperiodic trends in atomic size to determine whichelement has the larger radius.

Chapter 7No Practice Problems

Xe

S

Mg

Rb

Br

Tl

APPENDIX D Solutions to Practice Problems

Page 57: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

926 Chemistry: Matter and Change

Solu

tions

Chapter 8 7. 3 Na ionsοΏ½Na

1οΏ½ionοΏ½ οΏ½ 1 N ionοΏ½N3οΏ½

ionοΏ½ οΏ½

3(1οΏ½) οΏ½ 1(3οΏ½) οΏ½ 0

The overall charge on one formula unit of Na3N iszero.

8. 2 Li ionsοΏ½Li1iοΏ½onοΏ½ οΏ½ 1 O ionοΏ½O2οΏ½

ionοΏ½ οΏ½

2(1οΏ½) οΏ½ 1(2οΏ½) οΏ½ 0

The overall charge on one formula unit of Li2O iszero.

9. 1 Sr ionοΏ½Sr2iοΏ½onοΏ½ οΏ½ 2 F ionsοΏ½F1

iοΏ½onοΏ½ οΏ½

1(2οΏ½) οΏ½ 2(1οΏ½) οΏ½ 0

The overall charge on one formula unit of SrF2 iszero.

10. 2 Al ionsοΏ½A3l

οΏ½ionοΏ½ οΏ½ 3 S ionsοΏ½S2

iοΏ½onοΏ½ οΏ½

2(3οΏ½) οΏ½ 3(2οΏ½) οΏ½ 0

The overall charge on one formula unit of Al2S3 iszero.

11. 3 Cs ionsοΏ½Cs1οΏ½

ionοΏ½ οΏ½ 1 P ionοΏ½P3

iοΏ½onοΏ½ οΏ½

3(1οΏ½) οΏ½ 1(3οΏ½) οΏ½ 0

The overall charge on one formula unit of Cs3P iszero.

19. KI

20. MgCl2

21. AlBr3

22. Cs3N

23. BaS

24. NaNO3

25. Ca(ClO3)2

26. Al2(CO3)3

27. K2CrO4

28. MgCO3

29. sodium bromide

30. calcium chloride

31. potassium hydroxide

32. copper(II) nitrate

33. silver chromate

Chapter 9 1.

2.

3.

4.

5.

13. carbon tetrachloride14. diarsenic trioxide15. carbon monoxide16. sulfur dioxide17. nitrogen trifluoride18. hydroiodic acid19. chloric acid20. chlorous acid21. sulfuric acid22. hydrosulfuric acid30. 31.

32.

33. 34.

35.

36.

37.O

OO

OO O

SO

SOO O

O

SOO

O

O

O

SO

SOO

1οΏ½

NH H

H

H

β€” Cl β€”

β€”β€”

O O

1O

O

HH

H

Bβ€”β€”

β€”

S C Sβ€”β€” β€”β€”

β€” Nβ€”β€”

F

F

F

H H H H β€”

H

H

H Si Si β€” H

β€”β€”

οΏ½οΏ½ οΏ½ οΏ½ 0

οΏ½ οΏ½ οΏ½ οΏ½ 0Cl Cl Cl C C β€”

β€”

Cl Cl β€” Cl

Cl

Cl

β€”

H H β€” ClοΏ½ 0Cl

H H H β€”

H

S SοΏ½οΏ½ 0

β€”

H H H H β€”

H

H

P PοΏ½οΏ½ οΏ½ 0

β€”β€”

APPENDIX D Solutions to Practice Problems

Page 58: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 927

Solu

tions

38.

39. 40.

41.

Mole-Geometry

Bond Hybridi-cule angle zation

49. BF3 Trigonal 120Β° sp2

planar

50. NH4οΏ½ Tetrahedral 109Β° sp3

51. OCl2 Bent 104.5Β° sp3

52. BeF2 Linear 180Β° sp

53. CF4 Tetrahedral 109Β° sp3

60. SCl2 is polar because the molecule is asymmetric(bent).

61. H2S is polar because the molecule is asymmetric(bent).

62. CF4 is nonpolar because the molecule is symmetric(tetrahedral).

63. CS2 is nonpolar because the molecule is symmetric(linear).

Chapter 101. H2(g) οΏ½ Br2(g) HBr(g)

2. CO(g) οΏ½ O2(g) CO2(g)

3. KClO3(s) KCl(s) οΏ½ O2(g)

4. FeCl3(aq) οΏ½ 3NaOH(aq) Fe(OH)3(s) οΏ½ 3NaCl(aq)

5. CS2(l) οΏ½ 3O2(g) CO2(g) οΏ½ 2SO2(g)

6. Zn(s) οΏ½ H2SO4(aq) H2(g) οΏ½ ZnSO4(aq)

14. 2Al(s) οΏ½ 3S(s) Al2S3(s) synthesis

15. H2O(l) οΏ½ N2O5(g) 2HNO3(aq) synthesis

16. 4NO2(g) οΏ½ O2(g) 2N2O5(g) synthesis andcombustion

17. 2C2H6(g) οΏ½ 7O2(g) 4CO2(g) οΏ½ 6H2O(g)combustion

18. 2Al2O3(s) 4Al(s) οΏ½ 3O2(g)

19. Ni(OH)2(s) NiO(s) οΏ½ H2O(l)

20. 2NaHCO3(s) Na2CO3(aq) οΏ½ CO2(g) οΏ½ H2O(l)

21. Yes. K is above Zn in the metal activity series.2K(s) οΏ½ ZnCl2(aq) Zn(s) οΏ½ 2KCl(aq)

22. No. Cl is below F in the halogen activity series.

23. No. Fe is below Na in the metal activity series.

24. LiI(aq) οΏ½ AgNO3(aq) AgI(s) οΏ½ LiNO3(aq)

25. BaCl2(aq) οΏ½ K2CO3(aq) BaCO3(s) οΏ½ 2KCl(aq)

26. Na2C2O4(aq) οΏ½ Pb(NO3)2(aq)PbC2O4(s) οΏ½ 2NaNO3(aq)

33. chemical equation: KI(aq) οΏ½ AgNO3(aq) KNO3(aq) οΏ½ AgI(s)

complete ionic equation: KοΏ½(aq) οΏ½ IοΏ½(aq) οΏ½ AgοΏ½(aq) οΏ½ NO3

οΏ½(aq)KοΏ½(aq) οΏ½ NO3

οΏ½(aq) οΏ½ AgI(s)

net ionic equation: IοΏ½(aq) οΏ½ AgοΏ½(aq) AgI(s)

34. chemical equation: 2(NH4)3PO4(aq) οΏ½ 3Na2SO4(aq)3(NH4)2SO4(aq) οΏ½ 2Na3PO4(aq)

complete ionic equation: 6NH4οΏ½(aq) οΏ½ 2PO4

3οΏ½(aq)οΏ½ 6NaοΏ½(aq) οΏ½ 3SO4

2οΏ½(aq) 6NH4οΏ½(aq) οΏ½

3SO42οΏ½(aq) οΏ½ 6NaοΏ½(aq) οΏ½ 2PO4

3οΏ½(aq)

No reaction occurs; therefore, there is no netionic equation.

35. chemical equation: AlCl3(aq) οΏ½ 3NaOH(aq) Al(OH)3(s) οΏ½ 3NaCl(aq)

complete ionic equation: Al3οΏ½(aq) οΏ½ 3ClοΏ½(aq) οΏ½ 3NaοΏ½(aq) οΏ½ 3OHοΏ½(aq)Al(OH)3(s) οΏ½ 3NaοΏ½(aq) οΏ½ 3ClοΏ½(aq)

net ionic equation: Al3οΏ½(aq) οΏ½ 3OHοΏ½(aq) Al(OH)3(s)

S C S

F

FF

F

C

SH H

SCl Cl

ClFF

F

Cl

ClCl

Cl

PClS

F

F

F

FF

F

NO O

1οΏ½

NO

1οΏ½

O

F F

F

B

1οΏ½

NH H

H

H

OCl Cl

FF Be

F

FF

F

C

APPENDIX D Solutions to Practice Problems

Page 59: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

928 Chemistry: Matter and Change

Solu

tions

36. chemical equation: Li2SO4(aq) οΏ½ Ca(NO3)2(aq) β†’ 2LiNO3(aq) οΏ½ CaSO4(s)

complete ionic equation: 2LiοΏ½(aq) οΏ½ SO4

2οΏ½(aq) οΏ½ Ca2οΏ½(aq) οΏ½ 2NO3οΏ½(aq) β†’

2LiοΏ½(aq) οΏ½ 2NO3οΏ½(aq) οΏ½ CaSO4(s)

net ionic equation: SO4

2οΏ½(aq) οΏ½ Ca2οΏ½(aq) β†’ CaSO4(s)

37. chemical equation: 5Na2CO3(aq) οΏ½ 2MnCl5(aq) β†’10NaCl(aq) οΏ½ Mn2(CO3)5(s)

complete ionic equation: 10NaοΏ½(aq) οΏ½ 5CO3

2οΏ½(aq) οΏ½ 2Mn5οΏ½(aq) οΏ½ 10ClοΏ½(aq)β†’ 10NaοΏ½(aq) οΏ½ 10ClοΏ½(aq) οΏ½ Mn2(CO3)5(s)

net ionic equation: 5CO3

2οΏ½(aq) οΏ½ 2Mn5οΏ½(aq) β†’ Mn2(CO3)5(s)

38. chemical equation: H2SO4(aq) οΏ½ 2KOH(aq) β†’ 2H2O(l) οΏ½ K2SO4(aq)

complete ionic equation: 2HοΏ½(aq) οΏ½ SO4

2οΏ½(aq) οΏ½ 2KοΏ½(aq) οΏ½ 2OHοΏ½(aq) β†’2H2O(l) οΏ½ 2KοΏ½(aq) οΏ½ SO4

2οΏ½(aq)

net ionic equation: 2HοΏ½(aq) οΏ½ 2OHοΏ½(aq) β†’ 2H2O(l)or HοΏ½(aq) οΏ½ OHοΏ½(aq) β†’ H2O(l)

39. chemical equation: 2HCl(aq) οΏ½ Ca(OH)2(aq) β†’ 2H2O(l) οΏ½ CaCl2(aq)

complete ionic equation: 2HοΏ½(aq) οΏ½ 2ClοΏ½(aq) οΏ½ Ca2οΏ½(aq) οΏ½ 2OHοΏ½(aq) β†’2H2O(l) οΏ½ Ca2οΏ½(aq) οΏ½2ClοΏ½(aq)

net ionic equation: HοΏ½(aq) οΏ½ OHοΏ½(aq) β†’ H2O(l)

40. chemical equation: HNO3(aq) οΏ½ NH4OH(aq) β†’ H2O(l) οΏ½ NH4NO3(aq)

complete ionic equation: HοΏ½(aq) οΏ½ NO3

οΏ½(aq) οΏ½ NH4οΏ½(aq) οΏ½ OHοΏ½(aq) β†’

H2O(l) οΏ½ NH4οΏ½(aq) οΏ½ NO3

οΏ½(aq)

net ionic equation: HοΏ½(aq) οΏ½ OHοΏ½(aq) β†’ H2O(l)

41. chemical equation: H2S(aq) οΏ½ Ca(OH)2(aq) β†’ 2H2O(l) οΏ½ CaS(aq)

complete ionic equation: 2HοΏ½(aq) οΏ½ S2οΏ½(aq) οΏ½ Ca2οΏ½(aq) οΏ½2OHοΏ½(aq) β†’2H2O(l) οΏ½ Ca2οΏ½(aq) οΏ½ S2οΏ½(aq)

net ionic equation: HοΏ½(aq) οΏ½ OHοΏ½(aq) β†’ H2O(l)

42. chemical equation: 2H3PO4(aq) οΏ½ 3Mg(OH)2(aq) β†’6H2O(l) οΏ½ Mg3(PO4)2(aq)

complete ionic equation: 6HοΏ½(aq) οΏ½ 2PO4

3οΏ½(aq) οΏ½ 3Mg2οΏ½(aq) οΏ½ 6OHοΏ½(aq) β†’6H2O(l) οΏ½ 3Mg2οΏ½(aq) οΏ½ 2PO4

3οΏ½(aq)

net ionic equation: HοΏ½(aq) οΏ½ OHοΏ½(aq) β†’ H2O(l)

43. chemical equation: 2HClO4(aq) οΏ½ K2CO3(aq) β†’H2O(l) οΏ½ CO2(g) οΏ½ 2KClO4(aq)

complete ionic equation: 2HοΏ½(aq) οΏ½ 2ClO4

οΏ½(aq) οΏ½ 2KοΏ½(aq) οΏ½ CO32οΏ½(aq) β†’

H2O(l) οΏ½ CO2(g) οΏ½ 2KοΏ½(aq) οΏ½ 2ClO4οΏ½(aq)

net ionic equation: 2HοΏ½(aq) οΏ½ CO3

2οΏ½(aq) β†’ H2O(l) οΏ½ CO2(g)

44. chemical equation: H2SO4(aq) οΏ½ 2NaCN(aq) β†’ 2HCN(g) οΏ½ Na2SO4(aq)

complete ionic equation: 2HοΏ½(aq) οΏ½ SO4

2οΏ½(aq) οΏ½ 2NaοΏ½(aq) οΏ½ 2CNοΏ½(aq) β†’2HCN(g) οΏ½ 2NaοΏ½(aq) οΏ½ SO4

2οΏ½(aq)

net ionic equation: 2HοΏ½(aq) οΏ½ 2CNοΏ½(aq) β†’ 2HCN(g)or HοΏ½(aq) οΏ½ CNοΏ½(aq) β†’ HCN(g)

45. chemical equation: 2HBr(aq) οΏ½ (NH4)2CO3(aq) β†’H2O(l) οΏ½ CO2(g) οΏ½ 2NH4Br(aq)

complete ionic equation: 2HοΏ½(aq) οΏ½ 2BrοΏ½(aq) οΏ½ 2NH4

οΏ½(aq) οΏ½ CO32οΏ½(aq) β†’

H2O(l) οΏ½ CO2(g) οΏ½ 2NH4οΏ½(aq) οΏ½ 2BrοΏ½(aq)

net ionic equation: 2HοΏ½(aq) οΏ½ CO3

2οΏ½(aq) β†’ H2O(l) οΏ½ CO2(g)

46. chemical equation: 2HNO3(aq) οΏ½ KRbS(aq) β†’ H2S(g) οΏ½ KRb(NO3)2(aq)

complete ionic equation: 2HοΏ½(aq) οΏ½ 2NO3οΏ½(aq) οΏ½

KοΏ½(aq) οΏ½ RbοΏ½(aq) οΏ½ S2οΏ½(aq) β†’ H2S(g) οΏ½ KοΏ½(aq) οΏ½RbοΏ½(aq) οΏ½ 2NO3

οΏ½(aq)

net ionic equation: 2HοΏ½(aq) οΏ½ S2οΏ½(aq) β†’ H2S(g)

APPENDIX D Solutions to Practice Problems

Page 60: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 929

Solu

tions

Chapter 111. 2.50 mol Zn οΏ½

οΏ½ 1.51 οΏ½ 1024 atoms of Zn

2. 3.25 mol AgNO3 οΏ½

οΏ½ 1.96 οΏ½ 1024 formula units of AgNO3

3. 11.5 mol H2O οΏ½

οΏ½ 6.92 οΏ½ 1024 molecules of H2O

4. a. 5.75 οΏ½ 1024 atoms Al οΏ½

οΏ½ 9.55 mol Al

b. 3.75 οΏ½ 1024 molecules CO2 οΏ½

οΏ½ 6.23 mol CO2

c. 3.58 οΏ½ 1023 formula units ZnCl2 οΏ½

οΏ½ 0.595 mol ZnCl2

d. 2.50 οΏ½ 1020 atoms Fe οΏ½

οΏ½ 4.15 οΏ½ 10οΏ½4 mol Fe

11. a. 3.57 mol Al οΏ½ 216.

m98

olgAAll

οΏ½ 96.3 g Al

b. 42.6 mol Si οΏ½ 218.

m09

olgSSii

οΏ½ 1.20 οΏ½ 103 g Si

c. 3.45 mol Co οΏ½ 518.

m93

olgCCoo

οΏ½ 203 g Co

d. 2.45 mol Zn οΏ½ 615.

m38

olgZZnn

οΏ½ 1.60 οΏ½ 102 g Zn

12. a. 25.5 g Ag οΏ½ 1107

m.9ol

gAAgg

οΏ½ 0.236 mol Ag

b. 300.0 g S οΏ½ 312.

m07

olgSS

οΏ½ 9.355 mol S

c. 125 g Zn οΏ½ 615.

m38

olgZZnn

οΏ½ 1.91 mol Zn

d. 1.00 kg Fe οΏ½ 1010k0ggFeFe

οΏ½ 515.

m85

olgFFee

οΏ½ 17.9 mol Fe

13. a. 55.2 g Li οΏ½ 61.9

m41

olgLLii οΏ½

οΏ½ 4.79 οΏ½ 1024 atoms Li

b. 0.230 g Pb οΏ½2107

m.2ol

gPPbb

οΏ½

οΏ½ 6.68 οΏ½ 1020 atoms Pb

c. 11.5 g Hg οΏ½ 2100

m.6ol

gHHgg

οΏ½

οΏ½ 3.45 οΏ½ 1022 atoms Hg

d. 45.6 g Si οΏ½ 218.

m09

olgSSii

οΏ½

οΏ½ 9.77 οΏ½ 1023 atoms Si

e. 0.120 kg Ti οΏ½ 1010k0ggTTi

i οΏ½

417.

m88

olgTTii

οΏ½

οΏ½ 1.51 οΏ½ 1024 atoms Ti

14. a. 6.02 οΏ½ 1024 atoms Bi οΏ½ οΏ½

2109

m.0ol

gBBii

οΏ½ 2.09 οΏ½ 103 g Bi

b. 1.00 οΏ½ 1024 atoms Mn οΏ½ οΏ½

514.

m94

olgMMnn

οΏ½ 91.3 g Mn

c. 3.40 οΏ½ 1022 atoms He οΏ½ οΏ½

41.0

m03

olgHHee

οΏ½ 0.226 g He

d. 1.50 οΏ½ 1015 atoms N οΏ½ οΏ½

114.

m01

olgNN

οΏ½ 3.49 οΏ½ 10οΏ½8 g N

e. 1.50 οΏ½ 1015 atoms U οΏ½ οΏ½

2138

m.0ol

gUU

οΏ½ 5.93 οΏ½ 10οΏ½7 g U

20. 2.50 mol ZnCl2 οΏ½ 12mmoollZCnlC

οΏ½

l2 οΏ½ 5.00 mol ClοΏ½

21. 1.25 mol C6H12O6 οΏ½ 1 m

6ol

mCo6

lHC12O6

οΏ½ 7.50 mol C

1.25 mol C6H12O6 οΏ½ 1 m

1o2

lmC

o6H

l1

H2O6

οΏ½ 15.0 mol H

1.25 mol C6H12O6 οΏ½ 1 m

6oml C

o6

lHO12O6

οΏ½ 7.50 mol O

22. 3.00 mol Fe2(SO4)3 οΏ½ 1

3m

mol

oFleS2

O(S

4O

2οΏ½

4)3

οΏ½ 9.00 mol SO42οΏ½

23. 5.00 mol P2O5 οΏ½ 1

5m

mol

oPl

2

OO5

οΏ½ 25.0 mol O

24. 11.5 mol H2O οΏ½ 1

2m

mo

ol H

l H2O

οΏ½ 23.0 mol H

1 mol

1 mol

1 mol

1 mol

1 mol

6.02 οΏ½ 1023 atoms

1 mol

6.02 οΏ½ 1023 atoms

1 mol

6.02 οΏ½ 1023 atoms

1 mol

6.02 οΏ½ 1023 atoms

1 mol

6.02 οΏ½ 1023 atoms

1 mol

1 mol

1 mol

1 mol

1 mol

6.02 οΏ½ 1023 molecules

1 mol

6.02 οΏ½ 1023 formula units

1 mol

6.02 οΏ½ 1023 atoms

1 mol

APPENDIX D Solutions to Practice Problems

6.02 οΏ½ 1023 atoms

6.02 οΏ½ 1023 molecules

6.02 οΏ½ 1023 formula units

6.02 οΏ½ 1023 atoms

6.02 οΏ½ 1023 atoms

6.02 οΏ½ 1023 atoms

6.02 οΏ½ 1023 atoms

6.02 οΏ½ 1023 atoms

6.02 οΏ½ 1023 atoms

Page 61: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

930 Chemistry: Matter and Change

Solu

tions

25. NaOH 1 mol Na οΏ½ 212.

m99

olgNNaa

οΏ½ 22.99 g

1 mol O οΏ½ 116.

m00

olgOO

οΏ½ 16.00 g

1 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 1.008 g

molar mass NaOH οΏ½ 40.00 g/mol

CaCl2 1 mol Ca οΏ½ 410.

m08

olgCCaa

οΏ½ 40.08 g

2 mol Cl οΏ½ 315.

m45

olgCCll

οΏ½ 70.90 g

molar mass CaCl2 οΏ½ 110.98 g/mol

KC2H3O2 1 mol K οΏ½ 319.

m10

olgKK

οΏ½ 39.10 g

2 mol C οΏ½ 112.

m01

olgCC

οΏ½ 24.02 g

3 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 3.024 g

2 mol O οΏ½ 116.

m00

olgOO

οΏ½ 32.00 g

molar mass KC2H3O2 οΏ½ 98.14 g/mol

Sr(NO3)2 1 mol Sr οΏ½ 817.

m62

olgSSrr

οΏ½ 87.62 g

2 mol N οΏ½ 114.

m01

olgNN

οΏ½ 28.02 g

6 mol O οΏ½ 116.

m00

olgOO

οΏ½ 96.00 g

molar mass Sr(NO3)2 οΏ½ 211.64 g/mol

(NH4)3PO4 3 mol N οΏ½ 114 .

m01

olgNN

οΏ½ 42.03 g

12 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 12.096 g

1 mol P οΏ½ 310.

m97

olgPP

οΏ½ 30.97 g

4 mol O οΏ½ 116.

m00

olgOO

οΏ½ 64.00 g

molar mass (NH4)3PO4 οΏ½ 149.10 g/mol

26. C2H5OH 2 mol C οΏ½ 112.

m01

olgCC

οΏ½ 24.02 g

6 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 6.048 g

1 mol O οΏ½ 16

m.0

o0lgO

O οΏ½ 16.00 g

molar mass C2H5OH οΏ½ 46.07 g/mol

C12H22O11 12 mol C οΏ½ 112.

m01

olgCC

οΏ½ 144.12 g

22 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 22.176 g

11 mol O οΏ½ 116.

m00

olgOO

οΏ½ 176.00 g

molar mass C12H22O11 οΏ½ 342.30 g/mol

HCN 1 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 1.008 g

1 mol C οΏ½ 112.

m01

olgCC

οΏ½ 12.01 g

1 mol N οΏ½ 114.

m01

olgNN

οΏ½ 14.01 g

molar mass HCN οΏ½ 27.03 g/mol

CCl4 1 mol C οΏ½ 112.

m01

olgCC

οΏ½ 12.01 g

4 mol Cl οΏ½ 315.

m45

olgCCll

οΏ½ 141.80 g

molar mass CCl4 οΏ½ 153.81 g/mol

H2O 2 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 2.016 g

1 mol O οΏ½ 116.

m00

olgOO

οΏ½ 16.00 g

molar mass H2O οΏ½ 18.02 g/mol

27. Step 1: Find the molar mass of H2SO4.

2 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 2.016 g

1 mol S οΏ½ 312.

m07

olgSS

οΏ½ 32.07 g

4 mol O οΏ½ 116.

m00

olgOO

οΏ½ 64.00 g

molar mass H2SO4 οΏ½ 98.09 g/mol

Step 2: Make mole β†’ mass conversion.

3.25 mol H2SO4 οΏ½918.

m09

olgHH2S

2SOO4

4 οΏ½ 319 g H2SO4

APPENDIX D Solutions to Practice Problems

Page 62: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 931

Solu

tions

28. Step 1: Find the molar mass of ZnCl2.

1 mol Zn οΏ½ 615.

m38

olgZZnn

οΏ½ 65.38 g

2 mol Cl οΏ½ 315.

m45

olgCCll

οΏ½ 70.90 g

molar mass ZnCl2 οΏ½ 136.28 g/mol

Step 2: Make mole mass conversion.

4.35 οΏ½ 10οΏ½2 mol ZnCl2 οΏ½13

16m.2

o8lgZn

ZCnlC2

l2

οΏ½ 5.93 g ZnCl2

29. Step 1: Find the molar mass of KMnO4.

1 mol K οΏ½ 319.

m10

olgKK

οΏ½ 39.10 g

1 mol Mn οΏ½ 514.

m94

olgMMnn

οΏ½ 54.94 g

4 mol O οΏ½ 116.

m00

olgOO

οΏ½ 64.00 g

molar mass KMnO4 οΏ½ 158.04 g/mol

Step 2: Make mole mass conversion.

2.55 mol KMnO4 οΏ½15

18m.0

o4lgKM

KMnO

nO4

4

οΏ½ 403 g KMnO4

30. a. Step 1: Find the molar mass of AgNO3.

1 mol Ag οΏ½ 1107

m.9ol

gAAgg

οΏ½ 107.9 g

1 mol N οΏ½ 114.

m01

olgNN

οΏ½ 14.01 g

3 mol O οΏ½ 116.

m00

olgOO

οΏ½ 48.00 g

molar mass AgNO3 οΏ½ 169.9 g/mol

Step 2: Make mass mole conversion.

22.6 g AgNO3 οΏ½1169

m.9ol

gAAggNNOO3

3

οΏ½ 0.133 mol AgNO3

b. Step 1: Find molar mass of ZnSO4.

1 mol Zn οΏ½ 615.

m39

olgZZnn

οΏ½ 65.39 g

1 mol S οΏ½ 312.

m07

olgSS

οΏ½ 32.07 g

4 mol O οΏ½ 116.

m00

olgOO

οΏ½ 64.00 g

molar mass ZnSO4 οΏ½ 161.46 g/mol

Step 2: Make mass mole conversion.

6.50 g ZnSO4 οΏ½16

11m.4

o6lgZn

ZSnOSO

4

4

οΏ½ 0.0403 mol ZnSO4

c. Step 1: Find the molar mass of HCl.

1 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 1.008 g

1 mol Cl οΏ½ 315.

m45

olgCCll

οΏ½ 35.45 g

molar mass HCl οΏ½ 36.46 g/mol

Step 2: Make mass mole conversion.

35.0 g HCl οΏ½ 316.

m46

olgHHCCll

οΏ½ 0.960 mol HCl

d. Step 1: Find the molar mass of Fe2O3.

2 mol Fe οΏ½ 515.

m85

olgFFee

οΏ½ 111.70 g

3 mol O οΏ½ 116.

m00

olgOO

οΏ½ 48.00 g

molar mass Fe2O3 οΏ½ 159.70 g/mol

Step 2: Make mass mole conversion.

25.0 g Fe2O3 οΏ½15

19m.7

o0lgFe

F2eO2O

3

3

οΏ½ 0.157 mol Fe2O3

e. Step 1: Find the molar mass of PbCl4.

1 mol Pb οΏ½ 2107

m.2ol

gPPbb

οΏ½ 207.2 g

4 mol Cl οΏ½ 315.

m45

olgCCll

οΏ½ 141.80 g

molar mass PbCl4 οΏ½ 349.0 g/mol

Step 2: Make mass mole conversion.

254 g PbCl4 οΏ½3149

m.0ol

gPPbbCCl4l4

οΏ½ 0.728 mol PbCl4

31. Step 1: Find the molar mass of Ag2CrO4.

2 mol Ag οΏ½ 1107

m.9ol

gAAgg

οΏ½ 215.8 g

1 mol Cr οΏ½ 512.

m00

olgCCrr

οΏ½ 52.00 g

4 mol O οΏ½ 116.

m00

olgOO

οΏ½ 64.00 g

molar mass Ag2CrO4 οΏ½ 331.8 g/mol

Step 2: Make mass mole conversion.

25.8 g Ag2CrO4 οΏ½3131

m.8ol

gAAgg2C

2CrOrO

4

4

οΏ½ 0.0778 mol Ag2CrO4

Step 3: Make mole formula unit conversion.

0.0778 mol Ag2CrO4 οΏ½

οΏ½ 4.68 οΏ½ 1022 formula units Ag2CrO4

a. 4.68 οΏ½ 1022 formula units Ag2CrO4 οΏ½

οΏ½ 9.36 οΏ½ 1022 AgοΏ½ ions

b. 4.68 οΏ½ 1022 formula units Ag2CrO4 οΏ½

οΏ½ 4.68 οΏ½ 1022 CrO42οΏ½ ions

c. 3131

m.8ol

gAAgg2C

2CrOrO

4

4οΏ½

οΏ½ 5.51 οΏ½ 10οΏ½22 g Ag2CrO4/formula unit

1 mol6.02 οΏ½ 1023 formula units

1 CrO42οΏ½ ion

1 formula unit Ag2CrO4

2 AgοΏ½ ions1 formula unit Ag2CrO4

6.02 οΏ½ 1023 formula units

1 mol

APPENDIX D Solutions to Practice Problems

Page 63: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

932 Chemistry: Matter and Change

Solu

tions

32. Step 1: Find the number of moles of NaCl.

4.59 οΏ½ 1024 formula units NaCl οΏ½

οΏ½ 7.62 mol NaCl

Step 2: Find the molar mass of NaCl.

1 mol Na οΏ½ 212.

m99

olgNNaa

οΏ½ 22.99 g

1 mol Cl οΏ½ 315.

m45

olgCCll

οΏ½ 35.45 g

molar mass NaCl οΏ½ 58.44 g/mol

Step 3: Make mole β†’ mass conversion.

7.62 mol NaCl οΏ½518.

m44

olgNNaaCCll

οΏ½ 445 g NaCl

33. Step 1: Find molar mass of C2H5OH.

2 mol C οΏ½ 112.

m01

olgCC

οΏ½ 24.02 g

6 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 6.048 g

1 mol O οΏ½ 116.

m00

olgOO

οΏ½ 16.00 g

molar mass C2H5OH οΏ½ 46.07 g/mol

Step 2: Make mass β†’ mole conversion.

45.6 g C2H5OH οΏ½ 146

m.0

o7lgC2

CH

2

5HO

5

HOH

οΏ½ 0.990 mol C2H5OH

Step 3: Make mole β†’ molecule conversion.

0.990 mol C2H5OH οΏ½

οΏ½ 5.96 οΏ½ 1023 molecules C2H5OH

a. 5.96 οΏ½ 1023 molecules C2H5OH οΏ½

οΏ½ 1.19 οΏ½ 1024 C atoms

b. 5.96 οΏ½ 1023 molecules C2H5OH οΏ½

οΏ½ 3.58 οΏ½ 1024 H atoms

c. 5.96 οΏ½ 1023 molecules C2H5OH οΏ½

οΏ½ 5.96 οΏ½ 1023 O atoms

34. Step 1: Find the molar mass of Na2SO3.

2 mol Na οΏ½ 212.

m99

olgNNaa

οΏ½ 45.98 g

1 mol S οΏ½ 312.

m07

olgSS

οΏ½ 32.07 g

3 mol O οΏ½ 116.

m00

olgOO

οΏ½ 48.00 g

molar mass Na2SO3 οΏ½ 126.04 g/mol

Step 2: Make mass β†’ mole conversion.

2.25 g Na2SO3 οΏ½ 12

16m.0

o4lgN

Na2

aS2

OSO

3

3

οΏ½ 0.0179 mol Na2SO3

Step 3: Make mole β†’ formula unit conversion.

0.0179 mol Na2SO3 οΏ½

οΏ½ 1.08 οΏ½ 1022 formula units Na2SO3

a. 1.08 οΏ½ 1022 formula units Na2SO3 οΏ½

οΏ½ 2.16 οΏ½ 1022 NaοΏ½ ions

b. 1.08 οΏ½ 1022 formula units Na2SO3 οΏ½

οΏ½ 1.08 οΏ½ 1022 SO32οΏ½ ions

c. 12

16m.0

o8lgN

Na2

aS2OSO

3

3οΏ½

οΏ½ 2.09 οΏ½ 10οΏ½22 g Na2SO3 /formula unit

35. Step 1: Find the molar mass of CO2.

1 mol C οΏ½ 112.

m01

olgCC

οΏ½ 12.01 g

2 mol O οΏ½ 116.

m00

olgOO

οΏ½ 32.00 g

molar mass CO2 οΏ½ 44.01 g/mol

Step 2: Make mass β†’ mole conversion.

52.0 g CO2 οΏ½ 414.

m01

olgCCOO2

2 οΏ½ 1.18 mol CO2

Step 3: Make mole β†’ molecule conversion.

1.18 mol CO2 οΏ½

οΏ½ 7.11 οΏ½ 1023 molecules CO2

a. 7.11 οΏ½ 1023 molecules CO2 οΏ½ 1 m

1o

Clec

autole

mCO2

οΏ½ 7.11 οΏ½ 1023 C atoms

b. 7.11 οΏ½ 1023 molecules CO2 οΏ½ 1 m

2oOle

acuto

lem

CsO2

οΏ½ 1.42 οΏ½ 1024 O atoms

c. 414.

m01

olgCCOO2

2 οΏ½

οΏ½ 7.31 οΏ½ 10οΏ½23 g CO2/molecule

42. Steps 1 and 2: Assume 1 mole; calculate molarmass of CaCl2.

1 mol Ca οΏ½ 410.

m08

olgCCaa

οΏ½ 40.08 g

2 mol Cl οΏ½ 315.

m45

olgCCll

οΏ½ 70.90 g

molar mass CaCl2 οΏ½ 110.98 g/mol

1 mol

6.02 οΏ½ 1023 molecules

1 mol

1 mol

1 SO32οΏ½ ions

1 formula unit Na2SO3

2 NaοΏ½ ions1 formula unit Na2SO3

6.02 οΏ½ 1023 formula units

1 mol

1 O atom1 molecule C2H5OH

6 H atoms1 molecule C2H5OH

2 C atoms1 molecule C2H5OH

6.02 οΏ½ 1023 molecules

1 mol

1 mol

APPENDIX D Solutions to Practice Problems

6.02 οΏ½ 1023 molecules

6.02 οΏ½ 1023 formula units

6.02 οΏ½ 1023 formula units

Page 64: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 933

Solu

tions

Step 3: Determine percent by mass of each element.

percent Ca οΏ½ 11

400.9.088ggCCaaCl2

οΏ½ 100 οΏ½ 36.11% Ca

percent Cl οΏ½ 11

700.9.980ggCCalCl2

οΏ½ 100 οΏ½ 63.89% Cl

43. Steps 1 and 2: Assume 1 mole; calculate molarmass of Na2SO4.

2 mol Na οΏ½ 212.

m99

olgNNaa

οΏ½ 45.98 g

1 mol S οΏ½ 312.

m06

olgSS

οΏ½ 32.07 g

4 mol O οΏ½ 116.

m00

olgOO

οΏ½ 64.00 g

molar mass Na2SO4 οΏ½ 142.05 g/mol

Step 3: Determine percent by mass of each element.

percent Na οΏ½142

4.50.598

ggNa

N2

aSO4

οΏ½ 100 οΏ½ 32.37% Na

percent S οΏ½142.

3025.0

g7NgaS2SO4

οΏ½ 100 οΏ½ 22.58% S

percent O οΏ½142

6.045.0

g0

Ng

aO2SO4

οΏ½ 100 οΏ½ 45.05% O

44. Steps 1 and 2: Assume 1 mole; calculate molarmass of H2SO3.

2 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 2.016 g

1 mol S οΏ½ 312.

m06

olgSS

οΏ½ 32.06 g

3 mol O οΏ½ 116.

m00

olgOO

οΏ½ 48.00 g

molar mass H2SO3 οΏ½ 82.08 g/mol

Step 3: Determine percent by mass of S.

percent S οΏ½ 82.

3028.0

g6

Hg

2SSO3

οΏ½ 100 οΏ½ 39.06% S

Repeat steps 1 and 2 for H2S2O8. Assume 1 mole;calculate molar mass of H2S2O8.

2 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 2.016 g

2 mol S οΏ½ 312.

m06

olgSS

οΏ½ 64.12 g

8 mol O οΏ½ 116.

m00

olgOO

οΏ½ 128.00 g

molar mass H2S2O8 οΏ½ 194.14 g/mol

Step 3: Determine percent by mass of S.

percent S οΏ½ 194

6.144.1

g2

Hg

2

SS2O8

οΏ½ 100 οΏ½ 33.03% S

H2SO3 has a larger percent by mass of S.

45. Steps 1 and 2: Assume 1 mole; calculate molarmass of H3PO4.

3 mol H οΏ½ οΏ½ 3.024 g

1 mol P οΏ½ οΏ½ 30.97 g

4 mol O οΏ½ οΏ½ 64.00 g

molar mass H3PO4 οΏ½ 97.99 g/mol

Step 3: Determine percent by mass of each ele-ment.

percent H οΏ½ οΏ½ 100 οΏ½ 3.08% H

percent P οΏ½ οΏ½ 100 οΏ½ 31.61% P

percent O οΏ½ οΏ½ 100 οΏ½ 65.31% O

46. Step 1: Assume 100 g sample; calculate moles ofeach element.

36.84 g N οΏ½ οΏ½ 2.630 mol N

63.16 g O οΏ½ οΏ½ 3.948 mol O

Step 2: Calculate mole ratios.

οΏ½ οΏ½

οΏ½ οΏ½

The simplest ratio is 1 mol N: 1.5 mol O.

Step 3: Convert decimal fraction to whole number.

In this case, multiply by 2, because 1.5 οΏ½ 2 οΏ½ 3.Therefore, the empirical formula is N2O3.

1.5 mol O

1 mol N1.500 mol O1.000 mol N

3.948 mol O2.630 mol N

1 mol N1 mol N

1.000 mol N1.000 mol N

2.630 mol N2.630 mol N

1 mol O16.00 g O

1 mol N14.01 g N

64.00 g O97.99 g H3PO4

30.97 g P97.99 g H3PO4

3.024 g H97.99 g H3PO4

16.00 g O1 mol O

30.97 g P1 mol P

1.008 g H1 mol H

APPENDIX D Solutions to Practice Problems

Page 65: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

934 Chemistry: Matter and Change

Solu

tions

47. Step 1: Assume 100 g sample; calculate moles ofeach element

35.98 g Al οΏ½ οΏ½ 1.334 mol Al

64.02 g S οΏ½ οΏ½ 1.996 mol S

Step 2: Calculate mole ratios.

οΏ½ οΏ½

11..393946

mm

oollASl

οΏ½ 11..050000

mm

oollASl

οΏ½

The simplest ratio is 1 mol Al: 1.5 mol S.

Step 3: Convert decimal fraction to whole number.

In this case, multiply by 2, because 1.5 οΏ½ 2 οΏ½ 3.Therefore, the empirical formula is Al2S3.

48. Step 1: Assume 100 g sample; calculate moles ofeach element.

81.82 g C οΏ½ 112.

m01

olgCC

οΏ½ 6.813 mol C

18.18 g H οΏ½ 11.0

m08

olgHH

οΏ½ 18.04 mol H

Step 2: Calculate mole ratios.

66..881133

mm

oo

ll

CC

οΏ½ 11..000000

mm

oo

ll

CC

οΏ½ 11

mm

oo

ll

CC

168.8.0143

mm

oollHC

οΏ½ 21..604090

mm

oollHC

οΏ½ 2.

165

mmol

oCl H

The simplest ratio is 1 mol: 2.65 mol H.

Step 3: Convert decimal fraction to whole number.

In this case, multiply by 3, because 2.65 οΏ½ 3 οΏ½7.95 οΏ½ 8. Therefore, the empirical formula is C3H8.

49. Step 1: Assume 100 g sample; calculate moles ofeach element.

60.00 g C οΏ½ 112.

m01

olgCC

οΏ½ 5.00 mol C

4.44 g H οΏ½ 11.0

m08

olgHH

οΏ½ 4.40 mol H

35.56 g O οΏ½ 116.

m00

olgOO

οΏ½ 2.22 mol O

Step 2: Calculate mole ratios.

25..2020

mm

oollOC

οΏ½ 12..0205

mm

oollOC

οΏ½ 2.

125

mmol

oOl C

24..2420

mm

oo

llOH

οΏ½ 11..0908

mm

oo

llOH

οΏ½ 12

mm

oo

llOH

22..2222

mm

oo

ll

OO

οΏ½ 11..0000

mm

oo

ll

OO

οΏ½ 11

mm

oo

ll

OO

The simplest ratio is 2.25 mol C: 2 mol H: 1 mol O.

Step 3: Convert decimal fraction to whole num-ber.

In this case, multiply by 4, because 2.25 οΏ½ 4 οΏ½ 9.Therefore, the empirical formula is C9H8O4.

50. Step 1: Assume 100 g sample; calculate moles ofeach element.

10.89 g Mg οΏ½ 214.

m31

olgMMgg

οΏ½ 0.4480 mol Mg

31.77 g Cl οΏ½ 315.

m45

olgCCll

οΏ½ 0.8962 mol Cl

57.34 g O οΏ½ 116.

m00

olgOO

οΏ½ 3.584 mol O

Step 2: Calculate mole ratios.

00..44448800

mm

oo

ll

MM

gg

οΏ½ 11..000000

mm

oo

ll

MM

gg

οΏ½ 11

mm

oo

ll

MM

gg

οΏ½ 12.0.00000mmoollMCl

g οΏ½

12mmoollMCl

g

0.

34.458804

mm

oollMO

g οΏ½

17.0.90909mmoollMOg

οΏ½ 18mmoollMOg

The empirical formula is MgCl2O8.

The simplest ratio is 1 mol Mg: 2 mol Cl: 8 mol O.

51. Step 1: Assume 100 g sample; calculate moles ofeach element

65.45 g C οΏ½ 112.

m01

olgCC

οΏ½ 5.450 mol C

5.45 g H οΏ½ 11.0

m08

olgHH

οΏ½ 5.41 mol H

29.09 g O οΏ½ 116.

m00

olgOO

οΏ½ 1.818 mol O

Step 2: Calculate mole ratios

15..841580

mm

oollOC

οΏ½ 13..000000

mm

oollOC

οΏ½ 13

mm

oollOC

15.8.4118

mm

oollHO

οΏ½ 12..0907

mm

oo

llOH

οΏ½ 13

mm

oo

llOH

11..881188

mm

oo

ll

OO

οΏ½ 11..000000

mm

oo

ll

OO

οΏ½ 11

mm

oo

ll

OO

The simplest ratio is 1 mol:2.65 mol H.

Therefore, the empirical formula is C3H3O.

Step 3: Calculate the molar mass of the empiricalformula.

3 mol C οΏ½ 112.

m01

olgCC

οΏ½ 36.03 g

3 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 3.024 g

1 mol O οΏ½ 116.

m00

olgOO

οΏ½ 16.00 g

molar mass C3H3O οΏ½ 55.05 g/mol

Step 4: Determine whole number multiplier.

15150.0.05

gg

//mm

oo

ll

οΏ½ 1.998, or 2

The molecular formula is C6H6O2.

0.8962 mol Cl0.4480 mol Mg

1.5 mol S1 mol Al

1 mol Al1 mol Al

1.000 mol Al1.000 mol Al

1.334 mol Al1.334 mol Al

1 mol S32.06 g S

1 mol Al26.98 g Al

APPENDIX D Solutions to Practice Problems

Page 66: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 935

Solu

tions

52. Step 1: Assume 100 g sample; calculate moles ofeach element.

49.98 g C οΏ½ 112.

m01

olgCC

οΏ½ 4.162 mol C

10.47 g H οΏ½ 11.0

m08

olgHH

οΏ½ 10.39 mol H

Step 2: Calculate mole ratios.

44..116622

mm

oo

ll

CC

οΏ½ 11..000000

mm

oo

ll

CC

οΏ½ 11

mm

oo

ll

CC

140.1.3692

mm

oollHC

οΏ½ 12..05000mmoollHC

οΏ½ 21.5

mmoollCH

The simplest ratio is 1 mol C: 2.5 mol H.

Because 2.5 οΏ½ 2 οΏ½ 5, the empirical formula isC2H5.

Step 3: Calculate the molar mass of the empiricalformula.

2 mol C οΏ½ 112.

m01

olgCC

οΏ½ 24.02 g

5 mol H οΏ½ 11.0

m08

olgHH

οΏ½ 5.040 g

molar mass C2H5 οΏ½ 29.06 g/mol

Step 4: Determine whole number multiplier.

5289..1026

gg

//mm

oo

ll

οΏ½ 2.000

The molecular formula is C4H10.

53. Step 1: Assume 100 g sample; calculate moles ofeach element.

46.68 g N οΏ½ 114.

m01

olgNN

οΏ½ 3.332 mol N

53.32 g O οΏ½ 116.

m00

olgOO

οΏ½ 3.333 mol O

Step 2: Calculate mole ratios.

33..333322

mm

oo

ll

NN

οΏ½ 11..000000

mm

oo

ll

NN

οΏ½ 11

mm

oo

ll

NN

33..333332

mm

oo

llON

οΏ½ 11..000000

mm

oo

llON

οΏ½ 11

mm

oo

llON

The simplest ratio is 1 mol N: 1 mol O.

The empirical formula is NO.

Step 3: Calculate the molar mass of the empiricalformula.

1 mol N οΏ½ 114.

m01

olgNN

οΏ½ 14.01 g

1 mol O οΏ½ 116.

m00

olgOO

οΏ½ 16.00 g

molar mass NO οΏ½ 30.01 g /mol

Step 4: Determine whole number multiplier.

6300..0011

gg

//mm

oo

ll

οΏ½ 2.000

The molecular formula is N2O2.

54. Step 1: Calculate moles of each element.

19.55 g K οΏ½ 319.

m10

olgKK

οΏ½ 0.5000 mol K

4.00 g O οΏ½ 116.

m00

olgOO

οΏ½ 0.250 mol O

Step 2: Calculate mole ratios.

00..5205000mmoollOK

οΏ½ 12..0000

mm

oollOK

οΏ½ 12

mm

oollOK

00..225500

mm

oo

ll

OO

οΏ½ 11..0000

mm

oo

ll

OO

οΏ½ 11

mm

oo

ll

OO

The simplest ratio is 2 mol K: 1 mol O.

The empirical formula is K2O.

55. Step 1: Calculate moles of each element

174.86 g Fe οΏ½ 515.

m85

olgFFee

οΏ½ 3.131 mol Fe

75.14 g O οΏ½ 116.

m00

olgOO

οΏ½ 4.696 mol O

Step 2: Calculate mole ratios.

33..113311

mm

oo

ll

FFee

οΏ½ 11..000000

mm

oo

ll

FFee

οΏ½ 11

mm

oo

ll

FFee

34..163916

mm

oollFOe

οΏ½ 11..050000

mm

oollFOe

οΏ½ 11.5

mmoollFeO

The simplest ratio is 1 mol Fe: 1.5 mol O.

Because 1.5 οΏ½ 2 οΏ½ 3, the empirical formula isFe2O3.

56. Step 1: Calculate moles of each element.

17.900 g C οΏ½ 112.

m01

olgCC

οΏ½ 1.490 mol C

1.680 g H οΏ½ 11.0

m08

olgHH

οΏ½ 1.667 mol H

4.225 g O οΏ½ 116.

m00

olgOO

οΏ½ 0.2641 mol O

1.228 g N οΏ½ 114.

m01

olgNN

οΏ½ 0.08765 mol N

Step 2: Calculate mole ratios.

00..0088776655

mm

oo

ll

NN

οΏ½ 11..000000

mm

oo

ll

NN

οΏ½ 11

mm

oo

ll

NN

0.

10.8479605mmoollCN

οΏ½ 11.70.0000

mm

oollNC

οΏ½ 117mmoollNC

01.0.6867765

mmoollHN

οΏ½ 119.0.0020

mm

oo

ll

HN

οΏ½ 119

mm

oollNH

00..028674615mm

oollON

οΏ½ 31..001030

mm

oo

llON

οΏ½ 31

mm

oo

llON

The simplest ratio is 17 mol C: 19 mol H: 3 mol O:1 mol N.

The empirical formula is C17H19O3N.

APPENDIX D Solutions to Practice Problems

Page 67: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

936 Chemistry: Matter and Change

Solu

tions

57. Step 1: Calculate moles of each element.

0.545 g Al οΏ½ 216.

m98

olgAAll

οΏ½ 0.0202 mol Al

0.485 g O οΏ½ 116.

m00

olgOO

οΏ½ 0.0303 mol O

Step 2: Calculate mole ratios.

00..00220022

mm

oo

ll

AA

ll

οΏ½ 11..0000

mm

oo

ll

AA

ll

οΏ½ 11

mm

oo

ll

AA

ll

00..00230023

mm

oollAO

l οΏ½ οΏ½

11.5

mmoollAOl

The simplest ratio is 1 mol Al: 1.5 mol O.

Because 1.5 οΏ½ 2 οΏ½ 3, the empirical formula isAl2O3.

63. Step 1: Assume 100 g sample; calculate moles ofeach component.

48.8 g MgSO4 οΏ½12

10m.3

o8lgM

MgS

gOSO

4

4

οΏ½ 0.405 mol MgSO4

51.2 g H2O οΏ½ 118.

m02

olgHH2O

2O οΏ½ 2.84 mol H2O

Step 2: Calculate mole ratios.

οΏ½11..0000

mm

oo

ll

MM

gg

SSOO

4

4

οΏ½ 11

mm

oo

ll

MM

gg

SSOO

4

4

οΏ½1.

70.001

mmol

oMl H

g2SOO4

οΏ½ 1

7m

mol

oMl H

g2SOO4

The formula of the hydrate is MgSO4Β·7H2O. Itsname is magnesium sulfate heptahydrate.

64. Step 1: Calculate the mass of water driven off.

mass of hydrated compound οΏ½ mass of anhydrouscompound remaining οΏ½ 11.75 g CoCl2Β·xH2O οΏ½ 9.25 g CoCl2οΏ½ 2.50 g H2O

Step 2: Calculate moles of each component.

9.25 g CoCl2 οΏ½12

19m.8

o3lgCo

CColC2

l2 οΏ½ 0.0712 mol CoCl2

2.50 g H2O οΏ½ 118.

m02

olgHH2O

2O οΏ½ 0.139 mol H2O

Step 2: Calculate mole ratios.

οΏ½11..0000

mm

oo

llCC

oo

CC

ll2

2οΏ½

11

mm

oo

llCC

oo

CC

ll2

2

οΏ½11.0.905mm

oollCHo

2

COl2

οΏ½ 12mm

oollCHo

2

COl2

The formula of the hydrate is CoCl2Β·2H2O. Itsname is cobalt(II) chloride dihydrate.

Chapter 12 1. a. 1 molecule N2 οΏ½ 3 molecules H2 0

2 molecules NH3

1 mole N2 οΏ½ 3 moles H2 0 2 moles NH3

28.02 g N2 οΏ½ 6.06 g H2 0 34.08 g NH3

b. 1 molecule HCl οΏ½ 1 formula unit KOH 01 formula unit KCl οΏ½ 1 molecule H2O

1 mole HCl οΏ½ 1 mole KOH 01 mole KCl οΏ½ 1 mole H2O

36.46 g HCl οΏ½ 56.11 g KOH 074.55 g KCl οΏ½ 18.02 g H2O

c. 4 atoms Zn οΏ½ 10 molecules HNO3 0

4 formula units Zn(NO3)2 οΏ½ 1 molecule N2O οΏ½5 molecules H2O

4 moles Zn οΏ½ 10 moles HNO3 0

4 moles Zn(NO3)2 οΏ½ 1 mole N2O οΏ½ 5 moles H2O

261.56 g Zn οΏ½ 630.2 g HNO3 0

757.56 g Zn(NO3)2 οΏ½ 44.02 g N2O οΏ½ 90.10 g H2O

d. 2 atoms Mg οΏ½ 1 molecule O2 0

2 formula units MgO

2 moles Mg οΏ½ 1 mole O2 0 2 moles MgO

48.62 g Mg οΏ½ 32.00 g O2 0 80.62 g MgO

e. 2 atoms Na οΏ½ 2 molecules H2O 0

2 formula units NaOH οΏ½ 1 molecule H2

2 moles Na οΏ½ 2 moles H2O 0

2 moles NaOH οΏ½ 1 mole H2

45.98 g Na οΏ½ 36.04 g H2O 0

80.00 g NaOH οΏ½ 2.02 g H2

2. a. 34

mm

oollOA

2

l

23m

mol

oAl O

l2O2

3

24m

mol

oAllA2Ol

3

34

mm

oollOA

2

l

23m

mol

oAl O

l2O

2

3

24m

mol

oAllA

2Ol

3

b. 43mmoollHF

2

eO

43

mm

oo

llHFe

2

13m

mol

oFleF

3

eO4

43mmoollHF2

eO

43

mm

oo

llHFe

2

13m

mol

oFleF3

eO4

1

4m

mol

oFleH3O

2

4

14mmoollFHe3

2

OO

4

44mmoollHH2

2

O

1

4m

mol

oFleH

3O2

4

14mmoollFHe3

2

OO

4

44mmoollHH

2

2

O

c. 22mmoollHHggO

21

mm

oollHO

g2

21mmoollHOg

2

O

22mmoollHHggO

21

mm

oollHO

g

2

21mmoollHOg

2

O0.139 mol H2O

0.0712 mol CoCl2

0.0712 mol CoCl20.0712 mol CoCl2

2.84 mol H2O0.405 mol MgSO4

0.405 mol MgSO40.405 mol MgSO4

1.50 mol O1.00 mol Al

APPENDIX D Solutions to Practice Problems

Page 68: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 937

Solu

tions

3. a. ZnO(s) οΏ½ 2HCl(aq) 0 ZnCl2(aq) οΏ½ H2O(l)

12

mm

oollZHnCOl

11

mm

oollZZnnCOl2

11

mm

oo

llZHn

2OO

12

mm

oollZHnCOl

12mmoollZHn

CC

ll2

12

mm

oollHH

2

COl

11

mm

oollZZnnCOl2

12mmoollZHn

CC

ll2

11

mm

oollZHn

2

COl2

11

mm

oo

llZHn2OO

12

mm

oollHH

2

COl

11

mm

oollZHn

2

COl2

b. 2C4H10(g) οΏ½ 13O2(g) 0 8CO2(g) οΏ½ 10H2O(l)

21m3

omloCl4

OH1

2

0

28mmoollCC4

OH1

2

0

210

mmo

ol C

l H4H

2O10

21m3

omloCl

4

OH1

2

0

28mmoollCC

4

OH1

2

0

210

mmo

ol C

l H

4H2O

10

1103mmoollHO2O

2

180

mm

oollCHO2O

2

813

mmo

ol

lC

OO

2

2

1103mmoollHO

2O2

180

mm

oollCHO

2O2

813

mmo

ol C

l OO

2

2

9. 2SO2(g) οΏ½ O2(g) οΏ½ 2H2O(l) 0 2H2SO4(aq)

12.5 mol SO2 οΏ½ 22mmoollHS2

OSO

2

4

οΏ½ 12.5 mol H2SO4 produced

12.5 mol SO2 οΏ½ 21

mm

oollSOO

2

2 οΏ½ 6.25 mol O2 needed

10. a. 2CH4(g) οΏ½ S8(s) 0 2CS2(l) οΏ½ 4H2S(g)

b. 1.50 mol S8 οΏ½ 21

mm

oollCSS

8

2 οΏ½ 3.00 mol CS2

c. 1.50 mol S8 οΏ½ 41mmoollHS2

8

S οΏ½ 6.00 mol H2S

11. TiO2(s) οΏ½ C(s) οΏ½ 2Cl2(g) 0 TiCl4(s) οΏ½ CO2(g)

Step 1: Make mole 0 mole conversion.

1.25 mol TiO2 οΏ½ 12mmoollTCiOl2

2 οΏ½ 2.50 mol Cl2

Step 2: Make mole 0 mass conversion.

2.50 mol Cl2 οΏ½ 710m.9

ogl C

Cll

2

2 οΏ½ 177 g Cl2

12. Step 1: Balance the chemical equation.

2NaCl(s) 0 2Na(s) οΏ½ Cl2(g)

Step 2: Make mole 0 mole conversion.

2.50 mol NaCl οΏ½ 21mmoollNCalC2

l οΏ½ 1.25 mol Cl2

Step 3: Make mole 0 mass conversion.

1.25 mol Cl2 οΏ½ 710m.9

ogl C

Cll

2

2 οΏ½ 88.6 g Cl2

13. 2NaN3(s) 0 2Na(s) οΏ½ 3N2(g)

Step 1: Make mass 0 mole conversion.

100.0 g NaN3 οΏ½615.

m02

olgNNaaNN3

3 οΏ½ 1.538 mol NaN3

Step 2: Make mole 0 mole conversion.

1.538 mol NaN3 οΏ½ 2

3m

mol

oNl N

aN2

3 οΏ½ 2.307 mol N2

Step 3: Make mole 0 mass conversion.

2.307 mol N2 οΏ½ 218.

m02

olgNN

2

2 οΏ½ 64.64 g N2

14. Step 1: Balance the chemical equation.

2SO2(g) οΏ½ O2(g) οΏ½ 2H2O(l) 0 2H2SO4(aq)

Step 2: Make mass 0 mole conversion.

2.50 g SO2 οΏ½ 614.

m07

olgSSOO2

2 οΏ½ 0.0390 mol SO2

Step 3: Make mole 0 mole conversion.

0.0390 mol SO2 οΏ½ οΏ½

0.0390 mol H2SO4

Step 4: Make mole 0 mass conversion.

0.0390 mol H2SO4 οΏ½918.

m09

olgHH

2S2SOO

4

4

οΏ½ 3.83 g H2SO4

20. 6Na(s) οΏ½ Fe2O3(s) 0 3Na2O(s) οΏ½ 2Fe(s)

Step 1: Make mass 0 mole conversion.

100.0 g Na οΏ½ 212.

m99

olgNNaa

οΏ½ 4.350 mol Na

100.0 g Fe2O3 οΏ½1159

m.7ol

gFFee2O

2O3

3

οΏ½ 0.6261 mol Fe2O3

Step 2: Make mole ratio comparison.

compared to 1

6m

mol

oFleN2

aO3

0.1439 compared to 0.1667

a. The actual ratio is less than the needed ratio,so iron(III) oxide is the limiting reactant.

b. Sodium is the excess reactant.

c. Step 1: Make mole 0 mole conversion.

0.6261 mol Fe2O3 οΏ½1

2m

mol

oFleF

2

eO3

οΏ½ 1.252 mol Fe

Step 2: Make mole 0 mass conversion.

1.252 mol Fe οΏ½ 515.

m85

olgFFee

οΏ½ 69.92 g Fe

d. Step 1: Make mole 0 mole conversion.

0.6261 mol Fe2O3 οΏ½ 1

6m

mol

oFleN

2

aO3

οΏ½ 3.757 mol Na needed

0.6261 mol Fe2O3

4.350 mol Na

2 mol H2SO4

2 mol SO2

APPENDIX D Solutions to Practice Problems

Page 69: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

938 Chemistry: Matter and Change

Solu

tions

Step 2: Make mole 0 mass conversion.

3.757 mol Na οΏ½ 212.

m99

olgNNaa

οΏ½ 86.36 g Na needed

100.0 g Na given οΏ½ 86.36 g Na needed οΏ½ 13.6 g Na in excess

21. Step 1: Write the balanced chemical equation.

6CO2(g) οΏ½ 6H2O(l) 0 C6H12O6(aq) οΏ½ 6O2(g)

Step 2: Make mass 0 mole conversion.

88.0 g CO2 οΏ½ 414.

m01

olgCCOO2

2 οΏ½ 2.00 mol CO2

64.0 g H2O οΏ½ 118.

m02

olgHH2O

2O οΏ½ 3.55 mol H2O

Step 3: Make mole ratio comparison.

32..5050

mm

oollHCO

2O2

compared to 66

mm

oollHCO

2O2

0.563 compared to 1.00

a. The actual ratio is less than the needed ratio,so carbon dioxide is the limiting reactant.

b. Water is the excess reactant.

Step 1: Make mole 0 mole conversion.

2.00 mol CO2 οΏ½ 66

mm

oollHCO

2O

2 οΏ½ 2.00 mol H2O

Step 2: Make mole 0 mass conversion.

2.00 mol H2O οΏ½ 118.

m02

olgHH

2O2O

οΏ½ 36.0 g H2O needed

64.0 g H2O given οΏ½ 36.0 g H2O needed οΏ½ 28.0 g H2O in excess

c. Step 1: Make mole 0 mole conversion.

2.00 mol CO2 οΏ½1 m

6omloCl6

CHO12

2

O6

οΏ½ 0.333 mol C6H12O6

Step 2: Make mole 0 mass conversion.

0.333 mol C6H12O6 οΏ½1180

m.2ol

gCC

6H6H

12

1

O2O

6

6

οΏ½ 60.0 g C6H12O6

27. Al(OH)3(s) οΏ½ 3HCl(aq) 0 AlCl3(aq) οΏ½ 3H2O(l)

Step 1: Make mass 0 mole conversion.

14.0 g Al(OH)3 οΏ½718m.0

ogl A

All((OO

HH

))3

3

οΏ½ 0.179 mol Al(OH)3

Step 2: Make mole 0 mole conversion.

0.179 mol Al(OH)3 οΏ½1

1m

mol

oAl A

l(OlC

Hl3

)3

οΏ½ 0.179 mol AlCl3

Step 3: Make mole 0 mass conversion.

0.179 mol AlCl3 οΏ½1133

m.3ol

gAAlClCl3

l3 οΏ½ 23.9 g AlCl3

23.9 g of AlCl3 is the theoretical yield.

% yield οΏ½ 2223..09

gg

AA

llCC

ll3

3οΏ½ 100 οΏ½ 92.1% yield of AlCl3

28. Step 1: Write the balanced chemical equation.

Cu(s) οΏ½ 2AgNO3(aq) 0 2Ag(s) οΏ½ Cu(NO3)2(aq)

Step 2: Make mass 0 mole conversion.

20.0 g Cu οΏ½ 613.

m55

olgCCuu

οΏ½ 0.315 mol Cu

Step 3: Make mole 0 mole conversion.

0.315 mol Cu οΏ½ 21

mm

oollACu

g οΏ½ 0.630 mol Ag

Step 4: Make mole 0 mass conversion.

0.630 mol Ag οΏ½ 1107

m.9ol

gAAgg

οΏ½ 68.0 g Ag

68.0 g of Ag is the theoretical yield.

% yield οΏ½ 6608..00

gg

AA

gg

οΏ½ 100 οΏ½ 88.2% yield of Ag

29. Step 1: Write the balanced chemical equation.

Zn(s) οΏ½ I2(s) 0 ZnI2(s)

Step 2: Make mass 0 mole conversion.

125.0 g Zn οΏ½ 615.

m38

olgZZnn

οΏ½ 1.912 mol Zn

Step 3: Make mole 0 mole conversion.

1.912 mol Zn οΏ½ 11mmoollZZnnI2

οΏ½ 1.912 mol ZnI2

Step 4: Make mole 0 mass conversion.

1.912 mol ZnI2 οΏ½ 3119

m.2ol

gZZnnI2

I2 οΏ½ 610.3 g ZnI2

610.3 g of ZnI2 is the theoretical yield.

% yield οΏ½ 561150..63

gg

ZZnn

II2

2 οΏ½ 100

οΏ½ 84.48% yield of ZnI2

APPENDIX D Solutions to Practice Problems

Page 70: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 939

Solu

tions

Chapter 13

1. R

Rat

aetn

ei

n

tr

e

o

o

g

n

en οΏ½ οΏ½

2208..20

ggοΏ½/

/mm

oo

ll

οΏ½ οΏ½ οΏ½0.721οΏ½ οΏ½ 0.849

2. οΏ½ οΏ½4248..00

ggοΏ½/

/mm

oo

ll

οΏ½οΏ½ οΏ½1.57οΏ½οΏ½ 1.25

3. Rearrange Graham’s law to solve for RateA.

RateA οΏ½ RateB οΏ½ οΏ½mmoo

llaarrοΏ½ m

maassssοΏ½A

BοΏ½RateB οΏ½ 3.6 mol/min

mm

oo

llaarr

mm

aassssA

B οΏ½ 0.5

RateA οΏ½ 3.6 mol/min οΏ½ οΏ½0.5οΏ½

οΏ½ 3.6 mol/min οΏ½ 0.71

οΏ½ 2.5 mol/min

4. Phydrogen οΏ½ Ptotal οΏ½ Phelium

οΏ½ 600 mm Hg οΏ½ 439 mm Hg

οΏ½ 161 mm Hg

5. Ptotal οΏ½ 5.00 kPa οΏ½ 4.56 kPa οΏ½ 3.02 kPa οΏ½ 1.20 kPa

οΏ½ 13.78 kPa

6. Pcarbon dioxide οΏ½ 30.4 kPa οΏ½ (16.5 kPa οΏ½ 3.7 kPa)

οΏ½ 30.4 kPa οΏ½ 20.2 kPa οΏ½ 10.2 kPa

Chapter 14

1. V2 οΏ½ VP1P

2

1 οΏ½ οΏ½ 158 mL

2. P2 οΏ½ VV1P

2

1 οΏ½ οΏ½ 0.494 atm

3. V2 οΏ½ VP1P

2

1 οΏ½

οΏ½ 1.10 οΏ½ 102 mL

4. P2 οΏ½ VV1P

2

1 οΏ½ οΏ½ 78.4 atm

5. 29.2 kPa οΏ½ 10

11.

a3tmkPa οΏ½ 0.288 atm

V2 οΏ½ VP1P

2

1 οΏ½ οΏ½ 0.657 L

6. T1 οΏ½ 89Β°C οΏ½ 273 οΏ½ 362 K

T2 οΏ½ TV1V

1

2 οΏ½ (362 K)

0.6(17.1L2 L)

οΏ½ 605 K

605 οΏ½ 273 οΏ½ 330Β°C

7. T1 οΏ½ 80.0Β°C οΏ½ 273 οΏ½ 353 K

T2 οΏ½ 30.0Β°C οΏ½ 273 οΏ½ 303 K

V2 οΏ½ VT1T

1

2 οΏ½ (3.00

3L5)3(3

K03 K)

οΏ½ 2.58 L

8. T1 οΏ½ 25Β°C οΏ½ 273 οΏ½ 298 K

T2 οΏ½ 0.00Β°C οΏ½ 273 οΏ½ 273 K

V2 οΏ½ VT1T

1

2 οΏ½ (0.620

29L8)(

K273 K) οΏ½ 0.57 L

9. T1 οΏ½ 30.0Β°C οΏ½ 273 οΏ½ 303 K

T2 οΏ½ TP1P

1

2 οΏ½(303

1K2)5(2

k0P1akPa)

οΏ½ 487 K

487 K οΏ½ 273 οΏ½ 214Β°C

10. T1 οΏ½ 25.0Β°C οΏ½ 273 οΏ½ 298 K

T2 οΏ½ 37.0Β°C οΏ½ 273 οΏ½ 310 K

P2 οΏ½ PT1T

1

2 οΏ½ οΏ½ 1.96 atm

11. T2 οΏ½ 36.5Β°C οΏ½ 273 οΏ½ 309.5 K

T1 οΏ½ TP2P

2

1 οΏ½ οΏ½ 135 K

135 K οΏ½ 273 οΏ½ οΏ½138Β°C

12. T1 οΏ½ 0.00Β°C οΏ½ 273 οΏ½ 273 K

T2 οΏ½ TP1P

1

2 οΏ½ οΏ½ 252.5 K

252.5 K οΏ½ 273 οΏ½ οΏ½20.5Β°C οΏ½ οΏ½21Β°C

The temperature must be lowered by 21Β°C.

13. T1 οΏ½ 22.0Β°C οΏ½ 273 οΏ½ 295 K

T2 οΏ½ 44.6Β°C οΏ½ 273 οΏ½ 318 K

P2 οΏ½ PP1T

1

2 οΏ½(660 t

2o9r5r)(

K318 K)οΏ½ 711 torr

711 torr οΏ½ 660 torr οΏ½ 51 torr more

(273 K)(28.4 kPa)

30.7 kPa

(309.5 K)(1.12 atm)

2.56 atm

(1.88 atm)(310 K)

298 K

(0.220 L)(0.860 atm)

0.288 atm

(4.00 L)(0.980 atm)

0.0500 L

(145.7 mL)(1.08 atm)

1.43 atm

(1.00 L)(0.988 atm)

2.00 L

(300.0 mL)(99.0kPa)

188 kPa

Ratecarbon monoxideRatecarbon dioxide

APPENDIX D Solutions to Practice Problems

Page 71: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

940 Chemistry: Matter and Change

Solu

tions

19. T1 οΏ½ 36Β°C οΏ½ 273 οΏ½ 309 K

T2 οΏ½ 28Β°C οΏ½ 273 οΏ½ 301 K

V2 οΏ½ PP1T

2T2V

1

1 οΏ½ οΏ½ 2.3 L

20. T1 οΏ½ 0.00Β°C οΏ½ 273 οΏ½ 273 K

T2 οΏ½ 30.00Β°C οΏ½ 273 οΏ½ 303 K

P2 οΏ½ VV1T

2T2P

1

1 οΏ½

οΏ½ 1.66 atm

21. T1 οΏ½ 22.0Β°C οΏ½ 273 οΏ½ 295 K

T2 οΏ½ 100.0Β°C οΏ½ 273 οΏ½ 373 K

V1 οΏ½ VT2T

2P1P

1

2 οΏ½

οΏ½ 0.214 mL

22. T1 οΏ½ 5.0Β°C οΏ½ 273 οΏ½ 278 K

T2 οΏ½ 2.09Β°C οΏ½ 273 οΏ½ 275 K

V2 οΏ½ PP1T

2T2V

1

1 οΏ½

οΏ½ 39 mL

23. P1 οΏ½ VV2T

1T1P

2

2 οΏ½ οΏ½

οΏ½ 27.0 kPa

24. 2.4 mol οΏ½ 2m2.

o4

lL

οΏ½ 54 L

25. 0.0459 mol οΏ½ 2m2.

o4

lL

οΏ½ 1.03 L

26. 1.02 mol οΏ½ 2m2.

o4

lL

οΏ½ 22.8 L

27. 2.00 L οΏ½ 212m.4

oLl

οΏ½ 0.0893 mol

28. Set up problem as a ratio.

?0m.8

o6l5HLe

οΏ½ 0.02

02.646

m0

oLl He

Solve for mol He.

? mol He οΏ½ 0.02

02.646

m0

oLl He

οΏ½ 0.865 L

οΏ½ 0.0425 mol He

29. 1.0 L οΏ½ 212m.4

oLl

οΏ½ 0.045 mol

0.045 mol οΏ½ 4m4.0

olg

οΏ½ 2.0 g

30. 0.00922 g οΏ½ 21.0

m16

olg

οΏ½ 0.00457 mol

0.00457 mol οΏ½ 2m2.

o4

lL

οΏ½ 0.102 L or 102 mL

31. 0.416 g οΏ½ 813m.8

ogl

οΏ½ 0.00496 mol

0.00496 mol οΏ½ 2m2.

o4

lL

οΏ½ 0.111 L

32. 0.860 g οΏ½ 0.205 g οΏ½ 0.655 g He remaining

Set up problem as a ratio.

0.6

V55 g οΏ½

01.896.20

Lg

Solve for V.

V οΏ½ (19.2

0L.8)(600.6g55 g)

οΏ½ 14.6 L

33. 4.5 kg οΏ½ 1010k0gg

οΏ½ 218m.0

ogl

οΏ½ 212m.4

oLl

οΏ½ 3.6 οΏ½ 103 L

41. n οΏ½ PRVT οΏ½

οΏ½ 6.9 οΏ½ 10οΏ½3 mol

42. 143 kPa οΏ½ 110.010.3

aktPma

οΏ½ 1.41 atm

T οΏ½ PnVR οΏ½ οΏ½ 6.90 K

6.90 K οΏ½ 273 οΏ½ οΏ½266Β°C

43. V οΏ½ n

PRT οΏ½

οΏ½ 7.81 L

44. T οΏ½ 20.0Β°C οΏ½ 273 οΏ½ 293 K

P οΏ½ nVRT οΏ½

οΏ½ 5.14 atm

45. T οΏ½ PnVR οΏ½ οΏ½ 307 K

46. 117 kPa οΏ½ 110.010.3

aktPma

οΏ½ 1.15 atm

T οΏ½ 35.1Β°C οΏ½ 273 οΏ½ 308 K

m οΏ½ PRM

TV

οΏ½

οΏ½ 6.39 g

47. T οΏ½ 22.0Β°C οΏ½ 273 οΏ½ 295 K

m οΏ½ MRPTV

οΏ½

οΏ½ 0.694 g

(28.0 g/mol)(1.00 atm)(0.600 L)

οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½(295 K)

(1.15 atm)(70.0 g/mol)(2.00 L)

οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½(308 K)

(0.988 atm)(1.20 L)

(0.0470 mol)οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½

(0.108 mol)οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½(293 K)

0.505 L

(0.323 mol)οΏ½0.0821 mLοΏ½a

otlοΏ½mK

οΏ½(265 K)

0.900 atm

(1.41 atm)(1.00 L)

(2.49 mol)οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½

(3.81 atm)(0.44 L)

οΏ½0.0821 mLοΏ½a

otlοΏ½mK

οΏ½(298 K)

(0.644 L)(298 K)(32.6 kPa)

(0.766 L)(303 K)

(1.30 atm)(275 K)(46.0 mL)

(1.52 atm)(278 K)

(0.224 mL)(295 K)(1.23 atm)

(373 K)(1.02 atm)

(30.0 mL)(303 K)(1.00 atm)

(20.0 mL)(273 K)

(0.998 atm)(301 K)(2.1 L)

(0.900 atm)(309 K)

APPENDIX D Solutions to Practice Problems

Page 72: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

48. D οΏ½ PRMT οΏ½ οΏ½ 1.96 g/L

49. T οΏ½ 25.0Β°C οΏ½ 273 οΏ½ 298 K

M οΏ½ D

PRT οΏ½

οΏ½ 26.1 g/mol

50. D οΏ½ MRT

P οΏ½ οΏ½ 1.78 g/L

56. S(s) οΏ½ O2(g) 0 SO2(g)

3.5 L SO2 οΏ½ οΏ½ 11

vvoolluumm

ee

SOO

2

2 οΏ½ 3.5 L O2

57. 2H2(g) οΏ½ O2(g) 0 2H2O(g)

5.00 L O2 οΏ½12

vvoolluumm

eesH

O2

2 οΏ½ 10.0 L H2

58. C3H8(g) οΏ½ 5O2(g) 0 3CO2(g) οΏ½ 4H2O(g)

34.0 L O2 οΏ½15

vvoolluumm

ees

C3OH

2

8 οΏ½ 6.80 L C3H8

59. CH4(g) οΏ½ 2O2(g) 0 CO2(g) οΏ½ 2H2O(g)

2.36 L CH4 οΏ½12

vvoolluumm

ees

COH

2

4 οΏ½ 4.72 L O2

60. 0.100 L N2O οΏ½ 212m.4

oLl

οΏ½ 0.00446 mol N2O

0.00446 mol N2O οΏ½1 m

1om

loNlHN

4

2

NOO3

οΏ½ 0.00446 mol NH4NO3

0.00446 mol NH4NO3 οΏ½ 80.0 g/mol

οΏ½ 0.357 g NH4NO3

61. 2.38 kg οΏ½ 10

k0g0 g οΏ½

1 m1o00

l.C0agCO3οΏ½

1

1m

mo

ol

lC

CaC

OO2

3 οΏ½

212m.4

oLl

οΏ½ 533 L CO2

62. CH4(g) οΏ½ 2O2(g) 0 CO2(g) οΏ½ 2H2O(g)

n οΏ½ PRVT οΏ½

οΏ½ 0.271 mol CH4

0.271 mol CH4 οΏ½ 21

mm

oollHCH

2O4

οΏ½ 0.541 mol H2O

63. 52.0 g Fe οΏ½ 515.

m85

olgFFee

οΏ½ 34

mm

oollOFe

2 οΏ½ 212m.4

oLl

οΏ½ 15.6 L O2

64. 2K(s) οΏ½ Cl2(g) 0 2KCl(s)

0.204 g K οΏ½ 319m.1

ogl K

K οΏ½

12

mm

oollCKl2 οΏ½

212m.4

oLl

οΏ½ 0.0584 L Cl2

(1.00 atm)(10.5 L)

οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½(473 K)

(39.9 g/mol)(1.00 atm)

οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½(273 K)

(1.09 g/L)οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½(298 K)

1.02 atm

(1.00 atm)(44.0 g/mol)

οΏ½0.0821mLοΏ½a

otlοΏ½mK

οΏ½(273 K)

Solutions 941

Solu

tions

APPENDIX D Solutions to Practice Problems

Page 73: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

942 Chemistry: Matter and Change

Solu

tions

Chapter 151. S1 οΏ½

01.5.05

Lg

οΏ½ 0.55 g/L

S2 οΏ½ P2 οΏ½ PS1

1 οΏ½ 110.0 kPa οΏ½

200.5.05

kgP/La

οΏ½ 3.0 g/L

2. S2 οΏ½ 11..50

gL

οΏ½ 1.5 g/L

P2 οΏ½ SS

2

1 οΏ½ P1 οΏ½

01.6.56

gg/L/L

οΏ½ 10.0 atm οΏ½ 23 atm

8. 600 mL H2O οΏ½ 1.0 g/mL οΏ½ 600 g H2O

οΏ½ 100 οΏ½ 3%

9. 3.62% οΏ½ 100 οΏ½ m

1a5ss00

N.a0OgCl

mass NaOCl οΏ½ 54.3 g

10. 1500.0 g οΏ½ 54.3 g οΏ½ 1445.7 g solvent

11. 115 m

3L5

οΏ½mL

35 mL οΏ½ 100 οΏ½ 23%

12. 30.0% οΏ½ 100 οΏ½vvoolluumm

ee

seotlhuatnioonl

volume ethanol οΏ½ 0.300 οΏ½ (volume solution) οΏ½0.300 οΏ½ 100.0 mL

volume ethanol οΏ½ 30.0 mL

volume water οΏ½ 100.0 mL οΏ½ 30.0 mL οΏ½ 70.0 mL

13. οΏ½ 100 οΏ½ 2.1%

14. mol C6H12O6 οΏ½ 40.0 g οΏ½ 18

10m.1

o6lg

οΏ½ 0.222 mol

molarity οΏ½ 1m.5

oLl C

so6Hlu

1t2iOo

6n

οΏ½ 0.2

12.25

mL

ol οΏ½ 0.148M

15. mol NaOCl οΏ½ 9.5 g οΏ½ 714.

m44

olg

οΏ½ 0.128 mol

molarity οΏ½ 1.0

m0oLl N

soalOut

Ciol

n οΏ½

0.112.080mLol

οΏ½ 0.128M

16. mol KBr οΏ½ 1.55 g οΏ½ 1119

m.0ol

g οΏ½ 0.0130 mol KBr

molarity οΏ½ 1.60

mLol

soKlBu

rtion

οΏ½ 0.0

0113.600mLol

οΏ½ 8.13 οΏ½ 10οΏ½3M

17. mol CaCl2 οΏ½ (0.10M)(1.0 L) οΏ½ (0.10 mol/L)(1.0 L)

οΏ½ 0.10 mol CaCl2

mass CaCl2 οΏ½ 0.10 mol CaCl2 οΏ½ 11

10m.9

o8lg

οΏ½ 11 g CaCl2

18. mol NaOH οΏ½ (2M)(1 L) οΏ½ (2 mol/L)(1 L) οΏ½ 2 mol

mass NaOH οΏ½ 2 mol NaOH οΏ½ 410.

m00

olg

οΏ½ 80 g NaOH

19. mol CaCl2 οΏ½ 500.0 mL οΏ½ 100

10LmL

οΏ½ 0.20M

οΏ½ 500.0 mL οΏ½ 100

10LmL

οΏ½ 0.2

10

Lmol

οΏ½ 0.10 mol

mass CaCl2 οΏ½ 0.10 mol CaCl2 οΏ½ 11

10m.9

o8lg

οΏ½ 11 g CaCl2

20. mol NaOH οΏ½ 250 mL οΏ½ 100

10LmL

οΏ½ 3.0M

οΏ½ 250 mL οΏ½ 100

10LmL

οΏ½ 3.0

1mL

ol

οΏ½ 0.75 mol

mass NaOH οΏ½ 0.75 mol NaOH οΏ½ 410.

m00

olg

οΏ½ 3.0 οΏ½ 101 g NaOH

21. (3.00M)V1 οΏ½ (1.25M)(0.300 L)

V1 οΏ½(1.25M

3.0)(00M.300 L)οΏ½ 0.125 L οΏ½ 125 mL

22. (5.0M)V1 οΏ½ (0.25M)(100.0 mL)

V1 οΏ½ οΏ½ 5.0 mL

23. (3.5M)(20.0 mL) οΏ½ M2(100.0 mL)

M2 οΏ½ (3.5

1M00)(.200m.0

LmL)

οΏ½ 0.70M

24. mol Na2SO4 οΏ½ 10.0 g Na2SO4 οΏ½ 14

12m.0

o4lg

οΏ½ 0.0704 mol Na2SO4

molality οΏ½ οΏ½ 0.0704m

25. mol C10H8 οΏ½ 30.0 g C10H8 οΏ½ 12

18m.1

o6lg

οΏ½ 0.234 mol C10H8

molality οΏ½ 05.0203.40

mg

otollCu

1e0nHe8οΏ½

οΏ½ 0.468m

26. 22.8% οΏ½ οΏ½ 100

Assume 100.0 g sample.

Then, mass NaOH οΏ½ 22.8 g and mass H2OοΏ½ 100.0 g οΏ½ (mass NaOH) οΏ½ 77.2 g

mol NaOH οΏ½ 22.8 g οΏ½ 410.

m00

olg

οΏ½ 0.570 mol NaOH

mol H2O οΏ½ 77.2 g οΏ½ 118.

m02

olg

οΏ½ 4.28 mol H2O

mol fraction NaOH οΏ½

οΏ½ οΏ½ 04.5.8750

οΏ½ 0.118

The mole fraction of NaOH is 0.118.

0.570 mol NaOH0.570 mol NaOH οΏ½ 4.28 mol H2O

mol NaOHmol NaOH οΏ½ mol H2O

mass NaOHmass NaOH οΏ½ mass H2O

1000.0 g toluene1.0000 kg toluene

0.0704 mol Na2SO41000.0 g H2O

(0.25M)(100.0 mL)

5.0M

24 mL24 mL οΏ½ 1100 mL

20 g NaHCO3600 g H2O οΏ½ 20 g Na HCO3

APPENDIX D Solutions to Practice Problems

Page 74: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 943

Solu

tions

27. 0.21 οΏ½

0.21(mol NaCl) οΏ½ 0.21(mol H2O) οΏ½ mol NaCl

0.79(mol NaCl) οΏ½ 0.21(mol H2O)

mol H2O οΏ½ 100.0 mL οΏ½ 11.0m

gL

οΏ½ 18

1.0m1o6lg

οΏ½ 5.55 mol H2O

Therefore, mol NaCl οΏ½ 0.21 οΏ½

0.57.955 mol

οΏ½ 1.48 mol

mass NaCl οΏ½ 1.48 mol οΏ½ 58.44 g/mol οΏ½ 86.5 g

The mass of dissolved NaCl is 86.5 g.

33. οΏ½Tb οΏ½ 0.512Β°C /m οΏ½ 0.625m οΏ½ 0.320Β°CTb οΏ½ 100Β°C οΏ½ 0.320Β°C οΏ½ 100.320Β°CοΏ½Tf οΏ½ 1.86Β°C /m οΏ½ 0.625m οΏ½ 1.16Β°CTf οΏ½ 0.0Β°C οΏ½ 1.16Β°C οΏ½ οΏ½1.16Β°C

34. οΏ½Tb οΏ½ 1.22Β°C /m οΏ½ 0.40m οΏ½ 0.49Β°CTb οΏ½ 78.5Β°C οΏ½ 0.49Β°C οΏ½ 79.0Β°CοΏ½Tf οΏ½ 1.99Β°C /m οΏ½ 0.40m οΏ½ 0.80Β°CTf οΏ½ οΏ½114.1Β°C οΏ½ 0.80Β°C οΏ½ οΏ½114.9Β°C

35. 1.12Β°C οΏ½ 0.512Β°C /m οΏ½ mm οΏ½ 2.19m

36. 0.500 mol/1 kg οΏ½ 0.500mοΏ½Tb οΏ½ 2.53Β°C /m οΏ½ 0.500m οΏ½ 1.26Β°C

Chapter 16 1. 142 Calories οΏ½ 142 kcal

142 kcal οΏ½ 1010k0cacall

οΏ½ 142 000 cal

2. 86.5 kJ οΏ½ 41.18

k4ca

klJ

οΏ½ 20.7 kcal

3. 256 J οΏ½ 41.18

ca4lJ

οΏ½ 1100

k0caclal

οΏ½ 6.12 οΏ½ 10οΏ½2 kcal

4. q οΏ½ c οΏ½ m οΏ½ οΏ½Tq οΏ½ 2.44 J/(gΒ·Β°C) οΏ½ 34.4 g οΏ½ 53.8Β°C οΏ½ 4.52 οΏ½ 103 J

5. q οΏ½ c οΏ½ m οΏ½ οΏ½T276 J οΏ½ 0.129 J/(gΒ·Β°C) οΏ½ 4.50 g οΏ½ οΏ½TοΏ½T οΏ½ 475Β°C

οΏ½T οΏ½ Tf οΏ½ TiBecause the gold gains heat, let οΏ½T οΏ½ οΏ½ 475Β°C475 Β°C οΏ½ Tf οΏ½ 25.0Β°CTf οΏ½ 5.00 οΏ½ 102Β°C

6. q οΏ½ c οΏ½ m οΏ½ οΏ½T5696 J οΏ½ c οΏ½ 155 g οΏ½ 15.0Β°Cc οΏ½ 2.45 J/(g Β· Β°C)The specific heat is very close to the value forethanol.

12. q οΏ½ c οΏ½ m οΏ½ οΏ½T9750 J οΏ½ 4.184 J/(gΒ·Β°C) οΏ½ 335 g οΏ½ οΏ½TοΏ½T οΏ½ 6.96Β°C

Because the water lost heat, let οΏ½T οΏ½ οΏ½6.96Β°CοΏ½T οΏ½ οΏ½6.96Β°C οΏ½ Tf οΏ½ 65.5Β°CTf οΏ½ 58.5Β°C

13. q οΏ½ c οΏ½ m οΏ½ οΏ½T

5650 J οΏ½ 4.184 J/(gΒ·Β°C) οΏ½ m οΏ½ 26.6Β°C

m οΏ½ 50.8 g

20. 25.7 g CH3OH οΏ½312m.04

olgCCHH3O

3OHH

οΏ½1 m

3o.2l2CH

kJ3OH

οΏ½ 2.58 kJ

21. 275 g NH3 οΏ½ 117.

m03

olgNNHH3

3 οΏ½

12m3o.3l N

kJH3

οΏ½ 376 kJ

22. 12 880 kJ οΏ½ m οΏ½ 116.

m04

olgCCHH4

4 οΏ½

1 m89

o1lkCJH4

m οΏ½ 12 880 kJ οΏ½ 116.

m04

olgCCHH4

4 οΏ½ 1 m

89o1lkCJH4

m οΏ½ 232 g CH4

28. Add the first equation to the second equationreversed.

2CO(g) οΏ½ O2(g) 2CO2(g) οΏ½H οΏ½ οΏ½566.0 kJ2NO(g) N2(g) οΏ½ O2(g) οΏ½H οΏ½ οΏ½180.6 kJ

2CO(g) οΏ½ 2NO(g) 2CO2(g) οΏ½ N2(g) οΏ½H οΏ½ οΏ½746.6 kJ

mol NaClmol NaCl οΏ½ mol H2O

APPENDIX D Solutions to Practice Problems

Page 75: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

944 Chemistry: Matter and Change

Solu

tions

29. Add the first equation to the second equationreversed and tripled.

4Al(s) οΏ½ 3O2(g) β†’ 2Al2O3(s) οΏ½H οΏ½ οΏ½3352 kJ3MnO2(s) β†’ 3Mn(s) οΏ½ 3O2(g) οΏ½H οΏ½ οΏ½1563 kJ

4Al(s) οΏ½ 3MnO2(s) β†’ 2Al2O3(s) οΏ½ 3Mn(s)οΏ½H οΏ½ οΏ½1789 kJ

30. a. One mole of O2(g) in the first equation cancelsthe O2(g) in the second equation.

2[12

N2(g) οΏ½ O2(g) β†’ NO2(g)]2[NO(g) β†’

12

O2(g) οΏ½ 12

N2(g)]

2NO(g) οΏ½ O2(g) β†’ 2NO2(g)

b. H2(g) οΏ½ S(s) οΏ½ 2O2(g) β†’ H2SO4(l)SO3(g) β†’ S(s) οΏ½

32

O2(g)H2O(l) β†’ H2(g) οΏ½

12

O2(g)

SO3(g) οΏ½ H2O(l) β†’ H2SO4(l)

31. a. οΏ½HΒ°rxn οΏ½ οΏ½οΏ½Hfo (products) οΏ½ οΏ½οΏ½Hf

o (reactants)οΏ½HΒ°rxn οΏ½ (οΏ½635.1 kJ οΏ½ 393.509 kJ) οΏ½ (οΏ½1206.9 kJ)

οΏ½ 178.3 kJ

b. οΏ½HΒ°rxn οΏ½ (οΏ½128.2 kJ) οΏ½ (οΏ½74.81 kJ) οΏ½ οΏ½53.4 kJ

c. οΏ½HΒ°rxn οΏ½ 2(33.18 kJ) οΏ½ (0 kJ) οΏ½ 66.36 kJ

d. οΏ½HΒ°rxn οΏ½ 2(οΏ½285.830 kJ) οΏ½ 2(οΏ½187.8 kJ) οΏ½οΏ½196.1 kJ

e. οΏ½HΒ°rxn οΏ½ [4(33.18 kJ) οΏ½ 6(οΏ½285.830 kJ)] οΏ½4(οΏ½46.11) kJ οΏ½ οΏ½1397.82 kJ

38. a. οΏ½Ssystem is negative because the system’sentropy decreases.

b. οΏ½Ssystem is negative because the system’sentropy decreases.

c. οΏ½Ssystem is positive because the system’s entropyincreases.

d. οΏ½Ssystem is negative because the system’sentropy decreases.

39. a. οΏ½Gsystem οΏ½ οΏ½Hsystem οΏ½ TοΏ½Ssystem

οΏ½Gsystem οΏ½ οΏ½75 900 J οΏ½ (273 K)(138 J/K)οΏ½Gsystem οΏ½ οΏ½75 900 J οΏ½ 37 700 J οΏ½ οΏ½113 600 Jspontaneous reaction

b. οΏ½Gsystem οΏ½ οΏ½Hsystem οΏ½ TοΏ½Ssystem

οΏ½Gsystem οΏ½ οΏ½27 600 J οΏ½ (535 K)(οΏ½55.2 J/K)οΏ½Gsystem οΏ½ οΏ½27 600 J οΏ½ 29 500 J οΏ½ 1900 Jnonspontaneous reaction

c. οΏ½Gsystem οΏ½ οΏ½Hsystem οΏ½ TοΏ½Ssystem

οΏ½Gsystem οΏ½ 365 000 J οΏ½ (388 K)(οΏ½55.2 J/K)οΏ½Gsystem οΏ½ 365 000 J οΏ½ 21 400 J οΏ½ 386 000 Jnonspontaneous reaction

Chapter 17 1. Average reaction rate οΏ½

οΏ½ οΏ½ οΏ½ οΏ½[

οΏ½Ht2]

Average reaction rate οΏ½ οΏ½

οΏ½ οΏ½ οΏ½

40..00010

sM

οΏ½ 0.0025 mol/(LοΏ½s)

2. Average reaction rate οΏ½

οΏ½ οΏ½ οΏ½ οΏ½[

οΏ½Ctl2]

Average reaction rate οΏ½ οΏ½

οΏ½ οΏ½οΏ½

40..00010

sM

οΏ½ 0.0025 mol/(LοΏ½s)

3. Average reaction rate οΏ½

οΏ½ οΏ½[H

οΏ½Ctl]

Average reaction rate οΏ½

οΏ½ 40..00020

sM

οΏ½ 0.0050 mol/(LοΏ½s)

16. Rate οΏ½ k[A]3

17. Examining trials 1 and 2, doubling [A] has noeffect on the rate; therefore, the reaction is zeroorder in A. Examining trials 2 and 3, doubling [B]doubles the rate; therefore, the reaction is firstorder in B. Rate οΏ½ k[A]0[B] οΏ½ k[B]

18. Examining trials 1 and 2, doubling [CH3CHO]increases the rate by a factor of four. Examiningtrials 2 and 3, doubling [CH3CHO] again increasesthe rate by a factor of four. Therefore, the reac-tion is second order in CH3CHO.Rate οΏ½ k[CH3CHO]2

24. [NO] οΏ½ 0.00500M

[H2] οΏ½ 0.00200M

k οΏ½ 2.90 οΏ½ 102 L2/(mol2οΏ½s)

Rate οΏ½ k [NO]2[H2]

οΏ½ [2.90 οΏ½ 102 L2/(mol2οΏ½s)](0.00500M)2

(0.00200M)

οΏ½ [2.90 οΏ½ 102 L2/(mol2οΏ½s)](0.00500 mol/ k )2

(0.00200 mol/L)

οΏ½ 1.45 οΏ½ 10οΏ½5 mol/(LοΏ½s)

0.020M οΏ½ 0.000M

4.00 s οΏ½ 0.00 s

[HCl] at time t2 οΏ½ [HCl] at time t1οΏ½t2 οΏ½ t1

0.040M οΏ½ 0.050M

4.00 s οΏ½ 0.00 s

[Cl2] at time t2 οΏ½ [Cl2] at time t1t2 οΏ½ t1

0.020M οΏ½ 0.030M

4.00 s οΏ½ 0.00 s

[H2] at time t2 οΏ½ [H2] at time t1t2 οΏ½ t1

APPENDIX D Solutions to Practice Problems

Page 76: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 945

Solu

tions

25. [NO] οΏ½ 0.0100M

[H2] οΏ½ 0.00125M

k οΏ½ 2.90 οΏ½ 102 L2/(mol2οΏ½s)

Rate οΏ½ k [NO]2[H2]

οΏ½ [2.90 οΏ½ 102 L2/(mol2οΏ½s)] (0.0100M)2(0.00125M)

οΏ½ [2.90 οΏ½ 102 L2/(mol2οΏ½s)] (0.0100 mol/L)2

(0.00125 mol/L)

οΏ½ 3.63 οΏ½ 10οΏ½5 mol/(LοΏ½s)

26. [NO] οΏ½ 0.00446M[H2] οΏ½ 0.00282M

k οΏ½ 2.90 οΏ½ 102 L2/(mol2οΏ½s)

Rate οΏ½ k [NO]2[H2]

οΏ½ [2.90 οΏ½ 102 L2/(mol2οΏ½s)](0.00446M)2(0.00282M)

οΏ½ [2.90 οΏ½ 102 L2/(mol2οΏ½s)](0.00446 mol/L)2

(0.00282mol/L)

Rate οΏ½ 1.63 οΏ½ 10οΏ½5 mol/(LοΏ½s)

Chapter 18 1. a. Keq οΏ½

[[NN

O2O

2]4

2

]

b. Keq οΏ½ [C[C

HO4]][[HH

2

2

O]3

]

c. Keq οΏ½ [H[H

2]2

2

S[]S22]

2. a. Keq οΏ½ [C10H8(g)]

b. Keq οΏ½ [CO2(g)]

c. Keq οΏ½ [H2O(g)]

d. Keq οΏ½ [H2

[H(g

2O)][

(CgO)]

(g)]

e. Keq οΏ½ [[CCOO

2((gg))]]

3. Keq οΏ½ [[NN

O2O

2]4

2

]οΏ½

((00..00612875))

2 οΏ½ 0.213

4. Keq οΏ½ [C[C

HO4]][[OH2

2]H3]

οΏ½ οΏ½ 3.93

16. a. Keq οΏ½ [[CCOH

]3[OH

H2]

]2

10.5 οΏ½ [CO

(]1(0.3.923)3)2

[CO] οΏ½ 0.144M

b. Keq οΏ½ [[CCOH

]3[OH

H2]

]2

10.5 οΏ½ (1

(.00.93)2[H5)

2]2

[H2] οΏ½ 0.169M

c. Keq οΏ½ [[CCOH

]3[OH

H2]

]2

10.5 οΏ½ (3.8

[5C)H(0

3O.0

H66

]1)2

[CH3OH] οΏ½ 0.177M

17. a. PbCrO4(s) 3 Pb2οΏ½(aq) οΏ½ CrO42οΏ½(aq)

s mol/L dissolves s mol/L s mol/L

Ksp οΏ½ [Pb2οΏ½][CrO42οΏ½]

2.3 οΏ½ 10οΏ½13 οΏ½ (s)(s) οΏ½ s2

s οΏ½ οΏ½2.3 οΏ½οΏ½10οΏ½13οΏ½ οΏ½ 4.8 οΏ½ 10οΏ½7M

b. AgCl(s) 3 AgοΏ½(aq) οΏ½ ClοΏ½(aq)s mol/L dissolves s mol/L s mol/L

Ksp οΏ½ [AgοΏ½][ClοΏ½]

1.8 οΏ½ 10οΏ½10 οΏ½ (s)(s) οΏ½ s2

s οΏ½ οΏ½1.8 οΏ½οΏ½10οΏ½10οΏ½ οΏ½ 1.3 οΏ½ 10οΏ½5M

c. CaCO3(s) 3 Ca2οΏ½(aq) οΏ½ CO32οΏ½(aq)

s mol/L dissolves s mol/L s mol/L

Ksp οΏ½ [Ca2οΏ½][CO32οΏ½]

3.4 οΏ½ 10οΏ½9 οΏ½ (s)(s) οΏ½ s2

s οΏ½ οΏ½3.4 οΏ½οΏ½10οΏ½9οΏ½ οΏ½ 5.8 οΏ½ 10οΏ½5M

d. CaSO4(s) 3 Ca2οΏ½(aq) οΏ½ SO42οΏ½(aq)

s mol/L dissolves s mol/L s mol/L

Ksp οΏ½ [Ca2οΏ½][SO42οΏ½]

4.9 οΏ½ 10οΏ½5 οΏ½ (s)(s) οΏ½ s2

s οΏ½ οΏ½4.9 οΏ½οΏ½10οΏ½5οΏ½ οΏ½ 7.0 οΏ½ 10οΏ½3M

18. a. AgBr(s) 3 AgοΏ½(aq) οΏ½ BrοΏ½(aq)s mol/L dissolves s mol/L s mol/L

Ksp οΏ½ [AgοΏ½][BrοΏ½]

5.4 οΏ½ 10οΏ½13 οΏ½ (s)(s) οΏ½ s2

s οΏ½ οΏ½5.4 οΏ½οΏ½10οΏ½13οΏ½ οΏ½ 7.3 οΏ½ 10οΏ½7M οΏ½ [AgοΏ½]

b. CaF2(s) 3 Ca2οΏ½(aq) οΏ½ 2FοΏ½(aq)s mol/L dissolves s mol/L 2s mol/L

[CaF2]οΏ½ 12

[FοΏ½]

Ksp οΏ½ [Ca2οΏ½][FοΏ½]2

3.5 οΏ½ 10οΏ½11 οΏ½ (s)(2s)2 οΏ½ 4s3

s οΏ½ οΏ½3 3.5 οΏ½4οΏ½ 10οΏ½11οΏ½ οΏ½ 2.1 οΏ½ 10οΏ½4M

12

[FοΏ½] οΏ½ 2.1 οΏ½ 10οΏ½4M

[FοΏ½] οΏ½ 4.2 οΏ½ 10οΏ½4M

(0.0387)(0.0387)(0.0613)(0.1839)3

APPENDIX D Solutions to Practice Problems

Page 77: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

946 Chemistry: Matter and Change

Solu

tions

c. Ag2CrO4(s) 3 2AgοΏ½(aq) οΏ½ CrO42οΏ½(aq)

s mol/L dissolves 2s mol/L s mol/L

[Ag2CrO4] οΏ½ 12

[AgοΏ½]

Ksp οΏ½ [AgοΏ½]2[CrO42οΏ½]

1.1 οΏ½ 10οΏ½12 οΏ½ (2s)2(s) οΏ½ 4s3

s οΏ½ οΏ½3 1.1 οΏ½4οΏ½ 10οΏ½12οΏ½ οΏ½ 6.5 οΏ½ 10οΏ½5M

12

[AgοΏ½] οΏ½ 6.5 οΏ½ 10οΏ½5M

[AgοΏ½] οΏ½ 1.3 οΏ½ 10οΏ½4M

d. PbI2(s) 3 Pb2οΏ½(aq) οΏ½ 2IοΏ½(aq)s mol/L dissolves s mol/L 2s mol/L

Ksp οΏ½ [Pb2οΏ½][IοΏ½]2

9.8 οΏ½ 10οΏ½9 οΏ½ (s)(2s)2 οΏ½ 4s3

s οΏ½ οΏ½3 9.8 οΏ½

4οΏ½ 10οΏ½9οΏ½ οΏ½ 1.3 οΏ½ 10οΏ½3M

19. a. PbF2(s) 3 Pb2οΏ½(aq) οΏ½ 2FοΏ½(aq)

Qsp οΏ½ [Pb2οΏ½][FοΏ½]2 οΏ½ (0.050M)(0.015M)2

οΏ½ 1.12 οΏ½ 10οΏ½5

Ksp οΏ½ 3.3 οΏ½ 10οΏ½8

Qsp οΏ½ Ksp so a precipitate will form.

b. Ag2SO4(s) 3 2AgοΏ½(aq) οΏ½ SO42οΏ½(aq)

Qsp οΏ½ [AgοΏ½]2[SO42οΏ½] οΏ½ (0.0050M)2(0.125M)

οΏ½ 3.1 οΏ½ 10οΏ½6

Ksp οΏ½ 1.2 οΏ½ 10οΏ½5

Qsp οΏ½ Ksp so no precipitate will form.

c. Mg(OH)2(s) 3 Mg2οΏ½(aq) οΏ½ 2OHοΏ½(aq)

Qsp οΏ½ [Mg2οΏ½][OHοΏ½]2 οΏ½ (0.10M)(0.00125M)2

οΏ½ 1.56 οΏ½ 10οΏ½7

Ksp οΏ½ 5.6 οΏ½ 10οΏ½12

Qsp οΏ½ Ksp so a precipitate will form.

Chapter 19 1. a. Mg(s) οΏ½ 2HNO3(aq) β†’ Mg(NO3)2(aq) οΏ½ H2(g)

b. 2Al(s) οΏ½ 3H2SO4(aq) β†’ Al2(SO4)3(aq) οΏ½ 3H2(g)c. CaCO3(s) οΏ½ 2HBr(aq) β†’ CaBr2(aq) οΏ½ H2O(l) οΏ½

CO2(g)d. KHCO3(s) οΏ½ HCl(aq) β†’ KCl(aq) οΏ½ H2O(l) οΏ½

CO2(g)

2.Acid

ConjugateBase

Conjugatebase acid

a. NH4οΏ½ NH3 OHοΏ½ H2O

b. HBr BrοΏ½ H2O H3OοΏ½

c. H2O OHοΏ½ CO32οΏ½ HCO3

οΏ½

d. HSO4οΏ½ SO4

2οΏ½ H2O H3OοΏ½

3. a. H2Se(aq) οΏ½ H2O(l) 3 H3OοΏ½(aq) οΏ½ HSeοΏ½(aq)HSeοΏ½(aq) οΏ½ H2O(l) 3 H3OοΏ½(aq) οΏ½ Se2οΏ½(aq)

b. H3AsO4(aq) οΏ½ H2O(l) H3OοΏ½(aq) οΏ½H2AsO4

οΏ½(aq)

H2AsO4οΏ½(aq) οΏ½ H2O(l) 3 H3OοΏ½(aq) οΏ½

HAsO42οΏ½(aq)

HAsO42οΏ½(aq) οΏ½ H2O(l) 3 H3OοΏ½(aq) οΏ½

AsO43οΏ½(aq)

c. H2SO3(aq) οΏ½ H2O(l) 3 H3OοΏ½(aq) οΏ½ HSO3οΏ½(aq)

HSO3οΏ½(aq) οΏ½ H2O(l) 3 H3OοΏ½(aq) οΏ½ SO3

2οΏ½(aq)

10. a. HClO2(aq) οΏ½ H2O(l) 3 H3OοΏ½(aq) οΏ½ ClO2οΏ½(aq)

Ka οΏ½ [H3O

[H

οΏ½

C][lOCl

2

O]

2οΏ½]

b. HNO2(aq) οΏ½ H2O(l) 3 H3OοΏ½(aq) οΏ½ NO2οΏ½(aq)

Ka οΏ½ [H3O

[H

οΏ½

N][ON

2

O]

2οΏ½]

c. HIO(aq) οΏ½ H2O(I) 3 H3OοΏ½(aq) οΏ½ IOοΏ½(aq)

Ka οΏ½ [H3O

[H

οΏ½

I]O[I]OοΏ½]

11. a. C6H13NH2(aq) οΏ½ H2O(l) 3 C6H13NH3οΏ½(aq) οΏ½

OHοΏ½(aq)

Kb οΏ½

b. C3H7NH2(aq) οΏ½ H2O(l) 3 C3H7NH3οΏ½(aq) οΏ½OHοΏ½(aq)

Kb οΏ½

c. CO32οΏ½(aq) οΏ½ H2O(l) 3 HCO3

οΏ½(aq) οΏ½ OHοΏ½(aq)

Kb οΏ½ [HC

[

O

C3

O

οΏ½

3

]2

[οΏ½

O

]

HοΏ½]

d. HSO3οΏ½(aq) οΏ½ H2O(l) 3 H2SO3(aq) οΏ½ OHοΏ½(aq)

[C3H7NH3οΏ½][OHοΏ½]

[C3H7NH2]

[C6H13NH3οΏ½][OHοΏ½]

[C6H13NH2]

APPENDIX D Solutions to Practice Problems

Page 78: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 947

Solu

tions

Kb οΏ½

18. a. [HοΏ½] οΏ½ 1.0 οΏ½ 10οΏ½13M

Kw οΏ½ [HοΏ½][OHοΏ½]

1.0 οΏ½ 10οΏ½14 οΏ½ (1.0 οΏ½ 10οΏ½13)[OHοΏ½]

11..00

οΏ½οΏ½

1100

οΏ½

οΏ½

1

1

4

3 οΏ½

[OHοΏ½] οΏ½ 1.0 οΏ½ 10οΏ½1M

[OHοΏ½] οΏ½ [HοΏ½], so the solution is basic.

b. [OHοΏ½] οΏ½ 1.0 οΏ½ 10οΏ½7M

Kw οΏ½ [HοΏ½][OHοΏ½]

1.0 οΏ½ 10οΏ½14 οΏ½ [HοΏ½](1.0 οΏ½ 10οΏ½7)

11..00

οΏ½οΏ½

1100

οΏ½

οΏ½

1

7

4 οΏ½

[HοΏ½] οΏ½ 1.0 οΏ½ 10οΏ½7M

[OHοΏ½] οΏ½ [HοΏ½], so the solution is neutral.

c. [OHοΏ½] οΏ½ 1.0 οΏ½ 10οΏ½3M

Kw οΏ½ [HοΏ½][OHοΏ½]

1.0 οΏ½ 10οΏ½14 οΏ½ [HοΏ½](1.0 οΏ½ 10οΏ½3)

11..00

οΏ½οΏ½

1100

οΏ½

οΏ½

1

3

4 οΏ½

[HοΏ½

1].(01.

οΏ½0 οΏ½

101οΏ½

03

οΏ½3)

[HοΏ½] οΏ½ 1.0 οΏ½ 10οΏ½11M

[OHοΏ½] οΏ½ [HοΏ½], so the solution is basic.

19. a. pH οΏ½ οΏ½log(1.0 οΏ½ 10οΏ½2) οΏ½ οΏ½(οΏ½2.00) οΏ½ 2.00

b. pH οΏ½ οΏ½log(3.0 οΏ½ 10οΏ½6) οΏ½ οΏ½(οΏ½5.52) οΏ½ 5.52

c. Kw οΏ½ [HοΏ½][OHοΏ½] οΏ½ [HοΏ½](8.2 οΏ½ 10οΏ½6)

[HοΏ½] οΏ½ 18..02

οΏ½οΏ½

1100

οΏ½

οΏ½

1

6

4 οΏ½ 1.2 οΏ½ 10οΏ½9

pH οΏ½ οΏ½log(1.2 οΏ½ 10οΏ½9) οΏ½ οΏ½(οΏ½8.92) οΏ½ 8.92

20. a. pOH οΏ½ οΏ½log(1.0 οΏ½ 10οΏ½6) οΏ½ οΏ½(οΏ½6.00) οΏ½ 6.00pH οΏ½ 14.00 οΏ½ pOH οΏ½ 14.00 οΏ½ 6.00 οΏ½ 8.00

b. pOH οΏ½ οΏ½log(6.5 οΏ½ 10οΏ½4) οΏ½ οΏ½(οΏ½3.19) οΏ½ 3.19pH οΏ½ 14.00 οΏ½ pOH οΏ½ 14.00 οΏ½ 3.19 οΏ½ 10.81

c. pH οΏ½ οΏ½log(3.6 οΏ½ 10οΏ½9) οΏ½ οΏ½(οΏ½8.44) οΏ½ 8.44pOH οΏ½ 14.00 οΏ½ pH οΏ½ 14.00 οΏ½ 8.44 οΏ½ 5.56

d. pH οΏ½ οΏ½log(0.025) οΏ½ οΏ½(οΏ½1.60) οΏ½ 1.60pOH οΏ½ 14.00 οΏ½ pH οΏ½ 14.00 οΏ½ 1.60 οΏ½ 12.40

21. a. [HοΏ½] οΏ½ antilog (οΏ½2.37) οΏ½ 4.3 οΏ½ 10οΏ½3MpOH οΏ½ 14.00 οΏ½ pH οΏ½ 14.00 οΏ½ 2.37 οΏ½ 11.63[OHοΏ½] οΏ½ antilog (οΏ½11.63) οΏ½ 2.3 οΏ½ 10οΏ½12M

b. [HοΏ½] οΏ½ antilog (οΏ½11.05) οΏ½ 8.9 οΏ½ 10οΏ½12MpOH οΏ½ 14.00 οΏ½ pH οΏ½ 14.00 οΏ½ 11.05 οΏ½ 2.95[OHοΏ½] οΏ½ antilog (οΏ½2.95) οΏ½ 1.1 οΏ½ 10οΏ½3M

c. [HοΏ½] οΏ½ antilog (οΏ½6.50) οΏ½ 3.2 οΏ½ 10οΏ½7MpOH οΏ½ 14.00 οΏ½ pH οΏ½ 14.00 οΏ½ 6.50 οΏ½ 7.50

[OHοΏ½] οΏ½ antilog (οΏ½7.50) οΏ½ 3.2 οΏ½ 10οΏ½8M

22. a. [HοΏ½] οΏ½ [HI] οΏ½ 11

mm

oollHH

οΏ½

I οΏ½ 1.0M

pH οΏ½ οΏ½log(1.0) οΏ½ 0.00

b. [HοΏ½] οΏ½ [HNO3] οΏ½ 1

1m

mol

oHl H

N

οΏ½

O3 οΏ½ 0.050M

pH οΏ½ οΏ½log(0.050) οΏ½ 1.30

c. [OHοΏ½] οΏ½ [KOH] οΏ½ 11

mm

oo

llKO

OH

H

οΏ½

οΏ½ 1.0M

pOH οΏ½ οΏ½log(1.0) οΏ½ 0.00

pH οΏ½ 14.00 οΏ½ 0.00 οΏ½ 14.00

d. [OHοΏ½] οΏ½ [Mg(OH)2] οΏ½1 m

2omloMlgO(HO

οΏ½

H)2

οΏ½ 4.8 οΏ½ 10οΏ½5M

pOH οΏ½ οΏ½log(4.8 οΏ½ 10οΏ½5) οΏ½ 4.32

pH οΏ½ 14.00 οΏ½ 4.32 οΏ½ 9.68

23. a. Ka οΏ½ [H

[

οΏ½

H][

3

HA

2sAO

s4

O]

4]

[HοΏ½] οΏ½ antilog (οΏ½1.50) οΏ½ 3.2 οΏ½ 10οΏ½2M

[H3AsO4] οΏ½ [HοΏ½] οΏ½ 3.2 οΏ½ 10οΏ½2M

[H3AsO4] οΏ½ 0.220M οΏ½ 3.2 οΏ½ 10οΏ½2M οΏ½ 0.188M

Ka οΏ½

οΏ½ 5.4 οΏ½ 10οΏ½3

b. Ka οΏ½ [H

[

οΏ½

H][CCIOIO

2

2]

οΏ½]

[HοΏ½] οΏ½ antilog (οΏ½1.80) οΏ½ 1.6 οΏ½ 10οΏ½2M

[CIO2] οΏ½ [HοΏ½] οΏ½ 1.6 οΏ½ 10οΏ½2M

[HCIO2] οΏ½ 0.0.0400M οΏ½ 1.6 οΏ½ 10οΏ½2MοΏ½ 0.024M

Ka οΏ½

οΏ½ 1.1 οΏ½ 10οΏ½2

29. a. HNO3(aq) οΏ½ CsOH(aq) CsNO3(aq) οΏ½ H2O(l)b. 2HBr(aq) οΏ½ Ca(OH)2(aq) CaBr2(aq) οΏ½ 2H2O(l)c. H2SO4(aq) οΏ½ 2KOH(aq) K2SO4(aq) οΏ½ 2H2O(l)d. CH3COOH(aq) οΏ½ NH4OH(aq)

CH3COONH4(aq) οΏ½ H2O(l)

(1.6 οΏ½ 10οΏ½2)(1.6 οΏ½ 10οΏ½2)

0.024

(3.2 οΏ½ 10οΏ½2)(3.2 οΏ½ 10οΏ½2)

0.188

[HοΏ½](1.0 οΏ½ 10οΏ½7)

1.0 οΏ½ 10οΏ½7

(1.0 οΏ½ 10οΏ½13)[OHοΏ½]

1.0 οΏ½ 10οΏ½13

[H2SO3οΏ½][OHοΏ½]

[HSO3

οΏ½]

APPENDIX D Solutions to Practice Problems

Page 79: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

948 Chemistry: Matter and Change

Solu

tions

30. 26.4 mL HBr οΏ½ 100

10LmL

οΏ½0.25

10LmHoBlrHBr

οΏ½ 6.60 οΏ½ 10οΏ½3 mol HBr

6.60 οΏ½ 10οΏ½3 mol HBr οΏ½ 11mmoollCHsOBr

H

οΏ½ 6.60 οΏ½ 10οΏ½3 mol CsOH

MCsOH οΏ½ οΏ½ 0.220M

31. 43.33 mL KOH οΏ½ 100

10LmL

οΏ½0.10

100

LmKO

olHKOH

οΏ½ 4.333 οΏ½ 10οΏ½3 mol KOH

4.333 οΏ½ 10οΏ½3 mol KOH οΏ½ 11

mm

oollHKNOOH

3

οΏ½ 4.333 οΏ½ 10οΏ½3 mol HNO3

MHNO3οΏ½ οΏ½ 0.2167M

32. 49.90 mL HCl οΏ½ 100

10LmL

οΏ½0.59

100

LmH

oC

lI

HCI

οΏ½ 2.944 οΏ½ 10οΏ½2 mol HCl

2.944 οΏ½ 10οΏ½2 mol HCl οΏ½ 11

mm

oollNH

HC

3l

οΏ½ 2.944 οΏ½ 10οΏ½2 mol NH3

MNH3 οΏ½ οΏ½ 1.178M

33. a. NH4οΏ½(aq) οΏ½ H2O(l) 3 NH3(aq) οΏ½ H3OοΏ½(aq)

The solution is acidic.

b. CH3COOοΏ½(aq) οΏ½ H2O(l) 3CH3COOH(aq) οΏ½ OHοΏ½(aq)

The solution is basic.

c. SO42οΏ½(aq) οΏ½ H2O(l) 3 HSO4

οΏ½(aq) οΏ½ OHοΏ½(aq)The solution is neutral.

d. CO32οΏ½(aq) οΏ½ H2O(l) 3 HCO3

οΏ½(aq) οΏ½ OHοΏ½(aq)The solution is basic.

Chapter 20 1. a. reduction

b. oxidationc. oxidationd. reduction

2. a. oxidized: bromide ionreduced: chlorine

b. oxidized: ceriumreduced: copper(II) ion

c. oxidized: zincreduced: oxygen

3. a. oxidizing agent: iodinereducing agent: magnesium

b. oxidizing agent: hydrogen ionreducing agent: sodium

c. oxidizing agent: chlorinereducing agent: hydrogen sulfide

4. a. οΏ½7b. οΏ½5c. οΏ½3

5. a. οΏ½3b. οΏ½5c. οΏ½6

12.

3HCl οΏ½ 2HNO3 β†’ 3HOCl οΏ½ 2NO οΏ½ H2O

13.

3SnCl4 οΏ½ 2Fe β†’ 3SnCl2 οΏ½ 2FeCl3

14.

8NH3(g) οΏ½ 6NO2(g) β†’ 7N2(g) οΏ½ 12H2O(l)

15.

2HοΏ½(aq) οΏ½ 3H2S(g) οΏ½ 2NO3οΏ½(aq) β†’

3S(s) οΏ½ 2NO(g) οΏ½ 4H2O(l)

3(+2)

2(–3)

H2S(g) οΏ½ NO3οΏ½(aq) 0 S(s) οΏ½ NO(g)

οΏ½1 οΏ½2 οΏ½5 οΏ½2 οΏ½2 οΏ½20

4(+3)(2)

3(–4)(2)

NH3(g) οΏ½ NO2 (g) 0 N2(g) οΏ½ H2O(l)οΏ½3 οΏ½1 οΏ½4 οΏ½2 0 οΏ½1 οΏ½2

2(+3)

3(–2)

SnCl4 οΏ½ Fe 0 SnCl2 οΏ½ FeCl3

οΏ½4 οΏ½1 οΏ½2 οΏ½1 οΏ½3 οΏ½10

3(+2)

2(–3)

HCl οΏ½ HNO3 0 HOCl οΏ½ NO οΏ½ H2OοΏ½1 οΏ½1 οΏ½1 οΏ½5 οΏ½2 οΏ½1 οΏ½2 οΏ½1 οΏ½2 οΏ½2 οΏ½1 οΏ½2

2.944 οΏ½ 10οΏ½2 mol NH30.02500 L NH3

4.333 οΏ½ 10οΏ½3 mol HNO30.02000 L HNO3

6.60 οΏ½ 10οΏ½3 mol CsOH

0.0300 L CsOH

APPENDIX D Solutions to Practice Problems

Page 80: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 949

Solu

tions

16.

14HοΏ½(aq) οΏ½ Cr2O72οΏ½(aq) οΏ½ 6IοΏ½(aq)

2Cr3οΏ½(aq) οΏ½ 3I2(s) οΏ½ 7H2O(l)

17.

6IοΏ½(aq) οΏ½ 2MnO4οΏ½(aq) οΏ½ 4H2O(l)

3I2(s) οΏ½ 2MnO2(s) οΏ½ 8OHοΏ½(aq)

24. 2IοΏ½(aq) I2(s) οΏ½ 2eοΏ½ (oxidation)

14HοΏ½(aq) οΏ½ 6eοΏ½ οΏ½ Cr2O72οΏ½(aq)

2Cr3οΏ½(aq) οΏ½ 7H2O(l) (reduction)

Multiply oxidation half-reaction by 3 and add toreduction half-reaction

14HοΏ½(aq) οΏ½ 6eοΏ½ οΏ½ Cr2O72οΏ½(aq) οΏ½ 6IοΏ½(aq)

3I2(s) οΏ½ 2Cr3οΏ½(aq) οΏ½ 7H2O(l) οΏ½ 6eοΏ½

14HοΏ½(aq) οΏ½ Cr2O72οΏ½(aq) οΏ½ 6IοΏ½(aq)

3I2(s) οΏ½ 2Cr3οΏ½(aq) οΏ½ 7H2O(l)

25. Mn2οΏ½(aq) οΏ½ 4H2O(l)MnO4

οΏ½(aq) οΏ½ 5eοΏ½ οΏ½ 8HοΏ½(aq) (oxidation)

BiO3οΏ½(aq) οΏ½ 3eοΏ½ οΏ½ 6HοΏ½(aq)

Bi2οΏ½(aq) οΏ½ 3H2O(l) (reduction)

Multiply oxidation half-reaction. Multiply reduction half-reaction by 5 and add to oxidation half-reaction.

3Mn2οΏ½(aq) οΏ½ 12H2O(l) οΏ½ 5BiO3οΏ½(aq) οΏ½ 15eοΏ½ οΏ½

30HοΏ½(aq) 3MnO4οΏ½(aq) οΏ½ 15eοΏ½ οΏ½ 24HοΏ½(aq) οΏ½

5Bi2οΏ½(aq) οΏ½ 15H2O(l)

3Mn2οΏ½(aq) οΏ½ 5BiO3οΏ½(aq) οΏ½ 6HοΏ½(aq)

3MnO4οΏ½(aq) οΏ½ 5Bi2οΏ½(aq) οΏ½ 3H2O(l)

26. 6OHοΏ½(aq) οΏ½ N2O(g) 2NO2οΏ½(aq) οΏ½ 4eοΏ½ οΏ½ 3H2O(l)

(oxidation)

ClOοΏ½(aq) οΏ½ 2eοΏ½ οΏ½ H2O(l) ClοΏ½(aq) οΏ½ 2OHοΏ½(aq)(reduction)

Multiply reduction half-reaction by 2 and add tooxidation half-reaction.

6OHοΏ½(aq) οΏ½ N2O(g) οΏ½ 2ClOοΏ½(aq) οΏ½ 4eοΏ½ οΏ½ 2H2O(l)2NO2

οΏ½(aq) οΏ½ 4eοΏ½ οΏ½ 3H2O(l) οΏ½ 2ClοΏ½(aq) οΏ½4OHοΏ½(aq)

N2O(g) οΏ½ 2ClOοΏ½(aq) οΏ½ 2OHοΏ½(aq) 2NO2οΏ½(aq) οΏ½

2ClοΏ½(aq) οΏ½ H2O(l)

Chapter 21 1. Pt2οΏ½(aq) οΏ½ Sn(s) Pt(s) οΏ½ Sn2οΏ½(aq)

E0cell οΏ½ 1.18 V οΏ½ (οΏ½0.1375 V)

E0cell οΏ½ 1.32 V

Sn|Sn2οΏ½||Pt2οΏ½|Pt

2. 3Co2οΏ½(aq) οΏ½ 2Cr(s) 3Co(s) οΏ½ 2Cr3οΏ½(aq)E0

cell οΏ½ (οΏ½0.28 V) οΏ½ (οΏ½0.744 V)E0

cell οΏ½ 0.46 VCr|Cr3οΏ½||Co2οΏ½|Co

3. Hg2οΏ½(aq) οΏ½ Cr(s) Hg(l) οΏ½ Cr2οΏ½(aq)E0

cell οΏ½ 0.851 V οΏ½ (οΏ½0.913 V)E0

cell οΏ½ 1.764 VCr|Cr2οΏ½||Hg2οΏ½|Hg

4. E0cell οΏ½ (0.521 V) οΏ½ (οΏ½0.1375 V)

E0cell οΏ½ 0.659 V

E0cell οΏ½ 0 spontaneous

5. E0cell οΏ½ (οΏ½0.1262 V) οΏ½ (οΏ½2.372 V)

E0cell οΏ½ 2.246 V

E0cell οΏ½ 0 spontaneous

6. E0cell οΏ½(0.920 V) οΏ½ (1.507 V)

E0cell οΏ½ –0.587 V

E0cell οΏ½ 0 not spontaneous

7. E0cell οΏ½ (οΏ½0.28 V) οΏ½ 2.010 V

E0cell οΏ½ οΏ½2.29 V

E0cell οΏ½ 0 not spontaneous

3(+1)(2)

(–3)(2)

2IοΏ½ οΏ½ MnO4 0 I2 οΏ½ MnO2

οΏ½1 οΏ½7 οΏ½2 οΏ½4 οΏ½20

3(+1)(2)

–3(2)

Cr2O72οΏ½(aq) οΏ½ 2IοΏ½(aq) 0 Cr3οΏ½(aq) οΏ½ I2(s)

οΏ½6 οΏ½2 οΏ½1 οΏ½3 0

APPENDIX D Solutions to Practice Problems

Page 81: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

950 Chemistry: Matter and Change

Solu

tions

Chapter 221. a. 2,4-dimethylhexane

b. 2,4,7-trimethylnonanec. 2,2,4-trimethylpentane

2. a.

b.

10. a. methylcyclopentaneb. 2-ethyl-1,4-dimethylcyclohexanec. 1,3-diethylcyclobutane

11. a.

b.

18. a. 4-methyl-2-penteneb. 2,2,6-trimethyl-3-octene

19.

Chapter 23 1. 2,3-difluorobutane

2. 1-bromo-5-chloropentane

3. 1,3-dibromo-2-chlorobenzene

Chapter 24No practice problems

β€”β€” β€”β€”CH2 CHC CHCH3

CH3

CH3

CH3

CH3

C2H5

C3H7

C2H5 C2H5

CH3CH2CHCHCHCH2CH2CH3

β€” β€”

C2H5

β€”

CH3

CH3CHCHCH2CH(CH2)4CH3

β€”

C3H7β€”

CH3

β€”

APPENDIX D Solutions to Practice Problems

Page 82: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Solutions 951

Solu

tions

Chapter 25 6. 15

8O 01 οΏ½ 15

7N

7. 23190Th 231

91Pa οΏ½ 0οΏ½1 , beta decay

8. 9740Zr 0

οΏ½1 οΏ½ 9741Nb

9. a. 14261Pm οΏ½ 0

οΏ½1e 14260Nd

b. 21884Po 4

2He οΏ½ 21482Pb

c. 22688Ra 222

86Rn οΏ½ 42He

15. 2713Al οΏ½ 1

0n 2411Na οΏ½ 4

2He

16. 23994Pu οΏ½ 4

2He 24296Cm οΏ½ 1

0n

17. amount remaining οΏ½ (10.0 mg)οΏ½12

οΏ½n

For n οΏ½ 1, amount remaining οΏ½ (10.0 mg)οΏ½12

οΏ½1

οΏ½ 5.00 mg

For n οΏ½ 2, amount remaining οΏ½ (10.0 mg)οΏ½12

οΏ½2

οΏ½ 2.50 mg

For n οΏ½ 3, amount remaining οΏ½ (10.0 mg)οΏ½12

οΏ½3

οΏ½ 1.25 mg

18. amount remaining οΏ½ 25.0 mg

οΏ½ (initial amount)οΏ½12

οΏ½5

initial amount οΏ½ (25.0 mg)(2)5 οΏ½ 8.00 οΏ½ 102 mg

19. half-life οΏ½ 163.7 οΏ½s

n οΏ½ (818 οΏ½s) οΏ½ οΏ½ 5.00 half-lives

amount remaining οΏ½ (1.0 g)οΏ½12

οΏ½5.00οΏ½ 0.031 g

Chapter 26No practice problems

APPENDIX D Solutions to Practice Problems

1 half-lifeοΏ½οΏ½οΏ½οΏ½οΏ½163.7 οΏ½s

Page 83: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

952 Chemistry: Matter and Change

APPENDIX E

Try

at H

om

e L

abs

Try at Home Labs

From your Kitchen, JunkDrawer, or Yard

Real-World Question How can predictions betested scientifically?

Possible Materialsβ€’ horoscope from previous weekβ€’ scissorsβ€’ transparent tapeβ€’ white paperβ€’ liquid correction fluid

Procedure1. Obtain a horoscope from last week and cut

out the predictions for each sign. Do not cutout the zodiac signs or birth dates accompa-nying each prediction.

2. As you cut out a horoscope prediction, writethe correct zodiac sign on the back of eachprediction.

3. Develop a code for the predictions to allowyou to identify them. For example, X11

could refer to the Leo prediction. Maintain alist of your codes during the experiment.

4. Scramble your predictions and tape them toa sheet of white paper. Write each predic-tion’s code above it.

5. Ask 10 people to read all the predictions andask each person to choose the one that bestmatched his or her life events from the pre-vious week.

Conclude and Apply1. Calculate the percentage of people who

chose the correct sign.

2. Calculate the chances of a person randomlychoosing his or her correct sign.

3. Identify the experimental error in yourexperiment.

4. Research other strictly controlled experi-ments that have tested the reliability ofhoroscopes or astrology and write a sum-mary of your findings.

1 Testing Predictions

Real-World Question What are the SI meas-urements of common items or dimensions inyour home?

Possible Materialsβ€’ measuring cup with SI unitsβ€’ bathroom scaleβ€’ meterstick or metric tape measureβ€’ metric rulerβ€’ several empty cans or bottles

Procedure1. Use a bathroom scale to weigh yourself,

your science textbook, and a gallon of milk.Divide your measurements by 2.2 to calcu-late the mass of each object in kilograms.

2. Collect several empty containers such as bot-tles and cans. Use a measuring cup with SIunits to measure the volume of each con-

tainer. Accurately measure each containerto the nearest milliliter.

3. Use a meterstick to measure the length,width, and height of your room. Accuratelymeasure each dimension to the nearest mil-limeter and estimate each length to thenearest tenth of a millimeter.

Conclude and Apply1. Convert your metric mass measurements

from kilograms to grams.

2. Identify the number of significant figures foreach of your volume measurements.

3. Calculate the area of your room in squaremeters.

4. Infer why you cannot comment on the accu-racy or the precision of your answers.

2 SI Measurement Around the Home

Page 84: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Try at Home Labs 953

APPENDIX E Try at Home MiniLabs

Try

at

Hom

e L

abs

APPENDIX E Try at Home Labs

Real-World Question How do differentkitchen liquids react when placed in a freezer?

Possible Materialsβ€’ five identical, narrow-necked plastic bottles

or photographic film canistersβ€’ large cutting board or cookie sheetβ€’ waterβ€’ orange juiceβ€’ vinegarβ€’ soft drinkβ€’ cooking oilβ€’ freezer

Procedure1. Obtain permission to use the freezer before

beginning this activity.

2. Fill one of the clean, plastic containers withwater. The water should come to the topbrim of the container.

3. Fill the other four containers in the sameway with the other four liquids.

4. Place the cutting board or cookie sheet in afreezer so that it is level and place the fivecontainers on the board.

5. Leave the containers in the freezerovernight and observe the effect of thefreezer’s temperature on each liquid the fol-lowing day.

Conclude and Apply1. Describe the effect of the colder tempera-

ture on each liquid.

2. Infer why the water behaved as it did.

3. Infer why some liquids froze but others didnot.

3 Comparing Frozen Liquids

Real-World Question How do the sizes ofdifferent atoms and subatomic particles com-pare?

Possible Materialsβ€’ metric rulerβ€’ meterstickβ€’ white sheet of paperβ€’ fine tipped black markerβ€’ masking tape or transparent tapeβ€’ three plastic milk containers

Procedure1. Using a black marker, draw a 0.1-mm-wide

dot on one end of a white sheet of paper.This dot represents the diameter of anelectron.

2. Measure a distance of 10 cm from the dotand draw a second dot. The distancebetween the two dots represents the diame-ter of a proton or a neutron.

3. Securely tape the paper to the top of a plas-tic milk container.

4. Measure a distance of 6.2 m from the plasticmilk container and place a second plasticmilk container. This distance represents thediameter of the smallest atom, a heliumatom.

5. Measure a distance of 59.6 m from the firstplastic milk container and place a third plas-tic milk container. This distance representsthe diameter of the largest atom, a cesiumatom.

Conclude and Apply1. Research the length of a picometer.

2. Calculate the scale you used for this activityif the diameter of a proton equals onepicometer.

3. Compare the size of an electron with aproton.

4. Considering the comparative sizes of protonsand neutrons with the sizes of atoms, inferwhat makes up most of an atom.

4 Comparing Atom Sizes

Page 85: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

954 Chemistry: Matter and Change

APPENDIX E Try at Home Labs

Try

at H

om

e L

abs

Real-World Question How can you observelight traveling in waves?

Possible Materialsβ€’ two pencilsβ€’ two pensβ€’ transparent tapeβ€’ candleβ€’ candle holderβ€’ matches

Procedure1. Obtain permission before beginning this

activity.

2. Tape two pencils together lengthwise sothat only a 1-mm space separates them.

3. Place a candle in a candleholder. Go into adark room, light the candle, and set it on aflat surface.

4. Hold the pencils about 25 cm from your eyesand look at the candle light through the slitbetween the pencils. Slowly squeeze thepencils together and apart and observe whatthe light coming through the slit looks like.

5. Experiment with viewing the candle lightthrough the slits at different distances fromyour eyes.

Conclude and Apply1. Describe the appearance of the light when

you viewed it through the slit between thepencils.

2. Infer why the light appeared as it did.

5 Observing Light’s Wave Nature

Real-World Question What type of metalwould be best for making cooking pots?

Possible Materialsβ€’ stove top or hotplateβ€’ panβ€’ waterβ€’ 30-cm length of iron wireβ€’ 30-cm length of copper wireβ€’ 30-cm length of aluminum wireβ€’ kitchen knifeβ€’ butterβ€’ three small paperclipsβ€’ thermometerβ€’ stopwatch or watch with second hand

Procedure1. Obtain permission to use the stove or hot-

plate.

2. Create a data table to record your data.

3. Fill a pan with water. Cut three peanut-sizeddabs of butter and insert a wire into eachdab. Be certain each dab of butter is equalin size.

4. Insert a small paper clip into each dab ofbutter so that the clip hangs downward.

5. Place the wires in the water so that thepaperclips are all hanging over the edge ofthe pot in the same direction.

6. Slowly heat the water on a stovetop or hot-plate bringing it to boil.

7. Record the temperature at which the buttermelts and the paperclip falls from each wire.Record the amount of time it takes for eachpaperclip to fall.

Conclude and Apply1. Research and define the term β€œrate of con-

ductivity.”

2. Compare the rate of conductivity for thethree elements.

3. Infer the relationship between the times yourecorded and the rates of conductivity of theelements.

4. Infer which metal would be best suited formaking cooking pots.

6 Turning Up the Heat

Page 86: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX E Try at Home MiniLabs

Try at Home Labs 955

Try

at

Hom

e L

abs

Real-World Question What properties of alu-minum make it a common kitchen element?

Possible Materialsβ€’ aluminum foil (several sheets)β€’ iron nailβ€’ glassβ€’ waterβ€’ frying panβ€’ kitchen knifeβ€’ butterβ€’ tablespoonβ€’ oven mitt or hot padβ€’ hammerβ€’ metric rulerβ€’ stove top or hotplateβ€’ plate

Procedure1. Obtain permission to use the stove or hot-

plate before beginning this activity.

2. Roll up a piece of aluminum foil into a tightball and drop it into a glass of water.Carefully drop an iron nail into the water.After a week, observe and compare anychanges in the two metals.

3. Place a 10-cm οΏ½ 10-cm square of aluminumfoil in a frying pan, place the pan on astove-top burner or hotplate, and turn theburner to a high setting. Drop a tablespoonof butter on the foil. Observe the butter forfive minutes. Use an oven mitt to take thealuminum foil out of the pan and place it ona plate. After one minute, quickly touch thefoil to test how hot it is.

4. On a workbench or other hard surface, ham-mer a 2-cm οΏ½ 2-cm space on the edge of asheet of wrinkled aluminum foil. Comparehow easy it is to rip the hammered foil witha section of foil that was not hammered.

Conclude and Apply1. Compare the appearance of the iron nail

and aluminum foil after each was sub-merged in water for a week. What do youobserve?

2. Infer why the hammered aluminum foil toreeasier than the foil that was hammered.

3. Infer what properties make aluminum adesirable element for aluminum foil, pots,and pans.

7 Amazing Aluminum

Real-World Question Which sport drink hasthe greatest amounts of electrolytes?

Possible Materialsβ€’ several bottles of different brand name

sport drinksβ€’ graph paperβ€’ color pencilsβ€’ metric ruler

Procedure1. Research the three major electrolytes

needed for good health.

2. Create a data table to record the amount ofelectrolytes found in several brand namesport drinks.

3. Obtain several bottles of different sportdrink brands and read the nutrition factschart on the back of each bottle.

4. Compare the amounts of the three majorelectrolytes found in each sport drink brandand record the amounts in your data table.Be certain you compare electrolyte amountsfor equal volumes.

Conclude and Apply1. Create a circle graph or bar graph compar-

ing the amounts of electrolytes found in thesport drinks you compared.

2. Compare the amounts of electrolytes foundin the major brands of sport drinks.

3. Infer why a sport drink should not havesodium.

8 Comparing Sport Drink Electrolytes

APPENDIX E Try at Home Labs

Page 87: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

956 Chemistry: Matter and Change

APPENDIX E Try at Home Labs

Try

at H

om

e L

abs

Real-World Question What liquids will breakthe covalent bonds of polystyrene?

Possible Materialsβ€’ polystyrene packing peanuts or polystyrene

cupsβ€’ 500-mL containerβ€’ acetone or nail polish removerβ€’ shallow dishβ€’ rubbing alcoholβ€’ waterβ€’ cooking oilβ€’ measuring cup

Procedure1. Pour 200 mL of water into a 500-mL

container.

2. Drop a polystyrene packing peanut into thewater and observe how the polystyrene andwater react.

3. Thoroughly wash out the glass and repeatsteps 1 and 2 using cooking oil, rubbingalcohol, and acetone or nail polish remover.

4. Drop several packing peanuts into any of theliquids that cause a chemical reaction withthe polystyrene peanuts and observe whathappens to them.

Conclude and Apply1. Describe the reaction between the poly-

styrene peanuts and each of the four liquids.

2. Infer why the polystyrene reacted as it didwith each of the liquids.

9 Breaking Covalent Bonds

Real-World Question How can the chemicalreaction that turns apples brown be prevented?

Possible Materialsβ€’ seven identical glassesβ€’ measuring cupβ€’ bottled water (large bottle)β€’ appleβ€’ 100-mg vitamin C tabletsβ€’ wax paperβ€’ rolling pinβ€’ paper towelsβ€’ kitchen knifeβ€’ masking tapeβ€’ permanent black marker

Procedure1. Measure and pour 200 mL of water into

each of the glasses.

2. Label glass #1 no vitamin C, glass #2 100 mg,glass #3 200 mg, glass #4 500 mg, glass #51 000 mg, glass #6 2 000 mg, and glass #73 000 mg.

3. Place a 100-mg vitamin C tablet betweentwo sheets of wax paper and use a rollingpin to grind the tablet into powder.

4. Place the powder into glass #2 and stir themixture vigorously.

5. Repeat steps 3 and 4 for glasses #3, #4, #5, #6,and #7 using the appropriate masses of vitamin C.

6. Cut seven equal-sized wedges of apple andimmediately place an apple wedge into eachglass. Cut wedges large enough to float withthe skin facing upward in the mixture.

7. After 5 minutes, lay the wedges on papertowels in front of the beakers in which theywere soaking. Observe the apples every 5minutes for 45 minutes.

Conclude and Apply1. Describe the results of your experiment.

2. Research why apple tissues turn brown inthe presence of air.

3. Infer why vitamin C prevents apples fromturning brown.

10 Preventing a Chemical Reaction

Page 88: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX E Try at Home MiniLabs

Try at Home Labs 957

Try

at

Hom

e L

abs

Real-World Question What percentages ofcommon household substances are made of theelement carbon?

Possible Materialsβ€’ nail polish removerβ€’ vitamin C tabletβ€’ barbeque charcoalβ€’ mothballsβ€’ table sugarβ€’ chemical handbook

Procedure1. Research the chemical formulas for the fol-

lowing common household items: nail polishremover (acetone), vitamin C (ascorbic acid),barbeque charcoal, mothballs (naphthalene),and table sugar (sucrose).

2. Calculate the percent composition of theelement carbon in the molecules of eachsubstance. Use the formula method out-lined in the textbook to calculate youranswers.

Conclude and Apply1. List the percentage of carbon that makes up

the molecules of each substance.

2. Calculate the mass of carbon in a 200-g sam-ple of table sugar.

11 Calculating Carbon Percentages

Real-World Question How many moles ofbaking soda will react with 1 mL of vinegar?

Possible Materialsβ€’ vinegarβ€’ sodium bicarbonate (baking soda)β€’ large bowlβ€’ measuring cup with SI unitsβ€’ spoonβ€’ kitchen scale

Procedure1. Measure 100 mL of vinegar and pour it into

a bowl.

2. Measure 10 g of sodium bicarbonate.

3. Gradually add sodium bicarbonate to thevinegar and observe the reaction thatoccurs.

4. Continue adding small amounts of the bak-ing soda to the vinegar until there is nolonger a reaction.

5. Calculate the mass of sodium bicarbonatethat reacted with the 100 mL of vinegar.

Conclude and Apply1. Research the chemical formula of sodium

bicarbonate (baking soda) and calculate themass of one mole of the substance.

2. Describe the reaction that occurs whensodium bicarbonate and vinegar are mixed.

3. Calculate the number of moles of sodiumbicarbonate that will completely react with100 mL of vinegar.

12 Baking Soda Stoichiometry

APPENDIX E Try at Home Labs

Page 89: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

958 Chemistry: Matter and Change

APPENDIX E Try at Home Labs

Try

at H

om

e L

abs

Real-World Question How do the viscosityof different kitchen liquids compare?

Possible Materialsβ€’ stopwatch or watch with second handβ€’ five identical, tall, clear glassesβ€’ five marbles (identical size)β€’ waterβ€’ maple syrupβ€’ corn syrupβ€’ apple juiceβ€’ honeyβ€’ measuring cupβ€’ metric ruler

Procedure1. Fill five identical glasses with equal volumes

of the five different liquids.

2. Measure the height of each liquid to thenearest millimeter.

3. Create a data table to record the distance(liquid height), time, and speed for eachmarble traveling through each liquid.

4. Hold a marble just above the water, drop itso that it falls through the water in the cen-ter of the glass, and time how long it takesfor the marble to reach the bottom of theglass. You may want to have a friend or fam-ily member help with this part.

5. Repeat step 4 for the other four liquids.

6. Record your measurements in your datatable and calculate the speed of the marblethrough each liquid.

Conclude and Apply1. List the liquids you tested in order of

increasing viscosity.

2. Identify possible experimental errors in yourexperiment.

3. Infer the relationship between marble speedand liquid viscosity.

13 Viscosity Race

Real-World Question Why does the compres-sion of gases affect the density of an objectfilled with air?

Possible Materialsβ€’ 2-L clear, plastic bottle with cap (with label

removed)β€’ waterβ€’ small dropper (with glass cylinder if possible)

Procedure1. Perform this activity at the kitchen sink.

2. Remove the label from a 2-L soda bottle andfill the bottle with water to the brim.

3. Carefully place a small dropper into the bot-tle without spilling any water so that thedropper floats at the top of the bottle.

4. Replace any water that was lost in the bottle.

5. Screw the bottle cap on tightly and squeezethe sides of the bottle.

Conclude and Apply1. Describe what you observed when you

squeezed the sides of the bottle.

2. Identify the law demonstrated by this lab.

3. Infer why the dropper behaved the way itdid.

14 Under Pressure

Page 90: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX E Try at Home MiniLabs

Try at Home Labs 959

Try

at

Hom

e L

abs

Real-World Question Which household mix-tures are solutions and which are colloids?

Possible Materialsβ€’ four clear glassesβ€’ flashlight (narrow beam)β€’ dropperβ€’ spoonβ€’ stirring rodβ€’ iron nailβ€’ bottled water (2 L)β€’ milkβ€’ cornstarchβ€’ salt

Procedure1. Fill the first glass with bottled water and

place an iron nail in the water. Allow thenail to sit in the water overnight.

2. Fill the other three glasses with bottledwater.

3. Add a drop of milk to the second glass andstir it vigorously so that the mixture appearsclear.

4. Add a small amount of salt to the third glassand an equal amount of cornstarch to thefourth glass. Stir the mixtures until bothappear clear.

5. Darken the room and shine the light beamfrom a flashlight into each mixture. Be cer-tain not to position the beam so that itreflects into your eyes.

Conclude and Apply1. Describe the results of your experiment.

2. Identify which mixtures are solutions andwhich are colloids.

15 Identifying Colloids

Real-World Question How quickly do com-mon household liquids enter into a state ofentropy?

Possible Materialsβ€’ seven identical, clear-glass containersβ€’ stopwatch or watch with second handβ€’ waterβ€’ corn syrupβ€’ rubbing alcoholβ€’ clear soft drinkβ€’ vinegarβ€’ cooking oilβ€’ milkβ€’ food coloringβ€’ measuring cup with SI units

Procedure1. Fill identical glass containers with equal vol-

umes of seven different liquids: water, cornsyrup, rubbing alcohol, clear soft drink, vine-gar, cooking oil, and milk. Label eachcontainer.

2. Create a data table to record your observa-tions and measurements about how quickly

food dye will spread throughout each liquidto reach a state of total entropy betweenthe two substances.

3. Place one drop of food coloring into the firstcontainer while a friend or family membersimultaneously starts a stopwatch.

4. Observe how the food coloring behaves ineach liquid. Time how quickly the coloringand each liquid reach total entropy.

5. Record your data in your data table.

6. Repeat with the remaining liquids.

Conclude and Apply1. List the liquids in order of decreasing rates

of entropy. List the liquid that reached atotal state of entropy most quickly first andso on.

2. Infer the relationship between the rate atwhich a liquid and the dye achieved a stateof total entropy and the time measurementfrom your data table.

3. Infer why the entropy rates for the differentliquids varied.

16 Observing Entropy

APPENDIX E Try at Home Labs

Page 91: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

960 Chemistry: Matter and Change

APPENDIX E Try at Home Labs

Try

at H

om

e L

abs

Real-World Question How does the amountof surface area affect the chemical reaction ofan egg cooking?

Possible Materials

β€’ small stainless steel frying panβ€’ medium stainless steel frying panβ€’ 1/2-cup stainless steel measuring cupβ€’ two medium eggs (equal size)β€’ cooking oilβ€’ spatulaβ€’ measuring cupβ€’ stove top or hotplateβ€’ oven mitt or pot holderβ€’ metric rulerβ€’ stopwatch or watch with second hand

Procedure1. Obtain permission to use the stove.

2. Calculate the area of the cooking surface foreach of the three different containers.

3. Using a ratio of 1 mL of cooking oil for every10 cm2 of cooking surface, measure the

appropriate volume of cooking oil for themedium frying pan and pour the oil into thepan.

4. Turn a stove top burner on medium heatand wait 5 minutes.

5. Crack an egg and empty its contents into thecenter of the frying pan. Use a spatula tobreak open the yolk of the egg.

6. Measure the amount of time it takes for theegg to cook completely.

7. Turn off the burner and wait 5 minutes.

8. Repeat steps 2–6 using the small frying pan.

Conclude and Apply1. Identify the variables and controls of your

experiment.

2. Identify possible procedural errors thatmight have occurred in your experiment.

3. Describe the results of your experiment.

4. Infer the relationship between the cookingsurface area and the speed of the chemicalreaction happening to the egg. Explain whythis relationship exists.

17 Surface Area and Cooking Eggs

Real-World Question How does heat affectthe solubility equilibrium of a water and corn-starch mixture?

Possible Materialsβ€’ cornstarchβ€’ waterβ€’ panβ€’ oven mitt or hot pad

Procedure1. Obtain permission to use the stove or hot-

plate.

2. Measure 300 mL of water and pour thewater into a pan.

3. Measure 2-3 tablespoons of cornstarch andempty the cornstarch into the pan of water.

4. Stir the cornstarch and water vigorously andobserve the reaction that occurs.

5. Place the pan on a heat source and raise thetemperature of the mixture until the waterstarts to boil. Observe what occurs.

Conclude and Apply1. Describe what occurred when you initially

added the cornstarch to the water.

2. Describe what occurred when you raised thetemperature of the mixture to the boilingpoint.

3. Infer the effect of heat on the solubilityequilibrium of water and cornstarch.

18 Cornstarch Solubility

β€’ tablespoonβ€’ kitchen scaleβ€’ stove top or hotplate

Page 92: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

APPENDIX E Try at Home MiniLabs

Try at Home Labs 961

Try

at

Hom

e L

abs

Real-World Question What substances ele-vate ammonia levels in natural waterways?

Possible Materials

β€’ four glass jars with lids (spaghetti jars workwell)

β€’ measuring cupβ€’ raw chicken (6 ounces)β€’ waterβ€’ ammonia test kitβ€’ scaleβ€’ kitchen knifeβ€’ masking tapeβ€’ black marker

Procedure1. Use a kitchen scale to measure 28-g

(1-ounce), 56-g (2-ounce), and 84-g(3-ounce) pieces of raw chicken.

2. Fill jars with 500 mL of water.

3. Do not put any chicken into the first jar.Place 28 g (1 ounce) of raw chicken into thesecond jar, 56 g (2 ounces) into the third jar,and 84 g (3 ounces) in the fourth jar.

4. Label your jars.

5. Create a data table to record your data.

6. Measure the amount of ammonia in eachwater sample every day for five days. Alsoobserve the clarity of each sample.

Conclude and Apply1. Identify possible procedural errors in your

experiment.

2. Summarize your results.

3. Infer the common causes for elevatedammonia levels in natural waterways.

19 Testing for Ammonia

Real-World Question How do the oxidationrates of a nail in various kitchen liquidscompare?

Possible Materialsβ€’ seven identical glasses or beakersβ€’ waterβ€’ vinegarβ€’ dark soft drinkβ€’ orange juiceβ€’ milkβ€’ cooking oilβ€’ rubbing alcoholβ€’ seven iron nailsβ€’ measuring cupβ€’ large tweezersβ€’ masking tapeβ€’ black marker

Procedure1. Create a data table to record your observa-

tions about the oxidation rates of a nail inthe seven liquids.

2. Use masking tape and a marker to label theliquids in your seven glasses.

3. Pour 200 mL of water, vinegar, dark softdrink, orange juice, milk, cooking oil, andrubbing alcohol into seven separate glasses.

4. Carefully place an iron nail into each con-tainer.

5. Observe the nail and the liquid in each con-tainer every day for a week. Record all yourobservations in your data table.

Conclude and Apply1. Summarize your observations about the oxi-

dation rates of a nail in the seven differentliquids.

2. Infer why the oxidation reactions in waterand cooking oil were different.

20 Kitchen Oxidation

APPENDIX E Try at Home Labs

Page 93: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

962 Chemistry: Matter and Change

APPENDIX E Try at Home Labs

Try

at H

om

e L

abs

Real-World Question How can you make anold penny look like new?

Possible Materialsβ€’ 15 dull, dirty penniesβ€’ vinegarβ€’ table saltβ€’ measuring cup with SI unitsβ€’ teaspoonβ€’ shallow bowl (not metal, plastic, or

polystyrene)β€’ steel nailβ€’ sandpaperβ€’ paper towels

Procedure1. Measure one teaspoon of salt into 60 mL of

vinegar in the bowl. Stir until the saltdissolves.

2. Drop the pennies into the salt solution. Stirand observe.

3. After 5 minutes, remove one penny from thebowl. Rinse it in running water. Place it onthe paper towel to dry.

4. Clean the nail with sandpaper. Place it intothe salt solution with the pennies. Do not letthe nail touch the pennies. What do youobserve?

5. After 24–48 hours, remove the nail from thesolution. Rinse and observe.

Conclude and Apply1. Compare and contrast the pennies before

and after they were placed in the salt solu-tion. Why did the pennies look dirty? Howdid the salt solution clean the pennies?

2. Compare and contrast the nail before andafter it was placed in the salt solution. Inferwhat is on the nail.

3. What oxidation-reduction reaction do youthink occurred?

21 Old Pennies

Real-World Question How do the propertiesof water and a hydrocarbon compare?

Possible Materialsβ€’ waterβ€’ food coloringβ€’ vegetable oilβ€’ measuring cupβ€’ three glassesβ€’ stopwatch or watch with second handβ€’ two marblesβ€’ stirring rodβ€’ spoonβ€’ kitchen scaleβ€’ metric ruler

Procedure1. Create a data table for comparing the physi-

cal properties of water and cooking oil.

2. Compare the color, feel, and odor of eachliquid.

3. Measure the masses of equal volumes ofeach liquid and calculate the density ofwater and cooking oil. Mix the water andoil together and observe the behavior of theliquids.

4. Pour 100 mL of water into a glass and 100mL of cooking oil into a second glass.Measure the time it takes for a marble topass through each liquid and compare theviscosities of the liquids.

5. Squeeze a drop of food coloring into eachglass and observe the behavior of the color-ing in the two liquids.

Conclude and Apply1. Summarize your comparisons of water and

the cooking oil.

2. Infer why the food coloring behaved theway it did in each liquid.

3. Infer why water and oil are immiscible.

22 Comparing Water and a Hydrocarbon

Page 94: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Try at Home Labs 963

Try

at

Hom

e L

abs

Real-World Question What do the moleculesof different organic compounds and their func-tional groups look like?

Possible Materialsβ€’ toothpicksβ€’ gumdrops (clear, yellow, green, red, orange,

blue, and purple in color)β€’ marshmallows

Procedure1. Study the basic types of organic compounds

in Table 23-1 on page 738 in the textbook.

2. Use the gumdrops, marshmallows, and tooth-picks to create molecule models of the gen-eral formula for each of the nine basic typesof organic compounds. Use marshmallows to

represent R groups (carbon chains or rings).Use the green gumdrops to represent fluorineatoms, yellow for chlorine atoms, red forbromine atoms, blue for oxygen atoms,orange for hydrogen atoms, and purple fornitrogen atoms. Clear gumdrops will repre-sent carbon atoms. Use orange gumdrops(hydrogen atoms) in place of the asterisks.

3. Be certain to construct three different halo-carbon models.

Conclude and Apply1. Explain how you represented single and

double bonds in your models.

2. Explain the effect of a functional group on acarbon chain or ring.

23 Modeling Basic Organic Compounds

Real-World Question What do sugar mole-cules look like?

Possible Materialsβ€’ gumdrops (three different colors)β€’ toothpicks

Procedure1. Using blue gumdrops to represent oxygen

atoms, red gumdrops to represent hydrogenatoms, and green gumdrops to representcarbon atoms, construct a model of a glu-cose molecule from the diagram on page781. Use toothpicks to represent the bondsbetween the atoms.

2. Use gumdrops and toothpicks to construct amodel of a fructose molecule from the dia-gram on page 781.

3. Use gumdrops and toothpicks to construct amodel of a sucrose molecule from the dia-gram on page 782.

Conclude and Apply1. Research common foods containing mono-

saccrides such as glucose and fructose.

2. Research common foods containing the dis-accride sucrose.

3. Infer why it is preferable for an athlete toeat an orange before a game instead of acandy bar.

24 Modeling Sugars

APPENDIX E Try at Home Labs

Page 95: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

964 Chemistry: Matter and Change

APPENDIX E Try at Home Labs

Try

at H

om

e L

abs

Real-World Question How can you modelthe penetration power of different forms ofradiation?

Possible Materialsβ€’ cotton swabβ€’ dull pencilβ€’ sheet of tissue paperβ€’ aluminum foil

Procedure1. Have a friend or family member hold up a

sheet of tissue paper by the edges so thatthe flat side of the paper is facing you.

2. Carefully use a cotton swab to try to punc-ture a hole in the center of the tissue paperwithout ripping the sheet in half or pullingit out of the hands of your friend or familymember. Next, try using a dull pencil topuncture a hole in the center of the paper.

3. Fold a sheet of aluminum foil in half. Thefoil sheet should be about the size of a sheetof paper. Have a friend or family memberhold up the foil sheet by the edges so thatthe flat side of the foil is facing you.

4. Using the dull pencil, carefully try to punc-ture a hole in the center of the foil withoutripping the sheet in half or pulling it out ofthe hands of your friend or family member.

Conclude and Apply1. Infer what type of radiation the cotton swab

and dull pencil modeled.

2. Infer how you could model the penetrationpower of gamma radiation.

3. Research the human health effects ofgamma radiation exposure.

25 Modeling Radiation Penetration

Real-World Question What does the destruc-tion of an ozone molecule look like?

Possible Materialsβ€’ toothpicksβ€’ gumdrops (green, yellow, red, and purple)β€’ three white sheets of paperβ€’ black marker

Procedure1. Draw a black arrow on each of the sheets of

white paper. Arrange the arrows (facingright) one above the other on a flat surface.

2. On page 845, study the three equations thatdescribe the photodissociation of a CFC mol-ecule, destruction of an ozone molecule, andthe regeneration of a free chlorine atom.

3. Create models of all the atoms and mole-cules involved in these three reactions usinggreen gumdrops to represent carbon atoms,yellow gumdrops to represent fluorineatoms, red gumdrops to represent chlorineatoms, and purple gumdrops to representoxygen atoms.

4. Arrange your models to represent the threereactions involved in ozone depletion.

Conclude and Apply1. Infer from your models why small amounts

of CFCs can deplete large volumes of ozonegas.

2. Infer why the replacement of CFCs with HFCshelps protects the ozone layer.

26 Modeling Ozone Depletion

Page 96: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 965

Glossary/Glosario

Glo

ssary

/Glo

sari

o

Glossary/Glosario

Aaccuracy (p. 36) Refers to how close a measured value is to an

accepted value.acid-base indicator (p. 619) A chemical dye whose color is

affected by acidic and basic solutions.acid ionization constant (p. 605) The value of the equilibrium

constant expression for the ionization of a weak acid.

actinide series (p. 197) In the periodic table, the f-block elementsfrom period 7 that follow the element actinium.

activated complex (p. 532) A short-lived, unstable arrangementof atoms that may break apart and re-form the reactants or mayform products; also sometimes referred to as the transitionstate.

activation energy (p. 533) The minimum amount of energyrequired by reacting particles in order to form the activatedcomplex and lead to a reaction.

active site (p. 778) The pocket or crevice to which a substratebinds in an enzyme-catalyzed reaction.

actual yield (p. 370) The amount of product actually producedwhen a chemical reaction is carried out in an experiment.

addition polymerization (p. 762) Occurs when all the atomspresent in the monomers are retained in the polymer product.

addition reaction (p. 755) An organic reaction that occurs whenother atoms bond to each of two atoms bonded by double ortriple covalent bonds.

alcohol (p. 743) An organic compound in which a hydroxyl groupreplaces a hydrogen atom of a hydrocarbon.

aldehyde (p. 747) An organic compound containing the structurein which a carbonyl group at the end of a carbon chain isbonded to a carbon atom on one side and a hydrogen atom onthe other side.

aliphatic compounds (p. 723) Nonaromatic hydrocarbons, suchas the alkanes, alkenes, and alkynes.

alkali metals (p. 155) Group 1A elements, except for hydrogen,that are on the left side of the modern periodic table.

alkaline earth metals (p. 155) Group 2A elements in the mod-ern periodic table.

alkane (p. 699) A saturated hydrocarbon with only single, non-polar bonds between atoms.

alkene (p. 711) An unsaturated hydrocarbon with one or moredouble covalent bonds between carbon atoms in a chain.

alkyl halide (p. 738) An organic compound that contains one ormore halogen atoms (F, Cl, Br, or I) covalently bonded to analiphatic carbon atom.

alkyne (p. 714) An unsaturated hydrocarbon with one or moretriple bonds between carbon atoms in a chain.

allotropes (p. 188) Forms of an element with different structuresand properties when they are in the same stateβ€”solid, liquid,or gas.

alloy (p. 230) A mixture of elements that has metallic properties.

accuracy/exactitud (pΓ‘g. 36) Se refiere a la cercanΓ­a con que seencuentra un valor medido de un valor aceptado.

acid-base indicator/indicador Γ‘cido-base (pΓ‘g. 619) Tinta quΓ­micacuyo color es afectado por soluciones Γ‘cidas y bΓ‘sicas.

acid ionization constant/constante Γ‘cida de ionizaciΓ³n (pΓ‘g.605) Valor de la expresiΓ³n de la constante de equilibrio parala ionizaciΓ³n de un Γ‘cido dΓ©bil.

actinide series/serie de actΓ­nidos (pΓ‘g. 197) En la tabla periΓ³dica,los elementos del bloque F del perΓ­odo 7 que van despuΓ©s delelemento actinio.

activated complex/complejo activado (pΓ‘g. 532) Un arregloefΓ­mero e inestable de Γ‘tomos que pueden romper y reagruparreactantes o puede formar productos; a veces tambiΓ©n se lellama estado de transiciΓ³n.

activation energy/energΓ­a de activaciΓ³n (pΓ‘g. 533) La cantidadmΓ­nima de energΓ­a requerida por partΓ­culas reaccionantes, paraformar el complejo activado y conducir a una reacciΓ³n.

active site/sitio activo (pΓ‘g. 778) Abolsamiento o ranura a la quese une un sustrato en una reacciΓ³n catalizada por enzimas.

actual yield/rendimiento real (pΓ‘g. 370) Cantidad del productorealmente generado cuando se lleva a cabo una reacciΓ³nquΓ­mica en un experimento.

addition polymerization/polimerizaciΓ³n de adiciΓ³n (pΓ‘g. 762)Ocurre cuando todos los Γ‘tomos presentes en los monΓ³merosson retenidos en el producto polimΓ©rico.

addition reaction/reacciΓ³n de adiciΓ³n (pΓ‘g. 755) ReacciΓ³norgΓ‘nica que ocurre cuando otros Γ‘tomos se unen a cada unode los dos Γ‘tomos unidos por enlaces covalentes dobles otriples.

alcohol/alcohol (pΓ‘g. 743) Compuesto orgΓ‘nico en que un grupohidroxilo reemplaza un Γ‘tomo de hidrΓ³geno de un hidrocar-buro.

aldehyde/aldehido (pΓ‘g. 747) Compuesto orgΓ‘nico en el cual ungrupo carbonilo al final de una cadena de carbono estΓ‘ unidoa un Γ‘tomo de carbono por un lado y a un Γ‘tomo de hidrΓ³genopor el otro.

aliphatic compounds/compuestos alifΓ‘ticos (pΓ‘g. 723)Hidrocarburos no aromΓ‘ticos, como los alcanos, los alquenosy los alquinos.

alkali metals/metales alcalinos (pΓ‘g. 155) Elementos del Grupo1A, exceptuando el hidrΓ³geno, que se ubican en el ladoizquierdo de la tabla periΓ³dica moderna.

alkaline earth metals/metales alcalinotΓ©rreos (pΓ‘g. 155)Elementos del Grupo 2A en la tabla periΓ³dica moderna.

alkane/alcano (pΓ‘g. 699) Hidrocarburo saturado con sΓ³lo enlacessencillos y no polares entre los Γ‘tomos.

alkene/alqueno (pΓ‘g. 711) Un hidrocarburo insaturado con unoo mΓ‘s enlaces dobles entre Γ‘tomos de carbono de una cadena.

alkyl halide/alquilhaluro (pΓ‘g. 738) Compuesto orgΓ‘nico quecontiene uno o mΓ‘s Γ‘tomos de halΓ³geno (F, Cl, Br o I) unidoscovalentemente a un Γ‘tomo de carbono alifΓ‘tico.

alkyne/alquino (pΓ‘g. 714) Hidrocarburo insaturado con uno omΓ‘s enlaces triples entre Γ‘tomos de carbono en una cadena.

allotropes/alΓ³tropos (pΓ‘g. 188) ) Formas de un elemento conestructuras y propiedades diferentes cuando estΓ‘n en el mismoestado: sΓ³lido, lΓ­quido o gaseoso.

alloy/aleaciΓ³n (pΓ‘g. 230) Mezcla de elementos que poseepropiedades metΓ‘lica.

A multilingual science glossary at chemistrymc.comincludes Arabic, Bengali, Chinese, English, Haitian Creole, Hmong, Korean, Portuguese, Russian,Tagalog, Urdu, and Vietnamese.

Page 97: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

966 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

alpha particle (p. 106) A particle with two protons and two neu-trons, with a 2οΏ½ charge; is equivalent to a helium-4 nucleus,can be represented as οΏ½, and is emitted during radioactivedecay.

alpha radiation (p. 106) Radiation that is made up of alpha par-ticles; is deflected toward a negatively charged plate whenradiation from a radioactive source is directed between twoelectrically charged plates.

amide (p. 752) An organic compound in which the β€”OH groupof a carboxylic acid is replaced by a nitrogen atom bonded toother atoms.

amines (p. 745) Organic compounds that contain nitrogen atomsbonded to carbon atoms in aliphatic chains or aromatic ringsand have the general formula RNH2.

amino acid (p. 776) An organic molecule that has both an aminogroup (β€”NH2) and a carboxyl group (β€”COOH).

amorphous solid (p. 403) A solid in which particles are notarranged in a regular, repeating pattern that often is formedwhen molten material cools too quickly to form crystals.

amphoteric (p. 599) Describes water and other substances thatcan act as both acids and bases.

amplitude (p. 119) The height of a wave from the origin to a crest,or from the origin to a trough.

anabolism (p. 792) Refers to the metabolic reactions throughwhich cells use energy and small building blocks to buildlarge, complex molecules needed to carry out cell functionsand for cell structures.

anion (p. 214) An ion that has a negative charge; forms whenvalence electrons are added to the outer energy level, givingthe ion a stable electron configuration.

anode (p. 665) In an electrochemical cell, the electrode where oxi-dation takes place.

applied research (p. 14) A type of scientific investigation that isundertaken to solve a specific problem.

aqueous solution (p. 292) A solution in which the solvent iswater.

aromatic compounds (p. 723) Organic compounds that containone or more benzene rings as part of their molecular structure.

Arrhenius model (p. 597) A model of acids and bases; states thatan acid is a substance that contains hydrogen and ionizes toproduce hydrogen ions in aqueous solution and a base is a sub-stance that contains a hydroxide group and dissociates to pro-duce a hydroxide ion in aqueous solution.

aryl halide (p. 739) An organic compound that contains a halo-gen atom bonded to a benzene ring or another aromatic group.

asymmetric carbon (p. 719) A carbon atom that has four differ-ent atoms or groups of atoms attached to it; occurs in chiralcompounds.

atmosphere (p. 390) The unit that is often used to report air pres-sure; (p. 841) the protective, largely gaseous envelope aroundEarth, hundreds of kilometers thick, that is divided into the tro-posphere, stratosphere, mesosphere, thermosphere, and exos-phere.

atom (p. 90) The smallest particle of an element that retains allthe properties of that element; is electrically neutral, spheri-cally shaped, and composed of electrons, protons, and neu-trons.

atomic emission spectrum (p. 125) A set of frequencies of elec-tromagnetic waves given off by atoms of an element; consistsof a series of fine lines of individual colors.

alpha particle/partΓ­cula alfa (pΓ‘g. 106) PartΓ­cula con dos pro-tones y dos neutrones, con una carga de 2οΏ½ que equivale a unnΓΊcleo de helio 4; se puede representar como οΏ½ y se emitedurante la descomposiciΓ³n radiactiva.

alpha radiation/radiaciΓ³n alfa (pΓ‘g. 106) RadiaciΓ³n compuestade partΓ­culas alfa; es desviada hacia una placa cargada nega-tivamente cuando la radiaciΓ³n proveniente de una fuenteradiactiva se dirige entre dos placas cargadas elΓ©ctricamente.

amide/amida (pΓ‘g. 752) Compuesto orgΓ‘nico en que el grupo β€”OH de un Γ‘cido carboxΓ­lico es reemplazado por un Γ‘tomode nitrΓ³geno unido con otros Γ‘tomos.

amines/aminas (pΓ‘g. 745) Compuestos orgΓ‘nicos que contienenΓ‘tomos de nitrΓ³geno unidos a Γ‘tomos de carbono en cadenasde alifΓ‘ticas o anillos aromΓ‘ticos y su fΓ³rmula general esRNH2.

amino acid/aminoΓ‘cido (pΓ‘g. 776) MolΓ©cula orgΓ‘nica que tieneun grupo amino (β€”NH2) y un grupo carboxilo (β€”COOH).

amorphous solid/sΓ³lido amorfo (pΓ‘g. 403) SΓ³lido en el cuΓ‘l laspartΓ­culas no estΓ‘n ordenadas en un patrΓ³n regular repetitivo;a menudo se forma cuando el material fundido se enfrΓ­ademasiado rΓ‘pido para formar cristales.

amphoteric/anfotΓ©rico (pΓ‘g. 599) TΓ©rmino que describe al aguay a otras sustancias que pueden actuar como Γ‘cidos y comobases.

amplitude/amplitud (pΓ‘g. 119) Altura de una onda desde el ori-gen hasta una cresta o desde el origen hasta un seno.

anabolism/anabolismo (pΓ‘g. 792) Se refiere a las reaccionesmetabΓ³licas a travΓ©s de las cuales las cΓ©lulas usan energΓ­a ybloques constitutivos pequeΓ±os para construir molΓ©culasgrandes y complejas que son necesarias para llevar a cabo lasfunciones celulares y para construir estructuras celulares.

anion/aniΓ³n (pΓ‘g. 214) Ion que tiene una carga negativa; se formacuando los electrones de valencia se incorporan al nivel deenergΓ­a externo, dando el ion una configuraciΓ³n electrΓ³nicaestable.

anode/Γ‘nodo (pΓ‘g. 665) En una celda electroquΓ­mica, el electrododonde se lleva a cabo la oxidaciΓ³n.

applied research/investigaciΓ³n aplicada (pΓ‘g. 14) Tipo de inves-tigaciΓ³n cientΓ­fica que se lleva a cabo para resolver un proble-ma concreto.

aqueous solution/soluciΓ³n acuosa (pΓ‘g. 292) SoluciΓ³n en la queel disolvente es agua.

aromatic compounds/compuestos aromΓ‘ticos (pΓ‘g. 723)Compuestos orgΓ‘nicos que contienen uno o mΓ‘s anillos debenceno como parte de su estructura molecular.

Arrhenius model/modelo de Arrhenius (pΓ‘g. 597) Modelo deΓ‘cidos y bases; establece que un Γ‘cido es una sustancia quecontiene hidrΓ³geno y se ioniza para producir iones hidrΓ³genoen soluciΓ³n acuosa y una base es una sustancia que contieneun grupo hidrΓ³xido y se disocia para producir un ion hidrΓ³-xido en soluciΓ³n acuosa.

aryl halide/haluro de arilo (pΓ‘g. 739) Compuesto orgΓ‘nico quecontiene un Γ‘tomo de halΓ³geno unido a un anillo de bencenou otro grupo aromΓ‘tico.

asymmetric carbon/carbono asimétrico (pÑg. 719) Átomo decarbono que tiene cuatro Ñtomos o grupos de Ñtomos diferentesunidos a él; se encuentra en compuestos quirales.

atmosphere/atmΓ³sfera (pΓ‘g. 390) Unidad que se emplea amenudo para indicar la presiΓ³n del aire; (pΓ‘g. 841) la grancubierta gaseosa protectora que rodea a la Tierra de centenaresde kilΓ³metros de ancho y que se divide en troposfera, estratos-fera, mesosfera, termosfera y exosfera.

atom/Γ‘tomo (pΓ‘g. 90) La partΓ­cula mΓ‘s pequeΓ±a de un elementoque retiene todas las propiedades de ese elemento; es elΓ©ctri-camente neutro, de forma esfΓ©rica y compuesto de electrones,protones y neutrones.

atomic emission spectrum/espectro de emisiΓ³n atΓ³mica(pΓ‘g. 125) Conjunto de frecuencias de ondas electromagnΓ©ti-cas emitida por los Γ‘tomos de un elemento; consta de unaserie de lΓ­neas finas de colores individuales.

Page 98: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 967

Glossary/Glosario

Glo

ssary

/Glo

sari

o

atomic mass (p. 102) The weighted average mass of the isotopesof that element.

atomic mass unit (amu) (p. 102) One-twelfth the mass of a car-bon-12 atom.

atomic number (p. 98) The number of protons in an atom.

atomic orbital (p. 132) A three-dimensional region around thenucleus of an atom that describes an electron’s probable loca-tion.

ATP (p. 792) Adenosine triphosphateβ€”a nucleotide that functionsas the universal energy-storage molecule in living cells.

aufbau principle (p. 135) States that each electron occupies thelowest energy orbital available.

Avogadro’s number (p. 310) The number 6.022 1367 οΏ½ 1023,which is the number of representative particles in a mole, andcan be rounded to three significant digits: 6.02 οΏ½ 1023.

Avogadro’s principle (p. 430) States that equal volumes of gasesat the same temperature and pressure contain equal numbersof particles.

band of stability (p. 811) The region on a graph within which allstable nuclei are found when plotting the number of neutronsversus the number of protons for all stable nuclei.

barometer (p. 389) An instrument that is used to measure atmos-pheric pressure.

base ionization constant (p. 606) The value of the equilibriumconstant expression for the ionization of a base.

base unit (p. 26) A defined unit in a system of measurement thatis based on an object or event in the physical world and is inde-pendent of other units.

battery (p. 672) One or more electrochemical cells in a singlepackage that generates electrical current.

beta particle (p. 107) A high-speed electron with a 1οΏ½ charge thatis emitted during radioactive decay.

beta radiation (p. 107) Radiation that is made up of beta parti-cles; is deflected toward a positively charged plate when radi-ation from a radioactive source is directed between twoelectrically charged plates.

boiling point (p. 406) The temperature at which a liquid’s vaporpressure is equal to the external or atmospheric pressure.

boiling point elevation (p. 472) The temperature differencebetween a solution’s boiling point and a pure solvent’s boilingpoint.

Boyle’s law (p. 421) States that the volume of a given amount ofgas held at a constant temperature varies inversely with thepressure.

breeder reactor (p. 825) A nuclear reactor that is able to producemore fuel than it uses.

BrΓΈnsted-Lowry model (p. 598) A model of acids and bases inwhich an acid is a hydrogen-ion donor and a base is a hydro-gen-ion acceptor.

Brownian motion (p. 478) The jerky, random, rapid movementsof colloid particles that results from collisions of particles ofthe dispersion medium with the dispersed particles.

buffer (p. 623) A solution that resists changes in pH when limitedamounts of acid or base are added.

atomic mass/masa atΓ³mica (pΓ‘g. 102) La masa promedio pon-derada de los isΓ³topos de ese elemento.

atomic mass unit (amu)/unidad de masa atΓ³mica(uma)(pΓ‘g. 102) ) Un doceavo de la masa de un Γ‘tomo de car-bono 12.

atomic number/nΓΊmero atΓ³mico (pΓ‘g. 98) El nΓΊmero de pro-tones en un Γ‘tomo.

atomic orbital/orbital atΓ³mico (pΓ‘g. 132) RegiΓ³n tridimensionalalrededor del nΓΊcleo de un Γ‘tomo que describe la ubicaciΓ³nprobable del electrΓ³n.

ATP/ATP (pΓ‘g. 792) Trifosfato de adenosina, un nucleΓ³tido quefunciona como la molΓ©cula universal de almacenamiento deenergΓ­a en las cΓ©lulas vivas.

aufbau principle/principio de Aufbau (pΓ‘g. 135) Establece quecada electrΓ³n ocupa el orbital de energΓ­a mΓ‘s bajo disponible.

Avogadro’s number/nΓΊmero de Avogadro (pΓ‘g. 310) El nΓΊmero6.022 οΏ½ 1023, que es el nΓΊmero de partΓ­culas representativasen un mol, el cual se puede redondear a tres dΓ­gitos significa-tivos: 6.02 οΏ½ 1023.

Avogadro’s principle/principio de Avogadro (pΓ‘g. 430)Establece que volΓΊmenes iguales de gases a la misma tem-peratura y presiΓ³n contienen igual nΓΊmero de partΓ­culas.

band of stability/banda de la estabilidad (pΓ‘g. 811) RegiΓ³n dela grΓ‘fica dentro de la cual se encuentran todos los nΓΊcleosestables cuando se grafica el nΓΊmero de neutrones contra elnΓΊmero de protones para todos los nΓΊcleos estables.

barometer/barΓ³metro (pΓ‘g. 389) Instrumento que se utiliza paramedir la presiΓ³n atmosfΓ©rica.

base ionization constant/constante de ionizaciΓ³n base(pΓ‘g. 606) El valor de la expresiΓ³n de la constante de equilibriopara la ionizaciΓ³n de una base.

base unit/unidad base (pΓ‘g. 26) Unidad definida en un sistemade la medida que se basa en un objeto o el acontecimiento enel mundo fΓ­sico y es independiente de otras unidades.

battery/baterΓ­a (pΓ‘g. 672) Una o mΓ‘s celdas electroquΓ­micas enun solo paquete que genera corriente elΓ©ctrica.

beta particle/partΓ­cula de beta (pΓ‘g. 107) ElectrΓ³n de altavelocidad con una carga 1οΏ½ que se emite durante la desinte-graciΓ³n radiactiva.

beta radiation/radiaciΓ³n beta (pΓ‘g. 107) RadiaciΓ³n compuestade partΓ­culas beta; es desviada hacia un placa positivamentecargada cuando la radiaciΓ³n de una fuente radiactiva esdirigida entre dos placas cargadas elΓ©ctricamente.

boiling point/punto de ebulliciΓ³n (pΓ‘g. 406) Temperatura a lacual la presiΓ³n de vapor de un lΓ­quido es igual a la presiΓ³nexterna o atmosfΓ©rica.

boiling point elevation/elevaciΓ³n del punto de ebulliciΓ³n(pΓ‘g. 472) Diferencia de temperatura entre el punto de ebulli-ciΓ³n de una soluciΓ³n y el de un disolvente puro.

Boyle’s law/Ley de Boyle (pΓ‘g. 421) Establece que el volumende una cantidad dada de gas a temperatura constante, varΓ­ainversamente con la presiΓ³n.

breeder reactor/reactor regenerador (pΓ‘g. 825) Reactor nuclearque es capaz de producir mΓ‘s combustible de lo que utiliza.

BrΓΈnsted-Lowry model/modelo de BrΓΈnsted-Lowry (pΓ‘g. 598)Modelo de Γ‘cidos y bases en que un Γ‘cido es un donador deion hidrΓ³geno y una base es un aceptor de ion hidrΓ³geno.

Brownian motion/movimiento browniano (pΓ‘g. 478)Movimientos errΓ‘ticos, aleatorios y rΓ‘pidos de las partΓ­culascoloidales que resultan de choques de partΓ­culas del medio dedispersiΓ³n con las partΓ­culas dispersadas.

buffer/amortiguador (pΓ‘g. 623) SoluciΓ³n que resiste los cambiosde pH cuando se agregan cantidades moderadas del Γ‘cido o labase.

B

Page 99: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

968 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

buffer capacity (p. 623) The amount of acid or base a buffer solu-tion can absorb without a significant change in pH.

calorie (p. 491) The amount of heat required to raise the tem-perature of one gram of pure water by one degree Celsius.

calorimeter (p. 496) An insulated device that is used to measurethe amount of heat released or absorbed during a physical orchemical process.

carbohydrates (p. 781) Compounds that contain multiplehydroxyl groups, plus an aldehyde or a ketone functionalgroup, and function in living things to provide immediate andstored energy.

carbonyl group (p. 747) Arrangement in which an oxygen atomis double-bonded to a carbon atom.

carboxyl group (p. 749) Consists of a carbonyl group bonded toa hydroxyl group.

carboxylic acid (p. 749) An organic compound that contains acarboxyl group and is polar and reactive.

catabolism (p. 792) Refers to metabolic reactions that cellsundergo to extract energy and chemical building blocks fromlarge, complex biological molecules such as proteins, carbo-hydrates, lipids, and nucleic acids.

catalyst (p. 539) A substance that increases the rate of a chemi-cal reaction by lowering activation energies but is not itselfconsumed in the reaction.

cathode (p. 665) In an electrochemical cell, the electrode wherereduction takes place.

cathode ray (p. 92) A ray of radiation that originates from thecathode and travels to the anode of a cathode ray tube.

cation (p. 212) An ion that has a positive charge; forms whenvalence electrons are removed, giving the ion a stable electronconfiguration.

cellular respiration (p. 794) The process in which glucose is bro-ken down in the presence of oxygen gas to produce carbondioxide, water, and large amounts of energy.

Charles’s law (p. 424) States that the volume of a given mass ofgas is directly proportional to its kelvin temperature at con-stant pressure.

chemical bond (p. 211) The force that holds two atoms together;may form by the attraction of a positive ion for a negative ionor by the attraction of a positive nucleus for negative electrons.

chemical change (p. 62) A process involving one or more sub-stances changing into new substances; also called a chemicalreaction.

chemical equation (p. 280) A statement using chemical formu-las to describe the identities and relative amounts of the reac-tants and products involved in the chemical reaction.

chemical equilibrium (p. 561) The state in which forward andreverse reactions balance each other because they occur atequal rates.

chemical potential energy (p. 490) The energy stored in a sub-stance because of its composition; is released or absorbed asheat during chemical reactions or processes.

chemical property (p. 57) The ability or inability of a substanceto combine with or change into one or more new substances.

buffer capacity/capacidad amortiguadora (pΓ‘g. 623) Cantidadde Γ‘cido o base que una soluciΓ³n amortiguadora puedeabsorber sin un cambio significativo en el pH.

calorie/calorΓ­a (pΓ‘g. 491) Cantidad de calor que se requiere paraelevar, por un grado centΓ­grado la temperatura de un gramode agua pura.

calorimeter/calorΓ­metro (pΓ‘g. 496) Dispositivo aislado que seutiliza para medir la cantidad de calor liberado o absorbidodurante un proceso fΓ­sico o quΓ­mico.

carbohydrates/carbohidratos (pΓ‘g. 781) Compuestos que con-tienen mΓΊltiples grupos hidroxilo, mΓ‘s un grupo funcionalaldehido o cetona y cuya funciΓ³n en los seres vivos es pro-porcionar energΓ­a inmediata y almacenada.

carbonyl group/grupo carbonilo (pΓ‘g. 747) Arreglo en el cualun Γ‘tomo de oxΓ­geno estΓ‘ unido por un doble enlace a unΓ‘tomo de carbono.

carboxyl group/grupo carboxilo (pΓ‘g. 749) Consiste en un grupode carbonilo unido a un grupo hidroxilo.

carboxylic acid/Γ‘cido carboxΓ­lico (pΓ‘g. 749) CompuestoorgΓ‘nico que contiene un grupo carboxilo y el cual es polar yreactivo.

catabolism/catabolismo (pΓ‘g. 792) Se refiere a reaccionesmetabΓ³licas que sufren las cΓ©lulas para extraer energΓ­a y com-ponentes quΓ­micos de molΓ©culas biolΓ³gicas, complejas ygrandes tales como proteΓ­nas, carbohidratos, lΓ­pidos y Γ‘cidosnucleicos.

catalyst/catalizador (pΓ‘g. 539) Sustancia que aumenta la veloci-dad de reacciΓ³n quΓ­mica disminuyendo las energΓ­as de acti-vaciΓ³n pero Γ©l mismo no es consumido durante la reacciΓ³n.

cathode/cΓ‘todo (pΓ‘g. 665) En una celda de electroquΓ­mica, elelectrodo donde se lleva a cabo la reducciΓ³n.

cathode ray/rayo catΓ³dico (pΓ‘g. 92) Rayo de radiaciΓ³n que se orig-ina en el cΓ‘todo y viaja al Γ‘nodo de un tubo de rayos catΓ³dicos.

cation/catiΓ³n (pΓ‘g. 212) Ion que tiene una carga positiva; seforma cuando se descartan los electrones de valencia, dΓ‘ndoleal ion una configuraciΓ³n electrΓ³nica estable.

cellular respiration/respiraciΓ³n celular (pΓ‘g. 794) El procesoen cual la glucosa se rompe en presencia de oxΓ­geno para pro-ducir diΓ³xido de carbono, agua y grandes cantidades deenergΓ­a.

Charles’s law/Ley de Charles (pΓ‘g. 424) Establece que el volu-men de una masa dada de gas es directamente proporcional asu temperatura Kelvin a presiΓ³n constante.

chemical bond/enlace quΓ­mico (pΓ‘g. 211) La fuerza quemantiene juntos a dos Γ‘tomos; puede formarse por la atracciΓ³nde un ion positivo por un ion negativo o por la atracciΓ³n deun nΓΊcleo positivo hacia los electrones negativos.

chemical change/cambio quΓ­mico (pΓ‘g. 62) Proceso que involu-cra una o mΓ‘s sustancias que se transforman en sustanciasnuevas; tambiΓ©n llamado reacciΓ³n quΓ­mica.

chemical equation/ecuaciΓ³n quΓ­mica (pΓ‘g. 280) ExpresiΓ³n queutiliza fΓ³rmulas quΓ­micas para describir las identidades y can-tidades relativas de los reactantes y productos presentes en lareacciΓ³n quΓ­mica.

chemical equilibrium/equilibrio quΓ­mico (pΓ‘g. 561) El estadoen que las reacciones directa e inversa se equilibran mutua-mente debido a que ocurren a velocidades iguales.

chemical potential energy/energΓ­a potencial quΓ­mica (pΓ‘g. 490)La energΓ­a almacenada en una sustancia debido a su com-posiciΓ³n; se libera o se absorbe como calor durante reaccioneso procesos quΓ­micos.

chemical property/propiedad quΓ­mica (pΓ‘g. 57) La capacidado incapacidad de una sustancia para combinarse o transfor-marse en uno o mΓ‘s sustancias nuevas.

C

Page 100: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 969

Glossary/Glosario

Glo

ssary

/Glo

sari

o

chemical reaction (p. 277) The process by which the atoms ofone or more substances are rearranged to form different sub-stances; occurrence can be indicated by changes in tempera-ture, color, odor, and physical state.

chemistry (p. 7) The study of matter and the changes that itundergoes.

chirality (p. 719) A property of a compound to exist in both left(lοΏ½) and right (dοΏ½) forms; occurs whenever a compound con-tains an asymmetric carbon.

chromatography (p. 69) A technique that is used to separate thecomponents of a mixture based on the tendency of each com-ponent to travel or be drawn across the surface of anothermaterial.

coefficient (p. 280) In a chemical equation, the number writtenin front of a reactant or product; tells the smallest number ofparticles of the substance involved in the reaction.

colligative property (p. 471) A physical property of a solutionthat depends on the number, but not the identity, of the dis-solved solute particles; example properties include vapor pres-sure lowering, boiling point elevation, osmotic pressure, andfreezing point depression.

collision theory (p. 532) States that atoms, ions, and moleculesmust collide in order to react.

colloids (p. 477) Heterogeneous mixtures containing particleslarger than solution particles but smaller than suspension par-ticles that are categorized according to the phases of their dis-persed particles and dispersing mediums.

combined gas law (p. 428) A single law combining Boyle’s,Charles’s, and Gay-Lussac’s laws that states the relationshipamong pressure, volume, and temperature of a fixed amountof gas.

combustion reaction (p. 285) A chemical reaction that occurswhen a substance reacts with oxygen, releasing energy in theform of heat and light.

common ion (p. 584) An ion that is common to two or more ioniccompounds.

common ion effect (p. 584) The lowering of the solubility of asubstance by the presence of a common ion.

complete ionic equation (p. 293) An ionic equation that showsall the particles in a solution as they realistically exist.

complex reaction (p. 548) A chemical reaction that consists oftwo or more elementary steps.

compound (p. 71) A chemical combination of two or more dif-ferent elements; can be broken down into simpler substancesby chemical means and has properties different from those ofits component elements.

concentration (p. 462) A quantitative measure of the amount ofsolute in a given amount of solvent or solution.

conclusion (p. 12) A judgment based on the information obtained.

condensation (p. 407) The energy-releasing process by which agas or vapor becomes a liquid.

condensation polymerization (p. 764) Occurs when monomershaving at least two functional groups combine with the lossof a small by-product, usually water.

condensation reaction (p. 753) Occurs when two smaller organicmolecules combine to form a more complex molecule, accom-panied by the loss of a small molecule such as water.

chemical reaction/reacciΓ³n quΓ­mica (pΓ‘g. 277) El proceso porel cual los Γ‘tomos de una o mΓ‘s sustancias se reordenan paraformar sustancias diferentes; su ocurrencia puede identificarsepor cambios en temperatura, color, olor y producciΓ³n de ungas.

chemistry/quΓ­mica (pΓ‘g. 7) El estudio de la materia y los cam-bios que experimenta.

chirality/quiralidad (pΓ‘g. 719) Propiedad de un compuesto paraexistir en ambas formas: izquierda (iοΏ½) y derecha (dοΏ½); ocurresiempre que un compuesto contiene un carbono asimΓ©trico.

chromatography/cromatografΓ­a (pΓ‘g. 69) TΓ©cnica usada paraseparar los componentes de una mezcla basada en la tenden-cia de cada componente para moverse o ser absorbido a travΓ©sde la superficie de otra materia.

coefficient/coeficiente (pΓ‘g. 280) En una ecuaciΓ³n quΓ­mica, elnΓΊmero escrito delante de un reactante o producto; indica elnΓΊmero mΓ‘s pequeΓ±o de partΓ­culas de la sustancia involucradaen la reacciΓ³n.

colligative property/propiedad coligativa (pΓ‘g. 471) PropiedadfΓ­sica de una soluciΓ³n que depende del nΓΊmero, pero no de laidentidad, de las partΓ­culas solubles disueltas; ejemplos depropiedades incluyen disminuciΓ³n de la presiΓ³n de vapor, ele-vaciΓ³n del punto de ebulliciΓ³n, la presiΓ³n osmΓ³tica y la depre-siΓ³n del punto de congelaciΓ³n.

collision theory/teorΓ­a de colisiΓ³n (pΓ‘g. 532) Establece que losΓ‘tomos, iones y molΓ©culas deben chocar para reaccionar.

colloids/coloides (pΓ‘g. 477) Mezclas heterogΓ©neas que contienenpartΓ­culas mΓ‘s grandes que las partΓ­culas de una soluciΓ³n peromΓ‘s pequeΓ±as que las partΓ­culas de una suspensiΓ³n; se clasifi-can segΓΊn las fases de sus partΓ­culas dispersadas y los mediosdispersantes.

combined gas law/ley combinada de los gases (pΓ‘g. 428) Unasola ley que combina las leyes de Boyle, Charles y de Gay-Lussac, que indica la relaciΓ³n entre la presiΓ³n, el volumen yla temperatura de una cantidad fija de gas.

combustion reaction/reacciΓ³n de combustiΓ³n (pΓ‘g. 285)ReacciΓ³n quΓ­mica que ocurre cuando una sustancia reaccionacon oxΓ­geno, liberando energΓ­a en forma de calor y luz.

common ion/ion comΓΊn (pΓ‘g. 584) Un ion que es comΓΊn a doso mΓ‘s compuestos iΓ³nicos.

common ion effect/efecto de ion comΓΊn (pΓ‘g. 584) DisminuciΓ³nde la solubilidad de una sustancia por la presencia de un ioncomΓΊn.

complete ionic equation/ecuaciΓ³n iΓ³nica completa (pΓ‘g. 293)Una ecuaciΓ³n iΓ³nica que muestra como existen en realidadtodas las partΓ­culas en una soluciΓ³n.

complex reaction/reacciΓ³n compleja (pΓ‘g. 548) ReacciΓ³nquΓ­mica que consiste en dos o mΓ‘s pasos elementales.

compound/compuesto (pΓ‘g. 71) CombinaciΓ³n quΓ­mica de dos omΓ‘s elementos diferentes; puede separarse en sustancias mΓ‘ssencillas por medios quΓ­micos y exhibe propiedades diferen-tes de aquellas de sus elementos constituyentes.

concentration/concentraciΓ³n (pΓ‘g. 462) Medida cuantitativa dela cantidad de soluto en una cantidad dada de disolvente osoluciΓ³n.

conclusion/conclusiΓ³n (pΓ‘g. 12) ) Juicio basado en la informa-ciΓ³n obtenida.

condensation/condensaciΓ³n (pΓ‘g. 407) El proceso de liberaciΓ³nde energΓ­a mediante el cual un gas o vapor se convierte en unlΓ­quido.

condensation polymerization/polimerizaciΓ³n de condensaciΓ³n(pΓ‘g. 764) Ocurre cuando se combinan monΓ³meros que tienenpor lo menos dos grupos funcionales, con la pΓ©rdida de un pro-ducto secundario pequeΓ±o, generalmente agua.

condensation reaction/reacciΓ³n de condensaciΓ³n (pΓ‘g. 753)Ocurre cuando dos molΓ©culas orgΓ‘nicas mΓ‘s pequeΓ±as se com-binan para formar una molΓ©cula mΓ‘s compleja, lo cual va acom-paΓ±ado de la pΓ©rdida de una molΓ©cula pequeΓ±a como el agua.

Page 101: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

970 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

D

conjugate acid (p. 598) The species produced when a baseaccepts a hydrogen ion from an acid.

conjugate acid-base pair (p. 598) Consists of two substancesrelated to each other by the donating and accepting of a sin-gle hydrogen ion.

conjugate base (p. 598) The species produced when an aciddonates a hydrogen ion to a base.

control (p. 12) In an experiment, the standard that is used forcomparison.

conversion factor (p. 34) A ratio of equivalent values used toexpress the same quantity in different units; is always equalto 1 and changes the units of a quantity without changing itsvalue.

coordinate covalent bond (p. 257) Forms when one atom donatesa pair of electrons to be shared with an atom or ion that needstwo electrons to become stable.

corrosion (p. 679) The loss of metal that results from an oxida-tion-reduction reaction of the metal with substances in theenvironment.

covalent bond (p. 242) A chemical bond that results from thesharing of valence electrons.

cracking (p. 726) The process by which heavier fractions ofpetroleum are converted to gasoline by breaking their largemolecules into smaller molecules.

critical mass (p. 823) The minimum mass of a sample of fis-sionable material necessary to sustain a nuclear chain reaction.

crystalline solid (p. 400) A solid whose atoms, ions, or moleculesare arranged in an orderly, geometric, three-dimensional struc-ture; can be classified by shape and by composition.

crystallization (p. 69) A separation technique that produces puresolid particles of a substance from a solution that contains thedissolved substance.

cyclic hydrocarbon (p. 706) An organic compound that containsa hydrocarbon ring.

cycloalkane (p. 706) A saturated hydrocarbon that can have ringswith three, four, five, six, or more carbon atoms.

Dalton’s atomic theory (p. 89) A theory proposed by John Daltonin 1808, based on numerous scientific experiments, thatmarked the beginning of the development of modern atomictheory.

Dalton’s law of partial pressures (p. 391) States that the totalpressure of a mixture of gases is equal to the sum of the pres-sures of all the gases in the mixture.

de Broglie equation (p. 130) Predicts that all moving particleshave wave characteristics and relates each particle’s wave-length to its frequency, its mass, and Planck’s constant.

decomposition reaction (p. 286) A chemical reaction that occurswhen a single compound breaks down into two or more ele-ments or new compounds.

dehydration reaction (p. 755) An organic elimination reactionin which the atoms removed form water.

dehydrogenation reaction (p. 754) Organic reaction that elimi-nates two hydrogen atoms, which form a hydrogen molecule.

conjugate acid/Γ‘cido conjugado (pΓ‘g. 598) Especie producidacuando una base acepta un ion hidrΓ³geno de un Γ‘cido.

conjugate acid-base pair/par Γ‘cido-base conjugado (pΓ‘g. 598)Consiste en dos sustancias relacionadas una con otra por ladonaciΓ³n y aceptaciΓ³n de un solo ion hidrΓ³geno.

conjugate base/base conjugada (pΓ‘g. 598) Especie producidacuando un Γ‘cido dona un ion hidrΓ³geno a una base.

control/control (pΓ‘g. 12) EstΓ‘ndar de comparaciΓ³n en un experi-mento.

conversion factor/factor de conversiΓ³n (pΓ‘g. 34) ProporciΓ³n devalores equivalentes utilizados para expresar la misma canti-dad en unidades diferentes; siempre es igual a 1 y cambia lasunidades de una cantidad sin cambiar su valor.

coordinate covalent bond/enlace covalente coordinado(pΓ‘g. 257) Se forma cuando un Γ‘tomo dona un par de elec-trones para ser compartidos con un Γ‘tomo o ion que requieredos electrones para volverse estable.

corrosion/corrosiΓ³n (pΓ‘g. 679) PΓ©rdida de metal que resulta deuna reacciΓ³n de Γ³xido-reducciΓ³n del metal con sustancias enel ambiente.

covalent bond/enlace covalente (pΓ‘g. 242) Enlace quΓ­mico queresulta al compartir electrones de valencia.

cracking/cracking (pΓ‘g. 726) El proceso por el cual las frac-ciones mΓ‘s pesadas de petrΓ³leo se convierten en gasolina,rompiendo sus molΓ©culas grandes en molΓ©culas mΓ‘s pequeΓ±as.

critical mass/masa crΓ­tica (pΓ‘g. 823) La masa mΓ­nima de unamuestra de material fisionable necesario para sostener unareacciΓ³n nuclear en cadena.

crystalline solid/sΓ³lido cristalino (pΓ‘g. 400) SΓ³lido cuyos Γ‘to-mos, iones o molΓ©culas se arreglan en una estructura tridi-mensional, ordenada y geomΓ©trica; puede clasificarse porforma y por composiciΓ³n.

crystallization/cristalizaciΓ³n (pΓ‘g. 69) TΓ©cnica de separaciΓ³nque produce partΓ­culas sΓ³lidas puras de una sustancia a partirde una soluciΓ³n que contiene la sustancia disuelta.

cyclic hydrocarbon/hidrocarburo cΓ­clico (pΓ‘g. 706) CompuestoorgΓ‘nico que contiene un hidrocarburo aromΓ‘tico (con unanillo).

cycloalkane/cicloalcano (pΓ‘g. 706) Hidrocarburo saturado quepuede tener anillos con tres, cuatro, cinco, seis o mΓ‘s Γ‘tomosde carbono.

Dalton’s atomic theory/teorΓ­a atΓ³mica de Dalton (pΓ‘g. 89)TeorΓ­a propuesta por John Dalton en 1808, basada ennumerosos experimentos cientΓ­ficos, que marcΓ³ el principiodel desarrollo de la teorΓ­a atΓ³mica moderna.

Dalton’s law of partial pressures/ley de presiones parciales deDalton (pΓ‘g. 391) Establece que la presiΓ³n total de una mez-cla de gases es igual a la suma de las presiones de todos losgases en la mezcla.

de Broglie equation/ecuaciΓ³n de deBroglie (pΓ‘g. 130) Prediceque todas las partΓ­culas mΓ³viles tienen caracterΓ­sticas de onday relaciona la longitud de onda de cada partΓ­cula con su fre-cuencia, su masa y la constante de Planck.

decomposition reaction/reacciΓ³n de descomposiciΓ³n (pΓ‘g. 286)ReacciΓ³n quΓ­mica que ocurre cuando un solo compuesto sedivide en dos o mΓ‘s elementos o compuestos nuevos.

dehydration reaction/reacciΓ³n de deshidrataciΓ³n (pΓ‘g. 755)Una reacciΓ³n de eliminaciΓ³n orgΓ‘nica en la que los Γ‘tomoseliminados forman agua.

dehydrogenation reaction/reacciΓ³n de deshidrogenaciΓ³n(pΓ‘g. 754) ReacciΓ³n orgΓ‘nica que elimina dos Γ‘tomos dehidrΓ³geno, los cuales forman una molΓ©cula de hidrΓ³geno.

Page 102: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 971

Glossary/Glosario

Glo

ssary

/Glo

sari

o

delocalized electrons (p. 228) The electrons involved in metal-lic bonding that are free to move easily from one atom to thenext throughout the metal and are not attached to a particularatom.

denaturation (p. 778) The process in which a protein’s natural,intricate three-dimensional structure is disrupted.

denatured alcohol (p. 744) Ethanol to which noxious substanceshave been added in order to make it unfit to drink.

density (p. 27) A ratio that compares the mass of an object to itsvolume.

dependent variable (p. 12) In an experiment, the variable whosevalue depends on the independent variable.

deposition (p. 408) The energy-releasing process by which a sub-stance changes from a gas or vapor to a solid without firstbecoming a liquid.

derived unit (p. 27) A unit defined by a combination of base units.

desalination (p. 851) The removal of salts from seawater byprocesses such as reverse osmosis or distillation in order tomake it fit for use by living things.

diagonal relationships (p. 180) The close relationships betweenelements in neighboring groups of the periodic table.

diffusion (p. 387) The movement of one material through anotherfrom an area of higher concentration to an area of lower con-centration.

dimensional analysis (p. 34) A problem-solving method thatfocuses on the units that are used to describe matter.

dipole–dipole forces (p. 394) The attractions between oppositelycharged regions of polar molecules.

disaccharide (p. 782) Forms when two monosaccharides bondtogether.

dispersion forces (p. 393) The weak forces resulting from tem-porary shifts in the density of electrons in electron clouds.

distillation (p. 69) A technique that can be used to physically sep-arate most homogeneous mixtures based on the differences inthe boiling points of the substances involved.

double-replacement reaction (p. 290) A chemical reaction thatinvolves the exchange of positive ions between two com-pounds and produces either a precipitate, a gas, or water.

dry cell (p. 673) An electrochemical cell that contains a moistelectrolytic paste inside a zinc shell.

elastic collision (p. 386) Describes a collision in which kineticenergy may be transferred between the colliding particles butthe total kinetic energy of the two particles remains the same.

electrochemical cell (p. 665) An apparatus that uses a redox reac-tion to produce electrical energy or uses electrical energy tocause a chemical reaction.

electrolysis (p. 683) The process that uses electrical energy tobring about a chemical reaction.

electrolyte (p. 218) An ionic compound whose aqueous solutionconducts an electric current.

delocalized electrons/electrones deslocalizados (pΓ‘g. 228)Loselectrones implicados en el enlace metΓ‘lico que estΓ‘n librespara moverse fΓ‘cilmente de un Γ‘tomo al prΓ³ximo a travΓ©s delmetal y no estΓ‘n relacionados con cierto Γ‘tomo en particular.

denaturation/desnaturalizaciΓ³n (pΓ‘g. 778) Proceso en que seinterrumpe la estructura tridimensional, intrincada y natural deuna proteΓ­na.

denatured alcohol/alcohol desnaturalizado (pΓ‘g. 744) Etanol alcual se le aΓ±adieron sustancias nocivas a fin de inhabilitarlopara beber.

density/densidad (pΓ‘g. 27) ProporciΓ³n que compara la masa deun objeto con su volumen.

dependent variable/variable dependiente (pΓ‘g. 12) En unexperimento, la variable cuyo valor depende de la variableindependientele.

deposition/depositaciΓ³n (pΓ‘g. 408) Proceso de liberaciΓ³n deenergΓ­a por el cual una sustancia cambia de un gas o vapor aun sΓ³lido sin convertirse antes en un lΓ­quido.

derived unit/unidad derivada (pΓ‘g. 27) Unidad definida poruna combinaciΓ³n de unidades base.

desalination/desalinaciΓ³n (pΓ‘g. 851) EliminaciΓ³n de las sales delagua marina por procesos como la Γ³smosis inversa o la desti-laciΓ³n para que puedan usarla los seres vivos.

diagonal relationships/relaciones diagonales (pΓ‘g. 180) Rela-ciones estrechas entre elementos en grupos vecinos de la tablaperiΓ³dica.

diffusion/difusiΓ³n (pΓ‘g. 387) El movimiento de un material atravΓ©s de otro, de un Γ‘rea de mayor concentraciΓ³n a un Γ‘reade menor concentraciΓ³n.

dimensional analysis/anΓ‘lisis dimensional (pΓ‘g. 34) MΓ©todo deresoluciΓ³n de problemas enfocado en las unidades que se uti-lizan para describir la materia.

dipole–dipole forces/fuerzas dipolo-dipolo (pΓ‘g. 394) Las atrac-ciones entre regiones opuestamente cargadas de molΓ©culaspolares.

disaccharide/disacΓ‘rido (pΓ‘g. 782) Se forma de la uniΓ³n de dosmonosacΓ‘ridos.

dispersion forces/fuerzas de dispersiΓ³n (pΓ‘g. 393) FuerzasdΓ©biles resultantes de los cambios temporales en la densidadde electrones en la nube electrΓ³nica.

distillation/destilaciΓ³n (pΓ‘g. 69) TΓ©cnica que se puede emplearpara separar fΓ­sicamente la mayorΓ­a de las mezclashomogΓ©neas, basΓ‘ndose en las diferencias en los puntos deebulliciΓ³n de las sustancias implicadas.

double-replacement reaction/reacciΓ³n de doble desplaza-miento (pΓ‘g. 290) ReacciΓ³n quΓ­mica que involucra el cambiode iones positivos entre dos compuestos y produce un precipi-tado o un gas o agua.

dry cell/celda seca (pΓ‘g. 673) Una celda electroquΓ­mica que con-tiene una pasta electrolΓ­tica hΓΊmeda dentro de un armazΓ³n dezinc.

elastic collision/choque elΓ‘stico (pΓ‘g. 386) Describe una colisiΓ³nen la cual energΓ­a cinΓ©tica se puede transferir entre las partΓ­cu-las que chocan pero la energΓ­a cinΓ©tica total de las dos partΓ­cu-las permanece igual.

electrochemical cell/celda electroquΓ­mica (pΓ‘g. 665) Aparatoque usa una reacciΓ³n redox para producir energΓ­a elΓ©ctrica outiliza energΓ­a elΓ©ctrica para causar una reacciΓ³n quΓ­mica.

electrolysis/electrΓ³lisis (pΓ‘g. 683) ) Proceso que emplea energΓ­aelΓ©ctrica para producir una reacciΓ³n quΓ­mica.

electrolyte/electrolito (pΓ‘g. 218) Compuesto iΓ³nico cuya soluciΓ³nacuosa conduce una corriente elΓ©ctrica.

E

Page 103: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

972 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

electrolytic cell (p. 683) An electrochemical cell in which elec-trolysis occurs.

electromagnetic radiation (p. 118) A form of energy exhibitingwavelike behavior as it travels through space; can be describedby wavelength, frequency, amplitude, and speed and includesvisible light, microwaves, X rays, and radio waves.

electromagnetic spectrum (p. 120) Includes all forms of elec-tromagnetic radiation, with the only differences in the typesof radiation being their frequencies and wavelengths.

electron (p. 93) A negatively charged, fast-moving particle withan extremely small mass that is found in all forms of matterand moves through the empty space surrounding an atom’snucleus.

electron capture (p. 812) A radioactive decay process that occurswhen an atom’s nucleus draws in a surrounding electron,which combines with a proton to form a neutron, resulting inan X-ray photon being emitted.

electron configuration (p. 135) The arrangement of electrons inan atom, which is prescribed by three rulesβ€”the aufbau prin-ciple, the Pauli exclusion principle, and Hund’s rule.

electron-dot structure (p. 140) Consists of an element’s symbol,representing the atomic nucleus and inner-level electrons, thatis surrounded by dots, representing the atom’s valence electrons.

electron sea model (p. 228) Proposes that all metal atoms in ametallic solid contribute their valence electrons to form a β€œsea”of electrons, and can explain properties of metallic solids suchas malleability, conduction, and ductility.

electronegativity (p. 168) Indicates the relative ability of an ele-ment’s atoms to attract electrons in a chemical bond.

element (p. 70) A pure substance that cannot be broken down intosimpler substances by physical or chemical means.

elimination reaction (p. 754) A reaction of organic compoundsthat occurs when a combination of atoms is removed from twoadjacent carbon atoms forming an additional bond between theatoms.

empirical formula (p. 331) A formula that shows the smallestwhole-number mole ratio of the elements of a compound, andmay or may not be the same as the actual molecular formula.

endothermic (p. 247) A chemical reaction in which a greateramount of energy is required to break the existing bonds in thereactants than is released when the new bonds form in theproduct molecules.

end point (p. 619) The point at which the indicator that is usedin a titration changes color.

energy (p. 489) The capacity to do work or produce heat; existsas potential energy, which is stored in an object due to itscomposition or position, and kinetic energy, which is theenergy of motion.

energy sublevels (p. 133) The energy levels contained within aprincipal energy level.

enthalpy (p. 499) The heat content of a system at constant pres-sure.

enthalpy (heat) of combustion (p. 501) The enthalpy change forthe complete burning of one mole of a given substance.

enthalpy (heat) of reaction (p. 499) The change in enthalpy fora reactionβ€”the difference between the enthalpy of the sub-

electrolytic cell/celda electrolΓ­tica (pΓ‘g. 683) Celda electro-quΓ­mica en la cual se lleva a cabo la electrΓ³lisis.

electromagnetic radiation/radiaciΓ³n electromagnΓ©tica(pΓ‘g. 118) Forma de energΓ­a que exhibe un comportamientoparecido al de una onda al viajar por el espacio; puededescribirse por su longitud de onda, frecuencia, amplitud yvelocidad e incluye a la luz visible, las microondas, los rayosX y las ondas radiales.

electromagnetic spectrum/espectro electromagnΓ©tico(pΓ‘g. 120) Incluye toda forma de radiaciΓ³n electromagnΓ©tica,en el cual las frecuencias y longitudes de onda son las ΓΊnicasdiferencias entre los tipos de radiaciΓ³n.

electron/electrΓ³n (pΓ‘g. 93) PartΓ­cula mΓ³vil rΓ‘pida, cargada neg-ativamente y con una masa muy pequeΓ±a, que se encuentra entodas las formas de materia y se mueve a travΓ©s del espaciovacΓ­o que rodea el nΓΊcleo de un Γ‘tomo.

electron capture/captura del electrΓ³n (pΓ‘g. 812) Proceso dedesintegraciΓ³n radiactiva que ocurre cuando el nΓΊcleo de unΓ‘tomo atrae un electrΓ³n circundante, que se combina con unprotΓ³n para formar un neutrΓ³n, lo cual resulta en la emisiΓ³nde un fotΓ³n de rayos X.

electron configuration/configuraciΓ³n del electrΓ³n (pΓ‘g. 135) )El arreglo de electrones en un Γ‘tomo, que estΓ‘ establecido portres reglas: el principio de Aufbau, el principio de la exclusiΓ³nde Pauli y la regla de Hund.

electron-dot structure/estructura punto electrΓ³n (pΓ‘g. 140)Consiste en el sΓ­mbolo de un elemento, que representa el nΓΊcleoatΓ³mico y los electrones de los niveles interiores, rodeado porpuntos que representan los electrones de valencia del Γ‘tomo.

electron sea model/modelo del mar de electrones (pΓ‘g. 228)Propone que todos los Γ‘tomos de metal en un sΓ³lido metΓ‘licocontribuyen con sus electrones de valencia para formar un"mar" de electrones y esto puede explicar propiedades de sΓ³li-dos metΓ‘licos como maleabilidad, conducciΓ³n y ductilidad.

electronegativity/electronegatividad (pΓ‘g. 168) Indica la capaci-dad relativa de los Γ‘tomos de un elemento para atraer elec-trones en un enlace quΓ­mico.

element/elemento (pΓ‘g. 70) Sustancia pura que no se puedeseparar en sustancias mΓ‘s sencillas por medios fΓ­sicos niquΓ­micos.

elimination reaction/reacciΓ³n de eliminaciΓ³n (pΓ‘g. 754)ReacciΓ³n de compuestos orgΓ‘nicos que ocurre cuando unacombinaciΓ³n de Γ‘tomos se elimina de dos Γ‘tomos adyacentesdel carbono, formando un enlace adicional entre los Γ‘tomos.

empirical formula/fΓ³rmula empΓ­rica (pΓ‘g. 331) FΓ³rmula quemuestra la proporciΓ³n molar mΓ‘s pequeΓ±a en nΓΊmeros enterosde los elementos de un compuesto y puede o no puede ser igualque la fΓ³rmula molecular real.

endothermic/endotΓ©rmica (pΓ‘g. 247) ReacciΓ³n quΓ­mica en lacual se requiere una mayor cantidad de energΓ­a para romperlos enlaces existentes en los reactantes que aquella que selibera cuando se forman los enlaces nuevos en las molΓ©culasdel producto.

end point/punto final (pΓ‘g. 619) Punto en el cual el indicadorque se utiliza en la titulaciΓ³n cambia de color.

energy/energΓ­a (pΓ‘g. 489) Capacidad de hacer trabajo o producircalor; existe como energΓ­a potencial, que se almacena en unobjeto debido a su composiciΓ³n o posiciΓ³n y como energΓ­acinΓ©tica, que es la energΓ­a del movimiento.

energy sublevels/subniveles de energΓ­a (pΓ‘g. 133) Los nivelesde energΓ­a dentro de un nivel principal de energΓ­a.

enthalpy/entalpΓ­a (pΓ‘g. 499) El contenido de calor en un sistemaa presiΓ³n constante.

enthalpy (heat) of combustion/entalpΓ­a (calor) de combustiΓ³n(pΓ‘g. 501) El cambio de entalpΓ­a para la combustiΓ³n completade un mol de una sustancia dada.

enthalpy (heat) of reaction/entalpΓ­a (calor) de la reacciΓ³n (pΓ‘g.499) El cambio en la entalpΓ­a para una reacciΓ³n, es decir, la

Page 104: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 973

Glossary/Glosario

Glo

ssary

/Glo

sari

o

stances that exist at the end of the reaction and the enthalpyof the substances present at the start.

entropy (p. 514) A measure of the disorder or randomness of theparticles of a system.

enzyme (p. 778) A highly specific, powerful biological catalyst.

equilibrium constant (p. 563) Keq, which describes the ratio ofproduct concentrations to reactant concentrations, with eachraised to the power corresponding to its coefficient in the bal-anced equation.

equivalence point (p. 618) The stoichiometric point of a titration.

ester (p. 750) An organic compound with a carboxyl group inwhich the hydrogen of the hydroxyl group is replaced by analkyl group; may be volatile and sweet-smelling and is polar.

ether (p. 745) An organic compound that contains an oxygenatom bonded to two carbon atoms.

evaporation (p. 405) The process in which vaporization occursonly at the surface of a liquid.

excess reactant (p. 364) A reactant that remains after a chemicalreaction stops.

exothermic (p. 247) A chemical reaction in which more energyis released than is required to break bonds in the initial reaction.

experiment (p. 11) A set of controlled observations that test thehypothesis.

extensive property (p. 56) A physical property, such as mass,length, and volume, that is dependent upon the amount of sub-stance present.

fatty acid (p. 784) A long-chain carboxylic acid that usually hasbetween 12 and 24 carbon atoms and can be saturated (no dou-ble bonds), or unsaturated (one or more double bonds).

fermentation (p. 794) The process in which glucose is brokendown in the absence of oxygen, producing either ethanol, car-bon dioxide, and energy (alcoholic fermentation) or lactic acidand energy (lactic acid fermentation).

ferromagnetism (p. 199) The strong attraction of a substance toa magnetic field.

filtration (p. 68) A technique that uses a porous barrier to sepa-rate a solid from a liquid.

formula unit (p. 221) The simplest ratio of ions represented inan ionic compound.

fractional distillation (p. 725) The process by which petroleumcan be separated into simpler components, called fractions, asthey condense at different temperatures.

free energy (p. 517) The energy that is available to do workβ€”the difference between the change in enthalpy and the prod-uct of the entropy change and the absolute temperature.

freezing point (p. 408) The temperature at which a liquid is con-verted into a crystalline solid.

freezing point depression (p. 473) The difference in temperaturebetween a solution’s freezing point and the freezing point ofits pure solvent.

frequency (p. 118) The number of waves that pass a given pointper second.

fuel cell (p. 677) A voltaic cell in which the oxidation of a fuel,such as hydrogen gas, is used to produce electric energy.

diferencia entre la entalpΓ­a de las sustancias que existen al finalde la reacciΓ³n y la entalpΓ­a de las sustancias presentes alcomienzo de la misma.

entropy/entropΓ­a (pΓ‘g. 514) Medida del desorden o la aleato-riedad de las partΓ­culas de un sistema.

enzyme/enzima (pΓ‘g. 778) Catalizador biolΓ³gico, poderoso ysumamente especΓ­fico.

equilibrium constant/constante de equilibrio (pΓ‘g. 563) Keq, lacual describe la proporciΓ³n de concentraciones de producto aconcentraciones de reactante, con cada uno elevado a la poten-cia correspondiente a su coeficiente en la ecuaciΓ³n equilibrada.

equivalence point/punto de equivalencia (pΓ‘g. 618) Punto este-quiomΓ©trico de una titulaciΓ³n.

ester/Γ©ster (pΓ‘g. 750) Compuesto orgΓ‘nico con un grupo car-boxilo en que el hidrΓ³geno del grupo de hidroxilo es reem-plazado por un grupo alquilo; puede ser volΓ‘til y de olor dulcey es polar.

ether/Γ©ter (pΓ‘g. 745) Compuesto orgΓ‘nico que contiene un Γ‘tomode oxΓ­geno unido a dos Γ‘tomos del carbono.

evaporation/evaporaciΓ³n (pΓ‘g. 405) ) Proceso en el cual lavaporizaciΓ³n ocurre sΓ³lo en la superficie de un lΓ­quido.

excess reactant/reactante en exceso (pΓ‘g. 364) Reactante quequeda despuΓ©s de que se detiene una reacciΓ³n quΓ­mica.

exothermic/exotΓ©rmica (pΓ‘g. 247) ReacciΓ³n quΓ­mica en que selibera mΓ‘s energΓ­a que aquella requerida para romper losenlaces en la reacciΓ³n inicial.

experiment/experimento (pΓ‘g. 11) Conjunto de las observa-ciones controladas para comprobar la hipΓ³tesis.

extensive property/propiedad extensiva (pΓ‘g. 56) PropiedadfΓ­sica, como masa, longitud y volumen, dependiente de la can-tidad de sustancia presente.

fatty acid/Ñcido graso (pÑg. 784) Ácido carboxílico de cadenalarga que tiene generalmente entre 12 y 24 Ñtomos de carbonoy puede ser saturado (sin enlaces dobles) o insaturado (uno ómÑs enlaces dobles).

fermentation/fermentaciΓ³n (pΓ‘g. 794) Proceso en el que la glu-cosa se rompe en ausencia de oxΓ­geno, produciendo ya seaetanol, diΓ³xido de carbono y energΓ­a (fermentaciΓ³n alcohΓ³lica)o Γ‘cido lΓ‘ctico y energΓ­a (fermentaciΓ³n Γ‘cido lΓ‘ctica).

ferromagnetism/ferromagnetismo (pΓ‘g. 199) AtracciΓ³n fuertede una sustancia a un campo magnΓ©tico.

filtration/filtraciΓ³n (pΓ‘g. 68) TΓ©cnica que utiliza una barreraporosa para separar un sΓ³lido de un lΓ­quido.

formula unit/fΓ³rmula unitaria (pΓ‘g. 221) La proporciΓ³n mΓ‘ssencilla de iones representados en un compuesto iΓ³nico.

fractional distillation/destilaciΓ³n fraccionaria (pΓ‘g. 725)Proceso mediante el cual el petrΓ³leo se puede separar en com-ponentes mΓ‘s simples, llamados fracciones, dado que se con-densan a temperaturas diferentes.

free energy/energΓ­a libre (pΓ‘g. 517) EnergΓ­a disponible parahacer trabajo: la diferencia entre el cambio en la entalpΓ­a y elproducto del cambio de entropΓ­a y la temperatura absoluta.

freezing point/punto de congelaciΓ³n (pΓ‘g. 408) ) La temperaturaa la cual un lΓ­quido se convierte en un sΓ³lido cristalino.

freezing point depression/disminuciΓ³n del punto de con-gelaciΓ³n (pΓ‘g. 473) Diferencia de temperatura entre el puntode congelaciΓ³n de una soluciΓ³n y el punto de congelaciΓ³n desu disolvente puro.

frequency/frecuencia (pΓ‘g. 118) NΓΊmero de ondas que pasan porun punto dado en un segundo.

fuel cell/celda de combustible (pΓ‘g. 677) Celda voltaica en lacual la oxidaciΓ³n de un combustible, como el gas hidrΓ³geno,se utiliza para producir energΓ­a elΓ©ctrica.

F

Page 105: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

974 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

G

H

functional group (p. 737) An atom or group of atoms that alwaysreact in a certain way in an organic molecule.

galvanizing (p. 681) The process in which an iron object is dippedinto molten zinc or electroplated with zinc to make the ironmore resistant to corrosion.

gamma rays (p. 107) High-energy radiation that has no electri-cal charge and no mass, is not deflected by electric or mag-netic fields, usually accompanies alpha and beta radiation,and accounts for most of the energy lost during radioactivedecay.

gas (p. 59) A form of matter that flows to conform to the shapeof its container, fills the container’s entire volume, and is eas-ily compressed.

Gay-Lussac’s law (p. 426) States that the pressure of a givenmass of gas varies directly with the kelvin temperature whenthe volume remains constant.

geometric isomers (p. 718) A category of stereoisomers thatresults from different arrangements of groups around a dou-ble bond.

global warming (p. 859) The rise in global temperatures, whichmay be due to increases in greenhouse gases, such as CO2.

Graham’s law of effusion (p. 387) States that the rate of effu-sion for a gas is inversely proportional to the square root ofits molar mass.

graph (p. 43) A visual representation of information, such as acircle graph, line graph, or bar graph, that can reveal patternsin data.

greenhouse effect (p. 859) The natural warming of Earth’s sur-face due to certain atmospheric gases that absorb solar energy,which is converted to heat; prevents Earth from becoming toocold to support life.

ground state (p. 127) The lowest allowable energy state of an atom.

group (p. 154) A vertical column of elements in the periodictable; also called a family.

half-cells (p. 665) The two parts of an electrochemical cell inwhich the separate oxidation and reduction reactions occur.

half-life (p. 817) The time required for one-half of a radioisotope’snuclei to decay into its products.

half-reaction (p. 651) One of two parts of a redox reactionβ€”theoxidation half, which shows the number of electrons lost whena species is oxidized, or the reduction half, which shows thenumber of electrons gained when a species is reduced.

halocarbon (p. 738) Any organic compound containing a halo-gen substituent.

halogen (p. 158) A highly reactive group 7A element.

halogenation (p. 741) A process by which hydrogen atoms maybe replaced by halogen atoms (typically Cl or Br).

functional group/grupo funcional (pÑg. 737) Átomo o grupo deÑtomos que siempre reaccionan de cierta manera en unamolécula orgÑnica.

galvanizing/galvanizado (pΓ‘g. 681) Proceso en que un objeto dehierro se sumerge en zinc fundido o se electroemplaca con zincpara hacer el hierro mΓ‘s resistente a la corrosiΓ³n.

gamma rays/rayos gamma (pΓ‘g. 107) RadiaciΓ³n de alta energΓ­aque no tiene ni carga elΓ©ctrica ni masa, no es desviada por cam-pos elΓ©ctricos ni magnΓ©ticos, acompaΓ±a generalmente a laradiaciΓ³n alfa y beta y representan la mayor parte de la energΓ­aperdida durante la desintegraciΓ³n radiactiva.

gas/gas (pΓ‘g. 59) Forma de la materia que fluye para adaptarse ala forma de su contenedor, llena el volumen entero del reci-piente y se comprime fΓ‘cilmente.

Gay-Lussac’s law/ley de Gay- Lussac (pΓ‘g. 426) Establece quela presiΓ³n de una masa dada de gas varΓ­a directamente con latemperatura en Kelvin cuando el volumen permanece cons-tante.

geometric isomers/isΓ³meros geomΓ©tricos (pΓ‘g. 718) CategorΓ­ade estereoisΓ³meros que es una consecuencia de arreglos difer-entes de grupos alrededor de un enlace doble.

global warming/calentamiento global (pΓ‘g. 859) Incrementoen temperaturas globales, que puede deberse a aumentos engases invernadero, como el CO2.

Graham’s law of effusion/ley de efusiΓ³n de Graham (pΓ‘g. 387)Establece que la velocidad de efusiΓ³n de un gas es propor-cional al inverso de la raΓ­z cuadrada de su masa molar.

graph/grΓ‘fica (pΓ‘g. 43) RepresentaciΓ³n visual de informaciΓ³n,como por ejemplo, las grΓ‘ficas circulares, las grΓ‘ficas linealesy las grΓ‘ficas de barras, que pueden revelar patrones en losdatos.

greenhouse effect/efecto de invernadero (pΓ‘g. 859) El calen-tamiento natural de la superficie de la Tierra debido a ciertosgases atmosfΓ©ricos que absorben energΓ­a solar, que es con-vertida a calor; previene que la Tierra llegue a ser demasiadofrΓ­a para sostener la vida.

ground state/estado base (pΓ‘g. 127) Estado de energΓ­a mΓ‘s bajoadmisible de un Γ‘tomo.

group/grupo (pΓ‘g. 154) Columna vertical de elementos en latabla periΓ³dica; llamado tambiΓ©n familia.

half-cells/celdas medias (pΓ‘g. 665) Las dos partes de una celdaelectroquΓ­mica en que se llevan a cabo las reacciones sepa-radas de la oxidaciΓ³n y la reducciΓ³n.

half-life/media vida (pΓ‘g. 817) Tiempo requerido para que lamitad de los nΓΊcleos de un radioisΓ³topo se desintegren en susproductos.

half-reaction/reacciΓ³n media (pΓ‘g. 651) Una de dos partes deuna reacciΓ³n redox: la parte de la oxidaciΓ³n, la cual muestrael nΓΊmero de electrones perdidos cuando una especie se oxidao la parte de la reducciΓ³n, que muestra el nΓΊmero de electronesganados cuando una especie se reduce.

halocarbon/halocarbono (pΓ‘g. 738) Cualquier compuestoorgΓ‘nico que contiene un sustituyente de halΓ³geno.

halogen/halΓ³geno (pΓ‘g. 158) Elemento del grupo 7A, sumamentereactivo.

halogenation/halogenaciΓ³n (pΓ‘g. 741) Proceso mediante el cualΓ‘tomos de hidrΓ³geno pueden ser reemplazados por Γ‘tomos dehalΓ³geno (tΓ­picamente Cl o Br).

Page 106: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 975

Glossary/Glosario

Glo

ssary

/Glo

sari

o

heat (p. 491) A form of energy that flows from a warmer objectto a cooler object.

heat of solution (p. 457) The overall energy change that occursduring the solution formation process.

Heisenberg uncertainty principle (p. 131) States that it is notpossible to know precisely both the velocity and the positionof a particle at the same time.

Henry’s law (p. 460) States that at a given temperature, the sol-ubility of a gas in a liquid is directly proportional to the pres-sure of the gas above the liquid.

Hess’s law (p. 506) States that if two or more thermochemicalequations can be added to produce a final equation for a reac-tion, then the sum of the enthalpy changes for the individualreactions is the enthalpy change for the final reaction.

heterogeneous catalyst (p. 541) A catalyst that exists in a dif-ferent physical state than the reaction it catalyzes.

heterogeneous equilibrium (p. 565) A state of equilibrium thatoccurs when the reactants and products of a reaction are pres-ent in more than one physical state.

heterogeneous mixture (p. 67) One that does not have a uniformcomposition and in which the individual substances remaindistinct.

homogeneous catalyst (p. 541) A catalyst that exists in the samephysical state as the reaction it catalyzes.

homogeneous equilibrium (p. 564) A state of equilibrium thatoccurs when all the reactants and products of a reaction are inthe same physical state.

homogeneous mixture (p. 67) One that has a uniform composi-tion throughout and always has a single phase; also called asolution.

homologous series (p. 701) Describes a series of compounds thatdiffer from one another by a repeating unit.

Hund’s rule (p. 136) States that single electrons with the samespin must occupy each equal-energy orbital before additionalelectrons with opposite spins can occupy the same orbitals.

hybridization (p. 261) The process by which the valence elec-trons of an atom are rearranged to form four new, identicalhybrid orbitals.

hydrate (p. 338) A compound that has a specific number of watermolecules bound to its atoms.

hydration reaction (p. 756) An addition reaction in which ahydrogen atom and a hydroxyl group from a water moleculeadd to a double or triple bond.

hydrocarbon (p. 698) Simplest organic compound composedonly of the elements carbon and hydrogen.

hydrogenation reaction (p. 756) An addition reaction in whichhydrogen is added to atoms in a double or triple bond; usuallyrequires a catalyst and is often used to convert liquid unsatu-rated fats into saturated fats that are solid at room temperature.

hydrogen bond (p. 395) A strong dipole-dipole attraction betweenmolecules that contain a hydrogen atom bonded to a small,highly electronegative atom with at least one lone electron pair.

hydrosphere (p. 850) All the water in and on Earth’s surface,more than 97% of which is found in the oceans.

heat/calor (pΓ‘g. 491)Forma de energΓ­a que fluye de un cuerpomΓ‘s caliente a uno mΓ‘s frΓ­o.

heat of solution/calor de soluciΓ³n (pΓ‘g. 457) El cambio globalde energΓ­a que ocurre durante el proceso de formaciΓ³n de lasoluciΓ³n.

Heisenberg uncertainty principle/principio de incertidumbrede Heisenberg (pΓ‘g. 131) Establece que no es posible saberprecisamente la velocidad y la posiciΓ³n de una partΓ­cula almismo tiempo.

Henry’s law/ley de Henry (pΓ‘g. 460) Establece que a una tem-peratura dada, la solubilidad de un gas en un lΓ­quido es direc-tamente proporcional a la presiΓ³n del gas por encima dellΓ­quido.

Hess’s law/ley de Hess (pΓ‘g. 506) Establece que si dos o mΓ‘secuaciones termoquΓ­micas se pueden sumar para producir unaecuaciΓ³n final para una reacciΓ³n, entonces la suma de los cam-bios de entalpΓ­a para las reacciones individuales es igual alcambio de entalpΓ­a para la reacciΓ³n final.

heterogeneous catalyst/catalizador heterogΓ©neo (pΓ‘g. 541)Catalizador que existe en un estado fΓ­sico diferente al de lareacciΓ³n que cataliza.

heterogeneous equilibrium/equilibrio heterogΓ©neo (pΓ‘g. 565)Estado de equilibrio que ocurre cuando los reactantes y losproductos de una reacciΓ³n estΓ‘n presentes en mΓ‘s de un estadofΓ­sico.

heterogeneous mixture/mezcla heterogΓ©nea (pΓ‘g. 67) AquΓ©llaque no tiene una composiciΓ³n uniforme y en la que las sus-tancias individuales permanecen separadas.

homogeneous catalyst/catalizador homogΓ©neo (pΓ‘g. 541)Catalizador que existe en el mismo estado fΓ­sico de la reac-ciΓ³n que cataliza.

homogeneous equilibrium/equilibrio homogΓ©neo (pΓ‘g. 564)estado de equilibrio que ocurre cuando todos los reactantes yproductos de una reacciΓ³n estΓ‘n en el mismo estado fΓ­sico.

homogeneous mixture/mezcla homogΓ©nea (pΓ‘g. 67) AquΓ©llaque tiene una composiciΓ³n uniforme a lo largo de todo su sis-tema y siempre tiene una sola fase; tambiΓ©n llamada soluciΓ³n.

homologous series/serie homΓ³loga (pΓ‘g. 701) Describe una seriede compuestos que difieren uno del otro por una unidad repeti-tiva.

Hund’s rule/regla de Hund (pΓ‘g. 136) Establece que electronesindividuales con igual rotaciΓ³n deben ocupar cada orbital deigual energΓ­a antes de que electrones adicionales con rota-ciones opuestas puedan ocupar los mismos orbitales.

hybridization/hibridaciΓ³n (pΓ‘g. 261) El proceso mediante elcual los electrones de valencia de un Γ‘tomo se reordenan paraformar cuatro orbitales hΓ­bridos nuevos e idΓ©nticos.

hydrate/hidrato (pΓ‘g. 338) Compuesto que tiene un nΓΊmeroespecΓ­fico de molΓ©culas de agua asociadas a sus Γ‘tomos.

hydration reaction/reacciΓ³n de hidrataciΓ³ (pΓ‘g. 756) ReacciΓ³nde adiciΓ³n en que un Γ‘tomo de hidrΓ³geno y un grupo hidroxilode una molΓ©cula de agua se aΓ±aden a un enlace doble o triple.

hydrocarbon/hidrocarburo (pΓ‘g. 698) Compuesto orgΓ‘nico mΓ‘ssimple compuesto sΓ³lo de los elementos carbono e hidrΓ³geno.

hydrogenation reaction/reacciΓ³n de hidrogenaciΓ³n (pΓ‘g. 756)ReacciΓ³n de adiciΓ³n en la que hidrΓ³geno se agrega a Γ‘tomosen un enlace doble o triple; requiere generalmente un catali-zador y a menudo se emplea para convertir grasas insaturadaslΓ­quidas en grasas saturadas que son sΓ³lidas a temperaturaambiente.

hydrogen bond/puente de hidrΓ³geno (pΓ‘g. 395) Fuerte atracciΓ³nbipolo- bipolo entre molΓ©culas que contienen un Γ‘tomo dehidrΓ³geno unido a un Γ‘tomo pequeΓ±o, sumamente elec-tronegativo con por lo menos un par de electrones no combi-nados.

hydrosphere/hidrosfera (pΓ‘g. 850) Toda el agua dentro y sobrela superficie de la Tierra, mΓ‘s del 97% de la cual se encuen-tra en los ocΓ©anos.

Page 107: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

976 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

I

hydroxyl group (p. 743) An oxygen-hydrogen group covalentlybonded to a carbon atom.

hypothesis (p. 11) A tentative, testable statement or predictionabout what has been observed.

ideal gas constant (R) (p. 434) An experimentally determinedconstant whose value in the ideal gas equation depends on theunits that are used for pressure.

ideal gas law (p. 434) Describes the physical behavior of an idealgas in terms of the temperature, volume, and pressure, andnumber of moles of a gas that are present.

immiscible (p. 454) Describes two liquids that can be mixedtogether but separate shortly after you cease mixing them.

independent variable (p. 12) In an experiment, the variable thatthe experimenter plans to change.

induced transmutation (p. 815) The process in which nuclei arebombarded with high-velocity charged particles in order tocreate new elements.

inhibitor (p. 540) A substance that slows down the reaction rateof a chemical reaction or prevents a reaction from happening.

inner transition metal (p. 158) A type of group B element thatis contained in the f-block of the periodic table and is charac-terized by a filled outermost s orbital, and filled or partiallyfilled 4f and 5f orbitals.

insoluble (p. 454) Describes a substance that cannot be dissolvedin a given solvent.

instantaneous rate (p. 546) The rate of decomposition at a spe-cific time, calculated from the rate law, the specific rate con-stant, and the concentrations of all the reactants.

intensive property (p. 56) A physical property that remains thesame no matter how much of a substance is present.

intermediate (p. 548) A substance produced in one elementarystep of a complex reaction and consumed in a subsequent ele-mentary step.

ion (p. 165) An atom or bonded group of atoms with a positiveor negative charge.

ionic bond (p. 215) The electrostatic force that holds oppositelycharged particles together in an ionic compound.

ionization energy (p. 167) The energy required to remove an elec-tron from a gaseous atom; generally increases in moving fromleft-to-right across a period and decreases in moving down agroup.

ionizing radiation (p. 827) Radiation that is energetic enough toionize matter it collides with.

ion product constant for water (p. 608) The value of the equi-librium constant expression for the self-ionization of water.

isomers (p. 717) Two or more compounds that have the samemolecular formula but have different molecular structures.

isotopes (p. 100) Atoms of the same element with the same num-ber of protons but different numbers of neutrons.

hydroxyl group/grupo hidroxilo (pΓ‘g. 743) Un grupo hidrΓ³geno-oxΓ­geno unido covalentemente a un Γ‘tomo de carbono.

hypothesis/hipΓ³tesis (pΓ‘g. 11) Enunciado tentativo y sujeto acomprobaciΓ³n o predicciΓ³n acerca de lo que se ha observado.

ideal gas constant (R)/constante de los gases ideales (R)/(pΓ‘g. 434) Constante experimentalmente determinada cuyovalor en la ecuaciΓ³n ideal de gas depende de las unidades quese utilizan para la presiΓ³n.

ideal gas law/ley del gas ideal (pΓ‘g. 434) Describe el compor-tamiento fΓ­sico de un gas ideal en tΓ©rminos de temperatura,volumen y presiΓ³n y del nΓΊmero de moles de un gas que estΓ‘npresentes.

immiscible/inmiscible (pΓ‘g. 454) Describe dos lΓ­quidos que sepueden mezclar juntos pero que se separan poco despuΓ©s deque se cesa de mezclarlos.

independent variable/variable independiente (pΓ‘g. 12) En unexperimento, la variable que el experimentador piensa cam-biar.

induced transmutation/trasmutaciΓ³n inducida (pΓ‘g. 815)Proceso en cual nΓΊcleos se bombardean con partΓ­culas car-gadas de alta velocidad para crear elementos nuevos.

inhibitor/inhibidor (pΓ‘g. 540) Sustancia que decelera la veloci-dad de reacciΓ³n de una reacciΓ³n quΓ­mica o previene que Γ©stasuceda.

inner transition metal/metal de transiciΓ³n interna (pΓ‘g. 158)Tipo de elemento del grupo B que estΓ‘ situado en el bloque Fde la tabla periΓ³dica y se caracteriza por tener el orbital mΓ‘sexterno lleno y los orbitales 4f y 5f parcialmente llenos.

insoluble/insoluble (pΓ‘g. 454) Describe una sustancia que no sepuede disolver en un disolvente dado.

instantaneous rate/velocidad instantΓ‘nea (pΓ‘g. 546) Velocidadde descomposiciΓ³n a un tiempo especΓ­fico, calculada a travΓ©sde la ley de velocidad, la constante especΓ­fica de velocidad ylas concentraciones de todos los reactantes.

intensive property/propiedad intensiva (pΓ‘g. 56) PropiedadfΓ­sica que permanece igual sea cual sea la cantidad de sustan-cia presente.

intermediate/intermediario (pΓ‘g. 548) Sustancia producida enun paso elemental de una reacciΓ³n compleja y consumida enun paso elemental subsecuente.

ion/ion (pÑg. 165) Átomo o grupo de Ñtomos unidos con cargapositiva o negativa.

ionic bond/enlace iΓ³nico (pΓ‘g. 215)Fuerza electrostΓ‘tica quemantiene unidas las partΓ­culas opuestamente cargadas en uncompuesto iΓ³nico.

ionization energy/energΓ­a de ionizaciΓ³n (pΓ‘g. 167) EnergΓ­a quese requiere para quitar un electrΓ³n de un Γ‘tomo gaseoso; gene-ralmente aumenta al moverse de izquierda a derecha a travΓ©sde un perΓ­odo y disminuye al moverse un grupo hacia abajo.

ionizing radiation/radiaciΓ³n ionizante (pΓ‘g. 827) RadiaciΓ³n quees suficientemente energΓ©tica para ionizar la materia con la quechoca.

ion product constant for water/constante del producto ionpara el agua (pΓ‘g. 608) Valor de la expresiΓ³n de la constantede equilibrio para la autoionizaciΓ³n del agua.

isomers/isΓ³meros (pΓ‘g. 717) Dos o mΓ‘s compuestos que tienenla misma fΓ³rmula molecular pero poseen estructuras molecu-lares diferentes.

isotopes/isótopos (pÑg. 100) Átomos del mismo elemento con elmismo número de protones, pero números diferentes de neu-trones.

Page 108: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 977

Glossary/Glosario

Glo

ssary

/Glo

sari

o

joule (p. 491) The SI unit of heat and energy.

kelvin (p. 30) The SI base unit of temperature.ketone (p. 748) An organic compound in which the carbon of the

carbonyl group is bonded to two other carbon atoms.kilogram (p. 27) The SI base unit for mass; about 2.2 pounds.

kinetic-molecular theory (p. 385) Explains the properties of gasesin terms of the energy, size, and motion of their particles.

lanthanide series (p. 197) In the periodic table, the f-block ele-ments from period 6 that follow the element lanthanum.

lattice energy (p. 219) The energy required to separate one moleof the ions of an ionic compound, which is directly related tothe size of the ions bonded and is also affected by the chargeof the ions.

law of chemical equilibrium (p. 563) States that at a given tem-perature, a chemical system may reach a state in which a par-ticular ratio of reactant and product concentrations has aconstant value.

law of conservation of energy (p. 490) States that in any chem-ical or physical process, energy may change from one form toanother but it is neither created nor destroyed.

law of conservation of mass (p. 63) States that mass is neithercreated nor destroyed during a chemical reaction but isconserved.

law of definite proportions (p. 75) States that, regardless of theamount, a compound is always composed of the same elementsin the same proportion by mass.

law of disorder (p. 514) States that entropy of the universe mustincrease as a result of a spontaneous reaction or process.

law of multiple proportions (p. 76) States that when differentcompounds are formed by the combination of the same ele-ments, different masses of one element combine with the samemass of the other element in a ratio of small whole numbers.

Le ChΓ’telier’s principle (p. 569) States that if a stress is appliedto a system at equilibrium, the system shifts in the directionthat relieves the stress.

Lewis structure (p. 243) A model that uses electron-dot structuresto show how electrons are arranged in molecules. Pairs ofdots or lines represent bonding pairs.

limiting reactant (p. 364) A reactant that is totally consumed dur-ing a chemical reaction, limits the extent of the reaction, anddetermines the amount of product.

joule/julio (pΓ‘g. 491) La unidad SI del calor y la energΓ­a.

kelvin/kelvin (pΓ‘g. 30) La unidad base de temperatura del SI.ketone/cetona (pΓ‘g. 748) Compuesto orgΓ‘nico en que el carbono

del grupo carbonilo estΓ‘ unido a otros dos Γ‘tomos de carbono.kilogram/kilogramo (pΓ‘g. 27) Unidad base del SI para la masa;

aproximadamente equivale a 2.2 libras.kinetic-molecular theory/teorΓ­a cinΓ©tico-molecular (pΓ‘g. 385)

Explica las propiedades de gases en tΓ©rminos de energΓ­a,tamaΓ±o y movimiento de sus partΓ­culas.

lanthanide series/serie de lantΓ‘nidos (pΓ‘g. 197) En la tabla per-iΓ³dica, los elementos del bloque F del perΓ­odo 6 que siguendespuΓ©s del elemento lantano.

lattice energy/energΓ­a de rejilla (pΓ‘g. 219) EnergΓ­a requeridapara separar un mol de iones de un compuesto iΓ³nico, lo cualestΓ‘ directamente relacionado con el tamaΓ±o de los ionesunidos y es afectado tambiΓ©n por la carga de los iones.

law of chemical equilibrium/ley del equilibrio quΓ­mico(pΓ‘g. 563) Establece que a una temperatura dada, un sistemaquΓ­mico puede alcanzar un estado en que cierta proporciΓ³n deconcentraciones de reactante y producto tiene un valor cons-tante.

law of conservation of energy/ley de la conservaciΓ³n deenergΓ­a (pΓ‘g. 490) Establece que en un proceso quΓ­mico ofΓ­sico, la energΓ­a puede cambiar de una forma a otra pero nise crea ni se destruye.

law of conservation of mass/ley de la conservaciΓ³n de masa(pΓ‘g. 63) Establece que la masa ni se crea ni se destruyedurante una reacciΓ³n quΓ­mica sino que se conserva.

law of definite proportions/ley de proporciones definidas(pΓ‘g. 75) Indica que, a pesar de la cantidad, un compuestosiempre estΓ‘ constituido por los mismos elementos en lamisma proporciΓ³n mΓ‘sica.

law of disorder/ley del desorden (pΓ‘g. 514) Indica que laentropΓ­a del universo debe aumentar como resultado de unareacciΓ³n o proceso espontΓ‘neo.

law of multiple proportions/ley de proporciones mΓΊltiples(pΓ‘g. 76) Establece que cuando compuestos diferentes estΓ‘nformados por la combinaciΓ³n de los mismos elementos, masasdiferentes de un elemento se combinan con la misma masa delotro elemento en una proporciΓ³n de nΓΊmeros enterospequeΓ±os.

Le ChΓ’telier’s principle/Principio de Le ChΓ’telier (pΓ‘g. 569)Establece que si se aplica un estrΓ©s a un sistema en el equi-librio, el sistema cambia en la direcciΓ³n en que se disminuyeel estrΓ©s.

Lewis structure/estructura de Lewis (pΓ‘g. 243) Modelo que uti-liza las estructuras punto electrΓ³n para mostrar como estΓ‘n dis-tribuidos los electrones en las molΓ©culas. Los pares de puntoso lΓ­neas representan pares de uniΓ³n.

limiting reactant/reactante limitante (pΓ‘g. 364) Reactante quese consume completamente durante una reacciΓ³n quΓ­mica,limita el alcance de la reacciΓ³n y determina la cantidad de pro-ducto.

J

K

L

Page 109: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

978 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

M

lipids (p. 784) Large, nonpolar biological molecules that vary instructure, store energy in living organisms, and make up mostof the structure of cell membranes.

liquid (p. 58) A form of matter that flows, has constant volume,and takes the shape of its container.

liter (p. 27) The metric unit for volume equal to one cubicdecimeter.

lithosphere (p. 855) The solid part of Earth’s crust and uppermantle, which contains a large variety of elements includingoxygen, silicon, aluminum, and iron.

mass (p. 8) A measure of the amount of matter.mass defect (p. 822) The difference in mass between a nucleus

and its component nucleons. mass number (p. 100) The number after an element’s name, rep-

resenting the sum of its protons and neutrons.

matter (p. 8) Anything that has mass and takes up space.

melting point (p. 405) For a crystalline solid, the temperature atwhich the forces holding a crystal lattice together are brokenand it becomes a liquid.

metabolism (p. 792) The sum of the many chemical reactions thatoccur in living cells.

metal (p. 155) An element that is solid at room temperature, agood conductor of heat and electricity, and generally is shiny;most metals are ductile and malleable.

metallic bond (p. 228) The attraction of a metallic cation for delo-calized electrons.

metalloid (p. 158) An element, such as silicon or germanium, thathas physical and chemical properties of both metals andnonmetals.

metallurgy (p. 199) The branch of applied science that studiesand designs methods for extracting metals and their com-pounds from ores.

meter (p. 26) The SI base unit for length.method of initial rates (p. 544) Determines the reaction order by

comparing the initial rates of a reaction carried out with vary-ing reactant concentrations.

mineral (p. 187) An element or inorganic compound that occursin nature as solid crystals and usually is found mixed withother materials in ores.

miscible (p. 454) Describes two liquids that are soluble in eachother.

mixture (p. 66) A physical blend of two or more pure substancesin any proportion in which each substance retains its individ-ual properties; can be separated by physical means.

model (p. 13) A visual, verbal, and/or mathematical explanationof data collected from many experiments.

molality (p. 469) The ratio of the number of moles of solute dis-solved in one kilogram of solvent; also known as molal con-centration.

molar enthalpy (heat) of fusion (p. 502) The amount of heatrequired to melt one mole of a solid substance.

molar enthalpy (heat) of vaporization (p. 502) The amount ofheat required to evaporate one mole of a liquid.

lipids/lΓ­pidos (pΓ‘g. 784) MolΓ©culas biolΓ³gicas no polares de grantamaΓ±o que varΓ­an en estructura, guardan energΓ­a en organis-mos vivos y representan la mayor parte de la estructura demembranas de cΓ©lula.

liquid/lΓ­quido (pΓ‘g. 58) Forma de materia que fluye, tiene volu-men constante y toma la forma de su envase.

liter/litro (pΓ‘g. 27) Unidad mΓ©trica para el volumen igual a undecΓ­metro cΓΊbico.

lithosphere/litosfera (pΓ‘g. 855) La parte sΓ³lida de la corteza y elmanto superior de la Tierra, que contiene una gran variedadde elementos, incluyendo oxΓ­geno, silicio, aluminio y hierro.

mass/masa (pΓ‘g. 8) Medida de la cantidad de materia.mass defect/defecto mΓ‘sico (pΓ‘g. 822) La diferencia de masa

entre un nΓΊcleo y sus nucleones componentes. mass number/nΓΊmero de masa (pΓ‘g. 100) El nΓΊmero despuΓ©s

del nombre de un elemento, la cual representa la suma de susprotones y neutrones.

matter/materia (pΓ‘g. 8) Cualquier cosa que tiene masa y ocupaespacio.

melting point/punto de fusiΓ³n (pΓ‘g. 405) Para un sΓ³lido crista-lino, la temperatura en que se rompen las fuerzas quemantienen la matriz cristalina estable y Γ©ste se convierte en unlΓ­quido.

metabolism/matabolismo (pΓ‘g. 792) La suma de las numerosasreacciones quΓ­micas que ocurren en cΓ©lulas vivas.

metal/metal (pΓ‘g. 155) Elemento sΓ³lido a temperatura ambienteque es buen conductor de calor y electricidad y generalmentees brillante; la mayorΓ­a de los metales son dΓΊctiles y maleables.

metallic bond/enlace metΓ‘lico (pΓ‘g. 228) AtracciΓ³n de un catiΓ³nmetΓ‘lico hacia electrones deslocalizados.

metalloid/metaloide (pΓ‘g. 158) Elemento, como el silicio o elgermanio, que tiene las propiedades fΓ­sicas y quΓ­micas tantode metales como de no metales.

metallurgy/metalurgia (pΓ‘g. 199) Rama de la ciencia aplicadaque estudia y diseΓ±a los mΓ©todos para extraer de menas ametales y sus compuestos.

meter/metro (pΓ‘g. 26) Unidad base para longitud del SI.method of initial rates/mΓ©todo de velocidades iniciales

(pΓ‘g. 544) Determina el orden de la reacciΓ³n comparando lasvelocidades iniciales de una reacciΓ³n llevada a cabo con diver-sas concentraciones de reactante.

mineral/mineral (pΓ‘g. 187) Elemento o compuesto inorgΓ‘nicoque estΓ‘ presente en la naturaleza como cristales sΓ³lidos y seencuentra generalmente mezclado con otros materiales enmenas.

miscible/miscible (pΓ‘g. 454) Describe dos lΓ­quidos que son solu-bles uno en el otro.

mixture/mezcla (pΓ‘g. 66) CombinaciΓ³n fΓ­sica de dos o mΓ‘s sus-tancias puras en cualquier proporciΓ³n, en la cual cada sustan-cia retiene sus propiedades individuales; puede ser separadapor medios fΓ­sicos.

model/modelo (pΓ‘g. 13) ExplicaciΓ³n matemΓ‘tica, verbal y/ovisual de datos recolectados de muchos experimentos.

molality/molalidad (pΓ‘g. 469) ProporciΓ³n del nΓΊmero de molesde soluto disueltos en un kilogramo de disolvente; tambiΓ©nconocida como concentraciΓ³n molal.

molar enthalpy (heat) of fusion/entalpΓ­a (calor) molar defusiΓ³n (pΓ‘g. 502) Cantidad requerida de calor para fundir unmol de una sustancia sΓ³lida.

molar enthalpy (heat) of vaporization/entalpΓ­a (calor) molarde vaporizaciΓ³n (pΓ‘g. 502) Cantidad requerida de calor paraevaporar un mol de un lΓ­quido.

Page 110: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 979

Glossary/Glosario

Glo

ssary

/Glo

sari

o

molarity (p. 464) The number of moles of solute dissolved perliter of solution; also known as molar concentration.

molar mass (p. 313) The mass in grams of one mole of any puresubstance.

molar volume (p. 431) For a gas, the volume that one mole occu-pies at 0.00Β°C and 1.00 atm pressure.

mole (p. 310) The SI base unit used to measure the amount of asubstance, abbreviated mol; one mole is the amount of a puresubstance that contains 6.02 οΏ½ 1023 representative particles.

molecular formula (p. 333) A formula that specifies the actualnumber of atoms of each element in one molecule or formulaunit of the substance.

molecule (p. 242) Forms when two or more atoms covalentlybond and is lower in potential energy than its constituent atoms.

mole fraction (p. 470) The ratio of the number of moles of solutein solution to the total number of moles of solute and solvent.

mole ratio (p. 356) In a balanced equation, the ratio between thenumbers of moles of any two substances.

monatomic ion (p. 221) An ion formed from only one atom.

monomer (p. 762) A molecule from which a polymer is made.

monosaccharides (p. 781) The simplest carbohydrates, whichare aldehydes or ketones that also have multiple hydroxylgroups; also called simple sugars.

net ionic equation (p. 293) An ionic equation that includes onlythe particles that participate in the reaction.

neutralization reaction (p. 617) A reaction in which an acid anda base react in aqueous solution to produce a salt and water.

neutron (p. 96) A neutral subatomic particle in an atom’s nucleusthat has a mass nearly equal to that of a proton.

nitrogen fixation (p. 860) The process that converts nitrogen gasinto biologically useful nitrates.

noble gas (p. 158) An extremely unreactive group 8A element.

nonmetals (p. 158) Elements that are generally gases or dull, brit-tle solids that are poor conductors of heat and electricity.

nuclear equation (p. 106) A type of equation that shows theatomic number and mass number of the particles involved.

nuclear fission (p. 822) The splitting of a nucleus into smaller,more stable fragments, accompanied by a large release ofenergy.

nuclear fusion (p. 826) The process of binding smaller atomicnuclei into a single larger and more stable nucleus.

nuclear reaction (p. 105) A reaction that involves a change in thenucleus of an atom.

nucleic acid (p. 788) A nitrogen-containing biological polymerthat is involved in the storage and transmission of geneticinformation.

nucleons (p. 810) The positively charged protons and neutralneutrons contained in an atom’s densely packed nucleus.

molarity/molaridad (pΓ‘g. 464) NΓΊmero de moles de solutodisueltos por litro de soluciΓ³n; tambiΓ©n conocida como con-centraciΓ³n molar.

molar mass/masa molar (pΓ‘g. 313) Masa en gramos de un molde cierta sustancia pura.

molar volume/volumen molar (pΓ‘g. 431) Para un gas, el volu-men que ocupa un mol a 0.00Β°C y 1.00 atm de presiΓ³n.

mole/mol (pΓ‘g. 310) Unidad base del SI utilizada para medir lacantidad de una sustancia, abreviada mol; un mol es la canti-dad de sustancia pura que contienen 6.02 οΏ½ 1023 partΓ­culasrepresentativas.

molecular formula/fΓ³rmula molecular (pΓ‘g. 333) FΓ³rmula queespecifica el nΓΊmero real de Γ‘tomos de cada elemento en unamolΓ©cula o unidad de fΓ³rmula de la sustancia.

molecule/molΓ©cula (pΓ‘g. 242) Se forma cuando dos o mΓ‘s Γ‘tomosse unen covalentemente y la cual tiene menor energΓ­a poten-cial que sus Γ‘tomos constituyentes.

mole fraction/fracciΓ³n mol (pΓ‘g. 470) ProporciΓ³n del nΓΊmero demoles de soluto en soluciΓ³n entre el nΓΊmero total de moles desoluto y disolvente.

mole ratio/proporciΓ³n molar (pΓ‘g. 356) En una ecuaciΓ³n equi-librada, la proporciΓ³n entre los nΓΊmeros de moles de dos sus-tancias cualesquiera.

monatomic ion/monΓ³mero (pΓ‘g. 221) Ion formado a partir de unsΓ³lo Γ‘tomo.

monomer/ (pΓ‘g. 762) MolΓ©cula a partir de la cual se forma unpolΓ­mero.

monosaccharides/monosacΓ‘ridos (pΓ‘g. 781) Los carbohidratosmΓ‘s simples, los cuales son aldehidos o cetonas que tienentambiΓ©n mΓΊltiples grupos hidroxilo; llamados tambiΓ©n azΓΊ-cares simples.

net ionic equation/ecuaciΓ³n iΓ³nica neta (pΓ‘g. 293) EcuaciΓ³niΓ³nica que incluye sΓ³lo las partΓ­culas que participan en lareacciΓ³n.

neutralization reaction/reacciΓ³n de neutralizaciΓ³n (pΓ‘g. 617)ReacciΓ³n en que un Γ‘cido y una base reaccionan en una solu-ciΓ³n acuosa para producir una sal y agua.

neutron/neutrΓ³n (pΓ‘g. 96) PartΓ­cula subatΓ³mica neutral en elnΓΊcleo de un Γ‘tomo que tiene una masa casi igual a la de unprotΓ³n.

nitrogen fixation/fijaciΓ³n de nitrΓ³geno (pΓ‘g. 860) Proceso queconvierte gas nitrΓ³geno en nitratos biolΓ³gicamente ΓΊtiles.

noble gas/gas noble (pΓ‘g. 158) Elemento extremadamente pocoreactivo del grupo 8A.

nonmetals/no metales (pΓ‘g. 158) Elementos que generalmenteson gases o sΓ³lidos quebradizos sin brillo y malos conductoresde calor y electricidad.

nuclear equation/ecuaciΓ³n nuclear (pΓ‘g. 106) Tipo de ecuaciΓ³nque muestra el nΓΊmero atΓ³mico y el nΓΊmero mΓ‘sico de laspartΓ­culas involucradas.

nuclear fission/fisiΓ³n nuclear (pΓ‘g. 822) Ruptura de un nΓΊcleoen fragmentos mΓ‘s pequeΓ±os y mΓ‘s estables, acompaΓ±ado deuna gran liberaciΓ³n de energΓ­a.

nuclear fusion/fusiΓ³n nuclear (pΓ‘g. 826) El proceso de uniΓ³n denΓΊcleos atΓ³micos mΓ‘s pequeΓ±os en un sΓ³lo nΓΊcleo mΓ‘s grandey mΓ‘s estable.

nuclear reaction/reacciΓ³n nuclear (pΓ‘g. 105) ReacciΓ³n queimplica un cambio en el nΓΊcleo de un Γ‘tomo.

nucleic acid/Γ‘cido nucleico (pΓ‘g. 788) PolΓ­mero biolΓ³gico quecontiene nitrΓ³geno y que estΓ‘ involucrado en el almace-namiento y transmisiΓ³n de informaciΓ³n genΓ©tica.

nucleons/nucleones (pΓ‘g. 810) Protones positivamente cargados yneutrones neutros en el nΓΊcleo densamente poblado de un Γ‘tomo.

N

Page 111: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

980 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario O

nucleotide (p. 788) The monomer that makes up a nucleic acid;consists of a nitrogen base, an inorganic phosphate group, anda five-carbon monosaccharide sugar.

nucleus (p. 95) The extremely small, positively charged, densecenter of an atom that contains positively charged protons,neutral neutrons, and is surrounded by empty space throughwhich one or more negatively charged electrons move.

octet rule (p. 168) States that atoms lose, gain, or share electronsin order to acquire a full set of eight valence electrons (the sta-ble electron configuration of a noble gas).

optical isomers (p. 720) A class of chiral stereoisomers thatresults from two possible arrangements of four different atomsor groups of atoms bonded to the same carbon atom.

optical rotation (p. 721) An effect that occurs when polarizedlight passes through a solution containing an optical isomerand the plane of polarization is rotated to the right by a d-iso-mer or to the left by an l-isomer.

ore (p. 187) A material from which a mineral can be extracted ata reasonable cost.

organic compounds (p. 698) All compounds that contain carbonwith the primary exceptions of carbon oxides, carbides, andcarbonates, all of which are considered inorganic.

osmosis (p. 475) The diffusion of solvent particles across a semi-permeable membrane from an area of higher solvent concen-tration to an area of lower solvent concentration.

osmotic pressure (p. 475) The additional pressure needed toreverse osmosis.

oxidation (p. 637) The loss of electrons from the atoms of a sub-stance; increases an atom’s oxidation number.

oxidation number (p. 222) The positive or negative charge of amonatomic ion.

oxidation-number method (p. 644) The technique that can beused to balance more difficult redox reactions, based on thefact that the number of electrons transferred from atoms mustequal the number of electrons accepted by other atoms.

oxidation-reduction reaction (p. 636) Any chemical reaction inwhich electrons are transferred from one atom to another; alsocalled a redox reaction.

oxidizing agent (p. 638) The substance that oxidizes another sub-stance by accepting its electrons.

oxyacid (p. 250) Any acid that contains hydrogen and an oxyanion.

oxyanion (p. 225) A polyatomic ion composed of an element, usu-ally a nonmetal, bonded to one or more oxygen atoms.

parent chain (p. 701) The longest continuous chain of carbonatoms in a branched-chain alkane, alkene, or alkyne.

pascal (p. 390) The SI unit of pressure; one pascal (Pa) is equalto a force of one newton per square meter.

nucleotide/nucleΓ³tido (pΓ‘g. 788) MonΓ³mero que constituye unΓ‘cido nucleico; consiste en una base nitrogenada, un grupo fos-fato inorgΓ‘nico y un azΓΊcar monosacΓ‘rido de cinco carbonos.

nucleus/nΓΊcleo (pΓ‘g. 95) El diminuto centro de un Γ‘tomo, densoy positivamente cargado, que contiene protones positivamentecargados, neutrones neutrales y estΓ‘ rodeado de un espaciovacΓ­o a travΓ©s del cual se mueven uno o mΓ‘s electrones car-gados negativamente.

octet rule/regla del octeto (pΓ‘g. 168) Establece que Γ‘tomos pier-den, ganan o comparten electrones para adquirir un conjuntocompleto de ocho electrones de valencia (la configuraciΓ³nelectrΓ³nica estable de un gas noble).

optical isomers/isΓ³meros Γ³pticos (pΓ‘g. 720) Clase deestereoisΓ³meros quirales que resulta de dos posibles arreglosde cuatro Γ‘tomos o grupos de Γ‘tomos diferentes unidos almismo Γ‘tomo de carbono.

optical rotation/rotaciΓ³n Γ³ptica (pΓ‘g. 721) Efecto que ocurrecuando la luz polarizada pasa a travΓ©s de una soluciΓ³n que con-tiene un isΓ³mero Γ³ptico y el plano de polarizaciΓ³n es rotado ala derecha por un isΓ³mero d o a la izquierda por un isΓ³mero l

ore/mena (pΓ‘g. 187) Material del cual puede extraerse un mine-ral a un costo razonable.

organic compounds/compuestos orgΓ‘nicos (pΓ‘g. 698) Todocompuesto que contiene carbono, con las excepciones pri-marias de Γ³xidos de carbono, carburos y carbonatos, todos loscuales se consideran inorgΓ‘nicos.

osmosis/Γ³smosis (pΓ‘g. 475) DifusiΓ³n de partΓ­culas de disolventea travΓ©s de una membrana semipermeable de un Γ‘rea de mayorconcentraciΓ³n de disolvente a un Γ‘rea de menor concentraciΓ³n.

osmotic pressure/presiΓ³n osmΓ³tica (pΓ‘g. 475) PresiΓ³n adicionalnecesaria para invertir la Γ³smosis.

oxidation/oxidaciΓ³n (pΓ‘g. 637) PΓ©rdida de electrones de los Γ‘to-mos de una sustancia; incrementa el nΓΊmero de oxidaciΓ³n deun Γ‘tomo.

oxidation number/nΓΊmero de oxidaciΓ³n (pΓ‘g. 222) La cargapositiva o negativa de un ion monoatΓ³mico.

oxidation-number method/mΓ©todo del nΓΊmero de oxidaciΓ³n(pΓ‘g. 644) ) TΓ©cnica que puede utilizarse para equilibrar lasreacciones redox mΓ‘s difΓ­ciles, en base al hecho de que elnΓΊmero de electrones transferidos de ciertos Γ‘tomos debeigualar el nΓΊmero de electrones aceptados por otros Γ‘tomos.

oxidation-reduction reaction/reacciΓ³n de Γ³xido-reducciΓ³n(pΓ‘g. 636) Cualquier reacciΓ³n quΓ­mica en la cual se trans-fieren electrones de un Γ‘tomo a otro; tambiΓ©n llamada reac-ciΓ³n redox.

oxidizing agent/agente oxidante (pΓ‘g. 638) Sustancia que oxidaotra sustancia aceptando sus electrones.

oxyacid/oxiΓ‘cido (pΓ‘g. 250) Cualquier Γ‘cido que contienehidrΓ³geno y un oxianiΓ³n.

oxyanion/oxianiΓ³n (pΓ‘g. 225) Ion poliatΓ³mico compuesto de unelemento, generalmente un no metal, unido a uno o a mΓ‘s Γ‘to-mos de oxΓ­geno.

parent chain/cadena principal (pΓ‘g. 701) Cadena continua mΓ‘slarga de Γ‘tomos de carbono en un alcano, alqueno o alquinoramificado.

pascal/pascal (pΓ‘g. 390) La unidad SI de presiΓ³n; un pascal (Pa)es igual a una fuerza de un newton por metro cuadrado.

P

Page 112: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 981

Glossary/Glosario

Glo

ssary

/Glo

sari

o

Pauli exclusion principle (p. 136) States that a maximum of twoelectrons may occupy a single atomic orbital, but only if theelectrons have opposite spins.

peptide (p. 777) A chain of two or more amino acids linked bypeptide bonds.

peptide bond (p. 777) The amide bond that joins two amino acids.

percent by mass (p. 75) A percentage determined by the ratio ofthe mass of each element to the total mass of the compound.

percent composition (p. 328) The percent by mass of each ele-ment in a compound.

percent error (p. 37) The ratio of an error to an accepted value.

percent yield (p. 370) The ratio of actual yield (from an experi-ment) to theoretical yield (from stoichiometric calculations)expressed as a percent.

period (p. 154) A horizontal row of elements in the modern peri-odic table.

periodic law (p. 153) States that when the elements are arrangedby increasing atomic number, there is a periodic repetition oftheir chemical and physical properties.

periodic table (p. 70) A chart that organizes all known elementsinto a grid of horizontal rows (periods) and vertical columns(groups or families) arranged by increasing atomic number.

pH (p. 610) The negative logarithm of the hydrogen ion concen-tration of a solution; acidic solutions have pH values between0 and 7, basic solutions have values between 7 and 14, and asolution with a pH of 7.0 is neutral.

phase diagram (p. 408) A graph of pressure versus temperaturethat shows which phase a substance exists in under differentconditions of temperature and pressure.

phospholipid (p. 786) A triglyceride in which one of the fattyacids is replaced by a polar phosphate group.

photoelectric effect (p. 123) A phenomenon in which photo-electrons are emitted from a metal’s surface when light of acertain frequency shines on the surface.

photon (p. 123) A particle of electromagnetic radiation with nomass that carries a quantum of energy.

photosynthesis (p. 793) The complex process that convertsenergy from sunlight to chemical energy in the bonds of car-bohydrates.

physical change (p. 61) A type of change that alters the physicalproperties of a substance but does not change its composition.

physical property (p. 56) A characteristic of matter that can beobserved or measured without changing the sample’s compo-sitionβ€”for example, density, color, taste, hardness, and melt-ing point.

pi bond (p. 246) A bond that is formed when parallel orbitalsoverlap to share electrons.

Planck’s constant (p. 123) h, which has a value of 6.626 οΏ½ 10οΏ½34

Jβ€’s, where J is the symbol for the joule.plastic (p. 764) A polymer that can be heated and molded while

relatively soft.pOH (p. 611) The negative logarithm of the hydroxide ion con-

centration of a solution; a solution with a pOH above 7.0 isacidic, a solution with a pOH below 7.0 is basic, and a solu-tion with a pOH of 7.0 is neutral.

polar covalent (p. 264) A type of bond that forms when electronsare not shared equally.

polarized light (p. 720) Light that can be filtered and reflectedso that the resulting waves all lie in the same plane.

polyatomic ion (p. 224) An ion made up of two or more atomsbonded together that acts as a single unit with a net charge.

Pauli exclusion principle/principio de exclusiΓ³n de Pauli(pΓ‘g. 136) Establece que un mΓ‘ximo de dos electrones puedenocupar un solo orbital atΓ³mico, pero sΓ³lo si los electronestienen giros opuestos.

peptide/pΓ©ptido (pΓ‘g. 777) Cadena de dos o mΓ‘s aminoΓ‘cidosunidos por enlaces peptΓ­dicos.

peptide bond/enlace peptΓ­dico (pΓ‘g. 777) Enlace amida que unedos aminoΓ‘cidos.

percent by mass/por ciento masa (pΓ‘g. 75) Porcentaje determi-nado por la proporciΓ³n de la masa de cada elemento enrelaciΓ³n con la masa total del compuesto.

percent composition/composiciΓ³n porcentual (pΓ‘g. 328) Porciento de masa de cada elemento en un compuesto.

percent error/porcentaje de error (pΓ‘g. 37) ProporciΓ³n de unerror en relaciΓ³n con un valor aceptado.

percent yield/porcentaje de rendimiento (pΓ‘g. 370) RazΓ³n delrendimiento real (de un experimento) al rendimiento teΓ³rico(de cΓ‘lculos estequiomΓ©tricos) expresado como un por ciento.

period/perΓ­odo (pΓ‘g. 154) Fila horizontal de elementos en latabla periΓ³dica moderna.

periodic law/ley periΓ³dica (pΓ‘g. 153) Establece que cuando loselementos se ordenan por nΓΊmero atΓ³mico ascendente, existeuna repeticiΓ³n periΓ³dica de sus propiedades fΓ­sicas y quΓ­micas.

periodic table/tabla periΓ³dica (pΓ‘g. 70) GrΓ‘fica que organizatodos los elementos conocidos en una cuadrΓ­cula de filas hori-zontales (perΓ­odos) y columnas verticales (grupos o familias)ordenados segΓΊn el aumento del nΓΊmero atΓ³mico.

pH/pH (pΓ‘g. 610) El logaritmo negativo de la concentraciΓ³n deion hidrΓ³geno de una soluciΓ³n; las soluciones Γ‘cidas poseenvalores de pH entre 0 y 7, las soluciones bΓ‘sicas tienen valo-res entre 7 y 14 y una soluciΓ³n con un pH de 7.0 es neutra.

phase diagram/diagrama de fase (pΓ‘g. 408) GrΓ‘fica de presiΓ³ncontra temperatura que muestra en quΓ© fase se encuentra unasustancia bajo condiciones diferentes de temperatura y presiΓ³n.

phospholipid/fosfolΓ­pido (pΓ‘g. 786) TriglicΓ©rido en el cual ungrupo fosfato polar reemplaza uno de los Γ‘cidos grasos.

photoelectric effect/efecto fotoelΓ©ctrico (pΓ‘g. 123) FenΓ³meno enel cual se emiten fotoelectrones de la superficie de un metalcuando brilla en la superficie luz de cierta frecuencia.

photon/fotΓ³n (pΓ‘g. 123) PartΓ­cula de radiaciΓ³n electromagnΓ©ticasin masa que lleva un cuanto de energΓ­a.

photosynthesis/fotosΓ­ntesis (pΓ‘g. 793) Proceso complejo queconvierte la energΓ­a de la luz solar en energΓ­a quΓ­mica en losenlaces de carbohidratos.

physical change/cambio fΓ­sico (pΓ‘g. 61) Tipo del cambio quealtera las propiedades fΓ­sicas de una sustancia pero no cambiasu composiciΓ³n.

physical property/propiedad fΓ­sica (pΓ‘g. 56) CaracterΓ­stica dela materia que se puede observar o medir sin cambiar la com-posiciΓ³n de la muestra; por ejemplo, la densidad, el color, elsabor, la dureza y el punto de fusiΓ³n.

pi bond/enlace pi (pΓ‘g. 246) Enlace que se forma cuando losor-bitales paralelos se superponen para compartir electrones.

Planck’s constant/constante de Planck (pΓ‘g. 123) h, que tieneun valor de 6.626 οΏ½ 10οΏ½34 Jβ€’s, donde J es el sΓ­mbolo del julio.

plastic/plΓ‘stico (pΓ‘g. 764) PolΓ­mero que puede calentarse ymoldearse mientras estΓ‘ relativamente suave.

pOH/pOH (pΓ‘g. 611) El logaritmo negativo de la concentraciΓ³nde ion hidrΓ³xido de una soluciΓ³n; una soluciΓ³n con un pOHmayor que 7.0 es Γ‘cida, una soluciΓ³n con un pOH menor que7.0 es bΓ‘sica y una soluciΓ³n con un pOH de 7.0 es neutra.

polar covalent/covalente polar (pΓ‘g. 264) Tipo de enlace que seforma cuando los electrones no se comparten igualmente.

polarized light/luz polarizada (pΓ‘g. 720) Luz que puede fil-trarse y reflejarse para que todas las ondas resultantes seencuentren en el mismo plano.

polyatomic ion/ion poliatΓ³mico (pΓ‘g. 224) Ion compuesto de doso mΓ‘s Γ‘tomos unidos que actΓΊan como una sola unidad conuna carga neta.

Page 113: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

982 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

polymerization reaction (p. 762) A reaction in which monomerunits are bonded together to form a polymer.

polymers (p. 761) Large molecules formed by combining manyrepeating structural units (monomers); are synthesized throughaddition or condensation reactions and include polyethylene,polyurethane, and nylon.

polysaccharide (p. 782) A complex carbohydrate, which is apolymer of simple sugars that contains 12 or more monomerunits.

positron (p. 812) A particle that has the same mass as an electronbut an opposite charge.

positron emission (p. 812) A radioactive decay process in whicha proton in the nucleus is converted into a neutron and apositron and then the positron is emitted from the nucleus.

precipitate (p. 290) A solid produced during a chemical reactionin a solution.

precision (p. 36) Refers to how close a series of measurementsare to one another; precise measurements show little variationover a series of trials but may not be accurate.

pressure (p. 388) Force applied per unit area.primary battery (p. 675) A type of battery that produces electric

energy by redox reactions that are not easily reversed, deliv-ers current until the reactants are gone, and then is discarded.

principal energy levels (p. 133) The major energy levels of anatom.

principal quantum numbers (p. 132) n, which the quantummechanical model assigns to indicate the relative sizes andenergies of atomic orbitals.

product (p. 278) A substance formed during a chemical reaction.

protein (p. 775) An organic polymer made up of animo acidslinked together by peptide bonds that can function as anenzyme, transport important chemical substances, or providestructure in organisms.

proton (p. 96) A subatomic particle in an atom’s nucleus that hasa positive charge of 1οΏ½.

pure research (p. 14) A type of scientific investigation that seeksto gain knowledge for the sake of knowledge itself.

qualitative data (p. 10) Information describing color, odor, shape,or some other physical characteristic.

quantitative data (p. 11) Numerical information describing howmuch, how little, how big, how tall, how fast, etc.

quantum (p. 122) The minimum amount of energy that can begained or lost by an atom.

quantum mechanical model of the atom (p. 131) An atomicmodel in which electrons are treated as waves; also called thewave mechanical model of the atom.

polymerization reaction/reacciΓ³n de polimerizaciΓ³n (pΓ‘g. 762)ReacciΓ³n en la cual las unidades monomΓ©ricas se unen paraformar un polΓ­mero.

polymers/polΓ­meros (pΓ‘g. 761) MolΓ©culas grandes formadas dela combinaciΓ³n de muchas unidades estructurales repetidas(monΓ³meros); se sintetizan a travΓ©s de reacciones de adiciΓ³no de condensaciΓ³n e incluyen el polietileno, el poliuretano yel nilΓ³n.

polysaccharide/polisacΓ‘rido (pΓ‘g. 782) Carbohidrato complejo,que es un polΓ­mero de azΓΊcares simples que contiene 12 o mΓ‘sunidades monomΓ©ricas.

positron/positrΓ³n (pΓ‘g. 812) ) PartΓ­cula que tiene la misma masaque un electrΓ³n pero una carga opuesta.

positron emission/emisiΓ³n del positrΓ³n (pΓ‘g. 812) ) Proceso dedesintegraciΓ³n radiactiva en que un protΓ³n en el nΓΊcleo se con-vierte en un neutrΓ³n y un positrΓ³n y entonces el positrΓ³n seemite del nΓΊcleo.

precipitate/precipitado (pΓ‘g. 290) SΓ³lido que se produce duranteuna reacciΓ³n quΓ­mica en una soluciΓ³n.

precision/precisiΓ³n (pΓ‘g. 36) Se refiere al grado de cercanΓ­a enque una serie de medidas estΓ‘n de unas de otras; las medidasprecisas muestran poca variaciΓ³n durante una serie de prue-bas, pero quiazΓ‘s no sean exactas.

pressure/presiΓ³n (pΓ‘g. 388) Fuerza aplicada por unidad de Γ‘rea.primary battery/baterΓ­a primaria (pΓ‘g. 675) Tipo de baterΓ­a que

produce energΓ­a elΓ©ctrica por reacciones redox que no sonfΓ‘cilmente reversibles, produce corriente hasta agotar los reac-tantes y entonces se desecha.

principal energy levels/niveles de energΓ­a principal (pΓ‘g. 133)Los niveles mΓ‘s importantes de energΓ­a de un Γ‘tomo.

principal quantum numbers/nΓΊmeros cuΓ‘nticos principales(pΓ‘g. 132) n, el cual asigna el modelo mecΓ‘nico-cuΓ‘ntico paraindicar tamaΓ±os y energΓ­as relativas de orbitales atΓ³micos.

product/producto (pΓ‘g. 278) Sustancia formada durante unareacciΓ³n quΓ­mica.

protein/proteΓ­na (pΓ‘g. 775) PolΓ­mero orgΓ‘nico compuesto deaminoΓ‘cidos unidos por enlaces peptΓ­dicos que puede fun-cionar como una enzima, transportar sustancias quΓ­micasimportantes o proporcionar estructura en los organismos.

proton/protΓ³n (pΓ‘g. 96) PartΓ­cula subatΓ³mica en el nΓΊcleo de unΓ‘tomo que tiene una carga positiva de 1οΏ½.

pure research/investigaciΓ³n pura (pΓ‘g. 14) Tipo de investi-gaciΓ³n cientΓ­fica que busca obtener conocimiento en nombredel conocimiento mismo.

qualitative data/datos cualitativos (pΓ‘g. 10) InformaciΓ³n quedescribe el color, el olor, la forma o alguna otra caracterΓ­sticafΓ­sica.

quantitative data/datos cuantitativos (pΓ‘g. 11) InformaciΓ³nnumΓ©rica que describe cantidad (grande o pequeΓ±a), dimen-siΓ³n, altura, rapidez, etc.

quantum/cuanto (pΓ‘g. 122) La cantidad mΓ­nima de energΓ­a quepuede ganar o perder un Γ‘tomo.

quantum mechanical model of the atom/modelo mecΓ‘nicocuΓ‘ntico del Γ‘tomo (pΓ‘g. 131) Modelo atΓ³mico en el cual loselectrones se tratan como si fueran ondas; tambiΓ©n llamadomodelo mecΓ‘nico de ondas del Γ‘tomo.

Q

Page 114: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 983

Glossary/Glosario

Glo

ssary

/Glo

sari

o

radiation (p. 105) The rays and particlesβ€”alpha and beta parti-cles and gamma raysβ€”that are emitted by radioactive mate-rials.

radioactive decay (p. 106) A spontaneous process in which unsta-ble nuclei lose energy by emitting radiation.

radioactive decay series (p. 814) A series of nuclear reactionsthat starts with an unstable nucleus and results in the forma-tion of a stable nucleus.

radioactivity (p. 105) The process in which some substancesspontaneously emit radiation.

radiochemical dating (p. 819) The process that is used to deter-mine the age of an object by measuring the amount of a cer-tain radioisotope remaining in that object.

radioisotopes (p. 807) Isotopes of atoms that have unstable nucleiand emit radiation to attain more stable atomic configurations.

radiotracer (p. 828) An isotope that emits nonionizing radiationand is used to signal the presence of an element or specificsubstance; can be used to analyze complex chemical reactionsmechanisms and to diagnose disease.

rate-determining step (p. 549) The slowest elementary step in acomplex reaction; limits the instantaneous rate of the overallreaction.

rate law (p. 542) The mathematical relationship between the rateof a chemical reaction at a given temperature and the con-centrations of reactants.

reactant (p. 278) The starting substance in a chemical reaction.

reaction mechanism (p. 548) The complete sequence of ele-mentary steps that make up a complex reaction.

reaction order (p. 543) For a reactant, describes how the rate isaffected by the concentration of that reactant.

reaction rate (p. 530) The change in concentration of a reactantor product per unit time, generally calculated and expressedin moles per liter per second.

redox reaction (p. 636) An oxidation-reduction reaction.

reducing agent (p. 638) The substance that reduces another sub-stance by losing electrons.

reduction (p. 637) The gain of electrons by the atoms of a sub-stance; decreases an atom’s oxidation number.

reduction potential (p. 666) The tendency of an ion to gain elec-trons.

representative elements (p. 154) Groups of elements in the mod-ern periodic table that are designated with an A (1A through8A) and possess a wide range of chemical and physical prop-erties.

resonance (p. 256) Condition that occurs when more than onevalid Lewis structure exists for the same molecule.

reversible reaction (p. 560) A reaction that can take place in boththe forward and reverse directions; leads to an equilibriumstate where the forward and reverse reactions occur at equalrates and the concentrations of reactants and products remainconstant.

radiation/radiaciΓ³n (pΓ‘g. 105) Los rayos y partΓ­culas (partΓ­cu-las alfa y beta y rayos gamma) que emiten los materialesradiactivos.

radioactive decay/desintegraciΓ³n radiactiva (pΓ‘g. 106) ProcesoespontΓ‘neo en el cual los nΓΊcleos inestables pierden energΓ­aemitiendo radiaciΓ³n.

radioactive decay series/serie de desintegraciΓ³n radiactiva(pΓ‘g. 814) Serie de reacciones nucleares que empieza con unnΓΊcleo inestable y tiene como resultado la formaciΓ³n de unnΓΊcleo fijo.

radioactivity/radiactividad (pΓ‘g. 105) ) El proceso en que algu-nas sustancias emiten radiaciΓ³n espontΓ‘neamente.

radiochemical dating/dataciΓ³n radioquΓ­mica (pΓ‘g. 819)Proceso que se utiliza para determinar la edad de un objetomidiendo la cantidad de cierto radioisΓ³topo remanente en eseobjeto.

radioisotopes/radioisΓ³topos (pΓ‘g. 807) IsΓ³topos de Γ‘tomos quetienen los nΓΊcleos inestables y emiten radiaciΓ³n para alcanzarconfiguraciones atΓ³micas mΓ‘s estables.

radiotracer/radiolocalizador (pΓ‘g. 828) IsΓ³topo que emiteradiaciΓ³n no ionizante y que se utiliza para seΓ±alar la presen-cia de un elemento o sustancia especΓ­fica; puede usarse paraanalizar mecanismos de reacciones quΓ­micas complejas y paradiagnosticar enfermedades.

rate-determining step/paso de determinaciΓ³n de velocidad(pΓ‘g. 549) Paso elemental mΓ‘s lento en una reacciΓ³n compleja;limita la velocidad instantΓ‘nea de la reacciΓ³n global.

rate law/ley de velocidad (pΓ‘g. 542) RelaciΓ³n matemΓ‘tica entrela velocidad de una reacciΓ³n quΓ­mica a una temperatura daday las concentraciones de reactantes.

reactant/reactante (pΓ‘g. 278) Sustancia inicial en una reacciΓ³nquΓ­mica.

reaction mechanism/mecanismo de reacciΓ³n (pΓ‘g. 548)SucesiΓ³n completa de pasos elementales que componen unareacciΓ³n compleja.

reaction order/orden de reacciΓ³n (pΓ‘g. 543) Para un reactante,describe cΓ³mo la velocidad se ve afectada por la concentraciΓ³ndel reactante.

reaction rate/velocidad de reacciΓ³n (pΓ‘g. 530) Cambio en laconcentraciΓ³n de reactante o producto por unidad de tiempo,generalmente se calcula y expresa en moles por litro porsegundo.

redox reaction/reacciΓ³n redox (pΓ‘g. 636) Una reacciΓ³n deΓ³xido–reducciΓ³n.

reducing agent/agente reductor (pΓ‘g. 638) Sustancia que reduceotra sustancia perdiendo electrones.

reduction/reducciΓ³n (pΓ‘g. 637) Ganancia de electrones de Γ‘to-mos de una sustancia; disminuye el nΓΊmero de oxidaciΓ³n deun Γ‘tomo.

reduction potential/potencial de reducciΓ³n (pΓ‘g. 666) Tenden-cia de un ion a ganar electrones.

representative elements/elementos representativos (pΓ‘g. 154)Grupos de elementos en la tabla periΓ³dica moderna que sedesignan con una A (1A hasta 8A) y poseen una gran variedadde propiedades fΓ­sicas y quΓ­micas.

resonance/resonancia (pΓ‘g. 256) CondiciΓ³n que ocurre cuandoexiste mΓ‘s de una estructura vΓ‘lida de Lewis para la mismamolΓ©cula.

reversible reaction/reacciΓ³n reversible (pΓ‘g. 560) ReacciΓ³n quepuede ocurrir en direcciΓ³n normal e inversa; conduce a unestado de equilibrio donde las reacciones normales e inversasocurren a velocidades iguales y las concentraciones de reac-tantes y productos permanecen constantes.

R

Page 115: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

984 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

salinity (p. 851) A measure of the mass of salts dissolved in sea-water, which is 35 g per kg, on average.

salt (p. 617) An ionic compound made up of a cation from a baseand an anion from an acid.

salt bridge (p. 664) A pathway constructed to allow positive andnegative ions to move from one solution to another.

salt hydrolysis (p. 621) The process in which anions of the dis-sociated salt accept hydrogen ions from water or the cationsof the dissociated salt donate hydrogen ions to water.

saponification (p. 785) The hydrolysis of the ester bonds of atriglyceride using an aqueous solution of a strong base to formcarboxylate salts and glycerol; is used to make soaps.

saturated hydrocarbon (p. 710) A hydrocarbon that containsonly single bonds.

saturated solution (p. 458) Contains the maximum amount ofdissolved solute for a given amount of solvent at a specifictemperature and pressure.

scientific law (p. 13) Describes a relationship in nature that is sup-ported by many experiments.

scientific method (p. 10) A systematic approach used in scien-tific study that typically includes observation, a hypothesis,experiments, data analysis, and a conclusion.

scientific notation (p. 31) Expresses numbers as a multiple of twofactorsβ€”a number between 1 and 10, and 10 raised to a power,or exponent; makes it easier to handle extremely large or smallmeasurements.

second (p. 26) The SI base unit for time.secondary battery (p. 675) A rechargeable battery that depends

on reversible redox reactions and powers such devices as lap-top computers and cordless drills.

sigma bond (p. 245) A single covalent bond that is formed whenan electron pair is shared by the direct overlap of bondingorbitals.

significant figures (p. 38) The number of all known digitsreported in measurements plus one estimated digit.

single-replacement reaction (p. 287) A chemical reaction thatoccurs when the atoms of one element replace the atoms ofanother element in a compound.

solid (p. 58) A form of matter that has its own definite shape andvolume, is incompressible, and expands only slightly whenheated.

solubility (p. 457) The maximum amount of solute that will dis-solve in a given amount of solvent at a specific temperatureand pressure.

solubility product constant (p. 578) Ksp, which is an equilibriumconstant for the dissolving of a sparingly soluble ionic com-pound in water.

soluble (p. 454) Describes a substance that can be dissolved in agiven solvent.

solute (p. 292) A substance dissolved in a solution.solution (p. 67) A uniform mixture that may contain solids, liq-

uids, or gases; also called a homogeneous mixture. solvation (p. 455) The process of surrounding solute particles with

solvent particles to form a solution; occurs only where andwhen the solute and solvent particles come in contact witheach other.

salinity/salinidad (pΓ‘g. 851) Medida de la masa de sales disueltasen el agua de mar, que en promedio es de 35 g por kg.

salt/sal (pΓ‘g. 617) Compuesto iΓ³nico constituido por un catiΓ³n deuna base y un aniΓ³n de un Γ‘cido.

salt bridge/puente salino (pΓ‘g. 664) VΓ­a construida para permi-tir que los iones positivos y negativos se muevan de una solu-ciΓ³n a otra.

salt hydrolysis/hidrΓ³lisis de sal (pΓ‘g. 621) Proceso en el cual losaniones de la sal disociada aceptan iones hidrΓ³geno del aguao los cationes de la sal disociada donan iones hidrΓ³geno alagua.

saponification/saponificaciΓ³n (pΓ‘g. 785) HidrΓ³lisis de losenlaces Γ©ster de un triglicΓ©rido usando una soluciΓ³n acuosa deuna base fuerte para formar sales de carboxilato y glicerol; seusa en la elaboraciΓ³n de jabones.

saturated hydrocarbon/hidrocarburo saturado (pΓ‘g. 710)Hidrocarburo que contiene ΓΊnicamente enlaces sencillos.

saturated solution/soluciΓ³n saturada (pΓ‘g. 458) La que contienela cantidad mΓ‘xima de soluto disuelto para una cantidad dadade disolvente a una temperatura y presiΓ³n especΓ­ficas.

scientific law/ley cientΓ­fica (pΓ‘g. 13) Describe una relaciΓ³n enla naturaleza que es avalada por muchos experimentos.

scientific method/mΓ©todo cientΓ­fico (pΓ‘g. 10) Enfoque sis-temΓ‘tico utilizado en el estudio cientΓ­fico que incluye tΓ­pica-mente la observaciΓ³n, una hipΓ³tesis, los experimentos, losanΓ‘lisis de datos y una conclusiΓ³n.

scientific notation/notaciΓ³n cientΓ­fica (pΓ‘g. 31) Expresa losnΓΊmeros como un mΓΊltiplo de dos factores: un nΓΊmero entre1 y 10 y 10 elevado a una potencia o exponente; facilita elmanejo de medidas extremadamente grandes o pequeΓ±as.

second/segundo (pΓ‘g. 26) La unidad base del SI para el tiempo.secondary battery/baterΓ­a secundaria (pΓ‘g. 675) BaterΓ­a recar-

gable que depende de reacciones redox reversibles y proveeenergΓ­a a dispositivos como computadoras portΓ‘tiles y taladrosinalΓ‘mbricos.

sigma bond/enlace sigma (pΓ‘g. 245) Enlace covalente sencilloque se forma cuando un par de electrΓ³n es compartido por lasuperposiciΓ³n directa de orbitales de uniΓ³n.

significant figures/cifras significativas (pΓ‘g. 38) El nΓΊmero dedΓ­gitos conocidos reportados en medidas, mΓ‘s un dΓ­gito esti-mado.

single-replacement reaction/reacciΓ³n de reemplazo simple(pΓ‘g. 287) ReacciΓ³n quΓ­mica que ocurre cuando los Γ‘tomos deun elemento reemplazan los Γ‘tomos de otro elemento en uncompuesto.

solid/sΓ³lido (pΓ‘g. 58) Forma de materia que tiene su propia formay volumen, es incompresible y sΓ³lo se expande levementecuando se calienta.

solubility/solubilidad (pΓ‘g. 457) Cantidad mΓ‘xima de soluto quese disolverΓ‘ en una cantidad dada de disolvente a una tem-peratura y presiΓ³n especΓ­ficas.

solubility product constant/constante del producto de solu-bilidad (pΓ‘g. 578) Ksp, que es una constante de equilibrio parala disoluciΓ³n de un compuesto iΓ³nico moderadamente solubleen agua.

soluble/soluble (pΓ‘g. 454) Describe una sustancia que se puededisolver en un disolvente dado.

solute/soluto (pΓ‘g. 292) Sustancia disuelta en una soluciΓ³n.solution/soluciΓ³n (pΓ‘g. 67) Mezcla uniforme que puede contener

sΓ³lidos, lΓ­quidos o gases; llamada tambiΓ©n mezcla homogΓ©nea. solvation/solvataciΓ³n (pΓ‘g. 455) Proceso de rodear partΓ­culas de

soluto con partΓ­culas de disolvente para formar una soluciΓ³n;ocurre sΓ³lo en lugares donde y cuando las partΓ­culas de solutoy disolvente entran en contacto.

S

Page 116: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 985

Glossary/Glosario

Glo

ssary

/Glo

sari

o

solvent (p. 292) The substance that dissolves a solute to form asolution.

species (p. 650) Any kind of chemical unit involved in a process.

specific heat (p. 492) The amount of heat required to raise the tem-perature of one gram of a given substance by one degree Celsius.

specific rate constant (p. 542) A numerical value that relatesreaction rate and concentration of reactant at a specific tem-perature.

spectator ion (p. 293) An ion that does not participate in a reac-tion and usually is not shown in an ionic equation.

spontaneous process (p. 513) A physical or chemical changethat occurs without outside intervention and may requireenergy to be supplied to begin the process.

standard enthalpy (heat) of formation (p. 509) The change inenthalpy that accompanies the formation of one mole of acompound in its standard state from its constituent elementsin their standard states.

standard hydrogen electrode (p. 666) The standard electrodeagainst which the reduction potential of all electrodes can bemeasured.

states of matter (p. 58) The physical forms in which all matternaturally exists on Earthβ€”most commonly as a solid, a liq-uid, or a gas.

stereoisomers (p. 718) A class of isomers whose atoms arebonded in the same order but are arranged differently in space.

steroids (p. 787) Lipids that have multiple cyclic rings in theirstructures.

stoichiometry (p. 354) The study of quantitative relationshipsbetween the amounts of reactants used and products formedby a chemical reaction; is based on the law of conservation ofmass.

stratosphere (p. 842) The atmospheric layer above the tropo-sphere and below the mesosphere; contains an ozone layer,which forms a protective layer against ultraviolet radiation,and has temperatures that increase with increasing altitude.

strong acid (p. 602) An acid that ionizes completely in aqueoussolution.

strong base (p. 606) A base that dissociates entirely into metalions and hydroxide ions in aqueous solution.

strong nuclear force (p. 810) A force that acts only on subatomicparticles that are extremely close together and overcomes theelectrostatic repulsion between protons.

structural formula (p. 252) A molecular model that uses sym-bols and bonds to show relative positions of atoms; can be pre-dicted for many molecules by drawing the Lewis structure.

structural isomers (p. 717) A class of isomers whose atoms arebonded in different orders with the result that they have dif-ferent chemical and physical properties despite having thesame formula.

sublimation (p. 407) The energy-requiring process by which asolid changes directly to a gas without first becoming a liquid.

substance (p. 55) A form of matter that has a uniform andunchanging composition; also known as a pure substance.

substituent groups (p. 701) The side branches that extend fromthe parent chain because they appear to substitute for a hydro-gen atom in the straight chain.

solvent/disolvente (pΓ‘g. 292) Sustancia que disuelve un solutopara formar una soluciΓ³n.

species/especie (pΓ‘g. 650) Cualquier clase de unidad quΓ­micaimplicada en un proceso.

specific heat/calor especΓ­fico (pΓ‘g. 492) Cantidad de calorrequerida para elevar la temperatura de un gramo de una sus-tancia dada en un grado centΓ­grado.

specific rate constant/constante de velocidad especΓ­fica(pΓ‘g. 542) Valor numΓ©rico que relaciona la velocidad de reac-ciΓ³n y la concentraciΓ³n de reactante a una temperatura especΓ­-fica.

spectator ion/ion espectador (pΓ‘g. 293) Ion que no participa enuna reacciΓ³n y generalmente no se muestra en una ecuaciΓ³niΓ³nica.

spontaneous process/proceso espontΓ‘neo (pΓ‘g. 513) CambiofΓ­sico o quΓ­mico que ocurre sin intervenciΓ³n exterior y puederequerir de un suministro de energΓ­a para empezar el proceso.

standard enthalpy (heat) of formation/entalpΓ­a (calor) estΓ‘n-dar de formaciΓ³n (pΓ‘g. 509) Cambio en la entalpΓ­a que acom-paΓ±a la formaciΓ³n de un mol de un compuesto en su estadoestΓ‘ndar a partir de sus elementos constituyentes en sus esta-dos estΓ‘ndares.

standard hydrogen electrode/electrodo estΓ‘ndar de hidrΓ³geno(pΓ‘g. 666) Electrodo estΓ‘ndar contra el cual se puede medir elpotencial de reducciΓ³n de todos los electrodos.

states of matter/estados de la materia (pΓ‘g. 58) Las formasfΓ­sicas en que toda materia existe naturalmente en la Tierra,mΓ‘s comΓΊnmente como un sΓ³lido, un lΓ­quido o un gas.

stereoisomers/estereoisΓ³meros (pΓ‘g. 718) Clase de isΓ³meroscuyos Γ‘tomos estΓ‘n unidos en el mismo orden pero se arreglande manera diferente en el espacio.

steroids/esteroides (pΓ‘g. 787) LΓ­pidos que tienen mΓΊltiplesanillos cΓ­clicos en sus estructuras.

stoichiometry/estequiometrΓ­a (pΓ‘g. 354) El estudio de las rela-ciones cuantitativas entre las cantidades de reactantes utiliza-dos y los productos formados por una reacciΓ³n quΓ­mica; sebasa en la ley de la conservaciΓ³n de masa.

stratosphere/estratosfera (pΓ‘g. 842) Capa atmosfΓ©rica encima dela troposfera y debajo de la mesosfera; contiene una capa deozono, que forma una capa protectora contra la radiaciΓ³n ultra-violeta y tiene temperaturas que aumentan al incrementar laaltitud.

strong acid/Ñcido fuerte (pÑg. 602) Ácido que se ioniza com-pletamente en solución acuosa.

strong base/base fuerte (pΓ‘g. 606) Base que disocia enteramenteen iones metΓ‘licos e iones hidrΓ³xido en soluciΓ³n acuosa.

strong nuclear force/fuerza nuclear fuerte (pΓ‘g. 810) Fuerzaque actΓΊa sΓ³lo en las partΓ­culas subatΓ³micas que estΓ‘nextremadamente cercanas y vence la repulsiΓ³n electrostΓ‘ticaentre protones.

structural formula/fΓ³rmula estructural (pΓ‘g. 252) Modelomolecular que usa sΓ­mbolos y enlaces para mostrar las posi-ciones relativas de los Γ‘tomos; para muchas molΓ©culas puedepredecirse dibujando la estructura de Lewis.

structural isomers/isΓ³meros estructurales (pΓ‘g. 717) Clase deisΓ³meros cuyos Γ‘tomos estΓ‘n unidos en diferente orden y comoresultado tienen propiedades quΓ­micas y fΓ­sicas diferentes, apesar de tener la misma fΓ³rmula.

sublimation/sublimaciΓ³n (pΓ‘g. 407) Proceso demandante deenergΓ­a por el que un sΓ³lido cambia directamente a un gas sinllegar a ser primero un lΓ­quido.

substance/sustancia (pΓ‘g. 55) Forma de la materia que tiene unacomposiciΓ³n uniforme e inmutable; tambiΓ©n conocida comosustancia pura.

substituent groups/grupo sustituyente (pΓ‘g. 701) Cadenas rami-ficadas que se extiende a partir de la cadena principal porqueaparentemente sustituyen a un Γ‘tomo de hidrΓ³geno en lacadena recta.

Page 117: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

986 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

substitution reaction (p. 741) A reaction of organic compoundsin which one atom or group of atoms in a molecule is replacedby an atom or group of atoms.

substrate (p. 778) A reactant in an enzyme-catalyzed reaction thatbinds to specific sites on enzyme molecules.

supersaturated solution (p. 459) Contains more dissolved solutethan a saturated solution at the same temperature.

surface tension (p. 398) The energy required to increase the sur-face area of a liquid by a given amount; results from an unevendistribution of attractive forces.

surfactant (p. 398) A compound, such as soap, that lowers thesurface tension of water by disrupting hydrogen bondsbetween water molecules; also called a surface active agent.

surroundings (p. 498) In thermochemistry, includes everythingin the universe except the system.

suspension (p. 476) A type of heterogeneous mixture whose par-ticles settle out over time and can be separated from the mix-ture by filtration.

synthesis reaction (p. 284) A chemical reaction in which two ormore substances react to yield a single product.

system (p. 498) In thermochemistry, the specific part of the uni-verse containing the reaction or process being studied.

technology (p. 17) The practical use of scientific information.

temperature (p. 386) A measure of the average kinetic energy ofthe particles in a sample of matter.

theoretical yield (p. 370) In a chemical reaction, the maximumamount of product that can be produced from a given amountof reactant.

theory (p. 13) An explanation supported by many experiments;is still subject to new experimental data, can be modified, andis considered successful it if can be used to make predictionsthat are true.

thermochemical equation (p. 501) A balanced chemical equa-tion that includes the physical states of all the reactants andproducts and specifies the change in enthalpy.

thermochemistry (p. 498) The study of heat changes that accom-pany chemical reactions and phase changes.

thermonuclear reaction (p. 826) A nuclear fusion reaction.

thermoplastic (p. 764) A type of polymer that can be melted andmolded repeatedly into shapes that are retained when it iscooled.

thermosetting (p. 764) A type of polymer that can be moldedwhen it is first prepared but when cool cannot be remelted.

titration (p. 618) The process in which an acid-base neutraliza-tion reaction is used to determine the concentration of a solu-tion of unknown concentration.

transition elements (p. 154) Groups of elements in the modernperiodic table that are designated with a B (1B through 8B)and are further divided into transition metals and inner tran-sition metals.

substitution reaction/reacciΓ³n de la sustituciΓ³n (pΓ‘g. 741)ReacciΓ³n de compuestos orgΓ‘nicos en la cual un Γ‘tomo ogrupo de Γ‘tomos en una molΓ©cula son reemplazados por unΓ‘tomo o grupo de Γ‘tomos.

substrate/sustrato (pΓ‘g. 778) Reactante en una reacciΓ³n catali-zada por enzimas que se une a sitios especΓ­ficos en molΓ©cu-las de enzima.

supersaturated solution/soluciΓ³n sobresaturada (pΓ‘g. 459) Laque contiene mΓ‘s soluto disuelto que una soluciΓ³n saturada ala misma temperatura.

surface tension/tensiΓ³n superficial (pΓ‘g. 398) EnergΓ­a requeridapara aumentar el Γ‘rea superficial de un lΓ­quido en una canti-dad dada; se produce por una distribuciΓ³n desigual de fuerzasatractivas.

surfactant/surfactante (pΓ‘g. 398) Compuesto, como el jabΓ³n,que disminuye la tensiΓ³n superficial del agua interrumpiendolos puentes de hidrΓ³geno entre molΓ©culas de agua; llamadotambiΓ©n agente activo de superficie.

surroundings/alrededores (pΓ‘g. 498) En termoquΓ­mica, incluyeel todo en el universo menos el sistema.

suspension/suspensiΓ³n (pΓ‘g. 476) Tipo de mezcla heterogΓ©neacuyas partΓ­culas se asientan con el tiempo y pueden ser sepa-radas de la mezcla por filtraciΓ³n.

synthesis reaction/reacciΓ³n de la sΓ­ntesis (pΓ‘g. 284) ReacciΓ³nquΓ­mica en que dos o mΓ‘s sustancias reaccionan para generarun solo producto.

system/sistema (pΓ‘g. 498) En termoquΓ­mica, la parte especΓ­ficadel universo que contiene la reacciΓ³n o el proceso que se estΓ‘estudiado.

technology/tecnologΓ­a (pΓ‘g. 17) Uso prΓ‘ctico de informaciΓ³ncientΓ­fica.

temperature/temperatura (pΓ‘g. 386) Medida de la energΓ­acinΓ©tica promedio de las partΓ­culas en una muestra de materia.

theoretical yield/rendimiento teΓ³rico (pΓ‘g. 370) En una reacciΓ³nquΓ­mica, la cantidad mΓ‘xima del producto que se puede pro-ducir a partir de una cantidad dada de reactante.

theory/teorΓ­a (pΓ‘g. 13) ExplicaciΓ³n respaldada por muchosexperimentos; estΓ‘ todavΓ­a sujeta a datos experimentalesnuevos, puede modificarse y es considerada exitosa si se puedeutilizar para hacer predicciones verdaderas.

thermochemical equation/ecuaciΓ³n termoquΓ­mica (pΓ‘g. 501)EcuaciΓ³n quΓ­mica equilibrada que incluye los estados fΓ­sicosde todos los reactantes y productos y especifica el cambio enentalpΓ­a.

thermochemistry/termoquΓ­mica (pΓ‘g. 498) El estudio de loscambios calorΓ­ficos que acompaΓ±an las reacciones quΓ­micas ylos cambios de fase.

thermonuclear reaction/reacciΓ³n termonuclear (pΓ‘g. 826)ReacciΓ³n de fusiΓ³n nuclear.

thermoplastic/termoplΓ‘stico (pΓ‘g. 764) Tipo de polΓ­mero quepuede fundirse y moldearse repetidas veces en formas que seretienen cuando se enfrΓ­a.

thermosetting/fraguado (pΓ‘g. 764) Tipo de polΓ­mero que sepuede moldear mientras se estΓ‘ preparando pero cuando seenfrΓ­a no puede fundirse de nuevo.

titration/titulaciΓ³n (pΓ‘g. 618) Proceso en que una reacciΓ³n deneutralizaciΓ³n Γ‘cido- base se utiliza para determinar la con-centraciΓ³n de una soluciΓ³n de concentraciΓ³n desconocida.

transition elements/elementos de transiciΓ³n (pΓ‘g. 154) Gruposde elementos en la tabla periΓ³dica moderna que se designancon una B (1B a 8B) y son divididos adicionalmente en meta-les de transiciΓ³n y metales de transiciΓ³n interna.

T

Page 118: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Glossary/Glosario 987

Glossary/Glosario

Glo

ssary

/Glo

sari

o

transition metal (p. 158) A type of group B element that is con-tained in the d-block of the periodic table and, with someexceptions, is characterized by a filled outermost s orbital ofenergy level n, and filled or partially filled d orbitals ofenergy level n οΏ½ 1.

transition state (p. 532) Term used to describe an activated com-plex because the activated complex is as likely to form reac-tants as it is to form products.

transmutation (p. 815) The conversion of an atom of one ele-ment to an atom of another element.

transuranium element (p. 815) An element with an atomic num-ber of 93 or greater in the periodic table that is produced inthe laboratory by induced transmutation.

triglyceride (p. 785) Forms when three fatty acids are bonded toa glycerol backbone through ester bonds; can be either solidor liquid at room temperature.

triple point (p. 409) The point on a phase diagram representingthe temperature and pressure at which the three phases of asubstance (solid, liquid, and gas) can coexist.

troposphere (p. 842) The lowest layer of Earth’s atmospherewhere weather occurs and in which we live; has temperaturesthat generally decrease with increasing altitude.

Tyndall effect (p. 479) The scattering of light by colloidalparticles.

unit cell (p. 400) The smallest arrangement of connected pointsthat can be repeated in three directions to form a crystal lat-tice.

universe (p. 498) In thermochemistry, is the system plus the sur-roundings.

unsaturated hydrocarbon (p. 710) A hydrocarbon that containsat least one double or triple bond between carbon atoms.

unsaturated solution (p. 458) Contains less dissolved solute fora given temperature and pressure than a saturated solution; hasfurther capacity to hold more solute.

valence electrons (p. 140) The electrons in an atom’s outermostorbitals; determine the chemical properties of an element.

vapor (p. 59) Gaseous state of a substance that is a liquid or asolid at room temperature.

vaporization (p. 405) The energy-requiring process by which aliquid changes to a gas or vapor.

vapor pressure (p. 406) The pressure exerted by a vapor over aliquid.

vapor pressure lowering (p. 472) The lowering of vapor pres-sure of a solvent by the addition of a nonvolatile solute to thesolvent.

viscosity (p. 397) A measure of the resistance of a liquid to flow,which is affected by the size and shape of particles, and gen-erally increases as the temperature decreases and as intermol-ecular forces increase.

transition metal/metal de transiciΓ³n (pΓ‘g. 158) Tipo de ele-mento del grupo B contenido en el bloque D de la tabla periΓ³-dica y que, con algunas excepciones, se caracteriza por unorbital exterior lleno con nivel de energΓ­a n, y orbitales dllenos o parcialmente llenos con niveles de energΓ­a n οΏ½ 1.

transition state/estado de transiciΓ³n (pΓ‘g. 532) TΓ©rmino que seusa para describir un complejo activado dado que el complejoactivado es igualmente probable que forme reactantes a queforme productos.

transmutation/trasmutaciΓ³n (pΓ‘g. 815) ConversiΓ³n de un Γ‘tomode un elemento a un Γ‘tomo de otro elemento.

transuranium element/elemento transurΓ‘nico (pΓ‘g. 815) Unelemento en la tabla periΓ³dica con un nΓΊmero atΓ³mico de 93Γ³ mayor que es producido en el laboratorio por trasmutaciΓ³ninducida.

triglyceride/triglicΓ©rido (pΓ‘g. 785) Se forma cuando tres Γ‘cidosgrasos son unidos a un cadena principal de glicerol por enlacesΓ©ster; puede ser sΓ³lido o lΓ­quido a temperatura ambiente.

triple point/punto triple (pΓ‘g. 409) El punto en un diagrama defase que representa la temperatura y la presiΓ³n en que las tresfases de una sustancia (sΓ³lido, lΓ­quido y gas) pueden coexistir.

troposphere/troposfera (pΓ‘g. 842) La capa mΓ‘s baja de la atmΓ³s-fera terrestre donde se presenta el clima y en la que vivimos;las temperaturas disminuyen generalmente conforme aumentala altitud.

Tyndall effect/efecto de Tyndall (pΓ‘g. 479) DispersiΓ³n de la luzpor partΓ­culas coloidales.

unit cell/celda unitaria (pΓ‘g. 400) El arreglo mΓ‘s pequeΓ±o depuntos conectados que se puede repetir en tres direcciones paraformar una red cristalina.

universe/universo (pΓ‘g. 498) En termoquΓ­mica, es el sistemamΓ‘s los alrededores.

unsaturated hydrocarbon/hidrocarburo insaturad (pΓ‘g. 710)Hidrocarburo que contiene por lo menos uno enlace doble otriple entre Γ‘tomos de carbono.

unsaturated solution/soluciΓ³n insaturada (pΓ‘g. 458) La quecontiene menos soluto disuelto a una temperatura y presiΓ³ndadas que una soluciΓ³n saturada; tiene capacidad para contenersoluto adicional.

valence electrons/electrones de valencia (pΓ‘g. 140) Los elec-trones en el orbital mΓ‘s externo de un Γ‘tomo; determinan laspropiedades quΓ­micas de un elemento.

vapor/vapor (pΓ‘g. 59) Estado gaseoso de una sustancia que eslΓ­quida o sΓ³lida a temperatura ambiente.

vaporization/vaporizaciΓ³n (pΓ‘g. 405) Proceso demandante deenergΓ­a por el que un lΓ­quido cambia a gas o vapor.

vapor pressure/presiΓ³n del vapor (pΓ‘g. 406) PresiΓ³n ejercida porun vapor sobre un lΓ­quido.

vapor pressure lowering/disminuciΓ³n de la presiΓ³n del vapor(pΓ‘g. 472) DisminuciΓ³n de la presiΓ³n de vapor de un disol-vente por la adiciΓ³n de un soluto no volΓ‘til al disolvente.

viscosity/viscosidad (pΓ‘g. 397) Medida de la resistencia de unlΓ­quido para fluir, que se ve afectada por el tamaΓ±o y la formade las partΓ­culas y aumenta generalmente cuando la tempera-tura disminuye y cuando se incrementan las fuerzas intermole-culares.

V

U

Page 119: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

988 Chemistry: Matter and Change

Glossary/Glosario

Glo

ssary

/Glo

sario

voltaic cell (p. 665) A type of electrochemical cell that convertschemical energy into electrical energy.

VSEPR model (p. 259) Valence Shell Electron Pair Repulsionmodel, which is based on an arrangement that minimizes therepulsion of shared and unshared pairs of electrons around thecentral atom.

wavelength (p. 118) The shortest distance between equivalentpoints on a continuous wave; is usually expressed in meters,centimeters, or nanometers.

wax (p. 787) A type of lipid that is formed by combining a fattyacid with a long-chain alcohol; is made by both plants and ani-mals.

weak acid (p. 603) An acid that ionizes only partially in diluteaqueous solution.

weak base (p. 606) A base that ionizes only partially in diluteaqueous solution to form the conjugate acid of the base andhydroxide ion.

weight (p. 8) A measure of an amount of matter and also the effectof Earth’s gravitational pull on that matter.

X ray (p. 809) A form of high-energy, penetrating electromagneticradiation emitted from some materials that are in an excitedelectron state.

voltaic cell/celda voltaica (pΓ‘g. 665) Tipo de la celda electro-quΓ­mica que convierte energΓ­a quΓ­mica en energΓ­a elΓ©ctrica.

VSEPR model/modelo RPCEV (pΓ‘g. 259) Modelo deRepulsiΓ³n de los Pares ElectrΓ³nicos de la Capa de Valencia,que se basa en un arreglo que minimiza la repulsiΓ³n de lospares de electrones compartidos y no compartidos alrededordel Γ‘tomo central.

wavelength/longitud de onda (pΓ‘g. 118) La distancia mΓ‘s cortaentre puntos equivalentes en una onda continua; se expresageneralmente en metros, en centΓ­metros o en nanΓ³metros.

wax/cera (pΓ‘g. 787) Tipo de lΓ­pido que se forma combinando unΓ‘cido graso con un alcohol de cadena larga; es elaborada porplantas y animales.

weak acid/Ñcido débil (pÑg. 603) Ácido que se ioniza sólo par-cialmente en solución acuosa diluida.

weak base/base dΓ©bil (pΓ‘g. 606) Base que se ioniza sΓ³lo par-cialmente en soluciΓ³n acuosa diluida para formar el Γ‘cido con-jugado de la base y el ion hidrΓ³xido.

weight/peso (pΓ‘g. 8) Medida de la cantidad de materia y tam-biΓ©n del efecto de la fuerza gravitatoria de la Tierra sobre esamateria.

X ray/rayo X (pΓ‘g. 809) Forma de radiaciΓ³n electromagnΓ©ticapenetrante de alta energΓ­a emitida por algunas materias en unestado electrΓ³nico excitado.

W

X

Page 120: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

CHAPTER ASSESSMENTPractice Problems

Index

CHAPTER ASSESSMENTIndex

Index 989

AAbbreviations, physics-related, 912 –Absorption spectrum, 142–143 labAccuracy, 36–37, 893Acetaldehyde, 747–748Acetic acid, 751Acetone, evaporation of, 410–411 labAcetylene. See EthyneAcid-base indicators, 619Acid-base titration, 618–621, 621 prob.,

626–627 labAcidic solutions, 597Acid ionization constant (Ka), 605, 605

prob., 605 table; calculating from pH,615, 615–616 prob.

Acidosis, 625Acid rain, 193, 847–849, 848 labAcids, acid ionization constant (Ka), 605,

605 prob., 605 table, 615–616; anhy-drides, 601; Arrhenius model of,597–598; BrΓΈnsted-Lowry, 598–599;electrical conductivity and, 596, 602,604; in household products, 595 lab;ions in solutions of, 596–597; mono-protic, 600; naming, 250, 250 prob.;neutralization reactions. SeeNeutralization reactions; oxyacids,250, 250 prob.; pH of. See pH;polyprotic, 600, 601 prob.; propertiesof, 595–596; strength of, 602–605,604 lab, 607, 614; strong, 602; titra-tion of. See Acid-base titration; weak,603

Actinide series, 158, 197, 201Activated complex, 532Activation energy (Ea), 533–534, 540Active sites, 778–779Activities. See CHEMLABs; MiniLabs;

Problem-Solving LabsActivity series, 288–289Actual yield, 370Additional Practice Problems, 871–886

prob.Addition operations, 887–888Addition polymerization, 762–763Addition reactions, 755–757Adenine (A), 789, 791Adipic acid, 750Aeration, 853, 854Agitation, 456Agricultural technician, 599Agriculture, fertilizers and, 190, 191 labAir, density of, 439 labAir bags, 286, 376Air pollution, 4, 6, 845–849, 848 lab; acid

rain and. See Acid rain; global warm-ing and, 859–860, 860 lab; photo-chemical smog and, 846–847

Air pressure, 389, 390Airships, 180, 196, 446Alchemy, 90Alcoholic fermentation, 794–795,

796–797 lab

Alcohols, 737 lab, 738 table, 743–744;elimination reactions involving, 755;evaporation rates of, 410–411 lab; lay-ering in graduated cylinder, 25 lab;properties of, 766–767 lab

Aldehydes, 738 table, 747–748Algae, 190, 793, 853Algal blooms, 853Algebraic equations, 897–899, 899 prob.Aliphatic compounds, 723Alkali metals (Group 1A), 155, 155 lab,

181–182Alkaline dry cells, 674Alkaline earth metals (Group 2A), 155,

183–185, 856Alkaline solutions, 181Alkanes, 699–704; alkyl groups and, 702,

702 table; alkyl halides vs., 740–741;analyzing, 728–729 lab; branched-chain, 701–704, 704–705 prob.; chem-ical properties, 709; cycloalkanes,706, 707–708 prob.; elimination reac-tions involving, 754; halogenation of,741–742; naming, 700, 700 table;physical properties, 708–709; straight-chain, 699–701

Alkenes, 711–712, 714; examples of, 711table; naming, 712, 713–714 prob.

Alkyl groups, 702, 702 tableAlkyl halides, 738–741, 740 table, 755Alkynes, 714–716; examples of, 715

table; hydrogenation of, 757; synthesisand reactivity of, 715 lab, 716

Allotropes, 188; of carbon, 188; of oxy-gen, 192; of phosphorus, 190; of sul-fur, 193

Alloys, 67, 230–231; commerciallyimportant, 231 table; heat treatment ofsteel, 230 lab; Onion’s Fusible Alloy,211 lab; shape-memory, 412

Alnico, 231 tableAlpha decay, 808, 811–812, 812 tableAlpha particles, 106, 807 table, 808Alpha radiation, 106, 107 table, 807, 807

table, 829Alternative energy sources, 730, 860,

862–863 labAlternative fuel technician, 702Alum, 187Aluminum, 186, 187, 356; in Earth’s lith-

osphere, 855 table; electron configu-ration of, 138 table; from electrolysis,685–686; reactivity of, 300–301 lab

Aluminum bromide, 356Aluminum oxide, 187Aluminum sulfate, 187American Wire Gauge (AWG) standard,

46–47 labAmericium, 201Amethyst, 234Amides, 738 table, 752, 776 illus., 777Amines, 738 table, 745–746Amino acids, 776–777, 777 tableAmino group, 738 table, 745–746, 776

Ammonia, 190, 559; evaporation rate,410–411 lab; Lewis structure, 253prob.; molecular compound name, 249table; polarity of, 265–266; productionof, 181, 190, 588; VSEPR model of,261 lab

Ammonium nitrate, 286, 302Amorphous solids, 403Ampere (A), 26 tableAmphoteric substances, 599Amplitude, 119Anabolism, 792–793Analytical balance, 63–64Analytical chemistry, 9 table; percent

composition and, 328–329, 329 lab,330–331 prob.

Analytical chemists, 328, 329Anhydrides, 601Aniline, 746 illus.Anions, 214, 219 labAnodes, 92 illus., 665Answers, Practice Problems, 922–951Antacids, 183, 628Anthracene, 723, 739Antilogarithms, 911, 911 prob.Antimony, 189, 191Antimony sulfide, 191Applied research, 14, 17Aquamarines, 183 illus.Aqueous solutions, 292–299. See also

Solutions; calculating ion concentra-tions, 580, 580–581 prob.; calculatingmolar solubility, 579, 579 prob.; com-mon ion effect and, 584–585; heat ofsolution and, 457; of ionic com-pounds, 455; of molecular com-pounds, 456; nonelectrolytes in, 471;precipitation reactions, 292–293, 294prob., 295 lab; reactions forminggases, 296–298, 299 prob.; reactionsforming water, 295, 296 prob.; reac-tivity of metals in, 300–301 lab; solu-bility and, 457 table, 457–460;solvation in, 455–457

Aragonite, 218 illus.Argon, 138 table, 196, 842 tableAristotle, 88–89Aromatic compounds, 723–724; benzene,

722–723; carcinogenic, 724; substi-tuted, 724

Arrhenius model of acids and bases,597–598

Arsenic, 139 illus., 191Arsenic sulfide, 191Aryl halides, 739Aspirin, 344, 753Astatine, 194Astronomy connection, composition of

stars, 152; luminous intensity of stars,26; polycyclic aromatic hydrocarbons(PAHs), 739

Asymmetric carbon, 719–720Atmosphere (atm), 390, 390 tableAtmosphere, Earth’s, 4, 841–849; acid

Page 121: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

990 Chemistry: Matter and Change

Index

rain in, 847–849, 848 lab; composi-tion of, 842 table, 842–843; layers of,4, 842; ozone layer, 4–5, 844–846;photochemical smog in, 846–847;photodissociation in, 843; photoion-ization in, 844

Atomic emission spectrum, 125 lab,125–126, 142–143 lab

Atomic mass, 102 lab, 102–103, 103–104prob.

Atomic mass unit (amu), 102, 913 tableAtomic number, 98, 99 prob., 101 prob.Atomic orbitals, 132–134Atomic radii, periodic table trends,

163–164, 165 prob.Atomic solids, 402, 402 tableAtomic structure, Bohr model of,

127–128, 130 lab; Dalton’s theory of,89–90; de Broglie’s model of,129–130; early philosopher’s theoriesof, 87–89; nuclear atomic model of,94–96, 117–118; plum pudding modelof, 94; quantum mechanical model of,131–132; subatomic particle model of,96–97

Atoms, 90–91; mass-to-atom conver-sions, 316–317, 317–318 prob.;nuclear stability of, 107, 810–811; sizeof, 90–91, 108–109 lab; subatomicparticles of, 92–94, 96–97, 97 table

Atom smashers. See Particle acceleratorsAtom-to-mass conversions, 316–319, 318

prob.ATP (adenosine triphosphate), 793Aufbau principle, 135–136Aurora borealis, 131Austentite, 412Automobiles, air bags in, 286, 376; bat-

teries of, 675; catalytic converters in,541, 552; fuel cells for, 679, 679 lab;photochemical smog from, 847; tur-bocharging engines of, 424 lab

Average reaction rates, 529–530, 531prob.

Avogadro, Amedeo, 310, 311Avogadro’s number, 310, 314 lab, 913

tableAvogadro’s principle, 430–431, 431–433

prob.

BBackground radiation, measuring,

832–833 labBacteria, 193, 793, 795–796, 861Bakelite, 761, 765Baking soda, 297, 330 prob., 362 labBalanced chemical equations, 280–281,

282 prob., 283; relationships derivedfrom, 354 table; stoichiometry and,354, 355–356 prob.

Balanced forces, 563

Ball-and-stick molecular models, 252illus., 260 table, 699

Ballonet, 446Balmer series, 128Band of stability, 811Bar graphs, 43Barite, 218 illus.Barium, 183, 185Barium carbonate, 294 prob.Barium nitrate, 294 prob.Barometers, 389Base ionization constant (Kb), 606, 607

tableBase pairs, 20, 789, 791Bases, antacids, 628; Arrhenius, 597; base

ionization constant (Kb), 606, 607table; BrΓΈnsted-Lowry, 598–599; elec-trical conductivity and, 596, 602, 604;in household products, 595 lab; ions insolutions of, 596–597; neutralizationreactions and. See Neutralization reac-tions; pH and. See pH; physical prop-erties of, 595–596; strength of, 606,606 prob.; strong, 606; titration of. SeeAcid-base titration; weak, 606

Base units, SI, 26 table, 26–27Basic solutions, 597Batteries, 182, 672, 673–677. See also

Fuel cellsBauxite, 187, 856 table, 857 illus.Becquerel, Henri, 806Beer’s law, 480–481 labBeeswax, 787Bent molecular shape, 260 tableBenzaldehyde, 748Benzene, 722–723, 724Benzopyrene, 724Beryl, 183, 218 illus.Beryllium, 99, 137 table, 140 table, 183Beryllium oxide, 183Beta decay, 811, 812 tableBeta particles, 107, 807 table, 808,

808–809Beta radiation, 106 illus., 107, 807,

808–809; biological effects of, 829;characteristics and properties, 107table, 807 table

Binary acids, 250, 250 prob.Binary ionic compounds, 215–216,

221–222Binary molecular compounds, 248–249,

248–249 prob., 251 illus.Binding energy, nuclear reactions and,

821–822Biochemistry, 9 table, 775–795Biological equilibrium, 574Biological metabolism. See MetabolismBiological molecules, carbohydrates,

781–783; lipids, 784–787; nucleicacids, 788–791; proteins, 775–780

Biology Connection, bioluminescence,637; Fleming’s discovery of lysozymeand penicillin, 14; phospholipases in

venom, 785; seawater, effects of drink-ing, 851; vitalism, 701; vitamins, 366

Bioluminescence, 637Bismuth, 189, 191Black-grey hematite, 234Black phosphorus, 190Blast furnace, 199 illus.Bleach, redox reactions and, 638Blocks, periodic table, 160–161; d-block

elements, 160, 197–201; f-block ele-ments, 161, 197–201; p-block ele-ments, 160, 186–196; s-blockelements, 160, 179–185

Blood, blood buffers, 624 lab, 625; trans-port proteins in, 779

Blood sugar (glucose), 781Blue sapphires, 234Bohr, Niels, 127–128Bohr model of the atom, 127–128, 130 labBoiling, 61Boiling point, 56, 62, 406; dispersion

forces and, 267 lab; of ionic com-pounds, 218, 218 table; of metals, 229,229 table; of molecular solids, 266

Boiling point elevation (?Tb), 472, 472table, 474–475 prob., 921 table

Boltzmann, Ludwig, 385Bond angles, 259Bond dissociation energy, 246–247Bonding orbital, 245Bonding pair, 243Bond length, 246Bonds, chemical. See Chemical bondsBonneville Salt Flats, 182Borates, 226Borax, 186Boron, 137 table, 139 illus., 140 table,

186, 204Boron group (Group 3A), 186–187Boron nitride, 186Borosilicate glassware, 186Bosch, Carl, 588Boyle, Robert, 421Boyle’s law, 421, 422 prob., 446Branched-chain alkanes, 701–704,

704–705 prob.Branched-chain alkenes, 712–713Brass, 231, 231 tableBreeder reactors, 825Brine, electrolysis of, 685Britannia metal, 191Bromide, 851 tableBromine, 158, 194, 195, 242, 3561-Bromopentane, 740 tableBromothymol blue, 621 illus.BrΓΈnsted, Johannes, 598BrΓΈnsted-Lowry model of acids and

bases, 598–599, 599 prob., 603–604Bronze, 189, 231 tableBrown, Robert, 478Brownian motion, 478Buchner, Eduard, 701Buckminsterfullerene, 8 lab

Index

Page 122: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Index 991

Index

Buckyball, 8 labBuffer capacity, 623Buffers, 624 lab, 624–625Building materials, environment-friendly,

80Burner gases, analyzing, 728–729 labButane, 699, 700, 700 table2-Butanol, 7441-Butene, 711 table2-Butene, 711 tableButylethyl ether, 745Butyl group, 702 table1-Butyne, 715 table2-Butyne, 715 table

CCalcite, 856 tableCalcium, 183–184; in Earth’s lithosphere,

855 table; hard water and, 202–203lab, 864; in mineral supplements, 200table; in seawater, 851 table

Calcium carbonate, 184, 847, 858Calcium chloride, flame test, 125 labCalculators, photoelectric cells in, 123

illus.Calibration, 38Calorie, 491; converting between units,

491–492 prob.; of a potato chip,520–521 lab

Calorimeter, 496–497, 497–498 prob.,504 prob., 520–521 lab

Calorimetry, 496–497, 497–498 prob.,520–521 lab

Cancer, 724, 829Candela (cd), 26 tableCapillary action, 399Capillary tubes, 399Carbides, 187Carbohydrates, 781–783; disaccharides,

782; monosaccharides, 775 lab, 781;polysaccharides, 782–783

Carbon, 187–188. See also Organic chem-istry; abundance of, 70; allotropes of,188; asymmetric, 719–720;Buckminsterfullerene, 8 lab; carbon-carbon bonds and, 710; electron con-figuration, 137 table; electron-dotstructure, 140 table; fibers of, 768;hybridization of, 261

Carbon-12, 102Carbon-14, 107, 818 table, 820Carbonated beverages, 460Carbonates, 187, 192, 856, 856 tableCarbon cycle, 858–860Carbon dating, 820Carbon dioxide, atmospheric, 842 table;

carbon cycle and, 858–859; fromcement in building foundations, 80;from fermentation, 794–795, 796–797lab; formation of in aqueous solutions,296, 297; global warming and,859–860, 860 lab; Lewis structure for,

254 prob.; phase diagram, 409Carbon fibers, 768Carbon group (Group 4A), 187–189Carbonic acid, 600Carbon steel, 231Carbon tetrachloride, 265Carbonyl group, 738 table, 747–749Carboxyl group, 738 table, 749–751Carboxylic acids, 738 table, 749–752;

amides from, 752; condensation reac-tions and, 752–753; esters from,750–751, 751 lab

Carcinogens, 724Careers, agricultural technician, 599;

alternative fuel technician, 702; ana-lytical chemist, 329; chemistryteacher, 9; dental assistant, 762; dieti-cian, 182; electrochemist, 677; envi-ronmental health inspector, 845; foodtechnologist, 548; heating and coolingspecialists, 499; materials engineer,403; medical lab technician, 160;meteorologist, 421; nurse anesthetist,569; organic chemist, 250; pastry chef,297; personal trainer, 794; pharmacist,354; photochemical etching artist,641; radiation protection technician,106; renal dialysis technician, 475;science writer, 56; scientific illustrator,41; spectroscopist, 136; wastewatertreatment operators, 222

CargoLifter, 446Carothers, Wallace, 14Cassiterite, 856 tableCast iron, 231 tableCatabolism, 792–793Catalysts, 529 lab, 539–541, 588, 757,

778. See also EnzymesCatalytic converters, 541, 552, 847Cathode rays, 92–93Cathode ray tubes, 92–93, 172Cathodes, 92, 665Cations, 212–213, 219 labCavendish, Henry, 180Caverns, 600CBL CHEMLABs, alcoholic fermenta-

tion by yeasts, 796–797 lab; Beer’slaw, 480–481 lab; radiation detectionand measurement, 832–833 lab; solarponds, 862–863 lab; voltaic cell poten-tials, 688–689 lab

Cell, electrochemical potential, 666–672,667 table, 688–689 lab

Cell membrane, phospholipid bilayers of,787

Cellular respiration, 192, 200, 794Celluloid, 761Cellulose, 783Celsius, Anders, 30Celsius scale, 30Cement, carbon dioxide from, 80Cerium, 201Cesium, 140, 169, 182

Cesium clocks, 26 tableCFCs. See Chlorofluorocarbons (CFCs)Chadwick, James, 96Chain reactions, 805 lab, 822–823Chalcopyrite, 856 tableChance, discoveries by, 14Changes of state. See Phase changesCharge-to-mass ratio, 93Charles, Jacques, 423Charles’s law, 419 lab, 423–424, 424 lab,

425 prob.Chemical bonds, 211–231; covalent,

241–247; hydrogen, 266, 395; ionic,215–220; metallic, 228–229

Chemical changes, 55 lab, 62–63, 78–79lab

Chemical equations, 62–63, 277–280;balancing, 280–281, 282 prob., 283,354–355, 355–356 prob.; ionic, 293;mole ratios and, 356–357; reactionforming precipitate, 293, 294 prob.; forredox reactions. See Redox equations;skeleton, 279; symbols used in, 278table, 278–279; thermochemical,501–505; word, 279

Chemical equilibrium, 559 lab, 561–574.See also Solubility equilibria; biologi-cal reactions and, 574; common ioneffect and, 584–585; concentrationand, 569–571; dynamic nature of,562–563; equilibrium concentrationfrom Keq, 575, 576 prob.; equilibriumconstant (Keq), 563–564, 567–568;heterogeneous, 565–566, 566–567prob.; homogeneous, 563, 563–564prob.; law of, 563; Le ChΓ’telier’s prin-ciple and, 569–574, 573 lab; tempera-ture and, 572–573, 573 lab; volumeand, 571–572

Chemical formulas, 71; for binary ioniccompounds, 221–222, 223–224 prob.;empirical. See Empirical formula; forhydrates, 338 table, 339, 340 prob.; forionic compounds, 221–224, 223–225prob.; mole relationships from,320–321, 321 prob.; molecular. SeeMolecular formulas; percent composi-tion from, 328–329; for polyatomicionic compounds, 224, 225 prob.;structural. See Structural formulas;writing from names, 250

Chemical models, 8 lab, 9Chemical potential energy, 490–491Chemical properties, 57Chemical reactions, 62–63, 277–299; in

aqueous solutions. See Aqueous solu-tions; combustion, 285; conservationof mass and, 63–64, 64–65 prob.;decomposition, 286; double-replace-ment, 290–291, 291 prob.; equationsfor, 278 table, 278–281, 279 prob., 282prob.; evidence of, 63, 78–79 lab, 277lab, 277–278, 353 lab; heat from. See

Index

Page 123: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

992 Chemistry: Matter and Change

Index

Thermochemistry; mechanisms of,548–549; neutralization. SeeNeutralization reactions; nuclear reac-tions vs., 805 table; organic. SeeOrganic reactions; predicting productsof, 291 table; rates of. See Reactionrates; redox. See Redox reactions;reversible, 560–562; single-replace-ment, 287–288, 289 prob.; spontaneityof, 513–516, 516 prob.; synthesis, 284;time for bonds to break and form, 544

Chemical symbols, 70Chemical weathering, 281Chemistry, 3, 7–9; benefits from study of,

17; branches of, 9, 9 tableChemistry and Society, carbon fibers,

768; environment-friendly buildings,80; Human Genome Project (HGP),20; radon, high-risk areas for, 834;sickle cell disease, 482

Chemistry and Technology, airships, 446;drug synthesis by combinatorial chem-istry, 344

CHEMLABs. See also Discovery Labs;MiniLabs; Problem-Solving Labs; Tryat Home Labs alcohols, properties of,766–767 lab; Beer’s law, 480–481 lab;calorimetry and, 520–521 lab; chemi-cal reactions, observing, 78–79 lab;concentration and reaction rate,550–551 lab; density and thickness ofa wire (graphs), 46–47 lab; descriptivechemistry of elements, 170–171 lab;evaporation rates, 410–411 lab; fer-mentation by yeast, 796–797 lab; hardwater, 202–203 lab; hydrates, molesof water in, 342–343 lab; hydrocarbonburner gases, analyzing, 728–729 lab;ideal gas law, 444–445 lab; ionic com-pounds, formation of, 232–233 lab;line spectra, 142–143 lab; mole ratios,374–375 lab; paper chromatography,268–269 lab; radiation detection andmeasurement, 832–833 lab; reactivityof metals in aqueous solution,300–301 lab; redox reactions,654–655 lab; rubber band stretch (sci-entific method), 18–19 lab; solarponds, 862–863 lab; solubility productconstants, 586–587 lab; standardreduction potential in voltaic cells,688–689 lab; titration, standardizing abase solution by, 626–627 lab; vanillaextract, tracing scent of (atomic size),108–109 lab; voltaic cell potentials,688–689 lab

Chemistry teacher, 9Chemosynthesis, 193Chernobyl, 824Chimney soot, 724Chirality, 719Chloride, 851 tableChlorine, 138 table, 194, 195, 854

Chlorofluorocarbons (CFCs), 5–6, 741,845–846

Chloromethane, 740 table1-Chloropentane, 740 tableChlorophyll, 185Cholesterol, 787Chorionic gonadotropin, 780Chromatography, 68 lab, 69, 268–269 labChromite, 856 tableChromium, 187, 200, 200 table, 234Cinnabar, 193, 856 table, 857 illus.Cinnamaldehyde, 748Circle graphs, 43cis– orientation, 718Citrine, 234Coal, 285Coarse filtration, 853Cobalt, 198, 199, 200Cobalt-60, 818 tableCodon, 791Coefficients, 280–281Coins, alloys in, 67; isotopes in, 100 illus.Cold packs, 302, 500Collagen, 780Colligative properties, 471–475; boiling

point elevation (?Tb), 472, 472 table,474–475 prob., 921 table; freezingpoint depression (?Tf), 473 lab,473–474, 474 table, 474–475 prob.,921 table; osmotic pressure, 475;vapor pressure lowering, 472

Collision theory, 532 table, 532–535, 533lab, 550–551 lab; activated complexorientation and, 532; activation energyand, 533–534; concentration and, 537,550–551 lab; free energy (?G) and,535; surface area and, 537–538; tem-perature and, 538, 593 illus.

Colloids, 477 table, 477–479, 478 labColor, change in from chemical reaction,

278; of ionic compounds, 218, 219lab, 234; as physical property, 56

Color key to elements, 912 tableColumbia, 529Combinatorial chemistry, drug synthesis

by, 344Combined gas law, 428, 429–430 prob.Combustion reactions, 285, 285 prob., 291

table, 504 prob.Common ion, 584Common ion effect, 584–585, 586–587

labComplementary base pairs, 789Complete ionic equations, 293, 294 prob.Complex carbohydrates (polysaccha-

rides), 782–783Complex reactions, 548Composite materials, 768Compounds, 71, 74; breakdown of, 74;

formulas for, 71, 331–334, 337; law ofdefinite proportions and, 75, 76 prob.;law of multiple proportions and,76–77; mass-to-mole conversions of,

324, 324 prob.; mass-to-particles con-version of, 325, 325–326 prob.; molarmass of, 322, 322 prob.; mole rela-tionship with chemical formula of,320–321, 321 prob.; mole-to-massconversion, 323, 323 prob.; propertiesof, 74

Computer chips, 139 illus., 158 illus., 188Computer monitors, 828Concentrated solutions, 462, 607Concentration, 462–470; from Beer’s law,

480–481 lab; chemical equilibriumand, 569–571; equilibrium concentra-tions, 575, 576 prob.; by molarity,464–465, 465 prob.; by percent mass,463 prob., 463–464; by percent vol-ume, 464, 464 prob.; ratios for express-ing, 462, 462 table; reaction rates and,537, 550–551 lab

Conclusions, 12–13Condensation, 61, 407–408Condensation polymerization, 764Condensation reactions, 752–753Condensed structural formulas, 700, 700

tableConjugate acid-base pair, 598–599, 599

prob.Conjugate acids, 598–599, 599 prob.Conjugate bases, 598–599, 599 prob.Conservation of mass, law of, 63–64,

64–65 prob., 354Conservation of energy, law of, 490Constant, 12Contact process, 373Continuous data, 45Continuous spectrum, 119–120Controls, 12Conversion factors, 34, 35 prob.Coordinate covalent bonds, 257Copper, 57 table, 199, 200; law of multi-

ple proportions and, 76 table, 76–77;purification of ores of, 686–687; reac-tion with silver nitrate, 78–79 lab;reactivity of in aqueous solution,300–301 lab; versatility of, 151 lab

Copper chloride, 77 illus.Copper sulfate(II), 374–375 labCore, Earth’s, 855Corn oil, layering in graduated cylinder,

25 labCorrosion, 679–682, 681 labCoupled reactions, 519Covalent bonds, 242–247; bond dissocia-

tion energy, 246–247; coordinate, 257;formation of, 241 lab, 242; Lewisstructures, 243–244, 244 prob.,252–258; multiple, 245–246, 710;polar, 264–266; single, 243–245;strength of, 246–247

Covalent compounds, common names of,249, 249 table; covalent networksolids, 267; Lewis structures for, 253prob., 254 prob.; naming, 248–249

Index

Page 124: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Index 993

Index

prob., 248–249, 251 illus.; polarity of,264–266, 266 prob.; properties of,266–267, 267 lab

Covalent molecular solids, 266Covalent network solids, 267, 402, 402

tableCracking, 726, 754CRC Handbook of Chemistry and Physics,

60, 62Crest, 119Crick, Francis, 20, 789–791Critical mass, 823Crookes, Sir William, 92Crust, Earth’s, 855–857Crystal lattice, 218, 400Crystalline solids, 400, 401 illus., 401 lab,

402, 402 tableCrystallization, 69Crystals, 218, 219 lab, 234, 400, 401

illus., 401 labCube roots, 892Cubic crystals, 401 illus.Cubic decimeter, 27Curie, Marie, 192, 806Curie, Pierre, 192, 806Cyanides, 187Cycles, geochemical. See Geochemical

cyclesCyclic hydrocarbons, 706Cycloalkanes, 706, 707–708 prob.Cyclohexane, 706Cyclohexyl ether, 745Cyclohexylamine, 746 illus.Cyclopropane, 706Cytosine (C), 789, 791

DDacron, 762 table, 763 tableDaily values, 200, 200 tableDalton, John, 89–90Dalton’s atomic theory, 89–90Dalton’s law of partial pressure, 391–392,

391–392 prob.Data, 10, 11Daylighting, 730d-block elements, 160, 161 illus., 197–201de Broglie, Louis, 129–130de Broglie equation, 130Decane, 700 tableDecomposition reactions, 286, 286 prob.,

291 tableDefinite proportions, law of, 75, 76 prob.Dehydration reactions, 755Dehydrogenation reactions, 754–755Delocalized electrons, 228Democritus, 88–89Denaturation, 778Denatured alcohol, 744Density, 27–28, 29 prob., 56; of gases,

386–387, 437, 438 prob., 439 lab; ofliquids, 25 lab, 396; of solids, 28 lab,

46–47 lab, 385 lab, 399–400; units of(g/cm3), 27

Dental amalgam, 231 tableDental assistant, 762Deoxyribonucleic acid. See DNA

(deoxyribonucleic acid)Deoxyribose sugar, 789Dependent variables, 12, 44–45, 903Deposition, 408Depth, pressure vs., 390 labDerived units, 27–29, 29 prob.Desalination, 851–852Descriptive chemistry, 170–171 labDesiccators, 341Detergents, action of, 398Deuterium, 180Diagonal relationships, 180Diamagnetism, 199Diamonds, 187, 188, 267Diatomic molecules, 2421,4-Dichlorobenzene, 742 illus.Dietary fiber, 783Dietary supplements, 200, 200 tableDietician, 182Diffusion, 387, 388 prob.Digestive enzymes, 782Dilute solutions, 462, 467–468 prob., 607Dimensional analysis, 34–35, 35 prob.,

900, 900 prob.1,4-Dimethylbenzene, 724Dinitrogen oxide, 248Dipeptides, 777Diphosphorus pentoxide, 248–249 prob.Dipole-dipole forces, 266, 394Direct relationships, 44, 905, 907 prob.Disaccharides, 782Discovery Labs. See also CHEMLABs;

MiniLabs; Problem-Solving Labs; Tryat Home Labs alcohol functionalgroups (making slime), 737 lab; cata-lysts, 529 lab; chain reactions, 805 lab;chemical reactions, observing, 277 lab,353 lab; electrical charge, 87 lab;household items, acidic and basic, 595lab; lemon battery, 663 lab; liquids, lay-ering of, 25 lab; magnetic materials,179 lab; matter, change in form of, 3lab; metals, chemical change, 55 lab;metals, versatility of, 151 lab; mole,size of, 309 lab; observation and deduc-tion, 117 lab; oil and vinegar, mixing,241 lab; Onion’s Fusible Alloy, 211 lab;oxidation-reduction reactions (rust),635 lab; solution formation, 453 lab;sugars, testing for simple, 775 lab; tem-perature and volume of a gas, 419 lab;temperature of a reaction, 489 lab; vis-cosity of motor oil, 697 lab; water, clar-ification of, 841 lab

Dispersion forces, 266, 267 lab, 393–394Dissolved oxygen, 457Distillation, 69, 192Distilled water, 202–203 lab, 410–411 lab

Diving depth, pressure and, 390 labDivision operations, 889DNA (deoxyribonucleic acid), 788–790,

791 illus.; damage to by ultravioletradiation, 843; function of, 789–790;replication of, 790, 790 lab; structureof, 789

Dobson, G. M. B., 4Dobson spectrophotometer, 4Dobson units (DU), 4Doping, 204Double covalent bonds, 245, 246, 710Double-replacement reactions, 290–291;

gases from, 296–298, 299 prob.;guidelines for, 290 table; precipitatesfrom, 290, 292–293, 294 prob., 295lab; predicting products of, 291 table;water from, 295, 296 prob.

Down’s cells, 684Drake, Edwin, 726Dry cells, 673–674Dry ice, sublimation of, 407Ductility, 155Dust, atmospheric, 843Dyes, separation of by chromatography,

68 labDynamite, 190Dysprosium, 201

EEarth, air pressure on, 389; atmosphere

of, 4, 841–849; carbon cycle of,858–859; crust of, 855–857; globalwarming and, 859–860, 860 lab; grav-itational field of, 843; hydrosphere of,850–854; layers of, 855; nitrogencycle of, 860–861; water cycle of,850–851

Earth Science Connection, birth of the oilindustry, 726; limestone cave forma-tion, 600; mineralogy, 226; soil dam-age from acid rain, 847; thermalpollution and dissolved oxygen, 457;volcanoes, 517; water vapor in clouds,408; weathering, 281

Effusion, 387, 388 prob.Einstein, Albert, 123–124, 821Elastic collisions, 386Electrical charge, 87 lab, 92–93Electric current, unit of (A), 26 tableElectric fields, affect on radiation, 807

illus.Electrochemical cell potential, 666–669,

668–669 lab, 670–671 prob.Electrochemical cells, 665–666. See also

Voltaic cellsElectrochemist, 677Electrochemistry, 663–687; batteries, 672,

673–677; corrosion, 679–682, 681 lab;electrolysis, 74, 683–687; fuel cells,677–679, 679 lab, 690; redox reac-

Index

Page 125: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

994 Chemistry: Matter and Change

Index

tions and, 663–665; voltaic cells, 663lab, 663–672, 688–689 lab

Electrolysis, 74, 683–687Electrolytes, 218, 471, 472, 473Electrolytic cells, 683Electromagnetic radiation, 118–121Electromagnetic spectrum, 120Electromagnetic waves, 118–121; ampli-

tude of, 119; frequency of, 118–119;speed of, 119; wavelength of, 118,121, 121 prob.

Electron capture, 812, 812 tableElectron configuration notation, 137 table,

137–138Electron configurations, 135–141, 139

prob., 917–918 table; aufbau principleand, 135–136; electron configurationnotation, 137 table, 137–138; electron-dot structure, 140 table, 140–141;exceptions to predicted, 138; groundstate, 135–136; Hund’s rule and, 136;noble gas notation, 138, 138 table;orbital diagrams of, 136–138, 137table; Pauli exclusion principle and,136; periodic table trends, 159–161,162 prob.

Electron-dot structures, 140, 140 table,141 prob., 160 illus.

Electronegativity, 168–169, 263; periodictable trends, 169, 263, 263 table; pre-dicting bond types from differences in,264; redox reactions and, 639; unitsof (Paulings), 169

Electronegativity differences, 264Electrons, 93, 97 table; charge of, 94;

delocalized, 228; discovery of, 92–94;energy change of, 128; mass of, 94,102 table, 913 table; valence, 140

Electron sea model, 228Electroplating, 687Elements, 70–71. See also specific ele-

ments; abundance of, 70; atomic massof, 102 lab, 102–103, 103–104 prob.;chemical symbols, 70; color key for,912 table; electron configuration ofeach, 917–918 table; emission spec-trum of, 125 lab, 125–126, 142–143lab; law of definite proportions and,75; law of multiple proportions and,76–77; minerals and, 856; names of,70; periodic table of. See Periodic tableof elements; properties of, 155 lab,914–916 table; representative, 154,170–171 lab, 179–180

Elimination reactions, 754–755Emeralds, 183 illus.Emission spectra, 125 lab, 125–126,

142–143 labEmpirical formulas, 331–332; from mass

data, 336 prob., 337 prob.; from per-cent composition, 332–333 prob.

Endothermic reactions, 219, 247, 496;activation energy and, 534; enthalpy

and, 498–500, 500 table; thermo-chemical equations and, 501–505

End point, 619Energy, 489–495; bond dissociation,

246–247; changes of state and,502–505, 503 lab, 504 prob., 505 lab;chemical potential, 490–491; heat. SeeHeat; ionic bonds and, 219–220;kinetic, 386, 489, 490; lattice,219–220; law of conservation of, 490;photon, 123, 124 prob.; potential,489–490; quantized, 122–123; rela-tionship with mass, 821; solar, 495,730, 860, 862–863 lab; specific heat,492 table, 492–495, 494–495 prob.;units of, 491, 491 table, 491–492 prob.

Energy states, atom, 127–128Energy sublevels, 132 illus., 133–134Enthalpy (H), 499–500; calculating

changes in, 506–507, 508 prob.;calorimetry measurement of, 520–521lab; changes of state and, 502–505,503 lab, 505 lab; Hess’s law and,506–508; thermochemical equationsand, 501

Enthalpy (heat) of combustion (οΏ½Hcomb),501, 501 table

Enthalpy (heat) of fusion (οΏ½Hfus), 502,502 table, 503 lab, 505 lab

Enthalpy (heat) of reaction (οΏ½Hrxn),499–500, 500 table

Enthalpy (heat) of vaporization (οΏ½Hvap),502, 502 table

Entropy (S), 514–519; free energy and,517–518; law of disorder and, 514;predicting changes in, 514–515, 516prob.

Environmental chemistry, 9Environmental health inspector, 845Enzymes, 539, 778–779, 782. See also

CatalystsEnzyme-substrate complex, 779Epsom salts, moles of water in hydrated,

342–343 lab; precipitate-forming reac-tions, 295 lab

Equations, 278; algebraic, 897–899, 899prob.; chemical. See Chemical equa-tions; complete ionic, 293, 294 prob.;net ionic, 293, 294 prob.; nuclear, 106,813, 813–814 prob.; skeleton, 279, 279prob., 280 illus.; symbols used in, 278table, 278–279; word, 279

Equilibrium. See Chemical equilibrium;Solubility equilibria

Equilibrium concentrations, 575, 576prob.

Equilibrium constant (Keq), 563–566;determining value of, 567, 568 prob.;equilibrium concentrations from, 575,576 prob.; Le ChΓ’telier’s principleand, 569–574, 573 lab; solubility prod-uct constant and, 577–578

Equilibrium constant expressions, 563;

equilibrium concentrations from, 575,576 prob.; for heterogeneous equilib-ria, 565–566, 566–567 prob.; forhomogeneous equilibria, 563,563–564 prob.

Equivalence points, 618, 619–620Essential elements, 200Esters, 738 table, 750–751, 751 lab, 753Ethanal, 747–748Ethanamide, 752Ethane, 699, 700 table, 754Ethanoic acid, 749, 753 illus.Ethanol, 743–744; evaporation of,

410–411 lab, 766–767 lab; from fer-mentation, 795–796

Ethene, 711 table, 714, 754, 762 tableEthers, 738 table, 745, 745Ethylamine, 746 illus.Ethylbenzene, 724Ethyl butanoate, 751 illus.2-Ethyl-1,4-dimethylbenzene, 724Ethyl ether, 745Ethyl group, 702 tableEthylmethyl ether, 745Ethyne (acetylene), 714, 715 lab, 715

table, 716Europium, 201Eutrophication, 190Evaporation, 405–406, 410–411 lab,

766–767 labEveryday Chemistry, alternative energy,

730; gemstones, color of, 234; senseof smell, 798; shape-memory alloys,412

Example Problems, algebraic equations,solving, 899 prob.; atom-to-mass con-versions, 318 prob.; atomic mass,103–104 prob.; atomic number, 99prob.; balancing chemical equations,282 prob.; balancing net ionic redoxequations, 648–649 prob.; balancingredox equations by half-reactions,652–653 prob.; balancing redox equa-tions by oxidation-number method,645–646 prob.; boiling point elevation,474 prob.; Boyle’s law (gas tempera-ture and pressure), 422 prob.;branched-chain alkanes, naming,704–705 prob.; branched-chainalkenes, naming, 713 prob.; calorime-try and specific heat, 497–498 prob.;Charles’s law, 425 prob.; combinedgas law, 429 prob.; conservation ofmass, 64–65 prob.; cycloalkanes, nam-ing, 707 prob.; diffusion rates of agases, 388 prob.; dimensional analysis,35 prob., 900 prob.; electron configu-ration periodic table trends, 162 prob.;electron configurations, 139 prob.;electron-dot structure, 141 prob.;empirical formula from percent com-position, 332–333 prob.; empirical for-mulas from mass data, 336 prob.;

Index

Page 126: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Index 995

Index

energy of a photon, 124 prob.; energyreleased from a reaction, 504 prob.;energy units, converting, 491 prob.;equations for reaction forming precip-itate, 294 prob.; equilibrium concen-trations, 576 prob.; equilibriumconstant expression for heterogeneousequilibria, 566 prob.; equilibrium con-stant expression for homogeneousequilibria, 563–564 prob.; equilibriumconstant (Keq) values, 568 prob.; for-mula for an ionic compound, 223prob.; formula for an ionic compoundwith polyatomic ion, 225 prob.; freez-ing point depression, 474 prob.; Gay-Lussac’s law, 426–427 prob.; half-lifeof radioisotopes, 818 prob.; Henry’slaw, 461 prob.; Hess’s law of heat sum-mation, 508 prob.; hydrate formulas,340 prob.; hydronium and hydroxideion concentrations from Kw, 609prob.; ideal gas law, 436–437 prob.;induced transmutation reaction equa-tions, 816 prob.; instantaneous reac-tion rates, 547 prob.; ionic compound,formation of, 217 prob.; isotopes, 101prob.; Lewis structures, 244 prob., 253prob., 254 prob., 255 prob., 257–258prob.; limiting reactants, determining,367–368 prob.; mass from density andvolume, 29 prob.; mass of a gas, 442prob.; mass-to-atom conversions, 317prob.; mass-to-mass conversions, 361prob.; mass-to-mole conversions, 316prob., 324 prob.; mass-to-particles con-versions, 325–326 prob.; molality, 469prob.; molarity, 465 prob.; mole-parti-cle conversions, 312 prob.; mole rela-tionships from chemical formula, 321prob.; mole-to-mass conversions, 315prob., 323 prob.; mole-to-mole con-versions, 359 prob.; molecular formu-las, 334–335 prob.; molecular shape,262 prob.; naming binary molecularcompounds, 248–249; nuclear equa-tions, balancing, 813 prob.; oxidationnumbers, determining, 642 prob.; par-tial pressure of a gas, 391 prob.; per-cent by mass in a solution, 463 prob.;percent composition, 330 prob.; per-cent error, 38 prob.; percent yield, 371prob.; pH from hydronium ion con-centration, 610–611 prob.; pOH andpH from hydroxide concentration, 612prob.; Practice Problems, 437 prob.;precipitates, predicting from solubil-ity product constant, 582–583 prob.;reaction rates, calculating average, 531prob.; redox reactions, identifying, 640prob.; reduction potential in voltaiccell, 670–671 prob.; rounding, 40–42prob.; scientific notation, 31 prob., 33prob.; significant figures, 39 prob., 896

prob.; single-replacement reactions,289 prob.; specific heat, 494 prob.;spontaneity of reactions, predicting,518–519 prob.; standard enthalpy(heat) of formation, 511–512 prob.;stoichiometry and chemical equations,355 prob.; unit conversions, 902 prob.;volume of a gas at STP, 441 prob.

Excess reactants, 364–365, 368–369Excited state, 127Exosphere, 842Exothermic reactions, 219, 247; activa-

tion energy and, 534; enthalpy and,498–500, 500 table; thermochemicalequations and, 501–505

Expanded octet, 257Experiments, 11–12. See also CHEMLABs;

MiniLabs; Problem-Solving Labs;chance discoveries during, 14; labora-tory safety and, 14–15, 16 table

Exponential decay function, 817, 819 labExponents, 890–891Extensive properties, 56Extrapolation, 45, 906–907

FFamilies, periodic table. See GroupsFaraday, Michael, 722Fats, 785Fatty acids, 784–785f-block elements, 161, 197–201Fermatoseconds, 544Fermentation, 62, 743, 794–795, 796–797

labFerromagnetism, 199Fertilizers, 190, 191 lab, 193, 559, 853Filtration, 68, 69 illus., 78–79 labFireworks, 185First law of thermodynamics, 490Flame tests, 78–79 lab, 125, 125 labFleming, Alexander, 14Fluidity, 396–397Fluoridation, 195, 583 labFluorine, 195; atomic mass, 104;

diatomic, 242; electron configuration,137 table; electron-dot structure, 140table; electronegativity of, 169, 195;reactivity of, 288

Fluoroapatite, 583 lab1-Fluoropentane, 740 tableFly ash, 80Food, energy in, 520–521 lab; from fer-

mentation, 796; irradiated, 809; simplesugars in, 775 lab

Food technologists, 548Fool’s gold, 56–57Forces, balanced, 563; dipole-dipole, 266,

394–395; dispersion, 266, 267 lab,393–394; hydrogen bonds, 266, 395;intermolecular, 266, 393–395;intramolecular, 393, 393 table;

London, 266, 393–394; van der Waals,266

Formaldehyde, 747, 758Formic acid, 750Formulas. See Chemical formulasFormula unit, 221Fossil fuels, 730, 765, 841; acid rain from,

847, 849; global warming from, 859;photochemical smog from, 846–847

Fractional distillation, 725–726, 726 tableFractionating towers, 725–726Fractionation, 725–726, 726 tableFractions, 908, 909–910, 910 prob.Francium, 70, 140, 155 lab, 169, 182Franklin, Rosalind, 789Free energy (Gsystem), 517–518; coupled

reactions and, 519; reaction rates and,535; reaction spontaneity and, 517table, 517–518, 518–519 prob.

Free radicals, 830Freeze drying, 407Freezing point, 408Freezing point depression (?Tf), 473 lab,

473–474, 474 table, 474–475 prob.,921 table

Freon, 845Frequency, 118–120Freshwater resources, 852–853Fructose, 781Fuel cells, 677–679, 679 lab, 690Functional groups, 737–738, 738 table;

amino, 745–746, 776; carbonyl,747–749; carboxyl, 749–751; catego-rizing organic compounds by, 757 lab;ethers, 745; halogens, 738–741;hydroxyls, 737 lab, 743–744; substi-tution reactions involving, 741–742

Fused ring systems, 723Fusion, molar heat of (?Hfus), 502, 502

table, 503 lab, 504 prob., 505 lab

GGalactose, 781Galena, 193, 856 table, 857 illus.Galilei, Galileo, 18 labGallium, 159, 186, 187Gallium arsenide, 187Gallium nitride, 187Galvanizing, 681–682Gamma emissions, 812 tableGamma rays, 106 illus., 107, 807, 807

table, 809, 829Gas constant, ideal, 434–435, 435 tableGases, 59, 386–392. See also Gas laws;

Gas pressure; in aqueous solutions,296–298, 299 prob.; Avogadro’s prin-ciple and, 430–431, 431–433 prob.;compressed, 59, 60 lab, 387; conden-sation of, 407–408; density of,386–387, 437, 438 prob., 439 lab; dep-osition of, 408; diffusion in, 387, 388

Index

Page 127: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

996 Chemistry: Matter and Change

Index

prob.; effusion in, 387, 388 prob.; flu-idity of, 396–397; ideal, 435–436;kinetic-molecular theory and,385–386, 419–420; line spectra of,142–143 lab; molar mass of, 436,436–437 prob.; molar volume of, 431;real, 435; solubility of, 460–461; solu-tions of, 453, 454 table; stoichiometrycalculations, 440–441, 441–443 prob.;vapor vs., 59

Gas laws, 419–439; Avogadro’s principleand, 430–431, 431–433 prob.; com-bined gas law, 428, 429–430 prob.;ideal gas law, 434–437, 436–437prob., 438 prob., 439 lab; pressure-temperature relationships (Gay-Lussac’s law), 426, 426–427 prob.;temperature-pressure relationships(Boyle’s law), 421, 422 prob.; temper-ature-volume relationships (Charles’slaw), 419 lab, 423–424, 425 prob.

Gasoline, 699, 725, 726 table, 726–727Gas pressure, 388–392; Avogadro’s prin-

ciple and, 430–431, 431–433 prob.;Boyle’s law and, 421, 422 prob.;Dalton’s law of partial pressure and,391–392, 391–392 prob.; divingdepths and, 390 lab; Gay-Lussac’s lawand, 426, 426–427 prob.; ideal gas lawand, 434–437, 436–437 prob., 438prob., 439 lab; measurement of, 389;solubility and, 460; units of, 390, 390table

Gauge, wire, 46–47 labGay-Lussac, Joseph, 428Gay-Lussac’s law, 426, 426–427 prob.Geiger counters, 827Gemstones, 187, 234Genetic damage, 830Geochemical cycles, 858–861; carbon

cycle, 858–860; nitrogen cycle,860–861; water cycle, 850–851

Geometric isomers, 718, 720 labGeothermal energy, 517Germanium, 139 prob., 158, 204Gibbs, Willard, 517Gibbs free energy. See Free energyGibbs free energy (Gsystem), coupled reac-

tions and, 519; reaction rates and, 535;reaction spontaneity and, 517 table,517–518, 518–519 prob.

Glass, colored, 234Global warming, 80, 859–860, 860 labGlucose, 781Glycerol, 25 lab, 744 illus., 785Glycine, 777Glycogen, 783Goiter, 195Gold, 199; 10-carat, 231, 231 table;

attempts to create, 90; fool’s gold,56–57

Gold foil experiment, Rutherford’s,94–95, 807

Goodyear, Charles, 92Graduated cylinders, layers of liquids in,

25 labGraham’s law of effusion, 387Grams (g), 27Graphite, 187, 188Graphs, 43–45; bar, 43; circle, 43; inter-

preting, 45; line, 44 lab, 44–45, 46–47lab, 903–907, 907 prob.

Gravicimetric Analysis, 328Gravitational field, Earth’s, 843Gravitational potential energy, 665Greek alphabet, 913 tableGreek philosophers, early theories of mat-

ter of, 87–89Green buildings, 80Greenhouse effect, 859–860, 860 labGround state, 127Ground-state electron configurations,

135–138, 139 prob.Groundwater, 851Group 1A elements (Alkali metals), 155,

159, 160, 181–182, 221 tableGroup 2A elements (Alkaline earth met-

als), 155, 159, 160, 183–185, 221 tableGroup 3A elements (Boron group),

186–187Group 4A elements (Carbon group),

187–189, 244Group 5A elements (Nitrogen group),

189–191, 221 table, 243–244Group 6A elements (Oxygen group),

192–194, 221 table, 243Group 7A elements (Halogens), 158,

194–195, 221 table, 243, 288, 288prob.

Group 8A elements (Noble gases), 158,159, 160, 196

Group A elements, 155, 159Group B elements, 155, 158Groups (families), 70, 154–155, 158. See

also Periodic table of elements; spe-cific groups; atomic radii trends, 164,165 prob.; electronegativity trends,169; ionic radii trends, 166; ionizationenergy trends, 167 illus., 168; valenceelectron patterns, 159

Grove, William, 677Guanine (G), 789, 791Guldberg, Cato Maximilian, 563Gum, percent composition of, 329 labGypsum, 455

HHaber, Fritz, 588Haber process, 588Half-cells, 665Half-life, 817, 818 table, 818–819 prob.Half-reactions, 650–651; balancing redox

equations by, 651, 652–653 prob.,654–655 lab

Halides, 226Hall, Charles Martin, 685–686Hall-Heroult process, 686Halocarbons, 738 table, 738–741; nam-

ing of, 739, 740 prob.; properties of,740; uses of, 740–741

Halogenation, 741–742Halogens (Group 7A), 158, 194–195;

covalent bonding by, 243; as func-tional groups, 738, 738 table; reactiv-ity of, 288, 288 lab

Hardness, as physical property, 56Hard water, 185, 202–203 lab, 864Heartburn, 628Heat (q), 491; calorimetry and, 496–497,

497–498 prob., 520–521 lab; fromchanges of state, 502–505, 503 lab,504 prob., 505 lab; measuring, 491,491–492 prob.; melting and, 404; spe-cific. See Specific heat; thermochem-istry and, 498–500

Heating and cooling specialists, 499Heating curve, 503Heating oils, 725 illus., 726 tableHeat of combustion (οΏ½Hcomb), 501, 501

tableHeat of formation, 509–511, 510 table,

511–512 prob., 921 tableHeat of fusion (οΏ½Hfus), 502, 502 table, 503

lab, 504 prob., 505 labHeat of reaction (οΏ½Hrxn), 499–500, 500

tableHeat of solution, 457Heat of vaporization (οΏ½Hvap), 502, 502,

502 tableHeavy water, 180Heisenberg, Werner, 130, 131Heisenberg uncertainty principle, 131Helium, 99, 137 table, 179, 196, 842 table,

843Helium airships, 196, 446Hematite, 856 tableHemoglobin, 200, 482, 574, 779Henry’s law, 460, 461 prob.Heptane, 700 tableHΓ©roult, Paul L. T., 686Hertz (Hz), 119Hess’s law of heat summation, 506–507,

508 prob.Heterogeneous catalysts, 541Heterogeneous equilibria, 565–566,

566–567 prob.Heterogeneous mixtures, 67, 476–479;

colloids, 477 table, 477–479, 478 lab;separating, 68; suspensions, 476

Hexagonal crystals, 401 illus., 401 labHexane, 700 tableHFCs (hydrofluorocarbons), 741Hill, Julian, 14Hindenburg, 180 illus., 446History Connection: alchemy, 90; Alfred

Nobel and Noble prizes, 190;Avogadro, Amedeo, 311; Charles,

Index

Page 128: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Index 997

Index

Jacques, 423; electrolysis, cleaningwith, 683; Lavoisier, Antoine, 75

Hoffman, Felix, 344Homogeneous catalysts, 541Homogeneous equilibria, 563, 563–564

prob.Homogeneous mixtures, 67, 68 lab, 69Homologous series, 701Hormones, 780Hot packs, 302, 499Household items, acidic and basic, 595

labHow It Works, air bags, 376; antacids,

628; catalytic converter, 552; hot andcold packs, 302; lasers, 144;microwave oven, 270; photographicfilm, 656; refrigerator, 522; semicon-ductor chips, 204; television screen,172; ultrasound devices, 48; water sof-teners, 864

Human Genome Project (HGP), 20Hund’s rule, 136Hybridization, 261, 262 prob.Hybrid orbitals, 261Hydrates, 338–341; formulas for, 338

table, 339, 340 prob.; moles of waterin, 342–343 lab; naming, 338; storingof Sun’s energy by, 495

Hydration (solvation in water), 455–457Hydration reactions, 756Hydrazine, 249 tableHydrocarbons, 697 lab, 698–727. See also

specific types; alkanes. See Alkanes;alkenes. See Alkenes; alkynes. SeeAlkynes; aromatic, 723–724; burnergas analysis, 728–729 lab; cyclic, 706;gasoline ratings and, 726–727; iso-mers of, 717–721; models of, 699;photochemical smog from, 846–847;saturated, 710; sources of, 725–726;substituted. See Substituted hydrocar-bons; unsaturated, 710, 711–716

Hydrochloric acid, 55 lab, 184 lab, 195,297–298, 299 prob.

Hydrofluorocarbons (HFCs), 741Hydrogen, 180–181; abundance of, 70;

ammonia from, 181, 190, 588; atmos-pheric, 842 table, 843; atomic numberof, 99; atomic orbitals of, 132–134,134 table; Bohr’s model of, 127 table,127–128, 130 lab; combustion reac-tions involving, 285; diatomic, 242;electron configuration, 137 table; elec-tronegativity of, 639 table; emissionspectrum of, 125, 126 illus., 128, 130lab

Hydrogen airships, 180, 446Hydrogenation, 181, 785Hydrogenation reactions, 756–757, 785Hydrogen bonds, 266, 395Hydrogen bromide, 244 prob.Hydrogen carbonate, 851 tableHydrogen cyanide, 296

Hydrogen electrode, standard, 666–668Hydrogen fuel cells, 679 labHydrogen peroxide, 76, 192 illus., 638Hydrogen sulfide, 193, 296Hydroiodic acid, 296–297Hydrologic cycle, 850–851Hydronium ion, 597; calculating concen-

tration of, 608–609, 609 prob.,612–613, 613–614 prob.; pH fromconcentration of, 610, 610–611 prob.

Hydrosphere, 850–854; freshwater,852–853; pollution of, 853; seawater,851–852; water cycle and, 850–851

Hydroxide ion, 597; calculating concen-tration of, 608–609, 609 prob.,612–613, 613–614 prob.; calculatingpOH and pH from concentration of,612 prob.

Hydroxyapatite, 583 labHydroxyl group, 737 lab, 738 table,

743–744, 766–767 labHypotheses, 11

IIce, 399 illus., 400, 505 lab, 843Ideal gas constant (R), 434–435, 435

table, 913 tableIdeal gases, 435–436Ideal gas law, 434–437; gas density and,

437, 439 lab; molar mass and, 438prob., 444–445 lab; moles of a gas and,436–437 prob., 463; real vs. idealgases, 435–436

Ilmentite, 856 tableImmiscible, 454Incandescent objects, energy from, 122

illus., 122–123Independent variables, 12, 44–45, 903Indicators, acid-base, 619Indium, 186Induced dipoles, 266, 267 labInduced fit, 778Induced transmutation, 815–816, 816

prob.Industrial processes, percent yield and,

372 lab, 373Industrial revolution, 151–152Inhibitors, 540–541Inner transition metals, 158, 160, 197, 201Inorganic chemistry, 9 table, 187Insoluble, 454Instantaneous reaction rates, 546–547,

547 prob.Insulin, 780Intensive properties, 56Intermediates, 548Intermolecular forces, 266, 267 lab,

393–395; dipole-dipole forces, 394;dispersion forces, 393–394; evapora-tion of alcohols and, 766–767 lab;hydrogen bonds, 395; intramolecular

forces vs., 393; in solutions, 453 labInternational Union of Pure and Applied

Chemistry (IUPAC) naming conven-tions. See Naming conventions

Interpolation, 45, 906Interstices, 231Interstitial alloys, 231Intramolecular forces, 393, 393 table. See

also Chemical bondsInverse relationships, 45, 905, 907 prob.Iodine, 194, 195, 200 table, 242, 288Iodine-131, 828–8291-Iodopentane, 740 tableIon concentration, 580, 580–581 prob.;

electrical conductivity and, 603, 604lab; from pH, 612–613, 613–614 prob.

Ionic bonds, 215–220; formation of,215–216, 217 prob., 232–233 lab; lat-tice energies and, 219–220

Ionic compounds, 215–220, 218; aqueoussolutions of, 455; color of, 218, 219lab, 234; formation of, 215–216, 217prob., 232–233 lab; formulas for,221–222, 223–224 prob., 224, 225prob., 232–233 lab; lattice energies,219–220, 220 table; melting and boil-ing points, 218, 218 table, 266; nam-ing, 226 prob., 226–227

Ionic crystal, 217Ionic crystalline solids, 402, 402 tableIonic radii, periodic table trends, 165–166Ionization constants. See Acid ionization

constant; Base ionization constantIonization energy, 167; periodic table

trends, 167–168, 168 tableIonization equations, 603, 603 table, 606,

606 prob.Ionizing radiation, 827, 829–830Ion product (Qsp), 581–582, 583 labIon product constant for water, 608–609,

609 prob.Ions, 165; anions, 214; cations, 212–213;

common based on groups, 221 table;common ion effect. see Common ioneffect; formation of, 212–214;monoatomic, 221; naming, 225–226;polyatomic. See Polyatomic ions; tran-sition metal, 198

Iron, 198, 199, 200, 374–375 lab; inEarth’s lithosphere, 855 table; ferro-magnetism of, 199; ores of, 857 illus.;redox reactions and, 651 table; rust-ing, 57, 62

Iron oxide, 372 labIrradiated food, 808Irregular solid, density of, 28 labIsobutane, 701Isomers, 717–721; chirality of, 719; geo-

metric, 718, 720 lab; optical, 719–721,720 lab; stereoisomers, 718; structural,717, 720 lab

Isopropyl alcohol, 410–411 labIsopropyl group, 702 table

Index

Page 129: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

998 Chemistry: Matter and Change

Index

Isotopes, 100–101, 101 prob.; atomicmass and, 103–104; hydrogen, 180;modeling, 102 lab; radioactive. SeeRadioisotopes

IUPAC naming conventions. See Namingconventions

JJoule (J), 123, 491, 491–492 prob.

KKekulΓ©, Friedrich August, 722Kelvin (K), 26 table, 30Kelvin scale, 30Ketones, 738 table, 748–749Kevlar, 764Kilogram (kg), 26 table, 27Kilojoules, 491Kilometers, 26Kilopascal, 390, 390 tableKinetic energy, 385–386, 489, 490Kinetic-molecular theory, 385–386,

419–420Knocking, 726Kolbe, Herman, 344Krypton, 196, 842 table

LLab activities. See CHEMLABs;

MiniLabs; Problem-Solving LabsLaboratory safety, 14–15, 16 tableLactase, 782Lactic acid, 750 illus.Lactic acid fermentation, 795Lactose, 782Lactose intolerance, 782Lakes, damage to from fertilizers, 190Lanthanide series, 158, 197, 201Lasers, 144, 187Latex balloon, movement of molecules

through, 108–109 labLattice energies, 219–220, 220 tableLavoisier, Antoine, 63, 75, 151, 180Law of chemical equilibrium, 563Law of conservation of energy, 490Law of conservation of mass, 63–64,

64–65 prob., 354Law of definite proportions, 75, 76 prob.Law of disorder, 514Law of multiple proportions, 76–77Law of octaves, 152, 153 illus.Law, scientific, 13Lead, 189Lead-acid storage batteries, 191, 675–676Lead paint, 189Lead poisoning, 189Lead shot, 231 tableLeaves, paper chromatography of

pigments from, 268–269 labLe ChΓ’telier, Henri-Louis, 569Le ChΓ’telier’s principle, 569–574, 573

lab; biological reactions and, 574;common ion effect and, 584–585,586–587 lab; concentration and,569–571; Haber process and, 588;temperature and, 572–573, 573 lab;volume and, 571–572

Lemon battery, 663 labLength, 26, 26 tableLewis, G. N., 140Lewis structures, 243–244, 244 prob.,

252–255; for covalent compound withmultiple bonds, 254 prob.; for covalentcompound with single bond, 253prob.; multiple correct (resonancestructures), 256, 256 prob.; octet ruleexceptions and, 256–257, 257–258prob.; for polyatomic ions, 255 prob.

Light, Beer’s law and, 480–481 lab; par-ticle nature of, 122–124; speed of (c),119, 913 table; wave nature of,118–121

β€œLike dissolves like”, 455Lime, 184Limestone, 596, 600, 858Limiting reactants, 364–366, 367–368

prob., 374–375 labLine graphs, 44 lab, 44–45, 46–47 lab,

903–907, 907 prob.Line spectra. See Atomic emission spec-

trumLinear molecular shape, 260 tableLinear relationships, 905–906Lipids, 784–787; fatty acids, 784–785;

phospholipids, 786–787; steroids, 787;triglycerides, 785, 786 lab; waxes, 787

Liquids, 58–59, 396–399; boiling of, 406;capillary action of, 399; compressed,396; density of, 25 lab, 385 lab, 396;evaporation of, 405–406, 410–411 lab;fluidity of, 396–397; freezing of, 408;solutions of, 453–454, 454 table; sur-face tension of, 398; vaporization of,405; viscosity of, 397–398

Liter (L), 27Lithium, 181–182; atomic number, 99;

electron configuration, 137 table; elec-tron-dot structure, 140 table; ioniza-tion energy, 167; valence electrons,159

Lithium batteries, 182, 676–677Lithium chloride, 125 labLithium sulfide, 296–297Lithosphere, 855–857; composition of,

855, 855 table; minerals in, 855, 856table, 856–857

Litmus paper, 595 lab, 596Locoweed plant, 194Logarithms, 910–911, 911 prob.London, Fritz, 393London (dispersion) forces, 393–394

Lone pairs, 242Long, Crawford W., 745LP gas, 699, 728–729 labLucite, 763 tableLuminous intensity, 26, 26 tableLye, 181Lyman series, 128Lysozyme, 14

MMagnesite, 856 tableMagnesium, 181, 183, 184–185; in

Earth’s lithosphere, 855 table; electronconfiguration, 138 table; as essentialelement, 289 illus.; hard water and,202–203 lab; ionic compounds formedby, 232–233 lab; properties of, 184lab; reactivity of, 300–301 lab; in sea-water, 851 table

Magnetism, 179 lab, 199Magnetite, 856 tableMagnets, 179 lab, 199Malachite, 234Maleic hydrazide, 541Malleability, 155, 229Manganese, 198, 200, 200 tableManometers, 389Mantle, Earth’s, 855Manufacturing processes, percent yield

and, 372 lab, 373Mars Climate Orbiter, 35Martensite, 412Mass, 8–9; atom-to-mass conversions,

316–319, 318 prob.; base unit of (kg),26 table, 27; energy and, 821; frombalanced equations, 354; from densityand volume, 29 prob.; gas stoichiom-etry and, 441, 442–443 prob., 443;mass-to-mass conversions, 361,361–362 prob., 362 lab, 374–375 lab;mass-to-mole conversions, 316 prob.,324, 324 prob.; mass-to-particles con-version, 325, 325–326 prob.; molar.See Molar mass

Mass defect, 822Mass number, 100–101, 101 prob.Mass proportions, 75Mass ratios, 76–77Materials engineer, 403Math Handbook, 887–911; algebraic

equations, 897–899, 899 prob.;antilogarithms, 911, 911 prob.; arith-metic operations, 887–889, 889 prob.;cube roots, 892; dimensional analysis,900, 900 prob.; fractions, 908, 909prob., 909–909; line graphs, 903–907,907 prob.; logarithms, 910–911, 911prob.; percents, 909; ratios, 908; sci-entific notation, 889–891, 891–892prob.; significant figures, 893–896,894–895 prob., 896–897 prob.; square

Index

Page 130: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Index 999

Index

Index

roots, 892; unit conversions, 901–902,902 prob.

Matter, 8–9; chemical changes in, 3 lab,55 lab, 62–63, 78–79 lab; chemicalproperties of, 57 table, 57–58; earlyphilosopher’s theories of, 87–90;macroscopic behavior, 9; mixtures of,66–69; physical changes in, 61–62;physical properties of, 56 table, 56–57,57 table; states of. See States of mat-ter; submicroscopic behavior, 9; sub-stances, 55–56

Maxwell, James, 385Measurement, 25–30; accuracy of, 36–37;

derived units for, 27–29; precision of,36–37; SI base units for, 26–27; sig-nificant figures and, 38–39, 39 prob.;of temperature, 30

Measuring devices, calibration of, 38Mechanical weathering, 281Medical lab technician, 160Melting, 61, 404–405Melting point, 56, 62, 405; of ionic com-

pounds, 218, 218 table; of metals,228–229, 229 table; of molecularsolids, 266

Mendeleev, Dmitri, 70–71, 152–153Mercury, 56 table, 64 illus., 356, 857 illus.Mercury barometers, 389Mercury batteries, 674Mercury (II) oxide, thermal decomposi-

tion of, 63–64Mesosphere, 842Metabolism, 792–795; cellular respira-

tion, 192, 200, 794; fermentation,794–795, 796–797 lab; photosynthe-sis, 192, 793

Metal alloys. See AlloysMetallic bonds, 228–229Metallic solids, 402, 402 table, 403Metalloids, 158Metallurgy, 199Metals, 155. See also Alkali metals;

Alkaline earth metals; Inner transitionmetals; Transition metals; acid-metalreactions, 596; alloys of. See Alloys;chemical changes in, 55 lab; in Earth’scrust, 856; extraction and purificationof, 686–687, 857; location of strategic,200; magnetism of, 179 lab, 199;metal bonds, 228–229; position onperiodic table, 155, 158; properties of,155, 211 lab, 229, 229 table; reactiv-ity of, 287–288, 289 prob., 300–301lab; versatility of, 151 lab, 229

Meteorologist, 421Meter (m), 26, 26 tableMethanal, 747Methane, 698, 700 table, 740 table;

atmospheric, 842 table; burner gasanalysis and, 728–729 lab; combus-tion reactions involving, 285; conver-sion to methanol, 758; VSEPR model

of, 261 lab; water vs., 708 table, 709Methanol, 743, 744, 758, 766–767 labMethod of initial rates, 544Methylbenzene, 7243-Methylbutyl acetate, 751 illus.3-Methylbutyl ethanoate, 753 illus.Methyl group, 702 table2-Methylpropane, 703Metric system, 26Meyer, Lothar, 152Microscopes, scanning tunneling (STM),

91, 96 labMicrowave ovens, 270Microwave relay antennas, 121 illus.Microwaves, 118, 270Midgley, Thomas Jr., 5Milligram (mg), 27Millikan, Robert, 93–94Milliliters (mL), 27Millimeters of mercury, 390, 390 tableMineralogists, 226Minerals, 187, 855–857; classification of,

226; extracting from ore, 857; indus-trially important, 856, 856 table

Mineral supplements, 200, 200 tableMiniLabs. See also CHEMLABs;

Discovery Labs; Problem-SolvingLabs; Try at Home Labs acid precipi-tation, 848 lab; acid strength, 604 lab;chromatography, separating mixturesby, 68 lab; corrosion, 681 lab; crystalunit cell models, 401 lab; density of agas, 439 lab; density of an irregularsolid, 28 lab; equilibrium, temperatureand, 573 lab; esters, 751 lab; ethyne,synthesis and reactivity of, 715 lab;flame tests, 125 lab; freezing pointdepression, 473 lab; heat treatment ofsteel, 230 lab; magnesium, propertiesof, 184 lab; mass-to-mass conversions,362 lab; molar heats of fusion andvaporization trends, 164 lab; observa-tion skills, 15 lab; percent compositionand gum, 329 lab; precipitate-formingreactions, 295 lab; radioactive decay,819 lab; redox reactions, cleaning by,638 lab; saponification, 786 lab; tem-perature and rate of reaction, 539 lab;VSEPR models, 261 lab

Misch metal, 201Miscible, 454Mixtures, 66–69; heterogeneous, 67,

476–479, 478 lab; homogeneous(solutions). See Solutions; separating,68 lab, 68–69, 78–79 lab

Models, 8 lab, 9, 13, 699Molal boiling-point elevation constant

(Kb), 472Molal freezing-point elevation constant

(Kf), 472, 474 tableMolality (m), 462 table, 469, 469 prob.Molar concentration (M). See Molarity

(M)

Molar enthalpy (heat) of fusion (?Hfus),164 lab, 502, 502 table, 503 lab, 504prob., 505 lab

Molar enthalpy (heat) of vaporization(?Hvap), 164 lab, 502, 502 table, 503lab, 504 prob.

Molarity (M), 464–465, 465 prob.; fromtitration, 620–621, 621 prob., 626–627lab

Molar mass, 313–319; atom-to-mass con-versions, 318 prob.; Avogadro’s num-ber and the atomic nucleus, 314 lab; ofcompounds, 322, 322 prob.; of a gas,436, 436–437 prob., 444–445 lab;mass-to-atom conversions, 316–317,317–318 prob.; mass-to-mole conver-sion, 316 prob.; mole-to-mass conver-sion, 314–315, 315–316 prob.

Molar solubility, 579, 579–580 prob.,586–587 lab

Molar solutions, preparation of, 466 prob.,466–467, 468 prob.

Molar volume of a gas, 431, 431–433prob., 913 table

Mole (mol), 26 table, 310–327; chemicalformulas and, 320–321, 321 prob.;empirical formulas and, 331–332,332–333 prob., 336–337 prob.; massof (molar mass), 313–319, 314 lab,315–318 prob.; mass-to-mole conver-sions, 324, 324 prob.; mass-to-parti-cles conversions, 325, 325–326 prob.;modeling of, 309 lab, 314 lab; molarvolume of a gas, 431, 431–433 prob.;mole-particle conversions, 311 prob.,311–312, 312 prob.; molecular formu-las and, 333–334, 334–335 prob.;number from balanced equation, 354,355–356 prob.; number of particles in,309 lab, 310; percent composition and,328–329, 329 lab, 330–331 prob.; unitof, 26 table

Molecular compounds: covalent bondingby, 241–247; covalent network solids,267; formulas from names of, 250;Lewis structure for, 252–253, 253–254prob.; naming, 248–249 prob.,248–249, 251 illus.; physical proper-ties, 266, 267 lab; polarity of,264–266; shape of, 259, 260 table, 261lab, 261–262; solvation in solutionsof, 456

Molecular formulas, 252 illus., 333–334,334–335 prob.

Molecular models, 250, 252, 252 illus..See also Lewis structures

Molecular shapes, 259–261, 262 prob.;hybridization and, 261; VSEPRmodel, 259, 260 table, 261 lab

Molecular solids, 402, 402 tableMolecules, 242; diatomic, 242; formulas

from names of, 250; Lewis structuresfor, 243–244, 244 prob.; naming,

Page 131: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

1000 Chemistry: Matter and Change

Index

248–249, 248–249 prob., 251 illus.;number of from balanced equation,354, 355–356 prob.; shape of, 259, 260table, 261, 261 lab, 262 prob.

Mole fraction, 462 table, 470Mole ratios, 356–357, 357 prob., 374–375

labMole-to-mass conversions, 314–315,

315–316 prob., 323, 323 prob., 360prob.

Mole-to-mole conversions, 358, 359 prob.Molina, Mario, 11, 845Monoamine oxidase inhibitors, 541Monoatomic ions, 221, 221 table, 222,

222 tableMonoclinic crystals, 401 illus., 401 labMonomers, 762Monoprotic acids, 600Monosaccharides, 775 lab, 781Mortar, 184Moseley, Henry, 98, 153Motor oil, viscosity of, 396–397, 697 labMultiple covalent bonds, 245–246Multiple proportions, law of, 76–77Multiplication operations, 888–889Municipal water treatment plants, 841,

853–854Mylar, 762 table, 763 table

NNaming conventions, alcohols, 744; alde-

hydes, 747; alkanes, 700, 700 table;alkenes, 712; alkynes, 714; amides,752; amines, 745; binary acids, 250,250 prob.; branched-chain alkanes,701–704, 704–705 prob.; branched-chain alkenes, 712, 713–714 prob.;carboxylic acids, 749; cycloalkanes,706, 707–708 prob.; esters, 750;ethers, 745; halocarbons, 739, 740prob.; hydrates, 338; ionic compound,226 prob., 226–227; ions, 225–226;ketones, 749; molecular compounds,248–249 prob., 248–249, 251 illus.;oxyacids, 250, 250 prob.; substitutedbenzenes, 724; writing formulas fromnames, 250

Nanodevices, 110Nanotechnology, 91, 110Naphthalene, 723, 739Natural gas, 725, 728–729 labNECAR IV, 679 labNegative exponents, 890–891Negative ions. See AnionsNegative slope, 44Neodymium, 201Neon, 59 illus., 196; atmospheric, 842

table; electron configuration, 137illus., 137 table; electron-dot structure,140 table; emission spectrum, 125

Neptunium, 816Net ionic equations, 293, 294 prob.,

646–647, 648–649 prob.

Neutral solutions, 596Neutralization reactions, 617 prob.,

617–621; buffered solutions and,622–625, 624 lab; salt hydrolysis and,617, 621–622, 622 prob.; titration and,618–621, 621 prob., 626–627 lab

Neutron activation analysis, 828Neutron-to-proton (n/p) ratio, 810Neutrons, 96, 97 table, 102, 102 table, 913

tableNewlands, John, 152, 153 illus.NiCad batteries, 675Nickel, 198, 199, 200Nitinol, 412Nitric acid, 190Nitric oxide, 249 tableNitrogen, 189–190; atmospheric, 842,

842 table; diatomic, 242; electron con-figuration, 137 table; electron-dotstructure, 140 table; electronegativity,639 table; photoionization and, 844;transmutation of, 815

Nitrogen bases, 20, 788, 789, 791Nitrogen cycle, 860–861Nitrogen fixation, 189, 860–861Nitrogen group (Group 5A), 189–191,

221 table, 243–244Nitroglycerine, 190Nitrous oxide, 248, 249 tableNobel, Alfred, 190Nobel Prizes, 190Noble-gas notation, 138, 138 tableNoble gases (Group 8A), 158, 196; elec-

tron configuration notation for, 138;electronegativity of, 169; valence elec-trons and, 159, 160

Nonane, 700 tableNonelectrolytes, colligative properties,

471, 472, 473Nonlinear relationships, 45Nonmetals, 158; single-replacement reac-

tions of, 288, 288 labNonpolar molecules, 265, 266, 266 prob.,

456Nonspontaneous reactions, 519Northern lights (Aurora Borealis), 131n-type semiconductors, 204Nuclear atomic model, 94–96, 117–118Nuclear equations, 106, 808, 813,

813–814 prob., 816 prob.Nuclear fission, 822–823Nuclear fusion, 826Nuclear power plants, 822–825Nuclear reactions, 105–106, 804–831;

binding energy and, 821–822; chainreactions, 805 lab, 822–823; chemicalreactions vs., 805, 805 table; decayprocess, 811–812, 812 table; energyand, 821–822; equations for. SeeNuclear equations; fission, 822–823;fusion, 826; induced transmutationand, 815–816; nuclear stability and,107, 810–811; radiation emitted, 807table, 807–809; radioactive decay

series, 814; transuranium elements in,201, 815–816

Nuclear reactors, 180, 824–825, 826Nuclear stability, 107, 810–811Nuclear waste, 825Nucleic acids, 788–791; DNA, 788–790,

790 lab; RNA, 791Nucleons, 810Nucleotides, 788Nucleus (atomic), 95Nurse anesthetist, 569Nylon, 14, 15 illus., 763 table, 764

OObservations, 10–11, 15 lab, 18 labOceans, 851Octahedral molecular shape, 260 tableOctane, 700 tableOctane ratings, 726 illus., 727Octet rule, 168; exceptions to, 256–257,

257–258 prob.Odor, 56, 278, 798Odorants, 798Oils, 241 lab, 785Oleic acid, 784Olfactory system, 798Onion’s Fusible Alloy, 211 labOptical isomers, 720 lab, 720–721Optical rotation, 721Orbital diagrams, 136, 137, 137 tableOrbitals, 133–134Order of operations, 898–899Ores, 187, 199, 686–687, 857Organic chemist, 250Organic chemistry, 9 table, 187, 697–698Organic compounds, 698. See also specific

types; in burner gases, 728–729 lab;categorizing, 757 lab; models of, 699;reactions forming. See Organic reac-tions

Organic reactions, 754; addition reac-tions, 755–757; condensation reac-tions, 752–753; dehydration reactions,755; dehydrogenation reactions,754–755; elimination reactions,754–755; hydration reactions, 756;hydrogenation reactions, 756–757;oxidation-reduction reactions,758–759; predicting products of,759–760; substitution reactions,741–742

Orientation, collision theory and, 532, 533illus.

Orion, 763 tableOrthorhombic crystals, 401 illus., 401 labOsmosis, 475, 851–852Osmotic pressure, 475Oxalic acid, 750Oxidation, 637Oxidation-number method for redox

equations, 644–645, 645–646 prob.,647 lab, 654–655 lab

Index

Page 132: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Index 1001

Index

Oxidation numbers, 222; determining,641, 642 prob.; redox reactions and,637, 643

Oxidation-reduction reactions, 636. Seealso Redox reactions

Oxidation state, 222Oxides, 183, 187, 192, 234, 856, 856 tableOxidizing agents, 638Oxyacids, 250, 250 prob.Oxyanions, 225–226Oxygen, abundance of, 70, 179, 192;

allotropes of, 192; atmospheric, 842,842 table; combustion reactionsinvolving, 285; diatomic, 242; distil-lation of, 192; electron configuration,137 table; electron-dot structure, 140table; in lithosphere, 855, 855 table;photodissociation and, 843; photoion-ization and, 844; physical properties,56 table, 192

Oxygen group (Group 6A), 192–194, 243Oxyhydrogen torch, 677 illus.Ozone, 4, 5 illus., 192, 842, 844–845Ozone layer, 3–5, 842, 845–846

PPAHs. See Polycyclic aromatic hydrocar-

bons (PAHs)Palladium, 199, 200, 541, 757Papain, 779Paper chromatography, 68 lab, 69,

268–269 labParaffin, 266Paramagnetism, 199Parent chains, 701Partial pressure, Dalton’s law of,

391–392, 391–392 prob.Particle accelerators, 201, 815Particle model of light, 122–124Particles, kinetic energy of, 386; mass-to-

particles conversions, 325, 325–326prob.; mole-particle conversions, 311prob., 311–312, 312 prob.

Pascal, Blaine, 390Pascal (Pa), 390Paschen series, 128Passive solar energy, 730Pasteur, Louis, 719Pastry chef, 297Pauli exclusion principle, 136Pauli, Wolfgang, 136Pauling, Linus, 169, 722Paulings, 169p-block elements, 160, 161 illus., 186–196Pearl divers, pressure and depth of, 390

labPEMs (proton-exchange membranes),

678–679, 679 lab, 690Penicillin, 14Penicillium, 14Pennies, modeling isotopes with, 102 lab;

modeling radioactive decay with, 819lab

Pentane, 700, 700 table, 740 tablePentyl pentonoate, 751 illus.Peptide, 777Peptide bonds, 776–777Percent by mass, 75, 76 prob.Percent by mass concentration ratio, 462

table, 463, 463 prob.Percent by volume concentration ratio,

462 table, 464Percent composition, 328–329, 329 lab,

330–331 prob.; empirical formulasfrom, 331–332, 332–333 prob.

Percent error, 37, 38 prob.Percent yield, 370, 371–372 prob., 372

lab, 373Percents, 909Periodic law, 153, 155 labPeriodic table of elements, 70–71, 72–73

illus., 151–158, 156–157 illus.; atomicnumber and, 98; atomic radii trends,163–164, 165 prob.; blocks on. SeeBlocks, periodic table; boxes on, 154;classification of elements on, 155,156–157 table; electron configurationof elements and, 159–162, 162 prob.;electronegativity trends, 169, 263, 263table; groups (families) on, 70, 154;history of development of, 151–154;ionic radii trends, 165–166; ionizationenergy trends, 167–168, 168 table;Mendeleev’s, 70–71, 152–153; mod-ern, 154–158; molar heats of fusionand vaporization trends, 164 lab; peri-ods on, 70, 154; predicting propertiesfrom, 155 lab; specific heat trends,497, 497 table

Periods, periodic table, 154; atomic radiitrends, 164, 165 prob.; electronegativ-ity trends, 169; ionic radii trends, 166;ionization energy trends, 167 illus.,168, 168 table; valence electron pat-terns, 159

Personal trainer, 794PET (positron emission transaxial tomog-

raphy), 829Petroleum, 697, 725–726, 726 table, 741,

754Pewter, 189, 231, 231 tablepH, 610–616; acid ionization constant

(Ka)from, 615, 615–616 prob.; fromion concentrations, 610–611 prob., 612prob.; ion concentrations from,612–613, 613–614 prob.; pOH and,611–612; of strong acids and strongbases, 614, 614 prob.; tools for meas-uring, 616

pH meters, 616pH paper, 616Pharmacist, 354Phase changes, 61–62, 404–409; conden-

sation, 407–408; deposition, 408;evaporation, 405–406, 410–411 lab;freezing, 408; heating curve, 503;melting, 404–405; phase diagrams,

408–409; sublimation, 407; thermo-chemical equations and, 502–505, 503lab, 504 prob., 505 lab; vaporization,405–406

Phase diagrams, 408–409, 473Phenylalanine, 777Philosophers, early theories of matter of,

87–89Phosphate ion, 255 prob.Phosphates, 190Phosphine, 262 illus.Phospholipases, 785Phospholipid bilayer, 786 illus., 787Phospholipids, 786–787Phosphoric acid, 190Phosphors, 158, 172, 828Phosphorus, 138 table, 189, 190, 191 lab,

200 table, 204, 853Phosphorus-32, 818 tablePhosphorus trihydride, 262 prob.Photochemical etching artist, 641Photochemical smog, 846–847Photocopiers, 194Photodissociation, 843Photoelectric cells, 123Photoelectric effect, 123–124Photoelectrons, 123–124, 124 prob.Photographic film, 195, 656Photoionization, 844Photon, 123; energy of emitted, 124, 124

prob.Photosynthesis, 192, 793, 858, 859Photovoltaic cells, 495, 730Physical changes, 61–62, 78–79 labPhysical chemistry, 9 tablePhysical constants, 913 tablePhysical properties, 56 table, 56–57, 57

tablePhysical weathering, 281Physics Connections, aurora borealis,

131; balanced and unbalanced forces,563; fermatoseconds, 544; irradiatedfood, 809

Pi (Ο€) bonds, 246Pickling, 195Pig iron, 199Pigments, paper chromatography of plant,

268–269 labPlanck, Max, 122–123Planck’s constant (h), 123, 913 tablePlants, 192; oxygen produced by, 192;

paper chromatography of pigmentsfrom, 268–269 lab; photosynthesis by,192, 793, 858, 859

Plasma, 58Plastics, 764Platinum, 199, 200, 541, 757Plexiglass, 763 tablePlum pudding atomic model, 94Plutonium-239, 201, 816pOH, 611, 612 prob.Polar covalent bonds, 264–266Polar covalent compounds, 264–266,

268–269 lab, 456

Index

Page 133: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

1002 Chemistry: Matter and Change

Index

Polarity, 265–266Polarized light, 720Polonium, 192, 806, 818 tablePolyacrylonitrile, 763 table, 768Polyatomic ions, 224, 919 table; common,

224 table; formulas for, 224, 225 prob.;Lewis structure for, 254, 255 prob.;naming, 225–226

Polycyclic aromatic hydrocarbons(PAHs), 739

Polyethylene, 714, 762 table, 763 table,765

Polyethylene terephthalate (PET), 762,762 table, 763 table

Polymerization reactions, 762–764Polymers, 737, 761–765, 763 table; car-

bon fibers, 768; reactions used tomake, 762–763; recycling of, 765;thermoplastic, 764; thermosetting, 764

Polymethyl methacrylate, 763 tablePolypeptides, 777Polypropylene, 763 tablePolyprotic acids, 600Polysaccharides, 782–783Polystyrene, 761 illus., 763 tablePolytetrafluoroethylene, 740, 763 tablePolyurethane, 763 tablePolyvinyl chloride (PVC), 195, 741, 761

illus., 763 tablePolyvinylidene chloride, 763 tablePositive exponents, 890Positive ions. See CationsPositive slope, 44Positron, 812Positron emission, 812, 812 tablePositron emission transaxial tomography

(PET), 829Potassium, 182; isotopes of, 100,

832–833 lab; in lithosphere, 855 table;reaction with water, 181 illus.; in sea-water, 851 table

Potassium chloride, 125 lab, 182Potassium hydroxide, 181 illus.Potassium nitrate, 182Potassium permanganate, 353 labPotential energy, 490–491Pounds per square inch (psi), 390, 390

tablePower plants, air pollution from, 849Powers of ten. See Scientific notationPractice Problems, acid-base neutraliza-

tion reactions, 617 prob.; acid ioniza-tion constant expressions, 605 prob.;acid ionization constant from pH, 616prob.; additional in appendix, 871–886prob.; algebraic equations, solving,899 prob.; answers to, 922–951; arith-metic operations, 889 prob.; atom-to-mass conversions, 318 prob.; atomicmass, 104 prob.; atomic number, 99prob.; balancing chemical equations,282 prob.; balancing net ionic redoxequations, 648–649 prob.; balancingredox equations by half-reactions, 653

prob.; balancing redox equations byoxidation-number method, 646 prob.;boiling point elevation, 475 prob.;Boyle’s law (gas temperature andpressure), 422 prob.; branched-chainalkanes, naming, 705 prob.; branched-chain alkenes, naming, 714 prob.;calorimetry and specific heat, 498prob.; Charles’s law, 425 prob.; chem-ical equations, 294 prob.; chemicalreactions, classifying, 285 prob.; com-bined gas law, 429 prob.; completeionic equations, 294 prob.; conjugateacid-base pairs, 599 prob.; conserva-tion of mass, 65 prob.; convertingbetween units, 34 prob.; cycloalkanes,naming, 708 prob.; decompositionreactions, 286 prob.; density relation-ships and, 29 prob.; dilution of stocksolutions, 468 prob.; dimensionalanalysis, 900 prob.; direct relation-ships, 907 prob.; double-replacementreactions, 291 prob.; electron configu-ration periodic table trends, 162 prob.;electron configurations, 139 prob.;electron-dot structure, 141 prob.;empirical formulas, 333 prob., 337prob.; energy from a reaction, 504prob.; energy of a photon, 124 prob.;energy units, converting, 492 prob.;entropy, predicting changes in, 516prob.; equilibrium concentrations, 576prob.; equilibrium constant expres-sions, 564 prob., 566 prob.; equilib-rium constant (Keq) values, 568 prob.;formulas for ionic compounds, 223prob., 225 prob.; fractions, 910 prob.;freezing point depression, 475 prob.;gas effusion and diffusion, 388 prob.;gas-producing aqueous reactions, 299prob.; gas stoichiometry, 443 prob.;Gay-Lussac’s law, 427 prob.; half-lifeof radioisotopes, 819 prob.; halocar-bons, naming, 740 prob.; Henry’s law,461 prob.; Hess’s law of heat summa-tion, 508 prob.; hydrate formulas, 340prob.; induced transmutation reactionequations, 816 prob.; instantaneousreaction rates, 547 prob.; inverse rela-tionships, 907 prob.; ion concentra-tions from Kw, 609 prob.; ionconcentrations from pH, 614 prob.;ionic compound, formation of, 217prob.; ionization equations, 605 prob.;isotopes, 101 prob.; Lewis structures,244 prob., 255 prob., 256 prob., 258prob.; limiting reactants, determining,368 prob.; logarithms/antilogarithms,911 prob.; mass-to-atom conversions,318 prob.; mass-to-mass conversions,362 prob.; mass-to-mole conversions,316 prob., 324 prob.; mass-to-particlesconversions, 326 prob.; molality, 469prob.; molar mass of compounds, 322

prob.; molar solution preparation, 466prob.; molarity of a solution, 465 prob.,621 prob.; mole fraction, 470 prob.;mole-particle conversions, 311 prob.,312 prob.; mole ratios, 357 prob.; molerelationships from chemical formula,321 prob.; mole-to-mass conversions,316 prob., 323 prob.; mole-to-moleconversions, 359 prob.; molecularshape, 262 prob.; naming acids, 250prob.; naming binary molecular com-pounds, 249 prob.; naming ionic com-pounds, 226 prob.; net ionic equations,294 prob.; nuclear equations, balanc-ing, 814 prob.; oxidation numbers,determining, 642 prob.; partial pres-sure of a gas, 392 prob.; percent bymass in a solution, 463 prob.; percentby mass values, 76 prob.; percent byvolume of a solution, 464 prob.; per-cent composition, 330 prob.; percenterror, 38 prob.; percent yield, 372prob.; pH and pOH from ion concen-trations, 612 prob.; pH of solutionsfrom, 614 prob.; polyprotic acids, 601prob.; precipitate-forming reactions,294 prob.; precipitates, predictingfrom solubility product constant, 583prob.; rate laws, 545 prob.; reactionrates, calculating average, 531 prob.;redox reactions, identifying, 640 prob.;reduction potential in voltaic cell,670–671 prob.; salt hydrolysis, 622prob.; scientific notation, 32 prob., 33prob., 891–892 prob.; significant fig-ures, 39 prob., 897 prob.; single-replacement reactions, 289 prob.;specific heat, 495 prob.; spontaneityof reactions, 518–519 prob., 672 prob.;standard enthalpy (heat) of formation,512 prob.; stoichiometry and chemi-cal equations, 355 prob.; unit conver-sions, 902 prob.; volume of a gas, 441prob.; water-producing aqueous reac-tions, 296 prob.

Praseodymium, 201Precipitates, 290; comparing solubility of

two, 586–587 lab; predicting from sol-ubility product constant, 581–582,582–583 prob., 583 lab

Precipitation (atmospheric), 850–851. Seealso Acid rain

Precipitation reactions, 292–293, 294prob., 295 lab

Precision, 36–37Prefixes: covalent compound, 248 table;

SI base unit, 26, 26 tablePressure, 388; atmospheric, 389, 390;

changes in physical state and, 61–62;depth vs., 390 lab; gas. See Gas pres-sure; solubility and, 460; units of, 390,390 table

Priestley, Joseph, 192Primary batteries, 675

Index

Page 134: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Index 1003

Index

Principle energy levels, 133–134Principle quantum numbers (n), 132–133Prisms, 120Problem-Solving Labs, automobile fuel

cells, 679 lab; balancing redox equa-tions by oxidation-number method,647 lab; Bohr model of the atom, 130lab; buckminsterfullerene, models of,8 lab; collision theory and speed ofreaction, 533 lab; colloids, turbidityof, 478 lab; color of ionic compounds,219 lab; dispersion forces and boilingpoint, 267 lab; DNA replication, 790lab; fertilizers, cost of, 191 lab; gases,release of compressed, 60 lab; globalwarming, 860 lab; isomers, 720 lab;line graphs, 44 lab; molar enthalpies offusion and vaporization, 503 lab;organic compounds, categorizing, 757lab; percent yield, 372 lab; precipi-tates, predicting, 583 lab; predictingproperties of francium, 155 lab; pres-sure and depth and, 390 lab; radiationexposure, distance and, 830 lab; reac-tivity of halogens, 288 lab; STMimages, 96 lab; turbocharging in a carengine, 424 lab

Products, 62, 278; mass of from stoi-chiometry, 354, 355–356 prob.; pre-dicting, 291 table, 759–760

Propane, 699, 700 table, 728–729 labPropanol, evaporation of, 766–767 labPropene, 711 tableProportions by mass, 75Propyl ethanoate, 750Propyl ether, 745Propyl group, 702 tablePropyne, 715 tableProteins, 189, 775–780; enzymes, 539,

778–779; hormones, 780; productionof, 791; structural, 780; transport, 779

Protium, 180Proton-exchange membranes (PEMs),

678–679, 679 lab, 690Protons, 96, 97 table, 99, 102, 102 table,

913 tablePseudo-noble gas configurations, 213p-type semiconductors, 204Pure research, 14Pure substances, 55–56Pyrite, 56–57, 856 table

QQualitative data, 10Quantitative data, 11Quantized energy, 122–123Quantum, 122Quantum mechanical model of the atom,

131–132; atomic orbitals and,132–134; principle quantum numbersand, 132, 133

Quartz, 188, 234, 267

RRad (radiation-absorbed dose), 830–831RADIATIN software program, 832–833

labRadiation, 105–106, 806–809; alpha, 106,

107 table, 807, 807 table; annual expo-sure to, 831 table; beta, 107, 107 table,807, 807 table; biological effects of,829–831, 831 table; doses of,830–831; gamma, 107, 107 table, 807,807 table; intensity of and distance,830 lab; measurement of, 827–828,832–833 lab; uses of, 828–829

Radiation exposure intensity, 830 lab,830–831

Radiation monitors, 827–828, 832–833lab

Radiation protection technician, 106Radiation therapist, 828Radiation therapy, 829Radioactive decay, 106, 807, 807–809,

812 table; electron capture and, 812;modeling, 819 lab; positron emissionand, 812; rates of, 817, 818 table,818–819 prob.; types of radiation emit-ted by, 106–107, 107 table, 811

Radioactive decay rates, 817, 818 table,818–819 prob.

Radioactive decay series, 814Radioactivity, 105–106, 806–809; detec-

tion and measurement of, 827–828,832–833 lab; discovery of, 806

Radiochemical dating, 819–820Radioisotopes, 807; applications of,

828–829; biological effects of,829–831; half-life of, 817, 818 table,818–819 prob.; measurement of radi-ation from, 827–828, 832–833 lab;radioactive decay of, 811, 819 lab;radiochemical dating with, 819–820;uses of, 828–829

Radiotracers, 828–829Radium, 185, 806Radon-222, 818 tableRadon gas, 834Rainbows, 120Rain forests, deforestation of and global

warming, 859Rate-determining step, 548–549Rate laws, 542–545, 545 prob.; instanta-

neous rate and, 546–547, 547 prob.;method of initial rates, 544; reactionorder and, 543–544; specific rate con-stant (k), 542

Ratios, 76–77, 908Reactants, 62, 278; mass of from stoi-

chiometry, 354, 355–356 prob.; reac-tivity of and reaction rates, 536

Reaction mechanisms, 548Reaction order, 543–544Reaction rates, 528, 529, 530–549; acti-

vated complex orientation and, 532;activation energy and, 534–535; aver-

age, 529–530, 531 prob.; catalysts and,529 lab, 539–541; collision theoryand, 532–535, 533 lab; concentrationand, 537, 550–551 lab; free energy(?G) and, 535; inhibitors and,540–541; instantaneous, 546–547, 547prob.; rate-determining step, 548–549;rate laws and, 542–545, 545 prob.;reaction mechanisms and, 548; reac-tivity of reactants and, 536; speed of,increasing, 529 lab; spontaneity and,535; surface area and, 537–538; tem-perature and, 538, 539 lab

Reaction spontaneity, 513–519Reactors, 824–825Real gases, 435Recycling of polymers, 765Red blood cells, 482Red phosphorus, 190Redox equations. See also Redox reac-

tions; balancing by half-reactions, 651,652–653 prob., 654–655 lab; balanc-ing by oxidation-number method,644–645, 645–646 prob., 647 lab,654–655 lab; balancing net ionic,646–647, 648–649 prob.

Redox reactions, 635, 636–653; cleaningby, 638 lab; corrosion, 679–682, 681lab; electrochemistry and, 663–665;electrolysis and. See Electrolysis; elec-tron transfer in, 635–637; electroneg-ativity and, 639; equations for. SeeRedox equations; half-reactions,650–653; identifying, 640 prob.;observing, 635 lab, 654–655 lab;organic compounds from, 758–759;oxidation numbers, 641, 642 prob.,643; oxidizing agents, 638; photo-graphic film and, 656; reducingagents, 638; reversal of, 683; voltaiccells and, 663 lab, 663–665

Reducing agents, 638Reduction, 637Reduction potential, 666–668, 667 tableRefrigerators, 5–6, 522Rem (Roentgen equivalent for man), 830

lab, 831Renal dialysis technician, 475Replacement reactions, double-replace-

ment reactions, 290 table, 290–291,291 prob.; single-replacement reac-tions, 287–288, 288 lab, 289 prob.

Representative elements, 154, 170–171lab, 179–180

Research, types of, 14Resonance, 256, 256 prob.Resonance structures, 256, 256 prob.Reverse osmosis, 851–852Reversible reactions, 560–562Rhodochrosite, 234Rhombohedral crystals, 401 illus., 401 labRibose sugar, 791RNA (ribonucleic acid), 791Robots (nanorobots), 110

Index

Page 135: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

1004 Chemistry: Matter and Change

Index

Rocket boosters, redox reactions in, 647lab

Roentgen, Wilhelm, 806, 831Rose quartz, 234Rounding numbers, 40–42 prob., 40–42,

895Rowland, F. Sherwood, 11, 845Rows. See PeriodsRoy G. Biv, 120Rubber, artificial, 92Rubber band stretch experiment, 18–19

labRubidium, 182Rubies, 187Runoff, 851Rust, 57, 62, 513, 635 lab, 679–681, 681

labRutherford, Ernest, 94–96, 117–118, 807,

815Rutile, 856 table

SSafety, lab, 14–15, 16 tableSalicylaldehyde, 748Salicylic acid, 344Salinity, 851Salt bridges, 664Salt hydrolysis, 621–622, 622 prob.Salts, 215, 617, 843Sand filtration, 853Saponification, 785–786, 786 labSapphires, 187Saran, 763 tableSaturated fatty acids, 784, 785Saturated hydrocarbons, 710Saturated solutions, 458s-block elements, 160, 161 illus., 179–185Scales, 8 illus.Scandium, 198Scanning tunneling microscope (STM),

91, 96 labSchrΓΆdinger, Erwin, 131–132SchrΓΆdinger wave equation, 131–132Science writer, 56Scientific illustrator, 41Scientific investigations, types of, 14Scientific law, 13Scientific method, 10–13, 18–19 labScientific notation, 31 prob., 31–33, 33

prob., 889–891, 891–892 prob.Scintillation counters, 827–828Sea level, air pressure at, 390Seawater, 850, 851 table, 851–852; com-

position of, 851, 851 table; desalina-tion of, 851–852; drinking of, 851

Second (s), 26, 26 tableSecond law of thermodynamics, 514Secondary batteries, 675Sedimentation, 841 lab, 853Selenium, 192, 194, 200 tableSelf-replication, nanorobot, 110Semiconductors, 139 illus., 187, 194, 204Semimetals. See Metalloids

Separation techniques, 68–69, 78–79 labSewage treatment plants, 854Sex hormones, 787Shape-memory alloys, 412SI units, 26–29; base units, 26, 26 table;

converting between, 901–902, 902prob.; prefixes used with, 26 table, 901table, 913 table

Sickle cell disease, 458, 482Side chains, 776Sigma bonds, 245Significant figures, 38–39, 39 prob.,

893–896, 894–897 prob.Silica, 188Silicates, 192, 226Silicon, 70, 138 table, 158, 188, 204, 855

tableSilicon carbide, 188Silicon dioxide, 188Silver, 100 illus., 199Silver bromide, 195, 656Silver iodide, 195Silver nitrate, reaction with copper, 78–79

labSimple sugars (monosaccharides), 775

lab, 781Single covalent bonds, 243–245, 253

prob., 710Single-replacement reactions, 287–288;

of halogens, 288, 288 lab; of metals,287–288, 289 prob., 300–301 lab; pre-dicting products of, 291 table

Skeleton equations, 279, 279 prob., 280Slime, making, 737 labSlope of a line, 44, 46–47 lab, 906Smell, sense of, 798Smog, 846–847Smoke detectors, 201Soaps, 181, 398, 786, 786 labSociety, chemistry and. See Chemistry

and SocietySodium, 138 table, 181, 182, 851 table,

855 tableSodium azide, 286, 376Sodium chloride, 182; aqueous solutions

of, 455; crystal structure, 217; elec-trolysis of molten, 684; flame test, 125lab; properties of, 56, 56 table, 74

Sodium hydrogen carbonate, 297Sodium hydrogen sulfite, 353 labSodium hydroxide, 295 labSodium hypochlorite, 638Sodium selenate, 194Sodium sulfate decahydrate, 495Sodium sulfide, 299 prob.Sodium vapor lamps, 182Soft water, 185, 202–203 labSoil, acid precipitation and, 847, 848Solar cells, 188Solar energy, 495, 730, 860, 862–863 labSolar panels, 194Solar ponds, 860, 862–863 labSolid rocket boosters (SBRs), redox reac-

tions in, 647 lab

Solids, 58, 399–400; amorphous, 403;crystalline, 400, 401 illus., 401 lab;density of, 399–400; heat of vaporiza-tion of, 502, 503 lab; melting of, 61,404–405; solutions of, 453; sublima-tion of, 407; types of, 402 table,402–403; unit cell model of, 400, 401lab

Solubility, 454, 457 table, 457–460; com-mon ion effect and, 584–585; equilib-ria and. See Solubility equilibria;factors affecting, 458–460, 461 prob.;guidelines for, 920 table; Henry’s lawand, 460–461; of nonpolar com-pounds, 456; of polar compounds,266, 456; pressure and, 460; solubilityproduct constant (Ksp) and, 578–580,579–581 prob.; temperature and, 457,457 table, 458–459

Solubility equilibria, 577–585, 586–587lab; applications of, 585; common ioneffect and, 584–585; solubility productconstant (Ksp) and, 578–580, 579–581prob., 586–587 lab

Solubility product constant (Ksp), 578table, 578–580; comparing two,586–587 lab; ion concentration from,580, 580–581 prob.; molar solubilityfrom, 579–580 prob.; predicting pre-cipitates from, 581–582, 582–583prob., 583 lab

Soluble, 454Soluble salts, hot and cold packs, 302Solutes, 292, 453; depression of freezing

point by, 473 lab, 473–474; elec-trolytes vs. nonelectrolytes, 471; ele-vation of boiling point by, 472;lowering of vapor pressure by, 472;osmotic pressure and, 475

Solution concentration, 462–470; fromabsorption of light by solution (Beer’slaw), 480–481 lab; by molality (m),469; by molarity (M), 464–465, 465prob.; by mole fraction, 470; by per-cent mass, 463, 463 prob.; by percentvolume, 464, 464 prob.; ratios of, 462,462 table

Solutions, 67, 453–475; aqueous. SeeAqueous solutions; buffered, 622–625,624 lab; characteristics of, 453–454;colligative properties of, 471–474, 473lab; concentration of. See Solutionconcentration; diluting, 467, 468 prob.;intermolecular forces and, 453 lab;molality of, 469, 469 prob.; molarsolution preparation, 466 prob.,466–467, 468 prob.; molarity of,464–465, 465 prob., 620–621, 621prob.; mole fraction of, 470, 470 prob.;saturated, 458; solubility and, 457table, 457–460; solubility product con-stant (Ksp) and, 578–582; supersatu-rated, 459; types of, 67 table, 453–454,454 table; unsaturated, 458

Index

Page 136: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Index 1005

Index

Solvation, 455–457; factors affecting rateof, 456; heat of solution and, 457; ofionic compounds, 455; of molecularcompounds, 456

Solvents, 292, 453Somatic damage, 830Space-filling molecular model, 252 illus.Space shuttle, redox reactions in rocket

boosters of, 647 labSpecies, 650Specific heat, 492–495, 494–495 prob.;

of common substances, 492 table, 921table; determining with a calorimeter,496–497, 497–498 prob.; periodictable trends, 497 table

Specific rate constant (k), 542Spectator ions, 293Spectroscope, 152Spectroscopist, 136Speed of light (c), 119, 913 tableSpeed of reactions. See Reaction ratesSphalerite, 856 tableSpontaneous processes, 513–519, 516

prob., 518–519 prob., 535Square roots, 892Stainless steel, 231 tableStalactites, 600Stalagmites, 600Standard enthalpy (heat) of formation

(Hf), 509–511, 510 table, 511–512prob.

Standard hydrogen electrode, 666Standard reduction potentials, 667 table,

667–672, 670–671 prob., 688–689 labStandard temperature and pressure (STP),

431Standardized Test Practice, 23, 53, 85,

115, 149, 177, 209, 239, 275, 351,451, 487, 527, 557, 593, 633, 661,695, 735, 773, 803, 839, 869

Starch, 783Stars, 26, 152States of matter, 58–60, 385–409; gases,

59, 386–392; intermolecular forcesand, 393–395; kinetic-molecular the-ory and, 385–386; liquids, 58–59,396–399; phase changes, 61–62,404–409, 410–411 lab; plasma, 58;solids, 58, 399–400, 401 illus., 401 lab,402–403

Stearic acid, 784Steel, 199, 230 lab, 231Stereoisomers, 718Sterilization, 853, 854Sterling silver, 231, 231 tableSteroids, 787STM. See Scanning tunneling microscope

(STM)Stock solutions, dilution of, 467, 468

prob.Stock system, 224Stoichiometry, 354–373; of automobile

air bags, 376; balancing chemicalequations, 354, 355–356 prob.; gases

and, 440–441, 441 prob., 442–443prob., 443; limiting reactants, deter-mining, 365–366, 367–368 prob.;mass-to-mass conversions, 361,361–362 prob., 362 lab; mole ratios,357, 357 prob., 374–375 lab; mole-to-mass conversions, 360, 360 prob.;mole-to-mole conversions, 358, 359prob.; percent yield, 370, 371–372prob., 372 lab, 373; steps to follow,363; titration and, 618–621, 621 prob.

Stomach, acids in, 628Storage batteries, 675. See also Fuel cells;

lead-acid, 675–676; lithium, 676–677STP (standard temperature and pressure),

431Straight-chain alkanes, 699–701, 700

tableStratosphere, 4, 4–5, 842, 844–846Strong acids, 602, 614, 614 prob.Strong bases, 606, 614, 614 prob.Strong electrolytes, 471Strong nuclear force, 810Strontianite, 856 tableStrontium, 183, 185Strontium-90, 817, 817 tableStrontium chloride, 125 labStructural formulas, 252–255, 700Structural isomers, 717, 720 labStructural proteins, 780Subatomic particles, 92–97, 97 table, 102

tableSublevel diagrams, 138Sublevels, 133–134Sublimation, 407Substances, 55–56Substituent groups, 701Substituted aromatic hydrocarbons, 724Substituted hydrocarbons, 737–765; alco-

hols, 743–744, 766–767 lab; aldehy-des, 747–748; amides, 752; amines,745–746; carboxylic acids, 749–753;esters, 750–751, 751 lab; ethers, 745;functional groups, 737–738, 738 table;halocarbons, 738–742; ketones,748–749; physical properties, 737 lab;reactions forming, 741–742, 752–753,754–759

Substitutional alloys, 231Substitution reactions, 741–742Substrates, 778–779Subtraction operations, 887–888Sucrase, 782Sucrose, 56 table, 75 table, 782Sulfates, 851 tableSulfides, 187, 856, 856 tableSulfur, 138 table, 140, 193Sulfur dioxide, 193, 847; acid rain and,

847–848, 849; combustion reactionsinvolving, 285

Sulfuric acid, 373Sun, 152, 495, 730Supersaturated solutions, 459Surface area: chemical reaction rates and,

537–538; percent yield and, 372 lab;rate of solvation and, 456

Surface tension, 398Surfactants, 398Surroundings, 498Suspensions, 476Symbols, 912 tableSynthesis reactions, 284, 285 prob., 291

tableSynthetic elements, 179System, 498SystΓ¨me Internationale d’UnitΓ©s. See SI

units

TTable salt, 55. See also Sodium chlorideTarnish, removing, 638, 638 labTartaric acid, 719Technetium, 152Technology, 17Teflon, 740, 761, 763 tableTelevision, 92, 158, 172, 828Tellurium, 192, 194Temperature, 30, 386; base unit of (K), 26

table, 30; Boyle’s law and, 421, 422prob.; change in as evidence of reac-tion, 277; Charles’s law and, 419 lab,423–424, 425 prob.; chemical equilib-rium and, 572–573, 573 lab; combinedgas law and, 428, 429–430 prob.; Gay-Lussac’s law and, 426, 426–427 prob.;Haber process and, 588; ideal gas lawand, 434–439; Le ChΓ’telier’s principleand, 572–573; rate of solvation and,456; reaction rates and, 538, 539 lab;scales for, 30; solubility and, 457 table,458–459; viscosity and, 397

Temperature scales, 30, 34Terephthalic acid, 762 tableTest-Taking Tips, 23, 53, 85, 115, 149,

177, 209, 239, 275, 351, 451, 487,527, 557, 593, 633, 661, 695, 735,773, 803, 839, 869

Tetrafluoroethylene, 740Tetragonal crystals, 401 illus., 401 labTetrahedral molecular shape, 260 tableTevatron, 815Thallium, 186Theoretical chemistry, 9Theoretical yield, 370Theory, 13Thermal pollution, 457Thermochemical equations, 501–505;

changes of state and, 502, 502–505,503 lab, 504 prob., 505 lab; enthalpychanges and, 499–500; entropychanges and, 514–519; Hess’s lawand, 506–508; standard enthalpy(heat) of formation and, 509–512, 510table

Thermochemistry, 489 lab, 498–500Thermometers, 30

Index

Page 137: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

1006 Chemistry: Matter and Change

Index

Thermonuclear reactions, 826Thermoplastic polymers, 764Thermosetting polymers, 764Thermosphere, 842Thixotropic substances, 476Thomson, J. J., 93, 94Thomson, William (Lord Kelvin), 30Thorium, decay of, 813 prob.Three-dimensional protein structure, 778Three Mile Island, 824Thymine (T), 789Thyroid glands, 195Time, 26, 26 tableTin, 141 prob., 189Titanium, 160Titration, 618–621, 621 prob., 626–627

labTNT (trinitrotoluene), 190Tokamak reactor, 826Toluene, 724Torr, 390, 390 tableTorricelli, Evangelista, 389Trace elements, 200trans– isomers, 718Transition elements, 154, 158, 234Transition metals, 158, 197–200Transition state, 532Transmutation, 815–816, 816 prob.Transport proteins, 779Transuranium elements, 201, 815–816Triclinic crystals, 401 illus.Triglycerides, 785, 786 labTrigonal bipyramidal molecular shape,

260 tableTrigonal planar molecular shape, 260

tableTrigonal pyramidal molecular shape, 260

tableTriple covalent bonds, 245, 246, 710Triple point, 409Tritium, 180, 818 tableTroposphere, 4, 842, 843, 846–849; acid

rain and, 847–849, 848 lab; photo-chemical smog in, 846–847

Trough, 119Try at Home Labs, 952-964Tungsten, 200Turbocharging, 424 labTyndall effect, 478 lab, 479

UUltrasound devices, 48Ultraviolet radiation, 3, 842, 843,

844–845Unbalanced forces, 563Unit cell, 400, 401 labUnited States Department of Agriculture

(USDA), 191 labUnits, converting, 901–902, 902 prob.Universe, 498Unsaturated fatty acids, 784–785Unsaturated hydrocarbons, 710, 711–716,

715 lab

Unsaturated solutions, 458Unstable nuclei, 105–107, 810–811Uracil (U), 791Uranium-235, 822–823, 824–825Uranium-238, 814 illus., 818 table, 834Uranium enrichment, 195

VVacuum pumps, 92–94Valence electrons, 140, 141 prob., 159Valence Spanning Electron Pair

Repulsion. See VSEPR modelVanadium, 198van der Waals forces, 266Van Helmont, Jan Baptista, 385Vanilla extract, tracing scent of, 108–109

labVapor, 59Vaporization, 405Vaporization, molar enthalpy (heat) of

(οΏ½Hvap), 164 lab, 502, 502 table, 503lab, 504 prob.

Vapor pressure, 406Vapor pressure lowering, 472Variables, 11–12, 44, 44 labVenom, 785Vinegar, mixing with oil, 241 lab; reaction

with baking soda, 297Viscosity, 397–398; of motor oil,

397–398, 697 lab; temperature and,397–398

Visible light spectrum, 119–120Vitalism, 697–698, 701Vitamins, 200, 366, 787Volcanoes, 517Volta, Alessandro, 665, 672Voltaic cells, 665–672. See also Batteries;

electrochemical potential of, 666–671,667 table, 688–689 lab; photovoltaiccells, 730; redox reactions and,663–665; standard reduction potential,666–669, 670–671 prob., 688–689 lab

Volume, Avogadro’s principle and,430–433; Boyle’s law and, 421;Charles’s law and, 419 lab, 423–424,425 prob.; chemical equilibrium and,571–572; combined gas law and, 428,429–430 prob.; gas stoichiometry and,440–441, 441 prob., 442–443 prob.,443; Le ChΓ’telier’s principle and,571–572; relationship with densityand mass, 29 prob.; units of, 27

Volumetric analysis, 328VSEPR model, 259, 260 table, 261 lab

WWaage, Peter, 563Wastewater treatment, 841 lab, 853–854Wastewater treatment operators, 222Water, atmospheric, 843; boiling point of,

913 table; breakdown of, 74; chemicalreactions forming, 295, 296 prob.;

clarification of, 841 lab, 853; conden-sation of, 407–408; Earth’s. SeeHydrosphere; enthalpy (heat) of fusionof, 505 lab; evaporation of, 405; freez-ing of, 408, 913 table; hard, 185,202–203 lab, 864; ion product con-stant for (Kw), 608–609; law of multi-ple proportions and, 76; melting of,404; methane vs., 708 table, 709;molecular compound name, 249 table;phase changes, 61, 408–409; polarityof, 265; properties of, 56 table; soft-ening, 864; solutions of. See Aqueoussolutions; vaporization of, 405, 503lab; VSEPR model of, 261 lab

Water cycle, 850–851Water pollution, 853Water softeners, 185, 202–203 lab, 864Water treatment plants, 841 lab, 853–854Watson, James, 20, 789–790Wavelength, 118, 119–120, 121 prob.Wave mechanical model of the atom. See

Quantum mechanical model of theatom

Wave model of light, 118–121Waves, 118–121; amplitude of, 119; fre-

quency of, 118–119; speed of, 119;wavelength of, 118, 121, 121 prob.

Waxes, 787Weak acids, 603, 604 labWeak bases, 606Weak electrolytes, 471Weathering, 281Weight, 8White light, spectrum of, 120White phosphorus, 190Willow bark, aspirin from, 344Wire, thickness of from density, 46–47

labWitherite, 856 tableWohler, Friedrich, 698Wood’s metal, 191Word equations, 279

XXenon tetrafluoride, 257–258 prob.X rays, 118, 806, 809Xylene, 723 illus., 724

YYeast fermentation, 794–795, 796–797

labYellow sulfur, 193Yttrium, 201

ZZeppelins, 180, 446Zewail, Ahmed, 544Zinc, 55 lab, 200, 300–301 labZinc-carbon dry cells, 673–674

Index

Page 138: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

Photo Credits 1007

Practice Problems

Photo

Cre

dit

s

Photo Credits

Cover (drop)John Harwood/Science Photo Library/Photo Researchers, (glacier)Tom

Bean/Stone, (molecules)Ken Edward/Photo Researchers, (snowflake)Scott

Camazine/Photo Researchers; v (t)VCG/FPG, (b)Roberto De Gugliemo/Science

Photo Library/Photo Researchers; vi (t)Mark A. Schneider/Visuals Unlimited,

(b)Richard Megna/Fundamental Photographs; vii Ellis Herwig/Stock Boston; viiiStephen Frisch/Stock Boston; ix (t)Millard H. Sharp/Photo Researchers,

(b)PhotoDisc; x Dan Hamm/Stone; xi xii Matt Meadows; xiii Doug Martin; xiv(t)Matt Meadows, (b)Bob Daemmrich/Stock Boston; xvi NASA/Roger

Ressmeyer/Corbis; 1 Bernhard Edmaeir/Science Photo Library/Photo Researchers;

2 Royal Observatory, Edinburgh/AAO/Science Photo Library/Photo Researchers; 3Barry Runk from Grant Heilman; 4 Charles O’Rear/CORBIS; 5 (l)Doug Martin,

(r)NASA/Science Photo Library/Photo Researchers; 7 (t)Doug Mills/AP/Wide World

Photos, (bl)Andy Sacks/Stone, (br)Richard Clintsman/Stone; 8 David Young-Wolff/

Stone; 10 Bob Daemmrich/Stock Boston; 11 Lynn M. Stone; 12 (b)Matt Meadows;

12 (t)Matt Meadows; 14 Andrew McClenaghan/Science Photo Library/Photo

Researchers; 15 Chip Clark; 16 Matt Meadows; 17 (l)E. Nagel/FPG, (c)Oaktree

Automation Inc., (r)Chris Bjornberg/Photo Researchers; 19 Matt Meadows; 20(l)U.S. DOE Human Genome Program, (r)PhotoDisc; 24 CORBIS; 25 (t)Matt

Meadows, (b)Tony Freeman/PhotoEdit; 26 Tim Brown/Stone; 27 National Bureau

of Weights and Measures; 28 Matt Meadows; 31 Rich Frishman/Stone; 32 Pictor-

Uniphoto; 34 Rod Joslin; 37 Henry Horenstein/Stock Boston; 40 Geoff Butler; 47Matt Meadows; 48 (t)Telegraph Colour Library/FPG, (c)Watson Photography/

Medichrome, (bl)Anatomyworks Inc./Medichrome; 54 Jeff Hunter/The Image Bank;

55 Matt Meadows; 56 David Cavagnaro/Visuals Unlimited; 57 (tl)John

Cancalosi/Stock Boston, (tr)Ken Lucas/Visuals Unlimited, (c)Erich Schrempp/Photo

Researcher, (b)Dennis Hallinan/FPG; 58 (l)Simon Wilkinson/The Image Bank,

(r)Travelpix/FPG; 59 (tl)Aaron Haupt, (tr)Jacques Jangoux/Photo Researchers,

(b)Ellis Herwig/Stock Boston; 60 Mary Kate Denny/PhotoEdit; 61 StudiOhio; 62Matt Meadows; 62 (l)John Eastcott & Yva Momatiuk/Photo Researchers, (r)Erich

Schrempp/Photo Researchers; 63 (l)Clyde H. Smith/FPG, (r)Greig Cranna/Stock

Boston; 64 (tl tr)Stephan Frisch/Stock Boston, (b)file photo; 65 Michael Holford;

66 67 68 69 Matt Meadows; 70 Stamp from the collection of Prof. C.M. Lang, pho-

tograph by Gary Shulfer, University of WI at Stevens Point; 72-73 from The Periodic

Systems of the Elements, author P. Menzel. (c)Ernst Klett Schulbuch Verlag GmbH,

Stuttgart, Germany. Charts available from Science Import, Quebec, Canada.; 74(t)Charles D. Winters/Photo Researchers, (b)Stephen Frisch/Stock Boston; 75 file

photo; 77 Matt Meadows; 80 Chip Clark; 82 (t)Geoff Butler, (b)Larry Hamill; 86Courtesy IBM Corporation, Research Division, Almaden Research Center; 87 Matt

Meadows; 88 (air)William D. Popejoy, (water)Rudi Von Briel , (earth)file photo,

(fire)Doug Martin, (b)Nimatallah/Art Resource, NY; 89 (t)Scala/Art Resource, NY,

(b)Bettmann/CORBIS; 90 Kean Collection/Archive Photos; 91 (l)David

Parker/Science Photo Library/Photo Researchers, (r)Philippe Plailly/Science Photo

Library/Photo Researchers; 96 (t)OMICRON Vakuumphysik GmbH, (b)courtesy

IBM Corporation, Research Division, Almaden Research Center; 100 Lew

Lause/Pictor; 102 109 Matt Meadows; 110 Dustin W. Carr & Harold G.

Craighead/Physics New Graphics/American Institute of Physics; 114 H.R.

Bramaz/Peter Arnold, Inc.; 116 Steve Allen/The Image Bank; 117 Matt Meadows;

118 (l)Fundamental Photographs, (c)Michael Neveux/CORBIS, (r)Richard

Megna/Fundamental Photographs; 119 StudiOhio; 120 David Parker/Science Photo

Library/Photo Researchers; 121 David R. Frazier; 122 (l)Ray Ellis/Photo

Researchers, (c)Werner H. Muller/Peter Arnold, Inc., (r)Russ Lappa, 123 Mark

Burnett, 124 Michael Martin/Science Photo Library/Photo Researchers; 129 Paul

Silverman/Fundamental Photographs; 131 Pekka Parviainen/Science Photo

Library/Photo Researchers; 132 Nicolas Sapieha, Kea Publishing Services

Ltd./CORBIS; 139 Phil A. Harrington/Peter Arnold, Inc.; 141 Ron Sherman/Pictor;

143 (t)Ted Rice, (b)Matt Meadows; 144 Runk/Schoenberger from Grant Heilman;

150 Bill Ross/CORBIS; 151 Matt Meadows; 152 K. Urban/CORBIS; 153 (t) Edgar

Fahs Smith Collection, University of PA Library, (bl)Archive Photos, (br)Steve

Raymer/CORBIS; 155 (l)Robert Mayer, (r)file photo; 158 (l)Keren Su/Stock Boston,

(tr)Victoria & Albert Museum, London/Art Resource, NY, (br)(c)2002 Kay

Chernush; 162 Doug Martin/Photo Researchers; 171 Matt Meadows; 172 Hazel

Hankin/Stock Boston; 178 Scala/Art Resource, NY; 179 Paul Brown; 180Bettmann/CORBIS; 181 (l)Charles D. Winters/Photo Researchers, (r)Richard

Megna/Fundamental Photography; 182 (l)Owen Franken/Stock Boston, (r)Richard

Gaul/FPG; 183 Mark A. Schneider/Visuals Unlimited; 184 E.O. Hoppe/CORBIS;

185 (l)Cliff Leight, (r)Aaron Haupt; 186 (l)Ed Eckstein/CORBIS, (r)Matt Meadows;

187 Mary Kay Denny/PhotoEdit; 188 (tl)Adam Woolfitt/CORBIS, (tr)Zigy Kaluzny/

Stone, (bl)Barry Runk from Grant Heilman, (bc)Runk/Schoenberger from Grant

Heilman, (br)Charles D. Winters/Photo Researchers; 189 (l)A. Ramey/PhotoEdit,

(r)Dave G. Houser/CORBIS; 190 (l)Bettmann/CORBIS, (r)Stephen Frisch/Stock

Boston; 191 (l)Colonial Williamsburg Foundation, (r)Dick Luria/FPG; 192 (l)Hal

Beral/Visuals Unlimited, (r)Comar/Gerard; 193 (b)Woods Hole Oceanographic

Institution, (others)Richard Megna/Fundamental Photography; 194 (t)Grant Heilman

Photography, (b)Richard Megna/Fundamental Photographs; 195 (l)Morton & White,

(r)Michael Newman/PhotoEdit; 198 (t)Stephen Frisch/Stock Boston, (b)Richard

Megna/Fundamental Photographs; 199 Michael S. Yamashita/CORBIS; 201 (l)Nik

Wheeler/CORBIS, (r)Stephen Marks/The Image Bank; 203 Matt Meadows; 204Pictor; 206 PhotoTake/PictureQuest; 207 Lester V. Bergman/CORBIS; 210 Cliff

Leight; 211 Matt Meadows; 213 Lawrence Migdale/Science Source/Photo

Researchers; 215 (l)Yoav Levy/Phototake/QictureQuest, (r)Paul Silverman/

Fundamental Photographs; 218 (l c)Paul Silverman/Fundamental Photographs,

(r)Roberto De Gugliemo/Photo Researchers; 226 Doug Martin; 230 233 Matt

Meadows; 234 Doug Martin; 240 Tracy J. Borland; 241 Matt Meadows; 244 Amanita

Pictures; 247 Barry Runk from Grant Heilman; 249 Richard Megna/Fundamental

photographs; 253 Amanita Pictures; 254 Simon Bruty/Stone; 255 Doug Martin; 258Argonne National Laboratories; 259 Matt Meadows; 262 Holt Studios Int./Photo

Researchers; 264 Hulton Getty/Archive Photos; 265 StudiOhio; 266 Matt Meadows;

267 Bud Roberts/Visuals Unlimited; 269 Matt Meadows; 270 Bill Horsman/Stock

Boston/PictureQuest; 276 Keith Kent/Science Photo Library/Photo Researchers;

277 Matt Meadows; 278 (tl)Sara Gray/Stone, (tr)Matt Meadows, (bl)Robert

Mathena/Fundamental Photographs, (br)B. D’Ohgee/Liaison Agency; 279 Charles

D. Winters; 280 Geoff Butler; 282 Michelle Bridewell/PhotoEdit; 284 Bob

Daemmrich/Stock Boston; 285 CORBIS; 286 Didier Charre/The Image Bank; 287(l)Charles D. Winters/Photo Researchers, (r)Tim Courlas; 289 Geoff Butler; 292 Matt

Meadows; 294 Telegraph Colour Library/FPG; 295 Matt Meadows; 296 Bob

Daemmrich/Stock Boston; 297 Matt Meadows; 298 Mark Steinmetz; 299 National

Bureau of Standards; 301 302 Matt Meadows; 308 Aaron Haupt; 309 310 Matt

Meadows; 312 Grant Le Duc/Stock Boston; 313 314 Matt Meadows; 315 Ray

Massey/Stone; 317 British Museum, London UK/Bridgeman Art Library; 318 Skip

Comer; 321 Underwood & Underwood/CORBIS; 322 Matt Meadows; 323 John

Neubaur/PhotoEdit; 328 (l)Kenji Kerins, (r)James Holmes, Oxford Centre for

Molecular Sciences/Science Photo Library/Photo Researchers; 330 Aaron Haupt; 333Liane Enkelis/Stock Boston/PictureQuest; 334 L. West/Photo Researchers; 336George Hall/CORBIS; 338 (l)Patrick Ward/Stock Boston, (r)Peter Menzel/Stock

Boston; 339 340 341 342 Matt Meadows; 344 Romilly Lockyer/The Image Bank;

344 Steve Chenn/CORBIS; 352 Thomas Del Brase/Stone; 353 Matt Meadows; 354L.S. Stepanowicz/Visuals Unlimited; 355 Ronnie Kaufman/The Stock Market; 356Chip Clark; 358 Richard Megna/Fundamental Photographs; 360 Doug Martin; 361Charles D. Winters; 364 Aaron Haupt; 366 Andrew Syred/Science Photo Library/

Photo Researchers; 367 Richard Megna/Fundamental Photographs; 369 Matt

Meadows; 371 Richard Megna/Fundamental Photographs; 372 Matt Meadows; 373David Nunuk/Science Photo Library/Photo Researchers; 375 Matt Meadows; 384Ron Scherl Photography; 385 Amanita Pictures; 386 CORBIS; 388 Charles D.

Winters/Photo Researchers; 389 Mark Turner-FDB/Liaison Agency; 392 KS Studio;

396 Morrison Photography; 397 Glencoe photo; 398 Rozlyn R. Masley/Photo OP;

399 (t)L.S. Stepanowicz, (b)Chip Clark; 400 John Noble/CORBIS; 401 (l to r)Mark

A. Schneider/Visuals Unlimited, Runk/Schoenberger from Grant Heilman, Mark A.

Schneider/Visuals Unlimited, Mark A. Schneider/Visuals Unlimited, Runk/

Schoenberger from Grant Heilman, Mark A. Schneider/Visuals Unlimited, Ken

Lucas/Visuals Unlimited; 402 Roberto De Gugliemo/Science Photo Library/Photo

Researchers; 403 (l)Andrew J.G. Bell/CORBIS, (r)Ric Ergenbright/CORBIS; 407(l)Liane Enkelis/Stock Boston/PictureQuest, (r)NASA/Roger Ressmeyer/CORBIS;

408 (l)Aaron Haupt, (r)Runk/Schoenberger from Grant Heilman; 411 Matt

Meadows; 412 Tom Pantages; 418 Peter Skinner/Photo Researchers; 419 420 Matt

Meadows; 426 Tony Freeman/PhotoEdit; 428 Dan Hamm/Stone; 430 Matt

Meadows; 432 Jeffrey Muir Hamilton/Stock Boston; 433 David Parker/Science

Photo Library/Photo Researchers; 434 Vanessa Vick/Photo Researchers; 435(l)James Holmes/Celltech/Science Photo Library/Photo Researchers, (r)Matt

Page 139: Appendices - Neshaminy School · PDF fileb. 0.054 mm 0.3804 mm e. 35.43 g 24.84 mL c. 45.1 km 13.4 km f. 0.0482 g 0.003 146 mL Chapter 3 Section 3-2 1. A 3.5-kg iron shovel is left

1008 Chemistry: Matter and Change

Photo Credits

Photo

Cre

dits

Meadows; 436 (l)Larry Hamill, (r)Matt Meadows; 438 Richard Megna/Fundamental

Photographs; 439 Matt Meadows; 441 Jim Sugar Photography/CORBIS; 442Thomas Hovland from Grant Heilman; 445 Matt Meadows; 450 David & Doris

Krumholz/Fundamental Photographs; 452 Jeff Lepore/Photo Researchers; 453 Matt

Meadows; 454 (l)Paul Conklin/PhotoEdit, (c)Dr. Tony Brain/Science Photo

Library/Photo Researchers, (r)David Young-Wolff/PhotoEdit; 456 (t)Richard Megna/

Fundamental Photographs, (b)Andy Levin/Photo Researchers; 457 Kirtley-Perkins/

Visuals Unlimited; 458 Matt Meadows; 459 (bl)Aaron Haupt, (br)Tony

Craddock/Science Photo Library/Photo Researchers, (others)Richard Megna/

Fundamental Photographs; 460 Runk/Schoenberger from Grant Heilman; 462 Mark

Steinmetz; 463 Andrea Pistolesi/The Image Bank; 464 Aaron Haupt; 465 Richard

T. Nowitz/CORBIS; 466 467 468 Matt Meadows; 469 Geoff Butler; 471 Stephen

Frisch/Stock Boston; 476 Matt Meadows; 477 (l)Stan Skaggs/Visuals Unlimited,

(c)Skip Comer, (r)Matt Meadows; 478 Clint Farlinger/Visuals Unlimited; 479(l)Richard Hamilton Smith/CORBIS, (r)Kip & Pat Peticolas/Fundamental

Photographs; 482 Dr. Gopal Murti/Science Photo Library/Photo Researchers; 488AFP/CORBIS; 489 Matt Meadows; 490 (l)Davis Barber/PhotoEdit, (r)L.S.

Stepanowicz; 491 Doug Martin; 492 Michael Pole/CORBIS; 493 Ted Rice; 494William Stranton from Rainbow/PictureQuest; 495 NASA/Liaison Agency; 497Matt Meadows; 498 Michael Newman/PhotoEdit; 499 Mark Burnett; 501 Lawrence

Migdale/Photo Researchers; 503 Jim Strawser from Grant Heilman; 507InterNetwork Media/Photodisc; 508 Dean Conger/CORBIS; 510 Hank de

Lespinasse/The Image Bank; 511 CORBIS; 513 Steve Kaufman/Peter Arnold, Inc.;

514 Matt Meadows; 515 Mark Steinmetz; 516 Matt Meadows; 517 Bernhard

Edmaier/Science Photo Library/Photo Researchers; 521 Matt Meadows; 528NASA/Science Photo Library/Photo Researchers; 529 Matt Meadows; 530 (t)Greg

Vaughn/Tom Stack & Associates, (b)Brian Bailey/Stone; 532 Mary Messenger/Stock

Boston; 535 536 Richard Megna/Fundamental Photographs; 537 (l)Michael

Dalton/Fundamental Photographs, (r)Richard Megna/Fundamental Photographs;

538 Matt Meadows; 539 Leonard Lessin/Peter Arnold, Inc.; 540 Art Wolfe/Stone;

541 Matt Meadows; 542 543 Stephen Frisch; 548 Ray Juno/The Stock Market; 551Matt Meadows; 552 (l)AC Rochester Division of General Motors, (r)Aaron Haupt;

558 Grant Heilman Photography; 559 Geoff Butler; 562 Jan Halaska/Photo

Researchers; 563 Robbie Jack/CORBIS; 564 Jeffrey Muir Hamilton/Stock Boston;

566 Matt Meadows; 570 Tim Courlas; 572 Matt Meadows; 574 Davis

Barber/PhotoEdit; 575 Barry Runk from Grant Heilman; 577 Doug Martin; 578CNRI/Science Photo Library/Photo Researchers; 579 Peter Essick/Aurora/

PictureQuest; 580 Matt Meadows; 582 (t)Matt Meadows, (b)Hank Erdmann/Visuals

Unlimited; 583 David Simson/Stock Boston/PictureQuest; 584 587 Matt Meadows;

588 PhotoDisc; 594 Ian Harwood; Ecoscene/CORBIS; 595 Geoff Butler; 596 Matt

Meadows; 597 Aaron Haupt; 598 Doug Menuez/PhotoDisc; 600 Millard H.

Sharp/Photo Researchers; 602 Matt Meadows; 609 Mitch Hrdlicka/PhotoDisc; 612Geoff Butler; 613 David York/Medichrome; 614 Matt Meadows; 615 Jon

Bertsch/Visuals Unlimited; 616 618 620 621 Matt Meadows; 622 Mike

Buxton/CORBIS; 625 Tim David/Photo Researchers; 627 Matt Meadows; 628(t)Mark Steinmetz, (b)PhotoDisc; 634 Thomas Eisner & D. Anashansly/Visuals

Unlimited; 635 Mike & Carol Werner/Stock Boston; 636 (t) Doug Martin, (b)Bob

Rogers; 637 Runk/Schoenberger from Grant Heilman; 638 Barry Runk from Grant

Heilman; 639 (tl)Geoff Butler, (bl)Michael Newman/PhotoEdit, (r)David Young-

Wolff/PhotoEdit; 641 Matt Meadows; 642 CORBIS; 644 Richard

Megna/Fundamental Photographs; 645 Geoff Butler; 647 NASA; 651 Richard

Megna/Fundamental Photographs; 652 Wolfgang Kaehler/CORBIS; 655 Matt

Meadows; 656 (t to b)Dennie Cody/FPG, Dennie Cody/FPG, Richard Pasley/Stock

Boston, Gunter Marx/CORBIS, Gunter Marx/CORBIS; 662 Ron Chapple/FPG; 663Matt Meadows; 665 Bettmann/CORBIS; 674 Matt Meadows; 674 Lester V.

Bergman/CORBIS; 675 Novastock/Tom Stack & Associates; 676 Aaron Haupt; 677Michael W. Thomas/Pictor; 680 (t)Greig Cranna/Stock Boston, (c)Robert

Fried/Stock Boston, (b)Visuals Unlimited; 681 Geoff Butler; 682 Marty Pardo; 684Capital Features/The Image Works; 685 (t)Grant Heilman Photography, (b)Doug

Martin; 686 (t)Charles E. Rotkin/CORBIS, (b)Stephen Frisch/Stock

Boston/PictureQuest; 687 ALCOA; 690 Eric Sander/Liaison Agency; 696 Paul

Souders/Liaison Agency; 697 Matt Meadows; 700 James Marshall/CORBIS; 703Peter Menzel/Stock Boston/PictureQuest; 707 Tony Freeman/PhotoEdit; 709 (l)Peter

Marbach from Grant Heilman, (c)George N. Matchneer, (r)Geoff Butler; 714 Bob

Krist/CORBIS; 716 (l)Larry Hamill, (r)Archive Photos; 719 Aaron Haupt; 723(l)Mark Steinmetz, (c)Rudi Von Briel, (r)Mark Steinmetz; 724 Bonnie

Kamin/PhotoEdit; 726 Bob Daemmrich/Stock Boston/PictureQuest; 727 Myrleen

Cate/PhotoEdit; 729 Matt Meadows; 730 David M. Dennis; 736 Roger Tully/Stone;

737 Matt Meadows; 741 Kevin C. Rose/The Image Bank; 742 Nancy

Sheehan/PhotoEdit; 743 Steven Peters/Stone; 744 (t)Tony Freeman/PhotoEdit,

(b)Jeff Greenberg/Visuals Unlimited 745 Bettmann/CORBIS; 746 (t)Doug Martin,

(b) Dean Siracusa/FPG; 748 (l)B. Borrell Casals, Frank Lane Picture Agency/COR-

BIS, (r)Deborah Denker/Liaison Agency; 749 (l)Doug Martin, (r)Telegraph Colour

Library/FPG; 750 (t)Ralph A. Clevenger/CORBIS, (b)Geoff Butler; 751 (l r)Larry

Hamill, (c)Matt Meadows, 752 Charles Michael Murray/CORBIS; 754 Matt

Meadows; 758 David Toase/PhotoDisc; 761 (l)Jim McGuire/Index Stock, (r)Mark

Steinmetz; 762 (t)Aaron Haupt, (b)Geoff Butler; 764 (t)David Brooks/The Stock

Market, (b)CORBIS; 765 767 Matt Meadows; 768 Ales Fevzer/CORBIS; 774 David

Ulmer/Stock Boston; 775 Richard Megna/Fundamental Photographs; 779 Peter

Cade/Stone; 780 Quest/Science Photo Library/Photo Researchers; 782 (l)Aaron

Haupt, 782 (r)Jeff Smith/Fotosmith, (l)Aaron Haupt; 783 Aaron Haupt; 784(l)PhotoDisc, (r)Digital Stock; 785 Mike Hopiak for the Cornell Laboratory of

Ornithology; 787 (t)Lynn M. Stone, (b)William J. Weber; 793 Gregory

Ochocki/Photo Researchers; 794 Lori Adamski Peek/Stone; 795 Aaron Haupt; 797Matt Meadows; 798 Spencer Grant/PhotoEdit; 804 CORBIS; 806 (t)Paul

Silverman/Fundamental Photographs, (b)Bettmann/CORBIS; 809 (l)Richard T.

Nowitz/Photo Researchers, (r)James King-Holmes/Science Photo Library/Photo

Researchers; 815 Fermi Lab/Photo Researchers; 818 Vince Michaels/Stone; 820(t)Sygma/CORBIS, (b)Kenneth Garrett/National Geographic Image Collection; 824(t)Wolfgang Kaehler/CORBIS, (b)Reuters/Str/Archive Photos; 825 (l)Tim

Wright/CORBIS, (r)Alex Bartel/Science Photo Library/Photo Researchers; 826 U.S.

DOE/Science Photo Library/Photo Researchers; 827 Michael Collier/Stock Boston;

828 (l)Klaus Guldbrandsen/Science Photo Library/Photo Researchers, (r)Aaron

Haupt; 829 (t)JISAS/Lockheed/Science Photo Library/Photo Researchers, (b)Mark

Harmel/Stone; 833 Matt Meadows; 840 VCG/FPG; 841 Telegraph Colour

Library/FPG; 843 Edna Douthat; 846 (t)NASA, (b)EPA Documerica; 847 Telegraph

Colour Library/FPG; 848 (l)Richard A. Cooke/CORBIS, (r)Ray Pfortner/Peter

Arnold, Inc.; 852 Nubar Alexanian/CORBIS; 853 Tom McGuire; 855 NASA; 857(tl)Mark A. Schneider/Photo Researchers, (tcl)John Greim/Medichrome, (tcr)George

Whitely/Photo Researchers, (tr)Cobalt, (bl)Doug Martin, (bc)PhotoDisc, (br)Will &

Deni McIntyre/Photo Researchers; 863 Matt Meadows; 864 Spencer Grant/Stock

Boston/PictureQuest; 888 Larry B. Jennings/Photo Researchers; 888 Matt Meadows;

889 (l)NIBSC/Science Photo Library/Photo Researchers, (r)Edna Douthat; 890(t)PhotoDisc, (b)Dustin W. Carr & Harold G. Craighead/Physics New

Graphics/American Institute of Physics; 891 CNRI/Science Photo Library/Photo

Researchers; 895 Matt Meadows; 896 Brian Heston; 897 George Hall/Corbis; 898Brent Turner; 900 Phyllis Picardi/Stock Boston; 902 Matt Meadows; 903 Kenji

Kerins; 908 Matt Meadows; 909 Alexander Lowry/Photo Researchers; 910 Michael

Collier/Stock Boston; 911 Geoff Butler.