“genteel” introduction to mri physics - ii: k-space ... · “genteel” introduction to mri...

47
“Genteel” Introduction to MRI Physics - II: k-space, timing, and contrasts Rudolph Pienaar, M.Eng, D.Eng Assistant in Medical Imaging Dept of Radiology Massachusetts General Hospital Boston MA, USA

Upload: others

Post on 29-May-2020

6 views

Category:

Documents


1 download

TRANSCRIPT

“Genteel” Introduction to MRI Physics - II: k-space, timing, and

contrasts

Rudolph Pienaar, M.Eng, D.EngAssistant in Medical Imaging

Dept of Radiology Massachusetts General Hospital

Boston MA, USA

Magnetic Resonance Imaging:Deconstructing Timing Diagrams

Andrew J. M. Kiruluta, Ph.D.Dept of Radiology, MGH,

Dept of Physics, Harvard UniversityBoston MA, USA

“Throw physic to the dogs; I’ll none of it.”Shakespeare, Macbeth

Organization

• Quick recap• More on k-space• MR Sequence Timing diagrams• Imaging practicalities: echoes

– Spin – Gradient

• Image Contrasts– Relaxation effects– T1, T2, and proton density

05/19/09 Andrew J. M. Kiruluta 4

Magnetic Resonance• Protons and Neutrons have intrinsic angular momentum.• Atoms with an odd number of proton and/or odd number of

neutrons have a net magnetic moment=> MR active• For example, 1H exhibit nuclear magnetic resonance.

-

-

-

-

--

- -

--

-+

+

+

+ ++

+ +

+

Neutrons + protons

1H

Magnetic Resonance

yx

z

Imaging

xy

z

Imaging

xy

z

in selected slice: select ywith phase encoding

x

y

Imaging

xy

zslice select: define z position

in selected slice: select xwith freq encoding

xy

z

x

y

2D Imaging – x (freq) encoding

• Some of the following images are copyright: DM Higgins

• http://www.revisemri.com/tutorials/what_is_k_space/

k-space

k-space

Frequency and space relations

k-space

k-space

k-space

05/19/09 Andrew J. M. Kiruluta 16

kx

ky

kx

ky

kx

ky

k-space

Imaging

xy

zslice select: define z position

in selected slice: select xwith freq encoding

in selected slice: select ywith phase encoding

x

y

Gradients

f(x)G(x)

slope = m

mm

df/dt

05/19/09 Andrew J. M. Kiruluta 19

Timing Diagram

RF

G

G

G

A/D

slice

freq

phase

echo

TR

excitation phase

Phase encodephase

frequency encode& data acquisition

Analog signal

05/19/09 Andrew J. M. Kiruluta 20

Excitation Phase

RF

Gslice

TR

excitation phase

05/19/09 Andrew J. M. Kiruluta 21

Constructive InterferenceSame wavelength, phase difference = 0°Amplitude larger: Higher intensity

Sum

( ) cos( ) 0.5cos( ) 1.5cos( )E x kx kx kx= + =

05/19/09 Andrew J. M. Kiruluta 22

Destructive InterferenceSame wavelength, phase difference = 180° (1/2 λ)Amplitude smaller: Lower intensity

Sum

( ) cos( ) 0.5cos( ) 0.5cos( )E x kx kx kxπ= + + =

05/19/09 Andrew J. M. Kiruluta 23

Selective Excitation

Frequency

Mag

nitu

de

Time

RF

Am

plitu

de

(a)(b)

Pos

ition

(d)(c)

Slope = 1γ G

Frequency

)(

ˆ)(

0

0

zGB

zzGBB

z

z

+=⇒+=

γω

• Slice Encoding Gradient field

• Slice Location & Width:– Gradient strength – Center frequency – Bandwidth (BW) of RF

pulse

05/19/09 Andrew J. M. Kiruluta 24

Phase Encoding Step

RF

G

G

slice

phase

TR

phase encodingstep

kx

ky

phase encodingdirecion

0.5c

m1.

13cm

1.5c

m

05/19/09 Andrew J. M. Kiruluta 25

Frequency Encoding and Data AcquisitionGE

RF

G

G

G

A/D

slice

freq

phase

echo

TR

excitation phase

Phase encodephase

frequency encode& data acquisition

Analog signal

kx

ky

phase encodingdirecion

8.13cm

05/19/09 Andrew J. M. Kiruluta 26

Mechanisms of Spin Resynchronization

05/19/09 Andrew J. M. Kiruluta 27

If the spins are brought into phase, a net transverse magnetization is created.

RF Spin Phasing

05/19/09 Andrew J. M. Kiruluta 28

Measuring the MR Signal

RF signals from precessing protons

RF antenna/Rx coil

B0

Starts off large when all phases are about equal

High frequency curve is at the average frequency

Decays away as different

components get different phases

05/19/09 Andrew J. M. Kiruluta 29

More about Echoes

“A fight against time…and signal decay”

The pros and cons of gradients

in selected slice: select xwith freq encoding

in selected slice: select ywith phase encoding

x

y

• Gradients, though useful in manipulating frequencies, also add dephasing, resulting in signal loss.

As we perform readout, wealso dephase (disturb the phaserelationship) along the readout

The pros and cons of gradients

• The most important k-space signal is at the center of k-space

• By adding additional gradients (and possibly another RF pulse), we can mitigate against gradient induced phase (and signal loss) and refocus our signal close to the center of k-space

05/19/09 Andrew J. M. Kiruluta 32

Spin Echo versus Gradient Echo

Gradient Echo

F I D gradient recalledecho

αR F p u l s e

rephase

dephase

signal

gradient

Spin Echo

FID spinecho

9 0 RF pulse

readoutfrequency encode

signal

gradient

18 00 RF pulse

05/19/09 Andrew J. M. Kiruluta 33

Spin & Gradient Echoes

Ref. Schering

• RF (spin) echo: flip the track (direction) so that they come back to the starting point.• Gradient echo: flip speeds (i.e. frequencies) so that the rabbit is slower than the turtle.

t < T2

05/19/09 Andrew J. M. Kiruluta 34

Spin Echo Timing Sequence

12

3 4

ky

kx

phase encoding direcion

K-space trajectory

RF

G

G

G

A/D

slice

freq

phase

echo

TR

excitation phase

Phase encodephase

frequency encode& data acquisition

Analog signal

TE/2 TE/2

1 2 3 4

Only 1 line of k-spaceis read per TR!

TR = 1s / 256 samples= 256s for whole slice= 4.2 minutes / slice

05/19/09 Andrew J. M. Kiruluta 35

A word about Contrast and Relaxation Effects

• ρ – Spin (Hydrogen/proton) density results in contrast between tissues

“water/fat content in tissue”

• T1 – due to energy exchange between spins and “lattice” ”time for sample to magnetize”

• T2 – dephasing time due to spin-spin energy exchange”time to loss of phase coherence”

• T2* - dephasing due to B0 inhomogenitiesgradients and inhomogeneous field increase

phase accumulation and reduce T2

10

05/19/09 Andrew J. M. Kiruluta 36

Magnetic Resonance

yx

z

T2

T1

05/19/09 Andrew J. M. Kiruluta 37

More about T1 and T2

19/05/09

38

Contrast - T1 Decay

• Longitudinal relaxation due to spin-lattice interaction

• Mz grows back towards its equilibrium value, M0

)1()( 1/0

Ttz eMtM −−=

0 1 2 3 4 5-1.0

-0.5

0.0

0.5

1.0

t/T1M

z/M

0

19/05/09

39

Some sample tissue time constants - T1

Image, caption: Nishimura, Fig. 4.2

fat

liver

kidney

Approximate T1 values as a function of Bo

white matter

gray matter muscle

19/05/09

40

Contrast - T2 Decay• Transverse relaxation

due to spin dephasing

• T2 irreversible dephasing

• T2/ reversible dephasing

• Combined effect:

*2/

/22

*2

)0()(

111

TteMtM

TTT−

⊥⊥ =

+=0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

t/T2*

Mx(

t)/M

x(0)

19/05/09

41

Some sample tissue time constants: T2

Table: Nishimura, Table 4.2

T2 of some normal tissue types

47muscle

92white matter

100gray matter

43liver

58kidney

85fat

T2 (ms)Tissue

19/05/09

42

Proton Density

Basic Principles of MR: GE Medical Systems

19/05/09

43

T2 Contrast

CSF

White/Gray Matter

Sig

nal

Time

Long Echo-TimeShort Echo-Time

19/05/09

44

T1 Contrast

Sig

nal

Time

Sig

nal

Time

Short Repetition Long Repetition

CSF

White/Gray Matter

19/05/09

45

MRI of the Brain - Sagittal

T1 ContrastTE = 14 msTR = 400 ms

T2 ContrastTE = 100 msTR = 1500 ms

Proton DensityTE = 14 msTR = 1500 ms

19/05/09

46

What Physicians would do without images…

19/05/09

47

Useful links...

• MR Technology Information Portal Database:

• http://www.mr-tip.comhttp://www.mr-tip.com/serv1.php?type=db

• Basics of MRI (online book):

• http://www.cis.rit.edu/htbooks/mri/

• Revise MRI:

• http://www.revisemri.com/