anthony g. brown rachel carson state office building ... 06-27-14 m… · document economic...

16
MDE MARYLAND DEPARTMENT OF THE ENVIRONMENT 1800 Washington Boulevard Baltimore MD 21230 410-537-3000 1-800-633-6101 www.mde.state.md.us Marhn O’MaIIey Governor Anthony G. Brown Lieutenant Governor Robert M. Summers, Ph.D. Secretary June 25, 2014 Randy Bordner, Chief, Stationary Sources Section Bureau of Air Quality Rachel Carson State Office Building P.O. Box 8468 Harrisburg, Pennsylvania 17105-8468 njpov Robert “Bc” Reiley, Assistant Counsel Bureau of Regulatory Counsel Rachel Carson State Office Building P.O. Box 8464 Harrisburg, Pennsylvania 17105-8464 rrei ley@yaov Re: Proposed RACT Rulemaking Dear Stationary Sources Chief Randy Bordner and Assistant Counsel Robert Reiley: rn X7 2 rn ‘J.J The Maryland Department of the Environment (MDE) appreciates the opportunity to comment on Pennsylvania’s Environmental Quality Board’s (EQB) proposed RACT rulemaking Additional Requirements for Major Sources of NOx and VOCs dated November 19, 2013 and released by EQB on April 19, 2014. MDE has three comments regarding the proposed RACT rulemaking. The MDE urges the EQB to revise the proposed RACT rulemaking to incorporate language that require sources run their installed controls, adopt more stringent emission rates and enhance the alternative compliance mechanism to lower the emissions rate for the 30-day system-wide averaging mechanisms. The MDE discusses these comments in detail below. 1. The Proposed Rulemaking Must Contain a Provision That Emission Control Technologies Must Run RACT is defined as the “lowest emission limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility”. See 57 Fed. Reg. 55,620, 55,624 (Nov. 25, 1992). www. rnde.state.md.us Recyckd Paper TTY Users 1-J-7i-225, Via Mary’and RcIiy rrvve

Upload: vodieu

Post on 07-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

MDE

MARYLAND DEPARTMENT OF THE ENVIRONMENT1800 Washington Boulevard • Baltimore MD 21230410-537-3000 • 1-800-633-6101 • www.mde.state.md.us

Marhn O’MaIIeyGovernor

Anthony G. BrownLieutenant Governor

Robert M. Summers, Ph.D.Secretary

June 25, 2014

Randy Bordner, Chief, Stationary Sources SectionBureau of Air QualityRachel Carson State Office BuildingP.O. Box 8468Harrisburg, Pennsylvania 17105-8468njpov

Robert “Bc” Reiley, Assistant CounselBureau of Regulatory CounselRachel Carson State Office BuildingP.O. Box 8464Harrisburg, Pennsylvania 17105-8464rrei ley@yaov

Re: Proposed RACT Rulemaking

Dear Stationary Sources Chief Randy Bordner and Assistant Counsel Robert Reiley:

rn

X72

rn

‘J.J

The Maryland Department of the Environment (MDE) appreciates the opportunity to comment on Pennsylvania’sEnvironmental Quality Board’s (EQB) proposed RACT rulemaking Additional Requirementsfor Major Sources ofNOx and VOCs dated November 19, 2013 and released by EQB on April 19, 2014. MDE has three commentsregarding the proposed RACT rulemaking.

The MDE urges the EQB to revise the proposed RACT rulemaking to incorporate language that• require sources run their installed controls,• adopt more stringent emission rates and• enhance the alternative compliance mechanism to lower the emissions rate for the 30-day system-wide

averaging mechanisms.

The MDE discusses these comments in detail below.

1. The Proposed Rulemaking Must Contain a Provision That Emission Control Technologies Must Run

RACT is defined as the “lowest emission limitation that a particular source is capable of meeting by theapplication of control technology that is reasonably available considering technological and economic feasibility”.See 57 Fed. Reg. 55,620, 55,624 (Nov. 25, 1992).

www. rnde.state.md.usRecyckd Paper TTY Users 1-J-7i-225,Via Mary’and RcIiy rrvve

Page 2

Data readily available from the Environmental Protection Agency’s Clean Air Markets Division (CAMD) indicateselectric generating units are operating without running their post-combustion controls. An analysis of CAMD datashows NOx emission rates well above what is considered representative of a unit running its post-combustioncontrols as efficiently as possible. No practical interpretation of RACT would find it reasonable for a acility toinstall controls and then not operate them.

A positive RACT determination cannot he made for a unit that does not consistently run its controls. RACT, asdefined by the EPA, involves the application 01 a reasonably available control technology — or more specificallythe act of putting to use a reasonably available control technology. A positive RACT determination thereforecannot be made through the purchase of control technology alone — those technologies must be pu to use. TheMDE urges a revision of the proposed PA NOx RAT rule to include a provision that emission reduction controls(especially post combustion controls — as they achieve the lowest emission limit) nuts! run in order to achieve apositive RACT determination.

The MDE also urges a revision of the proposed PA NOx RACT rule to remove permit provisions allowing“optional” application of post-combustion controls as it has been found that some sources are permitted to operatetheir post-combustion controls at their own discretion. A source that operates its controls at its own discretioninherently implies that controls are not consistently run which in and of itself cannot meet a positive RACTdetermination because said controls are not consistently put to use. RACT is an ever-evolving air pollutionrequirement. Installing control technologies is not RACT; RACT includes the installation and the operation andmaintenance of control technologies. Table I outlines the current NOx controls and associated optional operationprovision for Pennsylvania’s coal-fired EGU fleet.

Mandating the running of post-combustion controls while electric generating units are operating is an importantissue for air quality. Data iadily available from the Environmental Protection Agency’s Clean Air MarketsDivision (CAMD) indicates electric generating units are operating without running their post-combustion controls.An analysis of 2012 CAMD data shows that units not running post combustion SCR control devices resulted in anexcess of 100 tons per day of NOx mass emissions into the airshed. Table 2 outlines the results of this analysis.

Table I: Pennsylvania Coal-Fired EGUs and Current NOx Controls

______

Unit Level Data Control Data

Plant ID Unit ID Facility Name Nameplate Existing Pre- Existing Post- Futwe Control Notes

Capacity Combustion Combustion ControlsControls for Controls for for NOX

NOX NOX

(ORLSPL) (MW)

CAMI) CAMD CAMD EIA CAMD CAMD ERTM LI PA DEP Control Table, Title V Permit, Other

10676 31 MS Beaver Valley LLC 1383 LNBO SNCR PA DEP indicates SNCR is optionaL ProposedTitle V permit stales ‘SNCR technology is

10676 33 MS Beaver Valley LLC 1363 t.NBO SNCR installed On 80 fer unit! 032, 033. 034, and035. and is util zed as market conditions

10676 34 AES Beaver V&ley LIC 1383 LN8O SNCR allo relative to NOX allowance

10676 35 MS Beaver Valley LLC 138.5 INBO SNCR requrements.

.

PA DEP indtcates ICR s optional. Proposed6094 1 8ruce Mantfied 913.7 LNO Title V permit states Ths unit equipped

6094 2 Bruce Mansfield 913.7 LNBO With an 5CR system..Operation of Unit withICR is volur.r....It it not an enforceablerequirement that the 5CR syttem operate at

C98 3 Bruce Maflsfield 913.7 LNBO 5CR anygiventime.

Recycledl5pcr www.mde.state.md.us TTY liscsc ildIU.7322lX

Via Msryisnd Rvlay rvicc

Page 3

_______

Unit Level Data Control DataPlant ID Untt ID Facility Name Nameplate Ealatng Pre- EaIstlng Post- Future Control Notes

Capacity Cambwtton Combustion CantrobControls for Controls for for NOX

NOX NOX

-(!Y (MW

CAMD CAMD CAMD EIA CAMO CAMD ERTAC L2 PA DEP Control Tab, Title V Permit, Otlwr

3140 1 BrunnerlsL’nd 363.3 LNC3 SCRj2O17)

3140 2 Brunnerlsland 405_ LNC2 SCR2017

3140 3 Brunnerisland 790.4 LNC2 SCR(2017)

10641 1 Canibria Cogen SNCR

10641 2 Cambrla cogen $NCR

8236 1 Cheswiek 1.37 1NC2

10143 AABO1 Colver Power Project

PA DEP ndtcates 5CR is optional Letter to3118 1 Conemaugh ?36 LN(3PA DEP dated 2/28/2012 from Earth Justiceeta) states ¶..plan approval would allowconstruction and operation of 5CR systemsto control NOX emissions at the units 1 and2 at the Canemaugh PowerPlant...Conemaugh plans to use the 5CRsystem as a ‘discretionary control device’,and the DEP is not requinrig operation of the5CR system as a condition of plant

3118 2 Conemaugh 936 LNCI $CR operation”.

30603 31 Ebensburg PuwerConspany

10113 31 Gilberton Power Company (WA

10113 32 fiilbertonPowerCompany OFA

3179 1 Hatfields Ferry Power Station 576 LNCB. OFA

3179 2 Hatfields Ferry Power Station 576 LNC8, OFA

3179 3 Hatfields Ferry Power Station 576 tN(, OFA SNCR

PA DEl’ indicates 5CR is optional. Proposed3122 1 Homer City 660 LNBO 5CRTitle V Permit dated 5/29/2012 states “In

3122 2 Homer cty €60 LNBO 5cR accordance with Plan Approval PA-32-00055C, it s not an enforceable requirementthat the SCR Units operate at any given

3122 3 Homer Oty 692 LNBO 5CR time.

PA D€P indicates 5CR is optionel.3136 1 Keystone 936 LNC3 SCRPennsylvania eFacts lsts Bo ler I and Boiler2 with Low NOX burner and optonal SCR

3136 2 Keystone 936 LNC3 SCR system.

3181 31 Mitchell PowerStation LNC3

3149 1 Montour 805.5 LNC3 5CR

3149 2 Montour 819 LNCI SCP.

10343 56101 Mt. Carmel Cogeneration

3138 3 New Castle 98 LNBO SNR

3138 4 New Castle 114 LNBO SNCR PA DEP lndicatt SNCR i optional.

3138 5 New Castle 136 LN6C SNCR

50888 NGCOI NorthamptonGeneratngPlanc

50039 11 Northeastern PowerCompany Oth€r

Recycled Paper www.mde.state.nid.us rr’ Us l--Th-22%lVia MaryIanI Relay Scrsce

Page 4

______

Unit Leve I Data Control Data

PlantiD UnItID FaclltyName Nameplate ExlstlngPre- EuistbigPost- Future ConUolNotesCapacity Combustion Combustion Controls

Controls for Controls for for NOXNOX NOX

i-°’-)CAMP CAMP CAMP EIA CAMP CAMP ERTAC 2.2 PA PEP Control Tables TItle V Permit, Other

50776 1 Panther Creek Energy Facl ty NH3

50776 2 Panther Creek Energy FacIty NH!

54144 31 Piney Creek Power Plant OFA

3113 1 Pordand 172 1.NC3

3123 2 Portland 255 LNC3

PA DEP ndcates SNCR is opt onal.50974 1 Scrubgrass Generating Plant SNCR

Document Economic 0ptmzation of SNCRat Scrubgrars Power Plant’ (unknown date.likely post 2001) states The ScrubgrassSNCR system is operated during the NOXtrathng season each year, from May throughSeptember...The point of the SNCR system isto cost effectively reduce NOx emi onsdunng the NOx trading season. To helpaccompl:sh this goal from a tacticalstandpoint, the control system has beenprogrammed to continuously adjust theammon;a flow rate based on ammonia costs

50974 2 Scrubgrass Generating Plant SNCR relative to NOx allowance prices’.

3130 1 Seward SNCR

3130 2 Seward SNC1

3131 1 Shawville 125 LNB SNCR PADEPindicatesSNCkisoptional. Proposed

3131 2 Shawville 125 LNB SNCRpermit dated 11/02/10 states ‘The SNCR%ytems shall be operated in accordance

3131 3 5hawville .88 LNCI sfc wiihthemanufacturerspecificatiorts andgood ar pollution control practices’.

3131 4 Shawyjlle 188 1NC3 SNCR

54634 1 St. Nicholas Cogerleratton Project

3115 1 Titus 7S INC.s

3115 2 Titus 75 LNC3

3115 3 Titus 75 LNC3

50879 GENt Wheelabrator Frackville 48

50611 31 WPS Westwood Generation, tIC

RACT is a must-run control technology requirement. For a must-run control provision, rates must reflect strictenough standards so as some level controls would have to run to meet the further revised NOx rates.

Mandating the running of post-combustion conLrols while EGUs are operating is an important issue for air quality.Data readily available from CAMD indicates tOUs are operating without running their post-combustion controls.An analysis of 2012 CAMD data shows that units not running post combustion control devices resulted in anexcess of 100 tons per day of NOx mass emissions into the airshed. Table 2 outlines the results of MDE’s analysison emissions and savings that could have resulted if units had run their post-combustion controls during a singlelarge-scale regional ozone event period.

Rccycictil’apcr www.mde.state.rnd.us rry (Jrs f-)-7’!tti

Via Maryland Rclay Scrv;ce

‘U‘U

‘U‘U

DO—

--

a.‘U

‘U-4

‘CDO

aDO

DOa.

a.a.

.4

xr

rna

o0

00

03

za

ma 3

-o

na

a

..

U’

n-

T I 0.J

e “I

UI.

)‘U

I,J

—.4

‘U

ag

-‘

Z3

aa

c,

a—

lii-

5,r

..

DODO

‘C‘C

0101

01‘C

ID01

IDID

0‘U

‘U‘C

DO01

‘U‘U

‘U‘C

DO0%

0%iJ

00

01

0%.1

a.

a.

a.

—c

r%

1 .4 a

C a 0

I

mz

i

00.4

IDDO

‘UDO

01-4

‘-

0‘U

.-1

.4-J

‘C10

‘0I-

-4-4

a.

a.

a.

3 3 1

3 UI 0 = UI

UI

0 = UI 0 rn Ci

UI

I c-i

poppoo

0 ‘ULU

ww

UI

UI

UI

UI

a.

Vi

DOID

‘C01

0%C

lID

IDQ

IID

ID‘C

0‘U

‘UIC

010

’‘U

‘U‘U

-.

-.

0101

01

00

0%01

4a.

a.a.

.4DO

DO.4

DODO

1010

171

.4.4

.4‘U

07‘U

.4.J

.4U

a..4

ID10

10DO

DOa.

DI

U)

ID.4

001

.4i-

ia.

—ID

0.4

‘U0

0a.

a.

a.

pop

opp

‘U‘U

po

pIU

‘Up

pp

UI

UI

UI

a.

a.

a.

UI

171

Vi

a.a.

a.

000

0000000

00

C0

0b

bo

wo

ba.

a.

a.

IDDO

-10

00%

‘4

-4—

——

-*

-.

I-

——

——

-4‘U

DODO

.0

010%

0IC

DOID

a.

w0%

I-.

‘410

a.

.4‘4

00ID

‘Ui.

ID‘4

10ID

10DO

CO‘4

‘U.4

‘UDO

UI

19

010

1900

00‘U

a.

w‘4

a.a.

171

0.4

019

‘C

19’U

ClID

00

0

p0

oo

op

9p

po

p.4

LU‘U

.419

19‘U

‘U‘U

I4-

IU

I1

919

0%‘U

0%17

117

119

1‘U

‘U1

‘U19

19

‘U4.4

‘Ua.

a.

1919

a.

ui

a.

‘CU

,‘U

wa’U

’4bbU

)L

Ub

ID0

19‘U

UI

1901

UI

DO

0‘U

01“4

0.)

0.)

.4cI7’U

a.a.W

’U

a.w

-J

‘4‘4

‘0‘C

1000

0001

0%19

0.)

a.

In‘U

00DO

a.

VI

DO‘4

Vi

U)

Cl

0V

Ia.

0 ‘U UI

0 ‘U VT

po

pa.

a.

a.

.4—

z9 O

Il

I p

pp

ppppppp

oo

oo

p.

j.4

19

03

190.

109

0319

030

00

00

00

00

00

Cl

00

00

00

CO0

00

‘U‘U

DO‘U

17%

010%

10V

i‘U

UI

a.

‘U—

4—

——

——

—1

‘U0.

3C

l‘4

‘00

IDU

IV

i0

IDDO

‘UO

00

a.W

4-%

a’.

0%00

000

‘U‘4

0V

IU

IV

i‘U

00C

l‘U

‘UF’

)10

04.

40.

3‘4

00a.

DO0%

171

Ill

DO0

.)U

Ii-

‘.49%

0%401003

‘U0%

0o.

a.,.

j,j

-w

LU

ppp9ppp

Oppo

C)

‘Ua.

‘U‘U

1903

.4‘U

‘UV

i—

4’

‘U‘0

0a.

0%0.

30

CCCO

0-4

Cl

Cl

a.

in

_____

3w

—DO

•0m

.41904

0 a

,.

m0

n.3

a.— .4E

.z

—_IøI

a

DO 3 Ii 0 a 04 .4

“I

0’3

rn-D

O

3 CW

03

III

Op

’4

:‘

‘UDO

VI

00a.

“a

DO

“3 a.

.40,

4V

i4

.’‘U

0.3

034-

1-4

‘U‘U

1V

1D

O*

-’Q

0W

17

4a.1

U)

P‘U

0)

‘4V

I17

3I-

Vi

CDO

030

‘403

a.

00)

a.C

lCD

00

003

Il.

‘4‘U

a.

DO

ID0,2

03

a.

W173W

Wa.W

0,404W

’4

‘.4-

DO0-

200

010%

10.J

19

100

Vi

a.

0.3

Vi

0a.

DOa.

a.

0‘4

a.

019

—a.

IC

r,. a‘U LI

TI-

.a.

‘4

rD

OD

:- ,0 :-

-4

.17

4

I17

4*-

Vi

UI

143

-*

-aa.

‘U0

00‘U

‘UDO

Vi

010

19rio 1.

4

ac0

14 ‘U

0s..,

(I)

-400

00U

,

0000

00C-408-4

.0

400

00Q

)(N

-i

1000

411-4

000

4!)

4111

4.

10-4

104.-C

00u

j8.

-400

4.400“4

In1%

0004.4

8U,

0

000

0C

-4

8-44.4

00

0u

000•

E

UJ

010

0U

,1%

‘-4r

-400

4.4

(V0440

00

E444

—I

—(V

4

48

itC

>.0•

—,

0v

00

.“4

ooiaj

.ri

I

-00

0.4

4t00

400

(N

o’—

:3IV

0•—

•444

.)C

(00

“00

00

-I

.400

t-00

0000

0D

0000

4.410

0000

00

100

04

.4

O0

001-Z

4.I

rn00

0000

00‘00

0000

0000

004.4

(N0“

4

.44

C4.’-

4000

(‘400

4.4‘..

-0

00.4

C)

00

00

00

00

.00

r’-o

r-n

oit,

oo

.o’t

.-

co“4

.4“4

“4

(N(‘4

—.4

00

00“4

(N00-4

01440

001”

00

0000

4.—00

01“4

0—

.4(40

00(40

8-4

(‘44.4

404(40

.4000

o

4.400

00000,

Drn00000000

r4-

0001

Ifl100000

04.44.4

4.40’-

040

4(410

0)

C)

(.

01“4

4.400

LI)0

(NLfl

(N0

0(N

004.4

4..00

4..4

cO

00I00

.40

(I0)

00C

)01

0)

010

I”-00

4.9“4

0000

0000

.48

-.

8-4

—4

,l

,-4‘.4

4.4

8-4‘.0

0000

Il)00

I!)01

40440

440440

(4000

00

CC

00

00

00

00

00

C0

0C

l0

00

00

C)

4.4(‘-4

(N(N

-44.4

-4484

(‘44.4

(‘4(‘4

(N

CO00

4.—40

00)

rCO

00U

,C

qO

e’

00

0000

0000000

0000

00LII

00

4!)

0000

0000

U,

U,

UI

cJ

(4

00

00

000

000

4.4(‘4

001

‘.4“4

“4

‘.400

(‘4-4

0’

Q40

00(4

)0)

Q)

0)

4.400

001’-

4.-.(‘4

0000

00((4

i.4.’.

4%11

0’

0)

1010

4.’-4)

44)r’

I’

0000

004.—

4040

Cl

0(‘4

10

40

40

0)

4“4

0000

00t)

1001

0000

Cl

“4C

)01

0)

1001

CI

4040

400’.

0)

0000

-.

‘0‘

44

41

0E

22

22

4.3‘4

EE

E‘

)4

00

(V

4’0

00

00

)J

((_____

00

4.4((4

.4.4

4.4‘.4

4.4(40

.4(N

.4(.4

‘I

(V

.—

——

—4’

0000

0040

0000

(N(N

4.440

40C

l01

0)

Cl

0)

-4.‘.4

.44.4

4.4(‘-4

((4((4

0000

-yC

l0

Cl

(‘4‘4

“4.40

8’4“4

.4.4

.404’

1010

1000

(4000

00(40

00(40

CI)CI)

(40

——

——

——

——

——

——

F

000

000

0”‘.0

(‘44%

0040

00

(‘3.4

00C

(I)

4.--

I.’-00

4!)

00U

,4(4

((400

4.4(‘4

0’

040

000

CI

040

00‘4

400

00;

(‘4C

I)01

4010

010

00

00

4“4

4.44.4

00

00

8--)

(40

010

000

10

‘.4.4

(4)00

(‘4(40

0‘.4

((400

(40—

(N(‘4

((4

00-

494-.

r00

0‘00

400

(N(40

(4010

(‘40

4!)If

00

4001

.00

0.

(400’.

00

‘4.44.)

t0

004(4

0000

40LII

4-.00

0(40

“4

0000

C)

04.’-

.400

‘4.C

l01

3)

010

4’-(N

4(N

0000

00

‘.4•4

8.4.4

‘.4•—

)4-4

-44-.)

I!)0

04(4

0110

4300

‘4)00

CC

lC

l0

00

000

0(4

4.44.4

4.)(.4

(‘4(‘4

4.4-4

4.4(‘4

0000

4%49

001

I’--CO

00

00

(40(‘4

0C

c,dociodoo

0000

00441

44’lU

I00

0000

4!)Il)

d‘!

o

0000

000

000

(“4(‘4

0O

.‘4.40

“4

CO4.4

“0)

0140

000’

0)

04(‘4

00((1

4..4..

(‘41(4

r.

0’-0’-

0001

40I”-

0000

0004

004%

434300

(‘440

40-4

.4‘.4

00(8

)4

.)10

IL)C

I00

000)

010)

10

01

3)1

04

040

Cl

01

EU

C3tU

C‘

4’4’

EE

.5

00

4000

00

4.)V

LI

‘.44.4

0(4“4

‘4(N

,‘4(‘4

00

.4(‘4

(5

i0)

aL’!L

Z54

40

00E00a-

00

It.U

a—0I

“.

(N

.4•

V01

C•

00

.2-I,

0.

0:

—-

.

CV..

00h43

0003

(‘44.4

(N10

40(‘4

.4.4

4.44.4

(N(40

(8)

C)

00

(‘

.4.-

‘.4-4

00

4-4)—

4

1040

1000

44000

00((1

00CI)

00

I

——

——

Co

Co

Co

CoC

oC

oC

oC

oC

oC

oC

oC

o—

I-

——

—-.

Co

00

0C

Co

Co

Co

Co

Co

-C

otO

‘C—

Co

Co

Co

Co

Co

Co

CCC

oC

oC

oCo

——

——

——

——

——

C

C . 0I

Co

—C

oC

oC

oC

oC

oC

oC

ot.

.

xr

to‘

00

00

•w

t;3

33

toto

CC 0

rj; —.1

——

——

Ml

Co

Co

‘C‘C

fl

Ml’

n

CoC

o—

i- = CC

—-,

—C

orI

3<

to

.—

——

I I H

Co I-.

‘C

Co

C)

Co

to

0

Co

Co

a 3 Co

——

——

——

——

——

——

— l

Co

Co

Co

Co

Co

Co

CoC

oC

oC

oC

oC

lC

oC

oC

oC

oC

o‘-

-‘

t-

t..

Co

00

0C

oC

oC

oC

oC

oC

oC

o—

.—

Co

‘CID

ICIC

‘CC

oC

oC

oC

oC

oC

oC

lC

oto

.C

o— “I

Co

Co

Co

Co

Co

Co

Co

CoC

oC

oC

oC

oC

o0

ZX

.

CQ

00

!3

33

.3.

.,

00

..

C.

Co

Co

‘Cto

aC

oC

o10

‘0C

l‘0

13-

0C

oC

oIC

Co

Cl

ww

..

I-

o.IC

0101

Cl

Co

00

Cl

Co

CoCo

CoC

o

Co

Co

Co

Co

Co

Co

0110

10U

’C

oC

oC

oCo

UC

oC

oC

oC

oC

oC

oCo

Co

‘CU

)‘C

00Co

Co

Co

Co

to10

Co

Co

Co

Co

I’

Co

Co.

—10

0C

oC

oC

o0

0to

.Co

Co

I to

OP

OP

PP

PW

UO

CoCo

PP

PC

oU

PP

PV

iU

IIl

lL

”to

.C

oCo

U’

UI

Vi

Co

Co

Co

ppP

poopppoo

0C

)C

CC

)o

bc

i.t

wb

ob

bU

’C

oCo

Co‘0

00.l

‘C0

Co

Co

COC

o

Co

IVC

oC

oIV

Co

CoC

oC

oIV

IVC

oC

o0

00

00

00

00

00

00

00

00

00

00

00

00

Co

Co

Co

Co

U’

Co

Co

ICU

’C

oU

ICo

.

Co

Co

Co

Co

Co

Co

Co

Co

Co

Co

1.1

Co

Co

00

IVC

oC

o00

CC-.

‘C10

10‘C

Co

CC

oC

oC

oU

’C

oU

IC

o00

Co

Co

Co

000

IV0)

l-‘C

‘CIC

Co

000

Cl

Co

CI

C)

Co

COIJ

CoC

o‘C

CC

oP

Vi

Co-l

Co

CoIV

CO0)0100

Co

Co

to.

Co

CC

oV

CCo

Co

pP

Pppp.oppp

oP

pC

oC

oC

oC

oC

oC

oC

oC

oC

o‘

—I

‘CCo

Co

Co

Co

Co

Co

00

CI

IVC

oC

o

Co

Co

IVC

oC

oC

oC

oC

oC

oC

oC

oC

oC

oC

oU

CoW

IL)

UlO

ViD

OC

o+

-IV

IVC

oC

Co

Co

UI

Co

0’

01

0C

lo.

.C

oC

oC

oC

oC

Co

Co

000

Co

Co

C)

‘C‘C

010

LV

-S

Co

Co

Co

WC

oC

oU

’V

iC

oC

oC

oC

oC

o0

U’

Co

Co

Co

CoC

o‘C

Co

Co

toC

oC

o

‘010

010’

0110

1001

‘0‘3

‘CC

oC

oIC

013

’IV

Co

UI

Co

Co

Co

01C

lC

o0

001

01C

oC

oC

oto

.

Co

Co

Co

Co

Cl

‘C‘C

UI

Co

Co

‘.1CC

Co

Co.4

Co

Co

C.

Co

‘C‘C

‘CCo

Co

01‘C

IDCo

Co

COC

oC

oC

oL

SIC

0lI

Co

IV0

0C

oC

oC

o

PP

PP

PP

U’

UI

Coto

.C

oU

)U

’V

ICo

Co

Co

PP

9P

PP

99

PP

P0

00

00

Co

Co

00

0C

oCo

10CC

Co

100

01C

oC

o

Co

Co

Co

Co

IVC

oIV

1C

oC

oC

oC

000

00

00

00

CC

C0

Co

Co

VI

Co

CoID

VI

Co

VI

IVIV

—I-

’I”

Co

Co

Co

Co

Co

C)

0IV

Co

Co

Co

CC(00

ICIC

C)

Co

Co01

Co

Co

CCU

’I-

’C

oV

IC

oIC

C0

0Co

UI

0’

Co

CCV

iI

Co

CoC

oU

)Co

Co

U’

Co

Co

Co

P0

C!‘

P‘

IVC

oC

)C

IV01

CCC

)C

oIl

lC

o

999999

PP

OP

PIV

Co

Co

Co

Co

Co

UI

Co

IV1.

1C

oU

I‘C

NC

oC

oC

Co

‘CV

IC

oC

o

Co

toC

oC

oC

oC

oC

oI-

Co

Co

(VP

VI

0to

.00

‘0to

.LV

IVC

oU

IIl

lID

LII

0)

Cl

VI

UI

Co

UI

Co

U’

Co

LII

Co

CO‘C

Co

IV0

CC

Co

Co

to.

UI

U’

400

)00

Co

VC

oC

oCo

CoV

I10

1IV

Co

0V

iCo

01C

oC

o(C

0IV

CoC

‘CV

i‘C

Co

014

0 Co

LII

5-

IDC C

oLI

I.’

C

010

x.

5-

L’C

)P

PC

00

Co.

UI

Co

:——

3oC

oIV

Co

9

Xm

0

•1C

oC

)

L!.

C Co

0 Co

‘to

to0 I-

Co

‘IU

a C 0 0I

0S

Co

CoC

o

L

Co

U’

Co

Co

*th

-

Co

Co

Co

Co

UI

to.

Co0

-‘

C00

Co

Co

to.

LII

Co

ri.— •1

ltoL

lC

OC

“fig

Co 2 Co

Co

Co

Co

0II ‘V

Co

Co‘

Co

CI

Co13

Co

Co

00 LV ‘C

IrS

Co

Co

00

Co

NQ

—z

N

Co‘-I

NCo

Co

NN

ii

Co

N

INI

‘Co

‘1C

o

Co

CoC

orl

Co

‘.4

0N

Co

I)’

.4Co-I

0!

0I”

‘2

u-.

r-C

Co

NN

Co

Co

‘2‘2

‘2C

or

Co

4,

Cl

oN

N

hbh

ow

03C

o—

:o

Nr4

l2

.9

CU

‘In

rN

Co

o•

.—U

InC

o0

o,

—r

‘2

f‘I,iii

ClCl

Co

Co

00

.4r0

CN

N

2[L

.j—

cd

—:

ih IqCl

.Cl.

o—

.

.4‘2

‘2m

.C

oC

o44•

‘..

LI

Co

CoZ

24

“-

1C

—EI

,.

Co

al

——

0‘.

‘2O

Co

Efl

mZ

(0•jC

OE:

U

H•—

Co

N

—j

CoCo

.gC

OIn

‘Ii

0N

Co

.4N

CoC

oC

oCo

Co

Co

NC

oC

oC

o10

‘2N

01‘2

N10

U‘2

mN

43N

r‘Z

r-m

o‘2

inin

‘2‘2

Co4’,

NN

Co

,4

00’.

Co

Co

Co

Co

‘2IA

Co‘2

0Co

Co

Co

14’C

o‘2

010’.

00N

0’.N

430

10C

oC

oC

oC

oC

oN

NC

oN

Co

Co

Co

Co

Co

Co

Co

Co

4’.‘.4

Co

00’.

NC

o‘2

430

Co

—C

o14

14

Co

NN

NC

oC

o‘2

‘2c

od

cc

dd

ccz

ó0

CN

‘2C

o00

00

0.4

0114’

Co

Co

Co

104’.

00‘2

Co

NN

CCO

a’.in

Cd‘4

1(1‘2

.443

4’)N

NC

o0’.

.414’

N43

0101

‘210

tOIA

l’4Co

4’.r

3%N

j(ft

0’.0

3%0

01N

Co

N0

0‘2

Co

‘.4.4

.*1

.4.4

‘1.4

.4—

IN04

Co

r4

‘2‘2

Co

Co

inC

oC

oC

o14’

1410

CoC

o0

00

00

C0

00

00

00

00

00

00

00

00

0N

N04

N04

04

0404

‘.404

0404

04

0010

4’.43

03%

I’.C

oCo

‘2‘2

‘2Co

QC

OC

CO

NQ

C0000C

CC

l0

00

Cl00000

0

‘2‘2

‘2C

oC

o‘2

‘2‘2

14’C

oCo

Co

00

00

00

0

‘Vt—

——

-—

—-

--

——

--

‘2‘2

‘20

0C

o04

04

0C

o.4

‘2‘2

..).4

..4C

oN

‘-401

0’.C

o‘2

1010

10Co

CoCo

19‘2

14’1’.

1’.19

CoCo

14’Co

NN

4’.U

)C

)C

o13

CoN

Co00

NN

‘2‘2

‘21’.

4343

00

ol

CoCo

9)3

%1.9

Co

Co

Co

14’43

Co

3%C

o14

0C

oC

o0)

0’.43

0’.0’.

1010

30)

0110

00

I41

41I..

41Cl

41Cl

Uu

u

tC

J’t

EE

S2

22

4C

C,C

‘2‘2

EE

EC

m2C

l2C

l.

a0

00

0

Co

Co

Co

UI)

UZ

Z04

-;-::4-;

‘2‘2

‘2‘0

0)

0)

04

04

‘.410

1001

01

.DC

o0)

0’

‘.4.4

‘4

04

t’404

Co

Co

‘2‘2

00

004

.4‘4

.4‘4

‘.4‘-4

Co

“I

Co

Co

43,

00C

oC

oC

o4)

14’14’

1414

Co

44

——

-—

——

——

——

——

04N

0’.C

o0’.

00

0.

0N

Co

10IA

CC

oC

oni

t-N

N0

)0’.

10‘2

Co

Cl

‘2‘2

(‘419

.14’.

Co

003

)43

0(‘4

(‘40

‘04’.

044

3.4

11

’.

Co

U)

4’)

01.

N4’.

.40)

QP

10’.

Co

Co14’

Co

Co

‘419

04

14

Co

Co

In14’

19

1400

13C

lC

oCo

N‘4

’10

Co

,-4.-i

Co

CoO

lro

.4

14

4”.

ci

00

C0

000

0

In19

CoC

oW

iflC

oN

0N

‘2‘2

3%0

CC

Co

Co

NC

o44

4)

410

Co

.44’.

43.‘

0)

Co

NLA

Co

Co

‘.40

140)

100’

04C

UIdC

o4’-

C0’.

0)

Co

Co

Cor’4

Co

04

00

‘.1..4

Co

,‘.

..4C

oC

oC

ot’4

N

‘2‘2

U)

Co

IAC

lID

Co

4.)

0)

000

00

Cl

Cl

00

00

CC

Cl

C0

0C

Cl

00

00

019

19

(‘4‘.9

N(‘4

19N

r’4(‘4

(‘4

000)

0.

ID0

01N

Co

3%‘2

‘20

3)

0C

l£4’

IN0

0C

’0

0d‘2

‘2‘2

0)

LA

14’‘2

‘2‘2

14’11)

0d

o

‘2‘2

‘20

3)

4’

(‘404

CI

0’..4

Co.4

‘410

04.4

Co

0)

10‘2

100)

0)

0)

(‘4‘2

144’.

4’-04

4)

10N

4’-N

LA

Co

0)

4343

I’.C

oC

o

‘2‘2

‘2N

4)

43C

lC

ni

Co

Co

Co

Co

Co

Co

CoC

oC

o10

0)

44’14

0)

0)

Co

CoC

o0)

434)

430)

0)

.3.3

CC

EE

£42

2ecc

EE

E“

2i2

Cl2

Cl

.30

00

00

Ci1

0C

o1

00)

0)

XZ

.4(‘4

01

,-i‘.4

NC

o19

01.4

(‘4

CoLI)

333

ocI.)

N10

‘243

0000

04(‘1

NC

oID

0)

(919

..i(4

INN

44

Co

CC

04

.4t4

.—‘

i—I

—I

Co

1.4

0‘32

0)4

’)Co

Co

£4’C

o4,

4’)I

oq

Na

Na’

r-4

-4N

QL

n4

-4ø

NN

NN

NN

a’-4

NN

NW

QN

urn

cor-

-.

.4D

0-

m4K)

N-I

NN

.4rn

rn

,hb

u1.D

.:

NNN

5N

a’

-N

a’

N

..C

z5

N

r.1

Om

NIn

NN

.Ia—

—d

.,_

ICO

U

InN

.Q

.

NN

NIn

‘4N

Co

4K)N

InIn

4,4C

oN

NN

N40

,4.

In4K

N‘4

In40

N.4

N—

.4N

CO—

‘-4N

NN

C.

a’C

.N

r4qa’rn,Iq

o0

KC

oC

o40

05a’

Co

NO

‘4‘4

--.

NN

-4-

NN

NN

N

NC

o05

NN

InC

o40

CO4,4

40N

.‘4N

N05

050

NN

NN

054t

tc‘0

IIW

W4

0C

OC

O

8‘0

0‘C

SIC

r.N

CO

a’

Co

04C

oa’

C05

N—

a’

-‘0

a’

Os

asC

?N

NN

050

Ca’

a’N

Neq

.1t4

.4r.1

Fl

.4N

.4.4

i-C

a’

In.0

4004

4K)‘0

4005

a’

NN

00

00

00

00

00

00

00

00

NN

N(4

NN

NN

NN

NN

N

00a’

N‘K)

Ca’

N0)

04

a’

a’

a’In

qC

)0

q0

qC

.C

.D

C0

CD

CC

00000000

a’

4K4K

00

0%iN

NC

?0%

.-4a’

i-CN

CON

‘405

0440

a’

COCO

0%05

0%14

a’rn

NN

NN

COc’s

NN

NN

its0%

0%40

40N

CO0)

NN

‘4Ka’

a’

NID

400

014

‘040

‘00%

N.4

‘4N

.0N

4040

0405

N0

i-Ca’

asas

aa’

a’

4040

0%05

CCCO

.CD

•D0

‘‘

soV

UU

EE

00

UC

4S

CV

CE

FF

C

!a’

a’

a’

400)

(K)14

140*

‘0‘0

0%0%

0%0%

0%iN

i-CN

NN

SN0%

K’sa’

a’

00

0N

.4N

—‘4

.4‘4

‘4N

4040

0)

05S

’sK

’s04

1.50%

0%0%

0%I-

‘1030%I-

0)

04.0

040

0)

a’

N04

‘4.4

400%

05.4

0N

c’S

NN

0440

4005

4040

a’a’

SN

N

000

CON

40CO

C’

COCO

40N

4K04

400

0N

CON

05CO

NN

N0)

0%0

4K)N

00U

SN

NN

04

N.4

‘4‘4

0505

0%a’

0%4K

‘414

0)

4014

0)

15C

NN

0%N

05.%

1414

N1.4

SD1*

‘4K14

400)

W‘4

C’)‘.0

a’

r-n

oso

a’

-a’

4,4

‘4

050%

.405

‘404

0N

NCO

0I’-

00

0)

i-I

N‘4K

014C’)

N1..

.411

0%0

COU’s

40)0

050%

a’

0%C

)N

CON

14.1

005

.4‘4

‘4‘4

‘4.4

‘4.4

‘404

.4

0000

NC

oC

0%N

00

00

0%04

C)

0o

a’

a’1

U’sis

itsa’

a’

a’

Inso

do

c

a’

a’

‘C0

005

14

N0

0%‘4

NN

Na’

NN

0%0%

50a’

0)

0%0%

0%14

a’

NN

1-

14

NCO

NN

NIn

0405

4040

N0

)00

a’‘C

a’N

Co40

00

0440

‘0N

NN

0%05

0%40

40)a’

NN

asas

as40

as

a’s40

‘040

a’0%

444

Q)

44IC

C,

es4.

.-

a’

2a’

Sa’

Su

UU

X

NN

05‘4

c’4N

04

N0%

.4N

•_-U

Ua’

a>

,I

Lzel

5e

.304s-COE.E4)t4

a.;el

>g&.‘a

CC

so0)

04’

52

—.4

iN

.

,114

‘.

2‘

a’

0‘4K

400)

COIN

N‘0

400%

0505

04‘4

‘414

1400

10C

S0

014

i-SN

NN

N.4

40‘0

SD00

1001

10N

l’s10

Page 10

Unit Level Data EmissIons Data

Plant Unit Facl*ty Name Nameplat Max Heat Proposed Lowest 2012 2012 2012 201203 2012 03ID ID e Capacity Input RACT NOX Average Ozone Regional Regional 03 Regional Event Event

Rate Season 03 Event - Event - 03 Event Daily NOxEmission Rate Daily Daily - Daily Mass If Rduct.2003-Z01Z), Emissions Emissions Emission 5CR IOnsftisfmmBtu Heat Input Rate a Mass OptimlLe

d toLowest

RateORISP (mm8tu/hr (lbs/mmBtu

(MW) s/mrnBtu) (Rate) mmBtu) t (tons) -

ERTA PA Draft CAM CAMERTAC C ERTAC ERTAC ERTAC Rule 0 0 CAMD CAMO CAMD

3149 1 Montour 806 7384 0.35 004 2003 133,256.7 0.47 30.76 2.96 27,80

3149 2 Mantour 819 7384 0.35 0.05 2003 143,361.8 0.43 30.04 3.38 266

Total 289.89 106.67 183.22

Total for Ozone Event Period by Unit

Bruce 1,950,388.6094 1 Mansfield 914 7914 0.4 0M8 2004 4 0.11 106.90 74.02 32.68

Bruce 1,907,146.6094 2 Mansfield 914 7914 0.4 0.08 2004 6 0.13 123.30 75.90 52.39

Bruce 1,981,151.6094 3 Mansfield 914 7914 0.6 0.07 2005 9 0.16 155.31 73.70 ,_41

1,070,122.8226 1 Cheswick 637 5280 0.35 0.06 2003 4 0.35 189.18 31.134 1S7.34

1,773,S69.

3118 1 Conemaugh 936 9420 0.35 0.30 2005 — 7 0.31 274.12 264.44 9.681,787,866.

3118 2 Conemaugh 936 9313 0.35 0.29 2009 8 0,31 278.09 256.02 22.07

1,182,908.3122 1. HomerCity 660 6792 0.4 0.07 2006 9 0.21 124.51 39.45 85.06

1,269,146.3122 2 Homer City 660 6792 0.4 0.08 2006 0 0.27 168.98 52.42 11636

1,050,452.3122 3 HomerCity 692 7260 0.4 0.09 2005 4 0.22 117.82 4580 72.02

1,966,443.3136 1 Keystone 936 8349 0.35 0.04 2003 3 0.38 372.25 41.59

1,928,673.

3136 2 Keystone 936 8881 0.35 0.04 2008 4 0.34 331.25 41.76 289,5D

1,395,692.3149 1 Montour 806 7384 0.35 0.04 2003 2 0.32 220.90 30.98 189.91

1,466,203.

3149 2 Montour 819 7384 0.35 0.05 2003 9 0.39 288.79 34,40

1,693.8

Total 2.756,39 1,062.52 7

Total for Ozone Event Period by Day

Monday July 1, 2012 24630 94.83 151.4

Tuesday July 2. 2012 259.16 812

Wednesday July 3. 2012 251 18 103.43 147.75

Thursday July 4, 2012 2527 j448.39

FndayiulyS. 2012 27306 111.09 161.97

Saturday July 6, 2012 283.17 172,26

Sundayiuiy 7. 2012 304.76 113.21 191,55

291.27 W9.4Li8L8S

kecycted l’apcr www.mde.state.md.us TTY Usr l-g(K)-73’S-22S14Via Marylanl Relay StjrVtc

Page 11

Unit Level Data Emissions DataPint Unit Facility Name Namepbt Max Heat Proposed Lowest 2012 2012 .2012 201203 2012 03

ID ID e Capacity Input RACI NOX Average Ozone Regional RegIonal 03 RegIonal Event EventRate Sason 03 EVent. Event. 03 Event Daily NOx

Emission Rate Daily Daily - Daily Mass If Reduct(2003.2012), Emissions Emissions Emission 5CR Ionslbs/mmBtu Heat Input Rate s Mass Optimire

d toLoweat

Rate0RSP (mmStu/hr (lbs/mmBtu

(“I”) tI!mtu). .tR1 (YJr)snrnBu)ERTA PA Draft CAM CAM

ERTAC C ERTAC ERTAC ERTAC Rule D D CAMD CAMD CAMO.......... .L.._..__j__._ r—-1_..._ .. .. .._..j.

dayJuly9.2G12 304.92 107.64 197.28

Wednesdayiuly 10, 2012 . . ..

-— 9.89 18322

I 1,693.8Total 2,756.39 1,O62.1 7

MDE recognizes that running controls is critical for a number of reasons. First and foremost it protects andenhances the air quality in the state. It’s also important because it limits the portion of those emissions thatcontribute to the nonattainment or interference with maintenance of an air quality standard in another state.

2. The Proposed NOx RACT Rate Limits Are Overly Permissive

The proposed rulemaking fails to set strict NOx emission limits for coal-fired EGUs. The proposed NOx emissionrate is exceptionally permissive in that it is set at a level above and beyond what Pennsylvania’s coal-firedfacilities are already capable of achieving.

Under the proposed rulemaking, the RACT NOx emission limit for a coal-fired EGU would range from 0.20lbs/mmBtu to 0.40 lbs/mmBtu based on unit size and configuration. See Proposed 25 PA Code 129.97 (g)(l)(v)(iv). The proposed NOx RACT rate limit is significantly more permissive compared to what Pennsylvania’s coal-fired EGU’ s have and are already achieving, which is in and of itself contrary to a positive RACT determination,

Table 3 demonstrates that the proposed NOx RACT rates are insufficient when compared to the historicalperformance of Pennsylvania’s coal-fired EGUs. An analysis of the historical NOx emissions data downloadedfrom CAMD, compares the lowest average annual and ozone season emission rates from 2003 to 2012 to theproposed NOx RACT emission rate.

On an ozone season basis, all of Pennsylvania’s coal-fired units already meet the proposed NOx RACT rates. Infact, of the coal-fired units with selective catalytic reduction control technology, actual NOx rates are 60— 0klower than the proposed NOx RACT rates making the proposed NOx RACT rates meaningless.

Many areas in PA remain nonattainment for the 2008 ozone NAAQS (0.075 ppm) with design values ranging from0.078 ppm to 0.087 ppm. The most populated areas of the state have the highest design values indicating a largesegment of the population is exposed to unhealthy air quality. Since the regulations do not require any reductions,promulgation of these regulations as RACT does not move any of the current nonattainment areas towardattainment of the standard required by 2015.

Rcyc1ed paper www.mde.state.md.us TrY U.ccr l-(M)-73.’-21’%Vi MaryIad Relay Servue

Page 12

Table 3: Pennsylvania Coal-Fired EGIJs and Lowest Historical NOx Emission Rates

Unit Level Data Control Data Emissions Data

Plant ID Unit ID Facility Name Name- Eaistln€ Pre- Existing Post- Proposed Lowest Average Lowest Averageplate Combustion Combustion RACT NOX Annual Emission Ozone Season

Capacity Controls for Controls for Rate Rate (2003-2012), EmIssion RateNOX NOX lbs,’mmBtu (2003-2012),

Ibs/mmBtu

0!!L) (MW) (ibs! mmBtu) - (Rate) - (Year) (Rate) [ (Year) -

CAMO CAMD CAMD EIA CAMO CAMO PADraftRule CAMD CAMO CAMO CAMO

10676 32 ALSBeaverVaiieyLLC 138.5 LN8O SNCR 0.4 0.3715 2004 0.3715 2004

10676 33 AES Beaver Valley LIC 138S LNBO SNCR 0.4 0,2846 2009 0.2808 ?00

10676 34 AESBeaverValIeyLLC 138.5 LNBO SNCR 0.4 0.3629 2004 03629 2006

10676 35 AESBeaverValleyLLC 138.5 LNBO SNCR 0.4 0.3181 2003 0.3181 2005

6094 1 Bruce Mansheid 913.7 LNBO 5CR 0.4 0.084 2009 0.0759 2004

6094 2 Bruce Mansfield 913.7 INBO 3CR 0.4 0.0956 2010 0.0796 2004

6094 3 Bruce Mansfield 913.7 LNBO 3CR 0.4 0.083 2009 0.0744

3140 1 Brunnerisland 363.3 LNCI 0.35 0.3126 2006 02848 2005

3140 2 Brunnerlsland 405 LNC2 0.35 03153 2006 0.2886 2005

3140 3 Brunnerlsland 790.4 LNC2 035 03136 2005 0.2537 2005

10641 1 Cambria Cogen SNCR 0.2 0.1146 2009 0.0945 2005

10641 2 CambriaCogen SNCR 0.2 0.1146 2009 0.0949 20%

8226 1 CheSWICk 637 tNCZ 5R 0.35 0.2175 1 0.0595 2003

10145 A4B01 CclverPowerProect NiB 0.2 0.3141 2011 0.1087 2006

3118 1 Ccnemaugh 936 LNC3 5CR Ii 3S 0.3179 2012 02982 2005

3118 2 Conemaugh 936 LNC3 5CR 0.35 0.3023 2009 0.2864 2009

10603 31 Ebensburg Power Company 0.2 0.0793 2003 0.0717 2003

10113 31 Gilberton PowerCompany OFA 0.2 0.0426 2004 0.0409 2007

10113 32 Oilberton Power Company OFA 02 0.0419 2010 0.0402 2010

3179 1 Hatfields Ferry Power Stabon 576 LNCB. OFA 0.4 0,3884 2004 0.2677 2004

3179 2 Hatfields Ferry Power Stabon 576 LNCB, OFA 0.4 0 3965 2003 0.2897 2005

3179 3 HatfieidsFerryPowerStaton 576 LNCB.OFA SNCR 0.4 03873 2003 0.2699 2005

3122 1 Homer Oty 660 LNBO 5CR 0.4 0.1424 2010 0.0667

3122 2 HonierC8y 660 LNBO 5CR 0.4 0.1647 2010 0.0826 2006

3122 3 Homer Oty 692 INBO 5CR 0.4 0.1517 2010 0.0872 2005

3136 1. keystone 936 LNC3 5CR 0.35 0.0811 2009 0.0423 2003

3136 2 keystone 936 LNC 5CR 0.35 0.0754 2009 0.0433 2008

3181 31 M’rche!iPowerSta8on 1*3 0.35 0.2479 2004 02025 2005

3149 I Montour 05.5 INtl 5CR 0.35 0.1108 2009 0.0444 2003

3149 2 Montour 819 LNC3 5C8 0.35 0.2167 2009 0.0472 2003

10343 SG 101 Mt. Carmel Cogeneration 0.2 0.0996 200! 0.0942 2003

3138 3 New Castle 98 LNBO SNCR (14 0.2913 2005 0.2612 2005

3138 4 New Castle fl4 LNBO SNCR 0.4 0.308 2009 0.2799 2006

3138 5 NewCastle 136 LNBO SNCR 0.4 0.367 2005 0.3242 2005

Recycled Paper www.mde.state.md.us rr Ucrs l-(K)-3-22V:a Maryland Relay Sercc

Page 13

_______

Unit Level Data Control Data Emissions Data

Plant ID Unit ID acllIty Name Name- Exlsbng Pre. Exlstng Post- Progose d Lowest Average Lowest Averageplate Combustion Combustion RACT NOX Annual Emission Ozone Season

Capacity Controls for Controls for Rate Rate (200340121, EmIssion RateNOX NOX Ibs/mmBtu (2003.2012),

lbs/mmBtu

/mtu) JL JYi. ..(‘!).. !ELCAMD CAMD CAMD EIA CAMO CAMD PA Draft Rule CAME) CAM!) CAM!) CAMD

508P8 NGCO1 Northampton Generting Plant NH3 02 0.0698 2003 00564 2003

50039 31 Northeastern Power Company Other 02 0.0352 2009 0.0299 2009

50776 1 Panther Creek Energy Facihty NH8 0.? 0.1162 2009 0.1051 2009

50776 2 PantherCreekEnergyFacility NH3 SMCR 02 0.1155 2009 0.1093 2005

54144 31 Pmey_Creek Power Plant OFA 02 02252 2010 0.0747 2004

:3fl3 1 PrtIand 172 LNC3 0.35 0.2339 2009 0.2048 2008

3113 2 Portland 255 LNC3 0.35 0.3085 2009 0.2437 2004

50974 1 Scrubgrass Generating Plant $NCR 0.7 0.0989 2009 2003

50974 2 ScbgrassGeneratingPiant SNCR 0.2 0.108 2009 0.0681 2004

3130 1 Seward SNCR 0.2 0.0869 2012 0.0695 2004

3230 2 Seward SNCR 0.2 0.088 2012 00745 2012

3131 1 Shawville 125 LN! SNCR 0.4 0.3978 2011 0.3706 2031

3131 2 9iiawville 125 LNB SNCR 0.4 0.4148 2011 0.3963 2005

3131 3 Shawv4le 28$ LNC3 SNCR 0.35 0364.3 2009 0,3437 2008

3131 4 Shawville 188 LNc SNCR 035 0367.9 2008 0.3453 2008

54634 1 St. Nicholas Cogenerauon Pmject 0.2 0.0407 2008 0.0379 2009

3115 1 Thus 75 LNC3 0.35 . 0.3127 2003 0.2369 2003

3115 2 Titus 79 4.NCI 0.35 0.3174 2009 02583 2003

3115 3 Titus 75 LNC3 035 0.3211 2009 0.2554 2003

50879 GENI Wheelabrator . 8rackville 48 0.2 0.1215 2003 0.1009 2004

50621 31 WP9Westwoo(,eneratiun, LLC 02 0.3187 2011 0.1061 2011

Plainly, the majority of Pennsylvania’s coal-fired EGUs are capable of achieving and complying with much morerigorous standards than those proposed by the EQI3 with technology that is already in place. The proposed rulewould confer no benefits and s therefore inconsistent with a positive RACT determination.

Without must-run language or lower NOx RACT rates the proposed rulemaking would allow an increase in NOxemissions. An analysis of the 2012 annual NOx emissions data downloaded from CAMD, compares the actualNOx mass to the NOx mass under the proposed NOx RACT rates. An increase in NOx emissions of 33,187 tons isseen. Table 4 below indicates that while 25 units would see a decrease in their overall emissions, resulting in asavings of 8,848 tons of NOx, 30 units would be allowed to increase their emissions above and beyond their 2012performance and increase their overall NOx emissions by 41,635 tons.

y ipcr - www mde state md us Y I 8t73Vij Maryland kelay Scr.:it,

Page 14

Table 4: Pennsylvania Coal-Fired EGUs and Potential NOx Mass (based on 2012 rates)Unit Level Data Control Data Emissions Data

Plant ID Unit ID Facility Name Nameplate Existing Pre- Existing Proposed 2012 2011 Heat 2012 TonnageCapacity Combustion Past. RACT NOx input fRACTRate

Controls for Combustion NOX Rate AllowedNOX Cantrois for

NOX(ORISPL) (MW) (mmBtu) (Tons)

(lbs/mmBtu) (Tons)

AMD cAMO AMD EtA AMD CAMO PA Draft Rule CAMO CAMD Rthttonf4c.

10676 32 AESBeaverVaIleyLLC 1383 I.N80 SNCR 0.4 775.72 3613517 722.7034

10676 33 AE$BeawrValk’yiiC 138.5 LNBO SNCR 0.4 94065 3790582 758.1164

10676 34 AESBaverVlIey1LC 138.5 1.NSO SNCR 0.4 775.16 3807872 761.5744

10676 35 AESBeaver Valley LIC 138.5 11*0 SNCR 46832 1889257 377.8514

6094 1 Bruce Mansfield 913.7 LNBO 5CR 0.4 2,753.28 54700000 10940

6094 2 £uceMansf’ield 913.7 LNBO 5CR 0.4 332523 57700000 US40

6094 3 Bruce Mansfield 913.7 LN3O 5CR 0.4 3439.03 61500000 12300

3140 1 8runnerlsland 363,3 LNC3 SCR(2017) 0.35 1969.47 9851464 1724.0062

3140 2 8runner Island 405 LNC2 5CR (2017) 0.35 3,623,75 18500000 3237.5

3140 3 Brunnerlsiand 790.4 LNC2 SCR(2017) 0.35 5728Q4 30600000 5355

10641 1 cambria Cogen SNCR 0.2 470.14 4563555 456.3555

10641 2 CambnaCogen SNCR 0.2 515.94 4873332 487.3332

8226 1 Cheswick 637 LNCZ 5CR 0.35 448430 25100000 a392,5

10143 AA8OI CoiverPowerproject NH3 0.2 878.02 10500000 1050

3118 1 Coiwniaugh 936 LNCI 5CR 0.35 8,118.18 51100000 8942.5

3118 2 Conemaugh 936 LNC3 5CR 0.35 2,33735 53900000 9432,5

106(13 31 Ebensburg Power Company 0.2 315.99 6451584 645.1584

10113 31 GilbertonPowerCompany OIA 0.2 5929 2615958 261.5958

10113 32 GilbertonPowerCompany OFA 0.2 59.65 2638912 263.8912

3179 1 KatfieldsFerryPowerSta0on 576 LNC2,CFA .4 7,240.04 30300000 6060

3179 2 HatfieldsFerryPowerStaton 576 LNCB,OFA 0.4 8,039.84 32800000 6560

3179 3 HatfieldsFerryPower5tabon 576 LNCB,OFA SNCR 0.4 8,308,98 33700000 6740

3122 1 Homer C8y 60 LNBO 5CR 0.4 2,584.73 29000000 5800

3122 2 HomerCity 660 INBO 5CR 0.4 4,291.12 35200000 7040

3122 3 Homer Ctty 692 LNBO 5CR 0.4 3,415.12 33700000 6740

3136 1 Keystone 936 LNC3 5CR 0.35 9,531.24 51360000 8977.5

3136 2 Keystone 936 LNC3 5CR 0.35 7,923.30 44300000 7752.5

3181 33 Mitchell PowerStatan LNC3 0.35 1,969.91 12400000 2170

3149 1 Montour 805.5 WC3 5C11 0.35 7,532.97 38000000 66S0

3149 2 Montour 819 LNCS 5R 0.35 7,582.29 38900000 6807.5

10343 SG-101 Mt. Carmel Cogeneration 0. 303.63 4610015 461,0015

3138 3 New Castle 98 LNBO SNCR 0.4 240.83 1335178 267.0356

3138 4 New Castle 114 LNBO SNCR 0.4 208.74 1248636 2497272

3138 5 New Castle 136 INBO SN(R 0.4 408.32 1761603 352.3206

50882 NGCOI. NothamptonGerierar,ngPlarn NH3 0.2 383.45 9242761 924.2761

Reeycled l’aer www.nide,state.md.us TTY Users i.8(1O.73S.22tiVia Maryland Relay Ser.cc

Page 15

Unit Level Data Control Data Emissions Data

Plant ID UnIt ID Fadlity Name Nameplate Existing Pre- Existing Proposed 2012 2012 Heat 2012 TonnageCapacity Combustion Post- RACT NOX Input if RACI Rate

Controls for Combustion NOX Rate AllowedNOX Controls for

NOX(ORISPL) (MW) (mmBtu) (Tons)

(Ibs/mmBtu) (Tons)

CAMD CAMD MD EtA CAMD CAMO PA Draft Rule CAMD CAMD RtTht’fon jac.

50039 31 NartiasternPowcrCompany Other 0.2 101.24 5457292 545.7292

50776 1 PantherCreekEnergyFacLty NH3 0.2 272.2 4265864 426.5864

50776 2 PantherCreekFnergy(aoIty NHI SNCR 0.2 27035 4246619 424.6619

54144 31 Prney Creek Power Plant OfA 0.2 264.15 3670147 367.0147

3113 1 Portland 172 LNC3 0.35 745c 572552.4 100.19667

3113 2 oitland 255 LNC3 0.35 243.12 1141456 199.7548

50974 1 SubgrassGerwratangPiant SNCR 0.2 356.68 5196282 519.6282

50974 2 Scrubgrass Genera0ng Pian SNCR 0.2 399t’ 5229584 522.9584

3130 1 Seward SNCR 0.2 394.61 8616569 861.6559

3130 2 Seward 341CR 0.2 558.45 12200000 1220

3131 1 Shawvillr 125 LNR SNCR 0.4 543.92 2506052 501.2104

3131 2 ShawvilI 125 LN9 514CR 0.4 66466 2958106 591.4212

3131 3 Shawvtlle 188 LNC3 514CR 0.35 851.05 4529868 792.7269

3131 4 Shawviile 188 LNC3 514CR 829.53 4216115 737.820125

54634 1 St. Nicholas Cogeneration Project 0.2 239.6 11200000 1120

3115 1 Titus 75 LNCS 0.35 67.53 379142.6 66.349955

3115 3. Titus 15 1NC3 0.35 311459.5 54,5054125

3115 3 Tts 25 LNC3 0.35 6432 377218.3 660132025

50879 CENI WheeIrator- Frackytile 48 0.2 230.02 3124046 312.4046

50611 31 WPSWestwood Generation, ILC 0.2 446.15 4959745 495.9745

123,929 157,127

Any proposed NOx RACT rate that allows an overall increase in emissions is contrary to the definition of RACTin that it is not indicative of the lowest emission limitation a source is capable of achieving, and therefore isincapable of being used to make a positive RACT determination.

3. The Proposed Alternative Compliance Mechanisms Must Include a Rate Sufficient to Lower System-Wide EmissionsAs written, the proposed alterative compliance mechanisms would allow sources to meet the NOx RACT emissionrate limits through the averaging of NOx emissions on a system-wide basis or per unit on a 30-day rolling averagebasis. See Proposed 25 Pa, Code § 129.98(a). Because the proposed NOx RACT rates are so high, both of thesealternative compliance options would fail to deliver any new reductions in NOx emissions and would allow unitswithout any post-combustion controls to continue to operate.

The alternative compliance mechanism is inconsistent with clear RACT objectives — the addition and operation ofreasonably available control technologies.

-

Recycled Paper www.mde.state.md.us ri1’ Ucr l-8X7.1-’l35Va Maryland Rc1y Scrvcc

Page 16

The 30-day system-wide rolling average rate allows for multiple emission units owned and/or operated by thesame owner to average NOx emission rates. The 30-day system-wide rolling average rate is set so high that it failsto require reductions at all sources. The rulemaking may have the effect of allowing operators to discontinue theoperation of NOx control equipment simply by running controls on a different unit. Therefore, the emission rateneeded to achieve compliance with system-wide average is not consistent with an appropriate level of postcombustion controls. The averaging mechanism itself must reflect some level of control. At minimum, the system-wide rate needs to incorporate a sufficient use of control technologies already installed on the unit(s). A revision ofthe NOx rate ought to take into account unit configuration and control technologies that have already beeninstalled.

Conclusion

As discussed above, the proposed rulemaking regarding RAT requirements and emission limits for emissions ofNOx and VOCs from certain major stationary sources in Pennsylvania needs to be revised. The MDE stronglyurges the EQB to make the necessary changes that are presented in this comment letter.

1. Incorporate language requiring that sources run their installed controls.2. Adopt more stringent emission rates.3. Lower the emissions rate for the 30-day system-wide averaging mechanisms.

Furthermore, MOE is currently in dialogue about the elements of a “Good Neighbor” ozone SIP with the MidwestOzone Group (MOO). MDE encourages Pennsylvania to join in the discussion. The elements of a “GoodNeighbor” ozone SIP act as a starting point for resolving individual state responsibilities in Pennsylvania andelsewhere. The three main discussions items that MOE would like to urge Pennsylvania to engage in are thetbllowing.

1. Status of individual programs related to a state’s “Good Neighbor” responsibilities2. Knowledge of the EGUs that have been or are expected to be shutdown3. Survey of the NOx control equipment currently in operation during ozone season

The MDE’s Air and Radiation Management Administration thanks you for the opportunity to comment on theproposed RAT mlemaking Additional Requirements for Major Sources ofNOx and VOCs. If you have anyquestions, please do not hesitate to contact George (Tad) Abum, Director of the Air and Radiation ManagementAdministration at (410) 537-3245.

Sincerely,

George (Tad) S. Aburn, Jr. DirectorAir and Radiation Management Administration

Lb Recydcd Paper www.mde.staie.tnd.us TrY iJcn. 1.KiX1.735..2258Va Maryland Relay Senice