antartica systems wstewater treatment tarasenko

Upload: verdis55

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    1/34

    WastewaterTreatment

    inAntarctica

    SergeyTarasenkoSupervisor:NeilGilbert

    GCAS2008/2009

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    2/34

    Tableofcontent

    Acronyms ...........................................................................................................................................3

    Introduction .......................................................................................................................................4

    1Basicprinciplesofwastewatertreatmentforsmallobjects .....................................................5

    1.1Domesticwastewatercharacteristics....................................................................................5

    1.2Characteristicsofmainmethodsofdomesticwastewatertreatment .............................5

    1.3Designingoftreatmentfacilitiesforindividualsewagedisposalsystems...................11

    2WastewatertreatmentinAntarctica..........................................................................................13

    2.1ProblemsoftransferringtreatmenttechnologiestoAntarctica .....................................13

    2.1.1RequirementsoftheProtocolonEnvironmentalProtectiontotheAntarcticTreaty/

    Wastewaterqualitystandards ...................................................................................................13

    2.1.2Geographicalsituation ......................................................................................................14

    2.1.2.1Climaticconditions ....................................................................................................14

    2.1.2.2Remotelocation..........................................................................................................16

    2.1.2.3Absenceofqualifiedpersonnel ...................................................................................17

    2.1.3Stationfacilities ................................................................................................................17

    2.1.3.1Powergeneration .......................................................................................................17

    2.1.3.2Watersupply..............................................................................................................18

    2.1.4Wastewatercharacteristics...............................................................................................18

    2.1.5Wastewaterqualitymonitoring........................................................................................20

    2.2Reviewofusedtechnologies ...............................................................................................20

    Conclusion........................................................................................................................................31

    References.........................................................................................................................................32

    2

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    3/34

    Acronyms

    AEON AntarcticEnvironmentalOfficersNetwork

    BOD BiologicalOxidationDemand

    COD ChemicalOxidationDemand

    COMNAP CouncilofManagersofNationalAntarcticPrograms

    MARPOL InternationalConventionforthePreventionofPollutionfromShips

    MBR MembraneBioreactor

    PVC Polyvinylchloride

    PVDV PolyvinylidenfluorideRBC RotatingBiologicalContactor

    SCALOP StandingCommitteeonAntarcticLogisticsandOperations

    SCAR ScientificCommitteeonAntarcticResearch

    SS SuspendedSolids

    UV Ultraviolet

    3

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    4/34

    Introduction

    Human wastes production is a necessary result of research and logistic activity in

    Antarctica. Solid and liquid wastes disposal may lead to irreversible changes of the

    Antarctic environment. This problem can partly be solved by application of efficient

    methodsofwastewatertreatment.

    Minimum requirements for sewage treatment and disposal are prescribed in The

    Protocol on Environmental Protection to the Antarctic Treaty. Transferring treatment

    technologies to Antarctica is not simple because of quite a number of reasons. The

    principles guiding the design of the water disposal systems are firstly, to minimizeenvironmentalimpact;secondly,tomakerationallayoutforminimizinglandoccupation;

    andthirdly,tooperatesafelyandreliablyandmakethesystemeasytomanage.

    Thisprojectwillbrieflydiscussmainmethodsofdomesticwastewatertreatmentand

    basic principles of sewage disposal for small objects. It also will describe problems of

    transferring treatment technologies to Antarctica and review treatment plants that have

    beeninstalledatresearchstations.

    4

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    5/34

    1Basicprinciplesofwastewatertreatmentforsmallobjects

    1.1DomesticwastewatercharacteristicsDomestic sewage consists of two main fluxes. The first one is household sewage

    (greywater)whichincludeswastewaterfromwashbasins,kitchensinks,baths,showers,

    laundrywashingetc.Thesecondoneisfecal(blackwater)fromtoiletsandurinals.Weight

    offecesperoneadultpersonmakesabout1,500gperday(thatincludesabout1,250gof

    urine).Amountofgreywaterdependsonhousingfacilities:from1540litersperdayper

    person inpremiseswithoutcentralwatersupply,to100200 liters perday perperson in

    premiseswithcentralwatersupplyorindividualwatersupply.Compositionofhousehold

    andfecalsewageisverydifferent(table1),andsometimesitisexpedientnottocombineit

    in one flux,but treat separately. Domestic sewage contains contaminants of mineral and

    organic origin which canbe in nonsolute, solute and colloidal state. The major part of

    organic contaminants is representedby proteins, fats, carbohydrates and products of its

    degradation. Nonorganic contaminants consist of quartz sand, clay, and salt particles

    which areformed inthe vitalprocesses ofthehuman.The last ones includephosphates,

    hydrocarbonates,ammoniumsalts(productofureahydrolysis).Organicsubstancesmake

    4558%ofthetotalweightofcontaminantsindomesticsewage[1,2].

    Table1CharacteristicsofgreyandblackwastewaterCompound Unit Greywater Blackwater

    BODtotal mgO2/l 100400 300600

    CODtotal mgO2/l 200700 9001500

    Totalnitrogen mgN/l 830 100300

    Totalphosphorus mgP/l 27 2040

    Potassium mgK/l 26 4090

    1.2CharacteristicsofmainmethodsofdomesticwastewatertreatmentMethodsofsewagetreatmentcanbedivided intomechanical,physicochemicaland

    biochemical. Treatment process leads to formation of sludge which undergoes

    deactivation, disinfection, dehydration and deliquification. If discharge or reutilization

    conditions require higher purification degree, then advanced treatment facilities canbe

    installedafterthemaintreatmentplant.Aftertreatmentandbeforedischarge,wastewater

    is disinfected with a view to destroy pathogenic microorganisms. Usually a combination

    5

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    6/34

    of mechanical and biological treatment is used for treatment of domestic sewage.

    Physicochemicaltreatmentisconsiderablylesscommon.

    Mechanical sewage treatment is intended for trapping of nonsolute contaminants.

    Mechanicaltreatmentfacilitiesincludebarscreens(toremovelargewaste),sandcatchers(toseparatemineralcontaminants,mostlysand),sedimentationtanks(toremovesinking

    and floating contaminants (figure1)) and filters. For treatment of sewage with specific

    contaminants, grease catchers, oil separators and resin retainers. Mechanical treatment

    facilities reduce concentration of suspended substances for 4060%, which leads to

    reductionofBODvaluefor2040%[1,2].

    Figure1Sedimentationtanks(St.Petersburg,2006)

    Biological sewage treatment methods arebased on activity of microorganisms which

    mineralize solute organic compounds which serve as a nutrient source for such

    microorganisms.Biologicaltreatmentplantscanbeconditionallydivided intotwotypes.

    The first type includes plants where biological treatment process is carried out in

    conditions similar to natural conditions. Plants of the second type provide similar

    treatment in artificially created conditions, i.e. in aeration tanks andbiofilters. Biological

    6

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    7/34

    treatment method is the most costeffective method, but it is applied only in certain

    conditions.Therearefollowingrestrictions:

    wastewater temperature mustbe above 610C (moreover, at temperature above

    10C thebiological treatment method is certainly applied. At lower temperatures it isnecessary to perform an engineering and economical comparison with systems of

    physicochemicalwastewatertreatment);

    longbreaksinwastewaterinflow(aweekormore),becauseittakessometimefor

    microorganismstogrowafterabreak(aboutonemonth);

    presenceofhightoxiccontaminantsinthewater.

    Biological treatment plants provide reduction of BOD contamination values for 80

    95%[14].

    Physicochemical sewage treatment methods are applied very rarely. Peculiarity of

    physicochemical sewage treatment plants is that such plants canbe put into operation

    very quickly. Treatment plants which apply physicochemical processes canbe divided

    intoseparatorsanddestructors.Inplantsofthefirsttype,contaminantsareremovedfrom

    the water in the form of strong solutions, sludges and sediments. In destructors,

    contaminants are destroyed directly in the treated water, and destruction products also

    remain in the water; at that, no secondary wastes of wastewater treatment are created.

    Residential wastewater treatment plants apply such methods as flotation, coagulation,

    sorption,ozonationwhichareusedondifferentstagesofwatertreatment.Expediencyof

    application of those methods on treatment plants must be justified by technical and

    economicassessment[1,2,58].

    Flotation is one of the kinds of adsorptivebubble separation which principle is to

    create floating agglomerates (flotation complexes) of contaminants with dispersed gas

    phase and its following separation in the form of concentrated froth product (flotation

    sludge).Flotationisusedforcleaningofwaterfromlightparticulatepollutants,mostlyof

    organic origin, and also from solute surfactants. Flotation plants are used instead of

    sedimentation tanks or clarification tanks with suspended sediment; flotation plants can

    alsosubstitutemicrofilters.Alongwithremovalofmechanicalimpuritiesaswellassolute

    7

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    8/34

    and colloidal contaminants, flotation treatment methods provide reduction of BOD and

    CODvalues,andremovalofvolatilecomponents.Effectivenessofflotationprocessvaries

    widely:from20to99%[1,2,59].

    Coagulationprocessofwatertreatmentwithcoagulantssaltsofpolyvalentmetals.

    Coagulation is understood as physicochemical agglomeration of finest colloidal and

    dispersed particles under the influence of molecular attraction forces. 5060% of

    residential sewage consist of contaminants which canbe classified as colloidal due to its

    physicochemical properties; such contaminants do not sediment and cannotbe trapped

    withregularfilters.Coagulationprovidesthefollowingtreatmentefficiency:COD78%,

    BOD91.3%,suspendedsubstances98.8%[1,2,58].

    Sorption equilibrium dynamic process of substance absorption from environment

    byasolid,liquidorgas.Themajormethodusedinsewagetreatmentisabsorptionprocess

    (substance absorptionby the surface of a solid sorbent. Sorption methods are mostly

    effectiveforadvancedcleaningofsewagefromsoluteorganicsubstances[1,2,58].

    Ozonation is a universal method for effective purification of sewage from different

    kindsofcontaminants.Duetohighoxidizingcapacity,ozoneisusedbothfordisinfection

    and destruction of hard oxidable organic (for example, surfactants) and nonorganic

    compounds.Anadditionaleffectofwaterozonationisitsenrichmentwithsoluteoxygen.

    Besides, application of ozonation as a destructive method does not lead to increase of

    salinity, and contaminates water with reaction products to a small extent; the whole

    processcanbeeasilyoperatedautomatically[1,2,58].

    Advanced cleaning of sewage from suspended substances requires application of

    differentfilters(filtrationofsewagereducescontentofsuspendedsubstancesfor5080%).

    Advanced cleaning from solute organic substances is made with the help of sorption,

    biosorption, ozonation and other plants. Advanced cleaning from nitrogen and

    phosphoruscompoundscanbemadebyphysicochemicalandbiologicalmethods[1,2,5

    8].

    Disinfectionofsewageisthefinalstageoftreatmentbeforedischarge.Thepurposeof

    disinfectionisdestructionofpathogenicmicroorganismsexistinginwastewater.

    8

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    9/34

    The most common disinfection method is to treat water with chlorine (gaseous or

    liquid)orsodiumhypochlorite,obtainedthroughelectrolysisofsaltbrine.Activechlorine

    takesgermicidaleffect.Chlorinetreatmenthasanumberofdisadvantages:

    chlorineisapotenttoxicsubstance;precise chlorine dosage is necessary (underdose of chlorine result in absence of

    thenecessarygermicidaleffect;overdoseofchlorinehasanegativeeffectonhumanhealth

    (iftreatedwaterisusedfordrinking));

    chlorine mustbe thoroughly mixed with water; chlorine and water mustbe in

    contactforasufficient(30minutesminimum)amountoftime;

    itisnecessarytostoremassivesuppliesofchlorineintreatmentplants.

    Therefore, application of chlorine requires special safety measures and precise

    adherencetotheoperatingprocedure[1,2,10,11].

    Wastewater canbe disinfectedby ozone. Ozonation killsbacteria a thousand times

    fasterthanchlorinetreatment.Ozonationalsohasanumberofdisadvantages:

    ozonetoxicitymakesitnecessarytopreventpenetrationofozoneinpremises;

    complexprocessofozonepreparation(atmosphericairmustbededustedanddry;

    ozonationplantsareenergyconsumingandrequiresefficientmaintenance);

    necessitytoprovidespecialequipmentforintroductionofozoneandtherequired

    timeforcontactbetweenozoneandwater[1,2,10,11].

    Waterbornebacteria canbe destroyedby means of ultraviolet light treatment. This

    process is carried out in special facilities, where relatively thin layer of water passes

    sources of UVlight (quartzmercury or argonmercury lamps). Disadvantages of such

    disinfectionmethodare:

    dangerofcontaminationbymercuryusedinsuchlamps;

    specialrequirementsfortreatedwater(itmustbetransparentandcharacterizedby

    maximumpermeabilityforUVlight)[1,2].

    Ultravioletlightdisinfectionhasthefollowingadvantages:

    UVtreatedwaterdoesnotshowtoxicandmutageniccompounds;

    9

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    10/34

    noadverseeffects in case of overtreatment, which considerably simplifies process

    controlprocedures;

    disinfection time makes 110 second in continuous flow mode (no necessity to

    buildcontacttanks);

    UVlight disinfection plants has low operation costs in comparison with

    chlorinationandozonation(thereasoniscomparativelylowelectricpowerconsumption:

    35timeslessthanozonation)[1,2,1012].

    Apart from the listed disinfection methods, in the present time the following

    disinfection methods arebeing studied: disinfection in magneticfield and disinfection with

    electrochemicalactivationofwater[11,13].

    Treatmentofsludgesofdifferenttypeswhichareformedintheprocessofmechanical,

    biologicalandphysicochemicaltreatmentofwastewaterandcontainorganicandmineral

    componentsiscarriedoutwithaviewtoobtainanendproductcharacterizedbyminimal

    damagetoenvironmentorsuitableforindustrialutilization.Thisgoalcanbeachievedby

    implementation of the three major processes in different sequence: dehydration,

    stabilization,disinfection.Dependingonconditionsofgenerationandseparation,sludges

    canbedividedintothefollowingtypes:primarysludges(coarsesludges;heavysludges;

    floating sludges; raw sludges which havebeen separated from wastewater as a result of

    mechanical treatment), and secondary sludges (raw sludges which havebeen separated

    fromwastewaterasaresultofbiologicalorphysicochemicaltreatment;digestedsludges,

    compacted sludges with humidity 9085%, dehydrated sludges with humidity 8040%,

    dry sludges with humidity 540%). Heavy sludges are removedby sand catchers. Itscomposition includes sand and fragments of some minerals. For the purposes of design

    calculations,theamountofremovedheavycontaminantsisacceptedas0.02l(3g)forone

    person per day at humidity 60% andbulk weight 1.5t/m3. Amount of floating sludges

    removedbygreasecatchersorfloatingup insedimentationtanks,makes2lathumidity

    60% andbulk weight 0.6t/m3 for one person per year in domestic sewage systems. Raw

    sludges from primary sedimentation tanks are characterized by considerable non

    homogeneity and represent suspended sedimentation of grey or lightbrown color with

    10

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    11/34

    sour smell. It quickly decays due to great amount of organic substances (about 70%).

    Averagehumidityofrawsludgemakes9395%.Amountofrawsludgeforonepersonper

    day is 2540g (0.50.8l). Activated sludge represents suspended sedimentation which

    contains amorphous flakes, including microorganisms and protozoa with wastewater

    bornecontaminantsadsorbedontheirsurface.Rawsludgequicklydecays intheprocess

    ofstorageandcompaction.Averagehumidityofcompactedexcesssludgemakes9798%;

    itsquantity2032g(0.70.11l)foronepersonperday.Contentoforganicsubstancesis

    about 75%. Sludge canbe characterizedby highbacterial density (by one order higher

    thanthatofwastewater)[2,14,15].

    1.3DesigningoftreatmentfacilitiesforindividualsewagedisposalsystemsChoice of wastewater treatment methods and configuration of treatment plants

    depends on many factors and presents a complex engineering and economical problem.

    Configuration of a treatment plant should be chosen depending on properties and

    quantity of influent wastewater, required degree of purification, method of sludge

    treatmentandlocalconditions.

    Estimationofrequiredpurificationdegreeshowsthenecessaryeffectforreductionof

    contaminantsonatreatmentplant.

    Treatment plants with capacity not exceeding 25m3 per day canbe classified as

    individualtreatmentplants.Suchplantsaredesignedfortreatmentofwastewatercoming

    fromdetachedhousesoragroupofbuildings.Normally,facilitiesdesignedfordisposalof

    small amounts of wastewater can be characterized by high remoteness from well

    developed transportation lines, weak construction base, high construction costs andabsence of skilled regular staff. Besides, difficulties in designing and construction of

    treatmentfacilitiesforindividualsewagedisposalsystemsarealsoconnectedwiththefact

    that here we deal with small amounts of wastewater which can be characterized by

    irregular inflow and instability of contaminants concentration. These factors drastically

    reduce operating efficiency of treatment facilities and demand increase of capacity of

    treatmentfacilitiesonthedesignstage[1,1619].

    11

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    12/34

    Costefficient treatment of small amounts of wastewater calls for application of

    compacttreatmentfacilities.Suchfacilitiesshouldbeinstalledonoperationsiteasofone

    pieceorofseparatebocksdeliveredbyauto,railorwatertransport.

    Compact factorymade plants canbe divided into the following types according to

    technological process: treatment facilities with activated sludge; treatment facilities with

    biofilm;combinedtreatmentfacilitieswithactivatedsludgeandbiofilm;physicochemical

    treatment facilities. For treatment of wastewater from settlements with temporary

    residence of staff and for other objects with periodical presence of people it is

    recommendedtousephysicochemicaltreatment.

    At the present time the industry produces a number of different types of modular

    treatmentplantsforindividualsewagedisposalsystems.Insomecasesitispossibletouse

    shipsewagetreatmentplants(figure2).

    Figure2UNEXBIOsewagetreatmentplant(RaumaRepola,Finland)

    installedonboardr/vAkademikFedorov

    12

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    13/34

    2WastewatertreatmentinAntarctica

    2.1ProblemsoftransferringtreatmenttechnologiestoAntarctica2.1.1Requirements of the Protocol on Environmental Protection to theAntarctic

    Treaty/WastewaterqualitystandardsIn accordance with Article1 of the Protocol on Environmental Protection to the

    Antarctic Treaty waste storage, disposal and removal from the Antarctic Treaty area, as

    well as recycling and source reduction, shallbe essential considerations in the planning

    andconductofactivitiesintheAntarcticTreatyarea.

    TheProtocolrequirementsforwaste(wastewater)disposalareasfallows:

    sewage and domestic liquid wastes, shall, to the maximum extent practicable,be

    removedfromtheAntarcticTreatyareabythegeneratorofsuchwastes(Article2);

    wastes not removed or disposed of shall notbe disposed of onto icefree areas or

    intofreshwatersystems(Article4);

    sewage, domestic liquid wastes and other liquid wastes not removed from the

    Antarctic Treaty area in accordance with Article 2, shall, to the maximum extent

    practicable,notbedisposedofontoseaice,iceshelvesorthegroundedicesheet,provided

    that such wastes which aregeneratedby stations located inland on ice shelves or on the

    grounded icesheet maybe disposed of in deep ice pits where such disposal is the only

    practicableoption;suchpitsshallnotbelocatedonknowniceflowlineswhichterminate

    aticefreeareasorinareasofhighablation(Article4);

    sewageanddomesticliquidwastesmaybedischargeddirectlyintothesea,taking

    intoaccounttheassimilativecapacityofthereceivingmarineenvironmentandprovidedthat:

    (a)suchdischargeislocated,whereverpracticable,whereconditionsexistforinitial

    dilutionandrapiddispersal;and

    (b)largequantitiesofsuchwastes(generatedinastationwheretheaverageweekly

    occupancyovertheaustralsummerisapproximately30individualsormore)shallbe

    treatedatleastbymaceration;

    13

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    14/34

    thebyproductofsewagetreatmentbytheRotaryBiologicalContactorprocessor

    similar processes maybe disposed of into the sea provided that such disposal does not

    adversely affect the local environment, and provided also that any such disposal at sea

    shallbeinaccordancewithAnnexIVtotheProtocol(Article5)[20].

    AtthesametimetheProtocoldoesnotmakespecificdemandsontreatedwastewater

    quality.Forthereasonthatitisdifficulttodefineaprecisestandardofeffluentthatwould

    beacceptablefordischargetotheAntarcticenvironmentitbecomesnecessarytoconsider

    nominalstandardsforawastewatertreatmentplanttoachieve.Ontheotherhandtreated

    watermightalsobeincompliancewithnationalorinternationalstandards(itisclearthat

    while disposal system meets the requirements of the Protocol it may not comply withnational standards). It is obvious that there are significant differencesbetween countries

    (table2).

    Table2Nominaldesignedwastewaterqualitystandards[2128]Designedeffluentquality

    CountryCOD,mg/l BOD5,mg/l SS,mg/l Fecalcolonbacillus,cfu/100ml

    China(ZhongShan) 20 5 0 3

    China(DomeA) 4 3 2

    Germany 50 100 200India

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    15/34

    Table3MeantemperaturesindifferentareasofAntarctica1

    Area Meansummertemperatures,C Meanwintertemperatures,C

    Coast 0 1829

    Plateau 40 68AntarcticPeninsula 9

    Inconsiderationofweatherconditionstreatmentplantsaretobeenclosedinheated

    buildingsdesignedtoprotectequipmentandwastewaterflowfromfreezingtemperatures

    (figure3).

    Figure3WastewatertreatmentplantbuildingatMcMurdostation(2008)

    Freezingofpipesconnectingplantcomponentscanbeaseriousproblem.Asarule

    wastewater pipelines need tobe heated (figure4). It also means that treated effluent

    dischargeisusuallybestdoneintermittentlysoastominimisethechanceofoutfallpipes

    freezingup.Thisinturnimpliesthatplantsneedtoincludeabuffertankinwhichtreated

    effluentcanbestoreduntilthenextdischarge.

    1SCARofficialwebsite(http://www.scar.org)

    15

    http://www.scar.org/http://www.scar.org/
  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    16/34

    Figure4HeatedwastewaterpipelineatProgressstation(2006)

    Extremeconditionstogetherwithprolongedperiodofdarknessduringwintermean

    that there are just several weeks in summer when conditions are good for outdoor

    construction work. This time is needed for shipping of plant components to the selected

    site,installation,andconnectionofpipesandutilities.

    2.1.2.2RemotelocationRemotelocationofAntarcticstationmakestransportationandconstructionofplants

    (especially in aggregate,but in some cases (for large plants) aggregate is needed) very

    expensive and inconvenient. For convenience of transport and handling, and to protect

    plant components during the rough weather characteristic of the southern ocean, it is

    preferably to build plants inside containers (for instance New Zealanders opted to

    constructwastewatertreatmentplants for ScottBase within ISO20containers; plantsfor

    Novolazarevskaya station were also placed in containers (figure5)). Modular,

    prefabricatedplantsthatcanbeeasilydisassembledforshippingandreadilyreassembled

    on site are therefore virtually a necessity. Such plants can alsobe commissioned and

    modifiedpriortoshipping,furtheralleviatingdemandsonthelimitedstaffavailableonsiteatresearchstations.Compactnessisnecessaryifplantsaretofitintocontainers.

    16

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    17/34

    Theremotenessandisolationofplantsmeansthatsparepartsmaybeunavailablefor

    long periods and therefore plants must incorporate a high level of redundancy for all

    itemsofequipmentnotreadilyrepairableonsite.

    Figure5WastewatertreatmentplantsatNovolazarevskayastation(2008)

    2.1.2.3AbsenceofqualifiedpersonnelAbsenceofqualifiedpersonnelmustalsobeconsidered.Particularlyduringwinter,

    plant operation is usually handled by staff who usually has numerous other

    responsibilitiesandlacksadetailedunderstandingofwastewatertreatmentfundamentals

    (for example the stations doctor monitored treatment process at Chilean Frei station

    during2001season[29]).Thisimpliesthatahighlyautomatedcontrolsystemisdesirable,

    yet it must stillbe possible to run the plant on manual control in the event of a control

    systembreakdown.

    2.1.3Stationfacilities2.1.3.1PowergenerationAlternative energy systems (solar energy or wind generators) seem tobe useful in

    conditionsofAntarctica.However,powerisgenerallyprovidedbydieselgeneratorsand

    energy is expensive in Antarctica,being derived from hydrocarbon fuels shipped in at

    17

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    18/34

    highcostandstoredinheatedstoragetanks.Thereforewastewatertreatmentplantsneed

    tohavelowenergyconsumption.

    2.1.3.2WatersupplyWatersupply inthemajorityofcasess isprovidedbymeltingofsnow(wasteheat

    from diesel generators canbe used to melt snow). Water supply systems may alsobe

    based on pumping fresh water from aqueous depositsbelow ice or lakes. Desalting of

    seawaterisanotherwayoffreshwaterproduction.

    There are substantial differences in the consumption of water among stations. The

    averagedailyfreshwaterconsumptionrangesfrom25to200litresperperson.This isat

    least partly explained by differences in the sanitation and washing facilities among

    stations. Stations may have lower water consumption if vacuum freeofflushing or

    incineratortoiletsareinstalled.Waterproductionmayalsobesupplementedbyrecycling

    ofgreywater.

    2.1.4WastewatercharacteristicsTheamountofwastewateristheresultofwaterconsumption.Percapitawastewater

    outputissimilartospecificfreshwaterconsumption.

    Quantity of sewage in the first place depends on the stations staff number and it

    shouldbenotedthatthenumberofpeopleoverwinteringonbasescanbeasfewas10%of

    thepeaknumberpresentduringthesummerresupplyperiod(figure6).So,akeydesign

    considerationatallplantsisthemarkedseasonalvariationinhydraulicloadingrates.

    Most people atbases have similar work schedules so diurnal load fluctuations are

    pronouncedandhavetobeallowedfor.Anotheraspectofimportanceisthatnumberson

    stationstendtoalterstepwise,forexamplewhentheresupplyvesselarrives.Thismeans

    thatplantshavetobeabletoadjustrapidlytotheloadchanges.Thisproblemisthemost

    acuteforseasonalstations.

    TherearequitelimiteddataforwastewatercompositionatAntarcticbases,butitis

    recognised that content of organic contaminants tends tobe high (table4). This canbe

    attributed to the fact that people working in Antarctica are well fed and have a high

    calorificvaluefoodinputrichinfats;thereisalsoapredominanceofmales,whoproduce

    18

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    19/34

    morewastesthanfemales.Itisalsopossiblethatthehigherorganiccontaminantscontent

    atresearchstationsmightbecausedbyamoreconcentratedwastestream.Inadditionto

    human waste, municipal wastewater in a typical city also contains grey water from

    washingactivitiesand insomecaseswastewatermayalsobedilutedwithgroundwater

    infiltrating into sewer lines. The addition of grey water and in some cases infiltrating

    groundwatertothewastecomingfromhumancontributionwouldresultinalowerBOD

    levelmeasuredintheinfluentatawastewatertreatmentfacility.Itwouldbeexpectedthat

    the wastewater stream in most research stations in Antarctica is concentrated with little

    dilutionfromwashwatersincewateruseisrestricted[24,2731].

    Figure 6 Seasonal variations in wastewater amount and station staff number

    (McMurdo station, USA)

    Table4UntreatedwastewateranalysisdataCompound

    CountryCOD,mg/l BOD5,mg/l SS,mg/l N ammonium,mg/l

    McMurdo 159382 43187

    Molodezhnaya 12002300 3500

    ScottBase 700 700

    Wasa 5800 3800 1100 2,3

    Nominalinputlevelsusedindesigningtreatmentfacilitiesdifferbetweenstationsas

    well(table5).

    19

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    20/34

    Table5Designedwastewaterinputlevels[21,22,32]Designinputlevels

    CountryCOD,mg/l BOD5,mg/l SS,mg/l Nammonium,mg/l

    CzechRepublic 300 400 367

    China(ZhongShan) 450 250 200 25

    China(DomeA) 80120 3050 4060 5

    Anadditionalcomplicationatcoastalstationsusingseawaterfortoiletflushingisthe

    highsaltcontentofthewastewater(atScottbaseupto28%ofthesewageisseawater[24]).

    2.1.5WastewaterqualitymonitoringWastewater quality monitoring is necessary to ensure the normal functioning of

    treatment facilities. According to COMNAP/SCAR recommendations wastewater quality

    is the one of parameters that should be included in environmental monitoring

    programmes[33].

    Permanent monitoring of influent and effluent quality is unrealizable in most cases

    in the absence of qualified personnel or required facilities. Many countries carry out

    occasionalmonitoring.

    2.2ReviewofusedtechnologiesThereareabout60permanentandseasonalstationsintheAntarcticTreatyareawith

    populationfrom10to1000persons(figure7).

    Figure 7 Year-round / seasonal stations ratio (2009)

    Review of wastewater disposal methods and used sewage treatment technologies are listed

    below (table 6).

    20

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    21/34

    Table6SewagetreatmenttechnologiesusedatAntarcticstationsName&statusof

    stationCountry

    Methodof

    treatmentDescriptionofusedtechnology

    Aboa Filnland Biological Greywaterfromwashingmachine,kitchen,dishwasherandshoweristreatedinbiologicalwastewatertreatmentplant.Urineiscollected

    tobarrelsandbroughtawayfromAntarctica.Thereisnoblackwater

    atthebase [31].

    AmundsenScott

    USA Notreatment Sewageisdisposeduntreatedintodeepicepits[31].

    Arctowski Poland Mechanical Therearetwosewagetreatmentfacilitiesatthestation.Thefacilityatthemainbuildingislimitedprimarilytotreatingnonsolidwaste.

    Greywaterfromthisfacilityisfiltered,heatedandbioenzyme

    treated.Theliquidisthendischargedviathebeachsandandgravel

    tothebay.Oneoftheoutbuildingshousedthemaintoiletfacilities,

    showersandlaundry.Sewageandgreywaterfromthisbuilding

    enteredaburiedseptictank.Theliquidwasdischargedviaaleach

    fieldthroughthesandandgravelbeachtothebaywithout

    monitoring.Thesolidsareperiodicallyremovedfromtheseptictank

    andshippedtoPoland [29].

    Artigas Uruguay Mechanical Thewastewaterisdischargedtosepticchambersfortreatment,andafterwardsstoredin200ldrumsforremovalfromAntarctica.The

    sewagetreatmentisrunningthewholeyear[29,31].

    ArturoPrat Chile Noinformation

    Belgrano Argentina Mechanical Greywaterisrecycledforuseintoilettes;blackwateristreatedinseptictank.Effluentandsludgereleasedontoice[31].

    Bellingshausen Russia Biological+

    UVsterilisation

    ThewastewatertreatmentplantEOS15wasusedatthestation.A

    newbiologicalplantAstra20andaUVsteriliserforthestation

    areunderconstruction(in2009/2010season).

    Casey Australia Mechanical+

    Biological+

    UVsterilisation

    TheplantusedatCaseyisaRotatingBiologicalContactortype

    whichishousedinaheatedbuildingtoprovidetheenvironment

    necessaryfortheplanttofunctioneffectively.ThedesignflowcapacityoftheRBCsystemsis5,000l/daywithamaximumflow

    rateof6,000l/day.

    Thesewageisfirstcollectedinastoragetankwhereitisretainedfor

    aperiodofapproximately24hourstoallowsettlementanddigestion

    totakeplace.ThesettledwastethenflowsthroughaBiorotorunit

    comprisingpolypropylenediscbankswhicharepartiallyimmersedin

    theeffluent.Thediscsareslowlyrotatedthroughtheairandwaste

    wateralternately,causingabiccnasstograduallyformonthedisc

    surfaceswhichassimilatenutrientsfromthewastewaterandoxygen

    fromtheair.Thisprocessresultsinastagedreductionoftheorganic

    impuritiesinthewastewaterasittravelspasteachdisc.During

    1999/2000summeraUVsteriliserwasinstalledatCaseytosterilise

    theeffluentbeforedischargeintothesea.Theeffluentismonitoredon

    aregularbasisbythestationdoctortoensurethatitiswithinthestandardssetbyAustralianauthorities.Sedimentfromthewaste

    treatmentplantsisremovedduringregularmaintenanceandstored

    in200ldrums[35].

    ComandanteFerraz Brazil Mechanical+

    Biological

    Thesewagetreatmentplanthasbeeninoperationsincetheaustral

    summerof1995/96andisdesignedtoserveapopulationof50.

    Theblackwater,afteraprimarytreatment,isdirectedtoanaerobic

    filters,whereitundergoesasecondarytreatment.Attheanaerobic

    filtersthewaterispurifiedagain,andthenitpassesthrough

    filtrationdrains.Thetreatmentsystemforgreywatercollects

    wastewaterfromshowersanddirectsthemtoaboxthatretainssolid

    materials.Fromthisbox,thegreywaterpassesthroughanaerobic

    filtersandfiltrationdrainsthatarenotconnectedtotheblackwater

    system.Theblackandgreywatersfinaleffluentispipedtothelow

    tidelineonbeach.Thesystemhasfoursepticcesspools,twoanaerobicfilters,twogreaseboxesandtwointerceptingboxes.To

    avoidthesystemandcesspoolfreezing,athermalgirdlewasinstalled

    alongthesystemandthesepticcesspool[36].

    21

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    22/34

    Concordia France

    Italy

    Physicochemical ThestudyandthedevelopmentofwatertreatmentsystemsforConcordiahavebeenplacedundertheleadershipoftheEuropean

    SpaceAgency.Allwastewaterstreams,includinggreywaterfrom

    washing,andblackwaterconsistingoforganicwaste(foodscraps

    fromthekitchenandrefectory)andexcrements,arecollectedbytwo

    respectivenetworksundervacuumandtransferredtotwotreatment

    systems.Greywaterundergoesa4steptreatmentprocess

    ultrafiltration,nanofiltrationandtwostagesofreverseosmosis;black

    wateristreatedbyananaerobicfermentationunit.Inordertominimizewasteproduction,thesludgefromthegrey

    waterunitisretreatedbytheblackwatersystemandthewater

    producedfromtheblackwatersystemistakenupbythegreywater

    treatmentunit.Thesludgeissuingfromtheblackwaterfermenteur,

    isfrozenandshippedbacktothecoasttobedriedandincinerated

    [37].

    Davis Australia Mechanical+

    Biological

    Allhumanwasteandwastewaterfromthenewstationcomplex

    passesthroughtheWasteTreatmentBuilding,whereitreceives

    primaryandsecondarytreatmentinatwostagerotatingbiological

    contactor(RBC)beforedischargeoftheeffluentthroughanoutfall

    intothesea[35,38].

    DomeA China Physicochemical Upontheconsiderationofsmallamountofwaterconsumption,environmentalprotection,easymanagementandsimplificationof

    treatmentfacilities,anegativepressurefreeofflushingsystemwill

    beusedinthetoilettoreducethecapacityofblackwater.Thehuman

    excrements(includingnightsoilandurine)willbepacked

    automaticallyandshippedbacktoZhongShanStationfortreatment.

    Thelowercontaminatedwastewaterthroughsuperfiltrationcanbe

    turnedasintermediatewaterforcleaning,andthenthroughfurther

    treatmentbyareverseosmosissystem,thetreatedwaterwillbe

    recycledforsimplecleaningofclothesinthestation.Theresidual

    waterafterfiltrationisroughlyabout70l/daywillbedischargedinto

    theicepits.

    TheDomeAStationwillbuildanintegratedcontainertypeof

    sewagetreatmentsystem.Thesystemmainlyconsistsofsewage

    tank,reactortank,outtankpumpvalveandfilters.Withoutspecial

    attendee,itwilloperatecontinuouslyorintermittentlythenstopsatnight.Onepersonmightbeappointedtomakeroutineinspectionand

    maintenance.Residualblackwatercomesfromsuperfilteringunit

    andreverseosmosisunitwillflowintoacombinedrector,there

    waterwillprecipitateandflocculateunderthefunctionofachemical,

    theupperclearwaterinthiscombinedreactorwillflowbacktolow

    pollutantwatertank.Thefilteringcorewillbechangedwhenthe

    effectivenessdrops[22].

    DomeFuji Japan Notreatment

    Druzhnaya4 Russia Notreatment

    DumontdUrville

    France Notreatment UntreatedsewagehasbeenreleasedfromDumontdUrvillepermanentstationintoSouthernOceanformorethan40years.The

    outfalldischargedthesewagedirectlyatthebaseofadeepshelfcliff

    atapproximately50moftheseashore.Inwintertimethefrozen

    sewageaccumulatedbetweentheoutfallandthelandfastice[39].

    Escudero Chile Mechanical+

    Biological+

    Chlorine

    sterilisation

    Domesticsewagefromeachbuildingismacerated,thenpassed

    throughananaerobicchamberandasettlementchamber.The

    remainingliquidisfirstchlorinatedandthendechlorinatedbefore

    beingpipedtothesea.ThesolidsarereturnedtoChile[40].

    Esperanza Argentina Biological+

    Chlorine

    sterilisation

    Thebaseoperatesabiologicalbasedsewagetreatmentplant.The

    plantisinoperationonMondays,Wednesday,Fridayand

    Saturdays.Theeffluentwateristreatedwithchlorinebeforebeing

    dischargedintothemarineenvironment.Everythreemonths,the

    sewagesludgeisremovedandplacedindrumsforstorageuntilitis

    removedfromtheAntarcticTreatyArea.Onaverage,threedrumsof

    sludgeareproducedeverythreemonths[31,41,42].

    22

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    23/34

    Frei Chile Mechanical+

    Biological+

    Chlorine

    sterilisation

    Sewageandgreywateraretreatedinatwochamberedanaerobic

    digestionsewagetreatmentplant.Thetreatedeffluentischlorinated

    andthendechlorinatedpriortoitsdischargeintothesea.Thesludge

    iscleanedoutonceayear,placedinametalorplasticdrumand

    takenfordisposalinChile [29,40].

    GabrieldeCastilla Spain Mechanical Thesewageistreatedinaseptictankburiedat0.5m,ithastwochambers,thefirst,wherethesewagegoesdirectlyfromthestation,

    isforsedimentation,digestionandtostoremud,ithasafoambaffle

    andatthetopatubtoremovethegasoutside.Fromthesecondchamber,tosedimentationoftheadditionalmud,goesanexittub

    thatpoursthetreatedwatertoland.Each23yearsthetankmustbe

    openedtoextractthemud.[40,41,]

    GreatWall China Biological Thestationssewageandgreywaterareprocessedthroughabiologicaltreatmentplant.Sludgefromthetreatmentplantis

    incineratedandthewaterisdischargeduntreatedintothetidalbasin

    [21,43].

    Halley UK Mechanical/

    Biological

    AtHalleyVgreywateristreatedbymaceration.Duringthe2005/06

    seasonatthestationafurther850m3ofgreywaterwasdischargedto

    adeepicepit.

    AtHalleyVI,aMicrobacbioreactorsewagetreatmentplantwillbe

    usedforthemainplatform.Thebiologicalsewageplantwillprovide

    anexcellentgrowthenvironmentforbacteria,asthetankisfitted

    witharigidPVCmatrixwithaninternalsurfacearea150times

    largerthananytraditionalactivesludgeplantortank.Thetankwill

    introducesomemodifiedbacteriathatwillreducetheamountof

    sludgeproduced.Desludgingthetankwillberequiredonlyoncea

    year.Treatedwastewaterwillbedischargedtotheice.Treatedsludge

    willbeincineratedandashwillberemovedfromAntarctica[44,45].

    JohannGregor

    Mendel

    Czech

    RepublicMechanical Thewastewaterisonlysewagewaterfromthehygienicfacilitiesand

    fromfoodpreparation.Therefore,itiscommonmunicipalwaste

    water.Theprocessofmacerationwasrejectedbecausethestationhas

    aseasonalcharacterandasmallerpersonnelthanthestatedmaterial

    presumes.Theamountofliquidwasteswouldbesignificantlylower.

    Theliquidwasteswouldbedischargeddirectlyintothesea[32].

    JuanCarlosI Spain Biological+

    Physicochemical

    TheworkingprincipleofthesewagesystemusedontheSpanish

    AntarcticstationJuanCarlosIisthebiologicaldigestionoftheorganicmatterrealizedbythebacteriaalreadyfoundintheresidual

    water.

    Attheendoftheseason1999/2000,thesystemconsisted,forall

    wastewaters,oftwoconsecutiveseptictanksandanactivecarbon

    filter.Thefirsttankisseparatedinthreedigestionandsedimentation

    chambers.Leavingthefirsttank,theeffluentsaredirectedtothe

    secondonethatconsistsoftwodigestionchambersandafterthattoa

    thirdone,equippedwithabiologicalfilter.Finally,beforebeing

    dischargedtothesea,thewaterpassesanactivecarbonfilterthat

    reducessignificantlytheemissionoforganicmatterintheeffluent.

    Duringthelonghistoryofthestationthesewagesystemhadtostand

    someanomalies.Theincreasingnumberofthestationscrew

    membersduringthelastfewseasonsproducedaraisingamountof

    wastewaters,whichresultedinaninsufficientbacteriadigestionoftheorganicmatter.Becausethestationisonlyoccupiedduringthe

    australsummerthebiologicalprocessesaredecreasedatthe

    beginningoftheseasonbythemonthsofinactivity,makingit

    difficulttostartthebiologicaldigestion.

    Aseriesofimprovementsinthesewagesystemhavebeenintroduced

    destinednotonlytoimproveitsperformancebutalsotoreducethe

    timenecessaryforthebacterialactivation.

    Theobtainedmeasurementsshowtheevolutionofthesystemforthe

    lastsixcampaignswhichclearlydemonstratesthereductionofthe

    totalsuspendedsolids(90%),theCOD(80%)andthenutrients(e.g.

    nitrates93%)inthewastewaterdischargedtothesea[29,41,46].

    Jubany Argentina Biological+

    UVsterilisation

    Greyandblackwatersaretreatedinbiologicaltreatmentplant;

    effluentistreatedwithultravioletsterilizationbeforereleaseintothe

    sea.SludgeisdehydratedandthenremovedfromAntarctica.ThesewagetreatmentplantisanAQUAMARSystem(Germany)[28,

    29].

    23

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    24/34

    KingSejong Korea Biological+

    Physicochemical

    ThestationisequippedwithUNEXSimultan40sewagetreatment

    system(RaumaRepola).Volumeofwastewaterisnomorethan

    10m3perday.Typeoftreatment:aeration,settlingdown,chemical

    &biological(38%FeCl3,10%NaOCl).Treatedwaterisdischarged

    intopebblezoneintidalarea.Thesludgeisshippedoutof

    Antarctica.Seawaterandbenthicenvironmentareannually

    monitoredaroundthesewagetrap[47].

    Kohnen Germany Notreatment

    LawRacovita Australia

    Romania

    Notreatment

    Leningradskaya Russia Notreatment

    MacchuPicchu Peru Notreatment Allwastesareremovedoffsitetheareaof theAntarcticTreaty[48]

    Maitri

    India Mechanical+

    Biological

    Thestationisequippedwithincineratortoiletfacilities.Twomodules(fourtoilets)arelocatedinthesummerstationarea,andfivesingle

    modulesarelocatedinthemainstationbuilding.Theincineration

    temperatureis600C.Solidhumanwasteisincineratedonceaday.

    TheashesarecollectedindrumsandtransportedoutoftheAntarctic

    Treatyareaonceayear.

    Thegreywaterisfedintoarotationalbiologicalcontractor.The

    treatmentinvolvesthreestages:aprimarysettlingbasin,followedby

    abiodigesterandafinalsettlementbasin.Thesettledwastematerial

    isincinerated.Thetreatedeffluentistemporarilystoredinapond

    closetothestationbuilding.Thetreatedeffluentissporadically

    pumpedfromthesettlingpondintoatankandsubsequently

    dischargedintoanicefreeareaapproximately1kmfromthestation.

    Thereisnoregularanalysisofthetreatedeffluentduringwinter

    (althoughitisanalysedduringthesummerseasonbythe

    environmentalteam)andnomonitoringofpotentialimpactsis

    conductedatthedischargepoint[49].

    Maldonado Ecuador Noinformation.

    Marambio Argentina Mechanical+

    Biological+

    Chlorine

    sterilisation

    Sewageanddomesticliquidwasteistreatedinamultistagesewage

    treatmentplant.Thisissitedadjacenttothemaincomplex.The

    plantmaceratesandsettlesoutsolids,thenaeratesandchlorinates

    theeffluentbeforeitisdischargedjustovertheedgeoftheplateau

    ontoicefreeground.Solidresidueisdrummedandremovedfromthe

    TreatyArea[41].

    MarioZucchelli Italy Biological+

    Physicochemical

    Asewagetreatmentplantofthebiologicaltypewasinstalledat

    MarioZucchelli(TerraNova)stationduringtheconstructionofthebaseinthe1986/87season.Theplantwasdesignedfor4050people.

    Thebodyofwaterwherethetreatedeffluentisdischargedhasbeen

    underconstantmonitoringfromthethirdcampaignonwards:the

    firstmonitoringwasthatfortheBODbiochemicaloxygendemand,

    laterbroadenedtoincludeBOD,COD,nitrites,surfactants,oils,etc.

    Themonitoringwasusedtoverifytheeffectivenessofthetreatment

    andtoadjusttheprocess.Attheendoftheeightiesitwasclearthat

    theplantwasbecominginsufficientfortheincreasingloadduetothe

    enlargementoftheprogrammeandthelargernumberofpeople.A

    newplantwasaddedinparallelwiththeold.Thenewplantisofa

    physicochemicaltypeandafterafewyearsitwasconnectedinseries

    withtheoldone.In1995/98acompletelynewplantwasinstalled.

    TheexperiencewithsewagetreatmentatTerraNovaStationhas

    beenpositive.Pollutioninthereceivingbodyofwaterislow,iskeptunderconstantsurveillanceandtheplantisadjustedtotheneedsin

    asimpleway.Thesludgeresultingfromthetreatmentisretrograded

    toItaly[5052].

    24

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    25/34

    Mawson Australia Biological RotatingBiologicalContactor(RBC)sewagetreatmentplanthasbeeninstalledandcommissionedatMawsonstation[35].

    McMurdo USA Mechanical+

    Biological+

    Disinfection

    Priorto2002,wastewatergeneratedfromMcMurdowasonly

    treatedwithmacerationpriortodirectdischargeintheRossSea.The

    UnitedStatesAntarcticProgrambeganprocessingwastewater

    producedfromMcMurdoStationin2003.TheWastewater

    TreatmentPlantusesconventionalmethodsofsolidsremoval

    (clarification)andmicrobialdigestion.Thesystemiscapableoftreating495,900litresperdayofdomesticwastewater.Thefour

    majortreatmentcomponentsareananoxiczone,anaerobiczone,

    clarification,anddisinfection.Thesefourcomponentscomprisea

    singletreatmenttrainattheplant.

    Wastewaterissuppliedtotheplantfromthestationbygravityfeed

    andispumpedfromlowerlayingareasbytwoliftstations.Thereare

    twobyproductsoftreatment.Clearanddisinfectedeffluentreleased

    toMcMurdoSoundandsettled,dewateredsludgeispackagedand

    removedfromthecontinent [27,5357].

    Mirny Russia Notreatment Untreatedwastewaterisdischargedintothesea.

    Molodezhnaya

    Russia Physicochemical/Notreatment

    ThewastewatertreatmentplantEOS15wasmountedandstartedupatMolodezhnayabasein1988.EOS15conductedthe

    electrochemicaltreatmentofsewagewaterbymeansofelectrolysisof

    liquidmassesrunningtroughthespecialelectrodesaftermechanical

    treatment.Asaresultofcommissioningtheoptimaloperational

    regimeEOS15waschosentoprovideforthemaintenanceoftreated

    sewageparametersinaccordancewiththeInternationalConvention

    forthePreventionofMarinePollutionfromShipsMARPOL

    1973/78.Thecontentofsuspendedmatterremainedatalevelof

    77mg/1incomparisonwiththenormalvalueequalto100mg/1,coli

    indexdidnotexceed900bodiesofcolibacillusin1mlagainstthe

    normalvalue1000bodies/ml.Sludgeformingaftersewagetreatment

    wasincinerated[30].

    Neumayer

    Germany

    Biological+UVsterilisation

    Duringtheseason1995/96asewagetreatmentplantwasinstalledat

    NeumayerStation.Thisplantwasdesignedinawaythatitonly

    requireselectricenergyandheatenergyofthestationtobeableto

    clarifythewastewater.Theentiresystemofwastewaterandsludge

    treatmentisinstalledina20ftcontainer.Thewasteheatofthediesel

    generatorsisusedtokeepthecontaineratatemperatureof+15C

    andtodrythesludge.Thesewageiscollectedinalevelregulated

    tank.Thistankissituatedunderthecontainerforwatergeneration.

    Itisusedformixingthedifferentwastewatersandtoevenoutpeak

    timesofwastewaterinflow.Fromthattankwateristurnedoutbya

    screwspindlepumpthroughapipetothesewagetreatmentplant

    overadistanceofabout60m.Therethesewageispurifiedina

    biologicalprocess.ThentheclarifiedwaterissterilizedbyUVrays

    andpumpedthroughapipetothedumpintheshelficewhichis

    locatedapproximately100mawayfromthestation.Thedewateringsystemforthesludgeconsistsofthereactiontank

    andafiltermoduleequippedwithtwoseparateinlets.Arising

    surplussludgewithadrysubstanceofabout2%isdrawnoff

    periodicallyandpumpedintothereactiontankwhereitissterilised

    byaddinghydratedlime.Afteradmixingofaflocculationpowderthe

    surplussludgeisthickenedandthendewateredinsemipermeable

    drainbags.Thedrainingwateriscollectedandledtotheinletofthe

    sewagetreatmentplant.Duringthedewateringofthesludgevitiated

    airisarising.Itisleddirectlyoutofthecontainerbyafan.Afterthe

    drainbagshavedewateredforabout24hourstheyhaveadry

    substanceofapproximately18%.Theyaredriedinadryingchamber

    thatisheatedto+35Cbyusingthewasteheatofthediesel

    generators.Resultingfromthisstepoftreatmentthesludgehasadry

    substanceof40%.Nowitisinodorousandhasstoragestability.Thesludgecontainingthesolidresiduesofthepurificationprocessis

    removedfromAntarctica[5860].

    25

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    26/34

    Novolazarevskaya Russia Mechanical+

    Physicochemical+

    Ozonation

    Greywateristreatedinsandfilters,carbonfilters,sterilisedbyozone

    anddischargedintoicefreeareanearthestation.

    OHiggins Chile Biological Thebaseemploysastateoftheartsewagetreatmentsystemandtreatsallsewageandgreywaterwiththeeffluentbeingdischarged

    intothemarineenvironment[42].

    Ohridski

    BulgariaNotreatment

    Sewageanddomesticliquidwastesaredischargedthroughaflexible

    pipedirectlyintoasnowcoveredgullysome20mtothesideofthe

    mainbuilding.Fromhere,itflowsbeneaththesnowtothebeachand

    percolatesthroughtherocksintotheforeshore[29,41].

    Orcadas Argentina Biological Greywaterisrecycledforuseintoilettes.Blackwateristreatedwithbiologicaltreatmentplant.Effluentandsludgearereleasedintosea

    [31].

    Palmer USA Mechanical Macerationistheonlytreatmentstep[31].

    PrincessElisabeth Belgium Biological+

    Disinfection

    Itisplannedthatallgreywateristobetreatedwiththebio

    membranereactor,ozonation,peroxideandchlorinetreatment[61].

    Progress Russia Physicochemical ElectricchemicaltreatmentplantwasinuseatProgress.Itisplannedtoinstallanewphysicochemicalplantforthestation.

    Rothera UK Biological+

    UVsterilisation

    Untreatedsewagehasbeenreleasedintotheseasincethebaseopened

    in1976.InFebruary2003asubmergedaeratedbiologicalfilter

    sewagetreatmentplant(HodgeSeparatorsLtd)wascommissionedat

    Rothera.Theproducedsludgeispressed,dewateredandbaggedfor

    shipmenttoUKfordisposal.Theeffluentwateristreatedunder

    ultravioletlightanddischargedintothebay[41,42,44,62,63].

    Russkaya Russia Notreatment

    SanMartin Argentina Notreatment Greywaterpassesviaaseparatedischargepipedirectlytoasmallcovebehindthestation[41].

    SANAEIV SouthAfrica

    Biological+

    Physicochemical

    UVsterilisation

    Abiologicalsewagetreatmentplant(RotatingBiologicalContactor)

    hasbeeninstalledatSANAEIV.Sludgeisseparatedoutandis

    transportedoutofAntarctica.Effluentsandgreywateraretreated

    bybiofiltersandfilteredthroughacarbonfilter,asandfilteranda

    UVfilterbeforebeingdischargedovertheVesleskarvetcliff.All

    detergentsusedatthestationarebiodegradabletoavoiddamaging

    thebiofilter.EffluentsmustmeetSouthAfricanstandardsfor

    dischargeintofreshwater,andregularanalysisofeffluentsis

    conductedtoensurecompliance.Noproblemshadbeenexperienced

    inachievingthesestandards,althoughdiscolorationoftheeffluent

    wassometimesaprobleminthesummerseasonduetothelimited

    loadcapacityofthesystem[49,64].

    ScottBase NewZealand

    Biological AwastewatertreatmentplantforScottBasehasbeeninstalledandbecameoperationalinOctober2002.Theplantusescontactaeration

    process.Thewastewateristreatedinachambercontainingplastic

    meshonwhichgrowsabacterialbiofilm.Aerationisprovidedbyair

    blownintothebottomofthechamberthroughfineholes.Wastesolids

    aresettledoutassludgeanddewateredfordisposal.Disinfectionis

    providedbyultravioletlight[23,24,65,66].

    Signy UK Notreatment Sewageandgreywateraredischargedunmaceratedintothesea[44].

    Soyuz Russia Notreatment

    26

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    27/34

    Syowa Japan Biological Therearepresently49buildingsatSyowaStation.Passagewaysconnectthecentralbuilding,generationhouseandtwosleeping

    lodgestoeachother.Otherstationbuildingsarelocatedapartto

    minimizeproblemsofsnowdriftandvulnerabilityintheeventoffire.

    Sewageandgreywaterfrommainbuildingsaretreatedbythe

    biologicaltreatmentplant(contactaerationprocess)beforereleased

    intotheocean.Otherbuildingsarenotconnectedtothesewage

    systemyet.Thetreatmenthasstartedtooperateforapartoffacilities

    sinceApril1999.Therefore,threekindsofsimpletoiletsareinstalledinsomebuildingswherepeoplework.

    Twoofthetoiletsarecombustiontype,oneusinganelectricheater

    andtheotherakeroseneburner.Thethird,andnewest,isa

    biologicalprocessingtoilet.Thetoiletscollecthumanwastesina

    smalltank(98liter)containingwoodenchips.Thetankscontents

    arestirredbyabladeatregularintervals.Thetemperatureofthe

    wasteandchipsinthetankiscontrolledbetween3045Cbyan

    electricheater.Theintestinalbacteriaarenourishedbythewasteand

    multiplyinthetank.Finallythebacteriafacilitatethedecomposition

    ofthewasteintowaterandcarbondioxide.Thegasbyeproductsare

    dischargedfromthetanktotheoutsideatmosphere.Thewooden

    chipsneedtobereplacedeveryhalfayearbasedonamaximum

    frequencyofusefor150timesperweek.Thetoiletsystemhasbeen

    provedtobeeffectivebecauseitiscompact,doesnotuseanopenfire

    andisenvironmentallysound,asitdoesnotrequiretheintroduction

    ofspecialbacteriatoAntarctica[67,68].

    Tor Norway Notreatment

    Troll Norway Mechanical AcomposttoilethasbeeninstalledatTroll.Itwastastedduringseveralseasons.Atpresentelectricalincineratortoiletsareinuse.

    Thereisnoblackwateratthestation.

    Priorto2005,greywatergeneratedatthestationranthroughathree

    chambermechanicalfilteringsystem.Afterthegreywaterwas

    treatedinthefilteringsystemandwentthroughtheultravioletfilter

    beforedischargingintothesoil.Treatedwastewaterwasexpectedto

    reachneardrinkingwaterqualityandcouldinprinciplebereusedforcleaningpurposesandsuch.

    Anewandimprovedwastewatertreatmentsystemdeliveredby

    HacoASwasinstalledinFebruary2005.Thenewsystemensures

    simplehandlingandmonitoringofdischargeandhassufficient

    capacitytohandlethenormalpersonnelloadduringsummerseason.

    Thetreatedwatercaninprinciplebereusedfornonconsumption

    purposes,andinthismanneritispossibletoreducewater

    production,thussavingbothenergyandlaborassociatedwiththe

    meltingprocedures.Wastewaterisdischargedthroughaheated

    pipingsysteminanicefreeareabehindthestation[25,69].

    Vernadsky Ukraine Notreatment SewageandgreywateratFaradaystationweredischargedunmacerateddirectlyintothesea[44].WastewateratVernadskyis

    dischargedbyconstantlycirculatingseawater[29,31].

    Vicente Ecuador Noinformation

    Vostok Russia Notreatment Untreatedwaterisdischargedtoadeepicepit.

    Wasa Sweden Notreatment

    Physicochemical

    Awastewatertreatmentsystemwasinstalledin1991/92but

    decommissionedin1996,asitdidnotfunctionproperly.In2005the

    SwedishPolarResearchSecretariatinvestigateddifferenttechniques

    forcleaninggreywaterforthestation.Threesystemsusingchemical

    precipitateormembranewereunderevaluationforWasa.

    Atpresenttimethegreywaterisnottreatedbyanymeansbut

    dischargedthroughapipelinetoanicecoverareainthevicinityof

    thestationfromwhereitultimatelydrainstothesea[31,64,70].

    27

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    28/34

    Zhongshan China Biological ChineseAntarcticResearchExpeditionhasdecidedtoupgradethewastewatertreatmentplantatZhongShanStation.Thenewsewage

    treatmentpantwilldividewasteintoblackwater(faces,urine,

    kitchenwastewater)whichwillbetreatedsuchthattherewillbeno

    disposaltotheoceanandgreywaterwhichwillbesterilizedand

    dischargedtotheoceanbyasubmarinepipe.

    Theselectedtreatmenttechnologyinvolvesnewmembrane

    separationandintermediatewatercirculatingtechnology.This

    technologyhasbeenverysuccessfulinChinaandhasbecomeapopularmethodoftreatment.Thetechnologyhasmanyadvantages

    includingenergysavingsandoperatingatroomtemperature.The

    newtreatmentsystemwillsignificantlyimproveoceanwaterquality

    inthenearshoreandoceanwatersinthevicinityofthestation.

    TheMembranebioreactorisarecentbutincreasinglyutilized

    technologyfortreatingmunicipalandhighorganicindustrial

    wastewaterbycombiningthehighlyefficientseparationtechnology

    ofhollowfibermembraneswithinacompactactivatedsludgeprocess.

    FlatplatPVDFbasedmembraneistheoptimumchoiceforsystem

    designersandendusersalikeforcontinuousimmersioninactivated

    sludge.Theliquidsolidseparationbymembranereplacesthe

    conventionalsettlingprocessandeffectivelyremovessuspendedand

    organicsolidsproducingbacteriatreewater.MBRallowsforthe

    activatedsludgetobemaintainedatmuchhigherlevelsofmixed

    liquorsuspendedsolidsthanconventionalsystemsandbecauseofthe

    membraneinterface,bacteriaareretainedlongerwithintheactivated

    sludgeenhancingthedecompositionoftheorganicmatter.The

    Membranebioreactorisamodern,highlyeffectivewatertreatment

    systemthatcandealwiththeeverincreasingdemandsofmunicipal

    wastewaterqualityandincreasingtreatmentvolumes.The

    Membranebioreactoriseasytooperate,automatic,modularbased

    treatmentprocess.

    Itwasproposedtoshipthetreatmentplanttothestationin

    December2005andcommissiontheplantin2006[21].

    Current practices range from use of sewage treatment plants at larger stations and

    bases, storage in containers for disposal at home countries or at coastal stations, and

    incineration.Containment,storage,andretrogradeofgreyandblackwateristhemethod

    usedbythemajorityofprogramsforfieldandsmallstations[71].

    The general situation canbe summarized as follows: wastewater from 32% of all

    stations is discharged untreated, 63% of all stations are provided with some kind of

    treatment(figure8).

    Figure9 shows different treatment types ratio. Some countries active in Antarctica

    have still made no move to take wastewater treatmentbeyond the minimum standards:

    sewagesattwopermanentandoneseasonalstationsaretreatedonlybymaceration.The

    Italians and the French opted to use complex physicochemical plants for Concordia

    station. The Chinese made a similar choice for their seasonal DomeA station. In the

    majorityofcases(26stations)biologicalwastewatertreatmentplantsareused.

    28

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    29/34

    Figure8Currenttreatmentsituationforall,permanentandseasonalstations

    29

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    30/34

    Figure9Differenttreatmenttypesratio

    It is rather interesting that percentage of stations discharging untreated sewages

    changed since 1990 [31, 58] (figure10). But these changes are not characterizedby any

    tendency.It probably maybe explainedby changes intotal operated stations number or

    stationsquantityinthestatistics.

    Figure10Percentageofstationsdischarginguntreatedsewages

    (1990,2005and2009)

    30

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    31/34

    Conclusion

    Analysisofsourcesrevealedalackofinformationaboutusedtechnologiesinofficial

    reports submitted by the Parties within the scope of Antarctic Treaty Information

    Exchange and Annual reports pursuant to Article 17 of the Protocol on Environmental

    Protection to theAntarcticTreaty.As a rule thesereports merelycontain informationon

    absenceorpresenceoftreatmentfacilities.Someinformationcanbefoundinreportsofthe

    AntarcticinspectionsinaccordancewithArticleVIIoftheAntarcticTreatyandArticle14

    oftheProtocolonEnvironmentalProtectiontotheAntarcticTreaty.Butitshouldbenoted

    thatthisinformationisoftenratherdiscrepant.InitialandComprehensiveEnvironmental

    Evaluations, SCALOP proceedings or AEON Workshop reports provide more detailedinformationaboutwastewatertreatment.

    Inspiteofallpreviousattemptstogeneralizeexperienceofwastewatertreatmentin

    Antarcticaavailabledata,unfortunately,isspotty.

    Broad spectrum of used technologies (from maceration to membrane filtration)

    indicates that there is no any unified approach to treatment type selection. In this

    connection development of water quality standards in addition to requirements of the

    Protocol on Environmental Protection to the Antarctic Treaty is exceptionally important.

    Compiling of an accessible handbook on wastewater treatment in Antarctica would

    probablybeofpracticalimportanceandhelpfulindecisionmaking.

    31

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    32/34

    References

    1 .., ..,2002. .

    2 ..,1994. .

    3 .., ..,2002. .4 ..,1973. .

    5 ..,1977. : .

    6 ..,1979. .

    7 .., ..,1977. .

    8 ..,1983. .

    9 ..,2003. .

    8.

    10 ..,1987. .11 .., ..,2000.. .

    : 1.

    12 .., 2000. .

    : 2.

    13 .., .., 2000. . :

    2.

    14 ..,1990. ,

    .

    15 .,2003. . 25(5).

    16 ..,1978. .

    17 .,1980. .

    18Rezaee,A.,A.Khavanin,2008.Treatmentofworkcampwastewaterusingasequencingbatchreactorfollowedby

    asandfilter.AmericanJournalofEnvironmentalSciences4.4:342(5).

    19 Rodgers, M., 2006. Smallscale domestic wastewater treatment using an alternatingpumped sequencing batch

    biofilmreactorsystem.BioprocessBiosystEng28:323330.

    20ProtocolonEnvironmentalProtectiontotheAntarcticTreaty.

    21Cong Kai, WuJun, 2004. New ChineseAntarctic station wastewater treatmentplant. Proceedings of theXISCALOPSymposium.

    22Proposed Construction and Operation of the new Chinese DomeA Station, DomeA,Antarctica, 2008. Draft

    ComprehensiveEnvironmentalEvaluation.

    23InitialEnvironmentalEvaluation(IEE)forScottBaseWastewatertreatment,2001.

    24ANewWasteWaterTreatmentSystemforNewZealandsScottBaseRationale,SelectionProcessandOutcome.

    2002.XXVATCMInformationpaperIP32submittedbyNewZealand.

    25FinalComprehensiveEnvironmentalEvaluation(CEE)fortheupgradingoftheNorwegiansummerstationTrollin

    DronningMaudLand,Antarctica,topermanentstation.2004.

    26Draft Comprehensive Environmental Evaluation of New Indian Research Base at Larsemann Hills,Antarctica.2006.

    32

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    33/34

    27Law, K. P., Kulchawik, R.J., 2006. Overview of the Design, Construction, and Operation of theMcMurdo

    WastewaterTreatmentFacilityinAntarctica.

    28Connor,M.A.,2008.WastewatertreatmentinAntarctica.PolarRecord44(229):165171.

    29ReportoftheUnitedStatesAntarcticInspection.2001.

    30Klopov, V. P., 1990. The

    experience

    of

    waste

    removal

    and

    treatment

    at

    the

    SovietAntarctic

    Expedition.

    ProceedingsoftheFourthSymposiumonAntarcticLogisticsandOperations.

    31Thomsen, A., 2005. Waste water treatment inAntarctica afeasibility studyforgrey water at Wasa station.

    IndustrialEcology,DepartmentofChemicalEngineeringandTechnology.

    32TheCzechAntarcticStationofJohannGregorMendelfromprojecttorealization.2006.

    33AntarcticEnvironmentalMonitoringHandbook.2000.

    34ReportoftheAntarcticTreaty inspectionsundertakenjointlybySweden,FranceandNewZealand inaccordance

    withArticleVIIoftheAntarcticTreatyandArticle14oftheProtocolonEnvironmentalProtectiontotheAntarctic

    Treaty.2007.

    35SayersJ.C.A.,1990.EnvironmentalmanagementofAustraliasAntarcticProgram.ProceedingsoftheFourth

    SymposiumonAntarcticLogisticsandOperations.

    36Permanent information on the BrazilianAntarctic Programme. 2003. XXVIATCM Information paper IP25

    submittedbyBrazil.

    37LasseurC.,GodonP.,2004.Concordiawatertreatmentandrecyclingsystems.ProceedingsoftheXISCALOP

    Symposium.

    38Davisstationmanagementplan.1992.

    39Delille, D., E. Delille., 2000. Distribution of enteric bacteria inAntarctic seawater surrounding the Dumont

    dUrvillepermanentstation(AdelieLand).MarinePollutionBulletin40(10):869872.

    40Report ofJoint Inspection underArticle VII of theAntarctic Treaty by United Kingdom and German Observers.

    1999.

    41Report ofAntarctic Treaty Inspection undertaken by United Kingdom,Australia and Peru in accordance with

    ArticleVIIoftheAntarcticTreatyandArticle14oftheEnvironmentalProtocol.2005.

    42Report of Inspections underArticle VII of theAntarctic Treaty andArticle 14 of the Protocol on Environmental

    Protection.2006.

    43Annual Report of China Pursuant toArticle 17 of the Protocol on Environmental Protection to theAntarctic

    Treaty.2008.XXXIATCMInformationpaperIP68submittedbyChina.

    44Shears,J.R.,1993.BritishAntarcticSurveyWasteManagementHandbook.45Proposed Construction and Operation of Halley VI Research Station, and Demolition and Removal of Halley V

    ResearchStation,BruntIceShelf,Antarctica.2007.FinalComprehensiveEnvironmentalEvaluation.

    46Alcoverro,D.,Sorribas,J.,2005.EvolutionofthesewagesystemoftheSpanishAntarcticstationJuanCarlosI

    since the season 20002001 to 20052006. Proceedings of the XII Symposium on Antarctic Logistics and

    Operations.

    47AntarcticTreatyExchangeofInformationRepublicofKorea.PermanentInformation.2003.

    48AnnualReportPursuanttoArticle17oftheProtocolonEnvironmentalProtectiontotheAntarcticTreaty.2008.

    XXXIATCMInformationpaperIP96submittedbyPeru.

    49Report of the NorwegianAntarctic inspection underArticle VII of theAntarctic Treaty andArticle 14 of theprotocolonEnvironmentalprotectiontotheAntarcticTreaty.2001.

    33

  • 8/12/2019 Antartica Systems Wstewater Treatment Tarasenko

    34/34

    50Cervellati,R.,1990.CurrentdevelopmentsinenvironmentalprotectionatTerraNovaBaystation.Proceedings

    oftheFourthSymposiumonAntarcticLogisticsandOperations.

    51LoriA.,1992.StudyofanewwastewatertreatmentplantfortheItalianAntarcticStation.Proceedingsofthe

    FifthSymposiumonAntarcticLogisticsandOperations.

    52Waste Management at the Italian Terra Nova Bay Station. 1998. XXIIATCM Information paper IP35

    submittedbyItaly.53Crockett,A.B.,1997.Waterandwastewaterqualitymonitoring,McMurdoStation,Antarctica.Environmental

    MonitoringandAssessment47:3957.

    54MackieA.,2003.Gettingwastewatertreatmentdowncold.PollutionEngineering35(9):3839.

    55McMurdoStationWastewaterTreatmentPlant.2003.WaterEnvironment&Technology15(10):59.

    56Kulchawik,R.J.,Bouchard,A.B.,Morris,C.E.,2001.Takingtreatmenttotheextremes.CivilEngineering71

    (10):5257

    57Wastewater treatment inAntarctica: Challenges and Process Improvements. 2006. XXIXATCM Information

    paperIP60submittedbyUnitedStates.

    58Stephan,B.,1990.RecyclingandoptimizedutilizationofmaterialsatAntarcticresearchstations.Proceedingsof

    theFourthSymposiumonAntarcticLogisticsandOperations.

    59S. el Naggar, 1994. Waste management concept at the German winter station Neumayer. Proceedings of the

    SixthSymposiumonAntarcticLogisticsandOperations.

    60Final Comprehensive Environmental Evaluation of the ProposedActivities: Construction of the Neumayer III

    Station,OperationoftheNeumayerIIIStation,DismantlingoftheExistingNeumayerIIStation.2005.

    61Construction and operation of the new Belgian Research Station, Dronning Maud Land, Antarctica. Draft

    ComprehensiveEnvironmentalEvaluation.2006.

    62Hughes, K. A., Blenkharn, N., 2003.A simple method to reduce discharge of sewage microorganismsfrom an

    Antarcticresearchstation.MarinePollutionBulletin46:353357.

    63Hughes,K.A.,2004.ReducingsewagepollutionintheAntarcticmarineenvironmentusingasewagetreatment

    plant.MarinePollutionBulletin49:850853.

    64ReportoftheAntarcticInspectionTeamofFinland.2004.

    65Geddes, D., 1990. New ZealandAntarctic Programme WasteManagement Procedures. Proceedings of the

    FourthSymposiumonAntarcticLogisticsandOperations.

    66Brookman, P., 2003. Scott Base wastewater treatment plant. Proceedings of the Tenth Symposium on AntarcticLogistics and Operations (Shanghai, China, 2002).

    67 Waste Management at Syowa Station. 1999. XXIIIATCMInformationpaperIP60submittedbyJapan.

    68Kenji,I.,2003.SimplebiologicaltoiletsusedintheisolatedbuildingsatSyowaStation.ProceedingsoftheTenth

    SymposiumonAntarcticLogisticsandOperations(Shanghai,China,2002).

    69Multiyear Initial Environmental Evaluation for the operational aspects of Norwegian Antarctic Research

    Expedition20002010.2000.

    70Watier, C., 2008. EnvironmentalMonitoring at Swedish Research Stations inAntarctica. Master of Science

    ThesisRoyalInstituteofTechnology,SwedenDepartmentofIndustrialEcology.

    71Best Practice to Avoid Waste Water Disposal onto Icefree Ground at Inland Stations. 2002. XXVATCM

    InformationpaperIP51submittedbyCOMNAP.