anomalous)quantum)cri/cality)linking)an/ferromagne/sm)and ...nqs2011/archive/presenfiles/...1....

26
Anomalous quantum cri/cality linking an/ferromagne/sm and superconduc/vity in organic metals C. Bourbonnais NQS2011, Kyoto, November 2011 A. Sedeki N. DoironLeyraud S. René De Cotret L. Taillefer Coll. P. AubanSenzier D. Jerome

Upload: others

Post on 30-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Anomalous  quantum  cri/cality  linking  an/ferromagne/sm  and  superconduc/vity  in  organic  metals

    C.  Bourbonnais  NQS2011,  Kyoto,    November  2011

    A.  Sedeki  N.  Doiron-‐LeyraudS.  René  De  Cotret  L.  Taillefer

    Coll.  

    P.    Auban-‐SenzierD.  Jerome

  • Outline

     1.  Organic  conductors:  what  are  they  ?

     2.  (TMTSF)2PF6  :  paradigm  for  AF  -‐  SC  proximity

     3.  Normal  state  :  anomalous  quantum  cri/cality

     4.  RG  to    Quasi-‐1D  electron  gas  :

     AF-‐SC  interference    and  ext.  quantum    cri/cality

     5.  Conclusion  

  • PeryleneDMTCNQ

    Donors Acceptorse- e-

    BEDT-TTF

    1. Introducing the physics of quasi-one-dimensional organic conductors 9

    FIGURE 7. Variation of the Peierls critical temperature as a function of pressure in TTF-TCNQ. After refs. [9, 4]

    FIGURE 8. TMTSF donor molecule with the profile of atomic orbitals that enter in the HOMO. The cousin sulfur basedmolecule TMTTF has a similar form.

    TMTSF  or  TMTTF                      

    Etc.

  • 1. Introducing the physics of quasi-one-dimensional organic conductors 11

    0.05 0.10 0.15 0.20 0.25 0.30

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4TPTP

    0

    ! TP0t⊥2

    CDW

    Metal

    FIGURE 10. Variation of the normalized Peierls mean-field critical temperature as the nesting deviations parameter t⊥2.A similar variation can be found in the RPA treatment of the Metal-SDW transition for a wrapped Fermi surface withnesting deviations (see text).

    FIGURE 11. Side view of the crystal structure of the Bechgaard (and Fabre) salts (TMTSF)2X [(TMTTF)2X] series.

    The solution leads to the Peierls temperature as a function of nesting deviations is shown in Fig. 10. Comparing

    with Fig.9-b, nesting frustration can mimic the pressure dependence and can then provide a reasonable mechanism

    for the suppression of the Peierls instability.

    4 The Bechgaard and Fabre salts series

    4.1 The Bechgaard salts

    While TMTSF-DMTCNQ did not show superconductivity up to 13 kbar, its stable metallic state gave the

    necessary impetus for chemistry to further explore the synthesis of materials based on the promising TMTSF

    molecule. So at nearly the end of 1979, Bechgaard et al.[15], introduced a new series of one-chain cation radialsalts, the (TMTSF)2X, where the choice of the small inorganic (radical) ion X= PF

    −6 , AsF

    −6 , NO

    −3 , . . ., leads to

    a series of isostructural compounds, soon christened as the Bechgaard salts series (Fig. 11). The zig-zag stackingof the TMTSF molecules creates cavities for the anions which together with the triclinic structure favors a slight

    dimerization of the organic stacks. At ambient pressure the metallic character is well marked at room temperature

    and for compounds like X= PF−6 and AsF

    −6 with centro-symmetrical anions, it carries on for temperature as low

    as 12K or so where a sharp metal-insulator transition occurs – the case of (TMTSF)2PF6 is shown in Fig. 12.

    Initially believed as a Peierls phase transition, X-ray experiments fail to detect any lattice superstructure [13].

    The insulating state was quickly found to be the result of a magnetic superstructure, a spin-density-wave (SDW)

    state. The SDW state will be discussed in more details below. In parallel pressure studies were undertaken on the

    (TMTSF)2PF6 compound by Jerome et al., at Orsay [17]; the insulating state was found to be rapidly suppressedand ultimately giving rise to superconductivity at Tc = 0.9K under 12 kbar of pressure (Fig. 13). The zerofield phase diagram of the first organic superconductor (TMTSF)2PF6 is shown in Fig. 14. A comparable phase

    diagram was found for (TMTSF)2AsF6 with a similar centro-symmetrical anion [18]. Substituting PF6 with the

    non centrosymmetrical anion ClO4 yielded first ambient pressure organic superconductor (TMTSF)2ClO4 below

    (TMTSF)2X

    Bechgaard  salts  Series:  one-‐chain  ca/on-‐radical  salts

    X  =  PF6  ,    AsF6  ,  ClO4  ,  .....  (radicals,  δ=0.5e)

    Quasi-‐1D  Fermi  surface

    Γ

    1  hole/2  mol  +  weak  dimeriza/on  ~  ‘1/2-‐filled’  

    band

  • ~ 12 KK. Bechgaard et al., Solid State Comm. 33, 1119 (1980)

    Resis/vity  vs  T

    P= 1bar

    P=12 kbar

    D.  Jerome  et  al.,  J.  Phys.  Lee.  41,  L95    (1980).  

    AF  -‐  SC  proximity

    D.  Jerome,  H.  J.  Schulz,  Adv.  Phys.    31,  (1982)

  • N.  Doiron-‐Leyraud,  P.    Auban-‐Senzier  et  al.,  Phys.  Rev.  B  80,  214531  (2009)

  • Normal  phase:  NMR              T−11

    S.  Brown  et  al.,  2008    

    F.  Creuzet  et  al.,  J.  Phys.  Lee.  45,  (1984);Also,  

    Synthe/c  Metals  19,  277  (1987);

    Wu et al., PRL 94, 97004 (2005)

    T−11 ∼T

    T + Θ

    Curie-‐Weiss  enhancement

    : probing spin fluctuations

    T−11 ∝ T (FL)

  • (T1T )−1 ∼ ξ2 (d = 2) ξ ∼ (T + Θ)−1/2

    Anomalous      T−11 enhancement        

    No  Fermi  liquid  recovery     T−11 ∝ T  (Korringa  law)

  • Y.  Kimura  et  al.,  PRB  84,045123  (2011).

    (TMTSF)2PF613C  NMRT−11 CW    enhancement  vs   Tc

       (T1T )−1 = C0 +C

    T + Θ

    SDW  fluct.  correlated  to  pairing  (Tc  )

    C vs Tc :

  • N.  Doiron-‐Leyraud,  P.    Auban-‐Senzier  et  al.,  Phys.  Rev.  B  80,  214531  (2009);  EPJB,    2010  78,  23  (2010);  P.Auban-‐Senzier  et  al.,  J.  Phys:  Cond.  Mat.    23,  

    345702  (2011).

    Anomalous  scaeering:  linear  resis/vity  

    ʹ′

    AT + BT2 ~T 2

    ρ(T ) ≈ AT + BT 2

    ʹ′ Fermi  Liquid  T2    at  Pc  ʹ′

  • Anomalous  scaeering:  linear  resis/vity  

    -‐  Link  between  scaeering  and  pairing  

    ρ(T ) = AT + BT 2

    N.  Doiron-‐Leyraud,  P.    Auban-‐Senzier  et  al.,  Phys.  Rev.  B  80,  214531  (2009)

  • FLSDW

    PPc

    Quantum  Cri/cality  and  the  phase  diagram    

    FLSDW

    Pc PSCd

    Quantum    order  parameter    (SDW)  fluct.    

    NFL  →    FL  at  P  > Pc  at  T  ≠0

    P’c

    NFL

    NFL

    NFL  →    FL  at  P  > P’cRole  of  SC  ?  Excita/ons  ?

     Shio  in  the  QCP  paradigm  

    (e-‐h  +  e-‐e)  

    T T

    Landau-‐Ginzburg-‐Wilson  paradigm    

    T−11 , ρ

    T−11 ∼ T ρ ∼ T 2

    Hertz,  Millis  (1976,1993)Moriya,  Ueda  (1990,2002),     Abanov  et  al.,  (2003)

    ρ ∼ aT + bT 2

    (T1T )−1 ∼ (T + Θ)−1

    (e-‐h)    

    ρ ∼ T 2

  • SDW  modula/on  wave  vector  q0  (NMR)  :  the  best  calculated  nes/ng  vector

    L.  Ducasse  et  al.,  J.  Phys.  C.  Solid  State  Phys.    18,    L947  (1985).

    Mechanism  for  SDW  order:  Nes/ng  of  the  Fermi  surface                                                                        +    repulsive  interac/ons  

    Mechanism  of  the  transi/ons  -‐  SDW  state    

    T.    Takahashi  et  al.,    J.Phys.  Soc.  Jpn  55,  1364  (1986).  J.  M.  Delrieu  et  al.,  J.  Physique  47,  839  (1986).

    13C  NMR  :  M.  Misawa  et  al.,  (2010)

    q0 ≈ (0.5 a*, 0.24 b*)

     From  1H  NMR  lineshape

  • Quasi-‐1D  electron  gas  model    :  SDW  -‐  SC  phases  

    quasi-‐1D  Fermi  surface  

    V.J.    Emery  et  al.,  Phys.  Rev.  Lee.  (1982))

    g1 ↔ χσ

    g3 ↔ ∆D

    g2 ↔ TSDW

    (≈ 0.2.....0.4)

    (≈ 0.02...0.04)

    (≈ 0.5....0.7)

    g1, g3

    g2

    q0

  • q0

    e-h pairing q0

    e-e pairing

    χ0P (0, T ) ∼ lnEF

    max{T, 4t�⊥}

    Many-‐body  physics  of  the  q-‐1D  electron  gas  (interference  of  pairings)

    χ0C(0, T ) ∼ lnEFT

    DW-‐Cooper  pairing  mixing  present  at  every  order  

    etc.P C P

    e-h ↔ e-e

    P C

  • 5

    ∂! Σ+ = + + · · ·

    ∂! = +

    + + · · ·

    ∂! = + · · ·

    FIG. 3: Flow equations for the one-particle Matsubara self-energy, Σ+, the g1,2 (open square) and Umklapp g3 (fullsquare) scattering amplitudes for right (continuous line) andleft (dashed line) moving electrons. The crossed and slashedlines refer to the high energy interval and outer energy shellrespectively (permutations between crossed and slashed lineare not shown).

    ∂!z⊥(k̄⊥) = z(k̄⊥)−1 1

    2

    ∫∫d k′⊥2π

    d q⊥2π

    ×{(

    g2(k̃⊥1)g1k̃⊥1) − g22(k̃⊥1) − g

    21(k̃⊥1)

    )I ′1(k̃⊥1, iων)

    −(g22(k̃⊥2) + g

    21(k̃⊥2) − g2(k̃⊥2)g1(k̃⊥2)

    )I ′2(k̃⊥2, iων)

    −(g23(k̃⊥3) + g

    23(k̃⊥4) − g3(k̃⊥3)g3(k̃⊥4)

    )I ′3(k̃⊥3, iων)

    }

    (11)

    where ∂! ≡ ∂/∂$, and k̃⊥i are defined in (A4).The temperature dependent coefficients Ii and I ′i are

    given in Appendix A. The integration of (10-11) is carriedout up to $ → ∞, which leads to the z and z⊥ factors attemperature T . It worth stressing that both two-loop andone-loop diagrams are calculated using free propagators(see Appendix A).

    IV. RESULTS

    A. Quasi-particle weight

    An important quantity entering in the description ofquasi-particles and that can be extracted from the one-particle self-energy is the ‘angle resolved’ quasi-particleweight, z(k⊥) ≡ z

    (kF (k⊥), iων=0

    ), defined on the Fermi

    surface. It is obtained from the solution of Eq. 10 atων=0 = πT . This variation of z(k⊥) on the FS as afunction of k⊥ and T in the SDW and SC parts of thephase diagram (Fig. 2) is shown in Fig. 4.

    0

    0.2

    0.4

    0.6

    −π −π/2 0 π/2 π

    k⊥

    0.8

    t′⊥ = 26.8K

    10

    5

    2

    0.8

    0.9 T [K] = 300

    100

    (b)

    0

    0.2

    0.4

    0.6

    z(k ⊥

    )

    −π −π/2 0 π/2 π

    k⊥

    12

    20

    16

    14

    0.8

    0.9

    z(k ⊥

    )

    t′⊥ = 25.0K

    T [K] = 300

    (a)

    100

    FIG. 4: Variation of the quasi-particle weight on the Fermisurface as a function of k⊥ at different temperatures. (a):SDW (t′⊥ = 25 K < t

    ′∗

    ⊥, TSDW ! 12 K); (b): SC (t′

    ⊥ =26.8 K > t′∗⊥, Tc ! 0.8 K).

    In the SDW region at high temperature, namely wellabove the scale of one-particle transverse coherence,TX ∼ t⊥, where the system is essentially 1D, z(k⊥) dis-plays little minima at k⊥ = ±π/2. According to (4), thet⊥ part of the spectrum vanishes at those points, whichfrom a perturbation viewpoint of t⊥ implies that 1D ef-fects are the strongest there. Such a high temperaturemodulation, thought small, agrees with earlier investiga-tions based on perturbative and mean field treatments oft⊥18–24, which found the same location for the the spec-tral weight minima on the FS. Above TX , Fig. 5 showsthat z(k⊥) ∼ T α decays as a non universal power law intemperature

    (α ∼ O(g2)

    ), in accordance with the sum-

    mation of next-to-leading (two-loop) logarithmic singularself-energy diagrams of Fig. 3 in the limit of 1D electrongas model.30,38,39(dashed line of Fig. 5).

    As T goes below TX , the influence of t⊥ becomesclearly non perturbative. The temperature decay of z,thought still present, becomes less rapid than the powerlaw above TX ; an indication of weakening of the two-loopsingularity and modified Cooper and Peierls channels in-terference by the coherent warping of the FS. connectionwith marginal Fermi liquid.

    Moreover, the position of minima in z(k⊥) graduallyshifts to k⊥ = ±π/4 and k⊥ = ±3π/4 as the details ofthe Fermi surface becomes coherent. This shift resultsfrom the nesting condition of the whole spectrum on theFS,

    E+(kF + q0) = −E−(kF ) + δ(k⊥), (12)

    where δ(k⊥) = 4t′⊥ cos 2k⊥. The minima coincide withthe loci, k⊥ = ±π/4, and ±3π/4 on the FS whereδ(±π/4) and δ(±3π/4) vanish and perfect nesting con-ditions prevail. Conversely, at k⊥ = ±π/2, 0, and ±π,δ(k⊥) = ±4t′⊥, and deviations reach their maximum. Asthe temperature comes close to TSDW, z(k⊥) enters in thecritical SDW regime and falls off toward zero due to sin-

    C P

    P

    P

    g1,2

    g3

    k-‐resolved  flow  of  scaeering  amplitudes

    Instability  lines  vs  nes/ng  altera/ons    (‘pressure’)

    15 20 25 30⊥b(K)

    100

    102T(K)

    SDW

    SCd

    t'

    15 20 25 30⊥b(K)

    100

    102T(K)

    Θ

    SDW

    SCd

    t'

    C-W

    SDW  fluct.  induce  d-‐wave  pairing  (Interference)

    Singulari/es↔  T  scales  for  instabili/es  via                                      

    Scaling  theory  (RG)  of  both  pairing  channels

    χSDW(T ; g2, g3)χSCd(T ; g1, g2){

    R.Duprat  &  C.B.,  Eur.  Phys.  J.  B,    21,  219(2001)C.Nickel  et  al.,  Phys.  Rev.  Lee.  95,  247001  (2005)  C.B.  &  A.  Sedeki,  PRB  80,  085105  (2009)

  • Normal  phase:      extended  Curie  Weiss    regime15 20 25 30

    ⊥b(K)

    100

    102T(K)

    SDW

    SCd

    t'

    15 20 25 30⊥b(K)

    100

    102T(K)

    Θ

    SDW

    SCd

    t'

    C-W

    C.  B.  and  A.  Sedeki,  PRB  80,  085105  (2009)

    -‐  d-‐Cooper  pairing  boosts  (interferes  construc/vely  with)    SDW

     -‐  Enhancement  Fits  a  Curie-‐Weiss  law  

    15 20 25 30⊥b(K)

    100

    102T(K)

    SDW

    SCd

    t'

    15 20 25 30⊥b(K)

    100

    102T(K)

    Θ

    SDW

    SCd

    t'

    C-W

    χSDW(q0) ∼ (T + Θ)−1

  • Impact  on  the  normal  phase  :  NMR

    C.  B.  and  A.  Sedeki,  PRB  80,  085105  (2009)

    15 20 25 30⊥b(K)

    100

    102T(K)

    SDW

    SCd

    t'

    15 20 25 30⊥b(K)

    100

    102T(K)

    Θ

    SDW

    SCd

    t'

    C-W

    S.  Brown  et  al.,  (2005-‐2008)

    N.  Doiron-‐Leyraud  et  al.,  Phys.  Rev.  B  80,  214531  (2009);  EPJB  (2010)

    RG

    T−11 ≈ C0T + CT

    T + ΘP > Pc

  • 5

    ∂! Σ+ = + + · · ·

    ∂! = +

    + + · · ·

    ∂! = + · · ·

    FIG. 3: Flow equations for the one-particle Matsubara self-energy, Σ+, the g1,2 (open square) and Umklapp g3 (fullsquare) scattering amplitudes for right (continuous line) andleft (dashed line) moving electrons. The crossed and slashedlines refer to the high energy interval and outer energy shellrespectively (permutations between crossed and slashed lineare not shown).

    ∂!z⊥(k̄⊥) = z(k̄⊥)−1 1

    2

    ∫∫d k′⊥2π

    d q⊥2π

    ×{(

    g2(k̃⊥1)g1k̃⊥1) − g22(k̃⊥1) − g

    21(k̃⊥1)

    )I ′1(k̃⊥, iων)

    −(g22(k̃⊥2) + g

    21(k̃⊥2) − g2(k̃⊥)g1(k̃⊥2)

    )I ′2(k̃⊥, iων)

    −(g23(k̃⊥3) + g

    23(k̃⊥4) − g3(k̃⊥3)g3(k̃⊥4)

    )I ′3(k̃⊥, iων)

    }

    (11)

    where ∂! ≡ ∂/∂$, k̃⊥i and k̃⊥ are defined in (A4) and(A7), respectively.

    The temperature dependent coefficients Ii and I ′i aregiven in Appendix A. The integration of (10-11) is carriedout up to $ → ∞, which leads to the z and z⊥ factors attemperature T . It worth stressing that both two-loop andone-loop diagrams are calculated using free propagators(see Appendix A).

    IV. RESULTS

    A. Quasi-particle weight

    An important quantity entering in the description ofquasi-particles and that can be extracted from the one-particle self-energy is the ‘angle resolved’ quasi-particleweight, z(k⊥) ≡ z

    (kF (k⊥), iων=0

    ), defined on the Fermi

    surface. It is obtained from the solution of Eq. 10 atων=0 = πT . This variation of z(k⊥) on the FS as a

    0

    0.2

    0.4

    0.6

    −π −π/2 0 π/2 π

    k⊥

    0.8

    t′⊥ = 26.8K

    10

    5

    2

    0.8

    0.9 T [K] = 300

    100

    (b)

    0

    0.2

    0.4

    0.6

    z(k ⊥

    )

    −π −π/2 0 π/2 π

    k⊥

    12

    20

    16

    14

    0.8

    0.9

    z(k ⊥

    )

    t′⊥ = 25.0K

    T [K] = 300

    (a)

    100

    FIG. 4: Variation of the quasi-particle weight on the Fermisurface as a function of k⊥ at different temperatures. (a):SDW (t′⊥ = 25 K < t

    ′∗

    ⊥, TSDW ! 12 K); (b): SC (t′

    ⊥ =26.8 K > t′∗⊥, Tc ! 0.8 K).

    function of k⊥ and T in the SDW and SC parts of thephase diagram (Fig. 2) is shown in Fig. 4.

    In the SDW region at high temperature, namely wellabove the scale of one-particle transverse coherence,TX ∼ t⊥, where the system is essentially 1D, z(k⊥) dis-plays little minima at k⊥ = ±π/2. According to (4), thet⊥ part of the spectrum vanishes at those points, whichfrom a perturbation viewpoint of t⊥ implies that 1D ef-fects are the strongest there. Such a high temperaturemodulation, thought small, agrees with earlier investiga-tions based on perturbative and mean field treatments oft⊥18–24, which found the same location for the the spec-tral weight minima on the FS. Above TX , Fig. 5 showsthat z(k⊥) ∼ T α decays as a non universal power law intemperature

    (α ∼ O(g2)

    ), in accordance with the sum-

    mation of next-to-leading (two-loop) logarithmic singularself-energy diagrams of Fig. 3 in the limit of 1D electrongas model.30,38,39(dashed line of Fig. 5).

    As T goes below TX , the influence of t⊥ becomesclearly non perturbative. The temperature decay of z,thought still present, becomes less rapid than the powerlaw above TX ; an indication of weakening of the two-loopsingularity and modified Cooper and Peierls channels in-terference by the coherent warping of the FS. connectionwith marginal Fermi liquid.

    Moreover, the position of minima in z(k⊥) graduallyshifts to k⊥ = ±π/4 and k⊥ = ±3π/4 as the details ofthe Fermi surface becomes coherent. This shift resultsfrom the nesting condition of the whole spectrum on theFS,

    E+(kF + q0) = −E−(kF ) + δ(k⊥), (12)

    where δ(k⊥) = 4t′⊥ cos 2k⊥. The minima coincide withthe loci, k⊥ = ±π/4, and ±3π/4 on the FS whereδ(±π/4) and δ(±3π/4) vanish and perfect nesting con-ditions prevail. Conversely, at k⊥ = ±π/2, 0, and ±π,δ(k⊥) = ±4t′⊥, and deviations reach their maximum. As

    Two-‐loop  RG  :  one-‐parCcle  self-‐energy    

    One-particle spectral quantities : z(k⊥), A(kF (k⊥), ω), m∗, τ−1k⊥ , ...

  • Quasi-‐par/cle  weight  vs  T  and  ‘pressure’15 20 25 30⊥b(K)

    100

    102T(K)

    SDW

    SCd

    t'

    15 20 25 30⊥b(K)

    100

    102T(K)

    Θ

    SDW

    SCd

    t'

    C-W

    0

    0.2

    0.4

    0.6

    0.8

    1

    z(k

    ⊥=0)

    0 2 4 6 8 10

    T [K]

    0

    0.2

    0.4

    0.6

    0.8

    1

    z(k

    ⊥=π/2)

    0 2 4 6 8 10

    T [K]

    8

    0

    0.2

    0.4

    0.6

    0.8

    1

    z(k

    ⊥)

    0 2 4 6 8 10

    T [K]

    t′⊥[K] T c[K] g(0)35.0 0.12 0.0232.0 0.23 0.0329.0 0.45 0.08

    27.7 0.62 0.1726.8 0.80 0.4026.0 1.07 1.33

    k⊥ = 0 (•), π/2 (◦)

    t′⊥[K] T c[K] g(0)

    FIG. 6: Low temperature dependece quasi-particle weightz(k⊥) for different antinesting parameters t

    ′⊥ for k⊥ = 0 (full

    circles), and π/2 (open circles). The continuous lines corre-spond to a fit to Eq. (18) of the marginal liquid theory atk⊥ = 0.

    phase digram. We see from Fig. 5 that not too far fromt′∗⊥ at the intermediate t

    ′⊥ = 26.8K, z(k⊥) exhibits a sig-

    nificative decay in the metallic state extending far abovethe critical domain, comprising the entire Curie-Weissregime of spin correlations. The amplitude of the z de-cay correlates with the one of SDW fluctuations in thenormal phase as t′⊥ is tuned away from t

    ′∗⊥. When t

    ′⊥ is far

    upward, at 35 K, for instance, one has Tc = 0.12K ! T ∗c ,and a very weak temperature dependence is found for zabove Tc, which is very close to that of a Fermi liquid(Fig. 5).

    If we now concentrate on the Curie-Weiss temperatureinterval, Tc

  •  Normal  phase  quasi-‐par/cle    scaeering  rate  5

    ∂! Σ+ = + + · · ·

    ∂! = +

    + + · · ·

    ∂! = + · · ·

    FIG. 3: Flow equations for the one-particle Matsubara self-energy, Σ+, the g1,2 (open square) and Umklapp g3 (fullsquare) scattering amplitudes for right (continuous line) andleft (dashed line) moving electrons. The crossed and slashedlines refer to the high energy interval and outer energy shellrespectively (permutations between crossed and slashed lineare not shown).

    ∂!z⊥(k̄⊥) = z(k̄⊥)−1 1

    2

    ∫∫d k′⊥2π

    d q⊥2π

    ×{(

    g2(k̃⊥1)g1k̃⊥1) − g22(k̃⊥1) − g

    21(k̃⊥1)

    )I ′1(k̃⊥, iων)

    −(g22(k̃⊥2) + g

    21(k̃⊥2) − g2(k̃⊥)g1(k̃⊥2)

    )I ′2(k̃⊥, iων)

    −(g23(k̃⊥3) + g

    23(k̃⊥4) − g3(k̃⊥3)g3(k̃⊥4)

    )I ′3(k̃⊥, iων)

    }

    (11)

    where ∂! ≡ ∂/∂$, k̃⊥i and k̃⊥ are defined in (A4) and(A7), respectively.

    The temperature dependent coefficients Ii and I ′i aregiven in Appendix A. The integration of (10-11) is carriedout up to $ → ∞, which leads to the z and z⊥ factors attemperature T . It worth stressing that both two-loop andone-loop diagrams are calculated using free propagators(see Appendix A).

    IV. RESULTS

    A. Quasi-particle weight

    An important quantity entering in the description ofquasi-particles and that can be extracted from the one-particle self-energy is the ‘angle resolved’ quasi-particleweight, z(k⊥) ≡ z

    (kF (k⊥), iων=0

    ), defined on the Fermi

    surface. It is obtained from the solution of Eq. 10 atων=0 = πT . This variation of z(k⊥) on the FS as a

    0

    0.2

    0.4

    0.6

    −π −π/2 0 π/2 π

    k⊥

    0.8

    t′⊥ = 26.8K

    10

    5

    2

    0.8

    0.9 T [K] = 300

    100

    (b)

    0

    0.2

    0.4

    0.6

    z(k ⊥

    )

    −π −π/2 0 π/2 π

    k⊥

    12

    20

    16

    14

    0.8

    0.9

    z(k ⊥

    )

    t′⊥ = 25.0K

    T [K] = 300

    (a)

    100

    FIG. 4: Variation of the quasi-particle weight on the Fermisurface as a function of k⊥ at different temperatures. (a):SDW (t′⊥ = 25 K < t

    ′∗

    ⊥, TSDW ! 12 K); (b): SC (t′

    ⊥ =26.8 K > t′∗⊥, Tc ! 0.8 K).

    function of k⊥ and T in the SDW and SC parts of thephase diagram (Fig. 2) is shown in Fig. 4.

    In the SDW region at high temperature, namely wellabove the scale of one-particle transverse coherence,TX ∼ t⊥, where the system is essentially 1D, z(k⊥) dis-plays little minima at k⊥ = ±π/2. According to (4), thet⊥ part of the spectrum vanishes at those points, whichfrom a perturbation viewpoint of t⊥ implies that 1D ef-fects are the strongest there. Such a high temperaturemodulation, thought small, agrees with earlier investiga-tions based on perturbative and mean field treatments oft⊥18–24, which found the same location for the the spec-tral weight minima on the FS. Above TX , Fig. 5 showsthat z(k⊥) ∼ T α decays as a non universal power law intemperature

    (α ∼ O(g2)

    ), in accordance with the sum-

    mation of next-to-leading (two-loop) logarithmic singularself-energy diagrams of Fig. 3 in the limit of 1D electrongas model.30,38,39(dashed line of Fig. 5).

    As T goes below TX , the influence of t⊥ becomesclearly non perturbative. The temperature decay of z,thought still present, becomes less rapid than the powerlaw above TX ; an indication of weakening of the two-loopsingularity and modified Cooper and Peierls channels in-terference by the coherent warping of the FS. connectionwith marginal Fermi liquid.

    Moreover, the position of minima in z(k⊥) graduallyshifts to k⊥ = ±π/4 and k⊥ = ±3π/4 as the details ofthe Fermi surface becomes coherent. This shift resultsfrom the nesting condition of the whole spectrum on theFS,

    E+(kF + q0) = −E−(kF ) + δ(k⊥), (12)

    where δ(k⊥) = 4t′⊥ cos 2k⊥. The minima coincide withthe loci, k⊥ = ±π/4, and ±3π/4 on the FS whereδ(±π/4) and δ(±3π/4) vanish and perfect nesting con-ditions prevail. Conversely, at k⊥ = ±π/2, 0, and ±π,δ(k⊥) = ±4t′⊥, and deviations reach their maximum. As

    One-‐par/cle  self-‐energy  :   τ−1(∝ ρ), z, ....

    Within  the  Curie-‐Weiss  domain:  

    C.  B.  and  A.  Sedeki,    C.  R.  Physique    12,  532  (2011),  A.  Sedeki  and  C.B.  (2011)

  • 7

    0.001

    0.01

    0.1

    1

    AA

    −30 −10 0 10 30ωω

    20100300

    t�⊥ = 25 K

    −30 −10 0 10 30ωω

    20100300

    t�⊥ = 25 K

    −30 −10 0 10 30ωω

    20100300

    t�⊥ = 25 K

    0.001

    0.01

    0.1

    1

    AA

    −30 −10 0 10 30ωω

    3100300

    t�⊥ = 26.8 K

    −30 −10 0 10 30ωω

    3100300

    t�⊥ = 26.8 K

    −30 −10 0 10 30ωω

    3100300

    t�⊥ = 26.8 K

    0.001

    0.01

    0.1

    1

    10

    100

    AA

    −30 −10 0 10 30ωω

    2100300

    t�⊥ = 35 K

    k⊥ = 0

    −30 −10 0 10 30ωω

    2100300

    t�⊥ = 35 K

    k⊥ = π/2

    −30 −10 0 10 30ωω

    2100300

    t�⊥ = 35 K

    k⊥ = π/4

    FIG. 9: Low frequency dependence of the spectral weightof the one-particle self-energy at t�⊥ = 25, 26.8 and 35 K ondifferent regions of the Fermi surface

    Fig. 9 for different t�⊥ and k⊥. In general, the size ofthe peak at the Fermi level grows as T decreases, whileits width in frequency is reduced; note that at the peak,

    A(k⊥, 0) coincides with −2Σ��(k⊥, 0), which defines thescattering rate that will be discussed separately below

    (Sec. IV C 2).

    As the temperature decreases, its rounding effect onthe peak of the spectral weight is reduced and A(k⊥, ω)develops a cusp like singularity at small ω, as T is loweredwell below TX . The spectral weight follows the power lawform A(k⊥, ω) ∼ |ω|η−1, with the exponent η = insteadof η =? for a Fermi liquid. This ....

    However, at the quantitative level, this occurs nonuni-

    formly along the Fermi surface, which differs from whatis expected. At k⊥ = ±π/4 (or ±3π/4), for example, thepeak is slightly more pronounced and narrower despite

    a steeper slope in Σ� at the origin (Fig. 8), and thus asmaller value of the quasi-particle weight (Fig. 5). This

    behavior at zero frequency is with the one of the Imagi-

    nary part ω = 0, as discussed earlier.

    2 Effective mass and electron-electron scattering rate

    In the superconducting sector t�⊥ > t�∗⊥, the k⊥− re-

    solved scattering rate shows strong anisotropy on the

    Fermi surface. The absolute maximum is found in the

    longitudinal direction k⊥ = 0, with secondary maximataking place at k⊥ = ±π, namely where the edges of theopen Fermi surface cross the Brillouin zone in the per-

    pendicular direction. These points markedly differ fromthe expected ‘hot’ spots at k⊥ = ±π/4 and ±3π/4, asdeduced from E(k) at the best nesting conditions forthe antiferromagnetic wave vector q0 = (2kF , π). Theanisotropy that is actually found results from the inter-

    ference of electron-hole with electron-electron scattering,

    FIG. 10: Temperature dependence of the singular part of theelectron-electron scattering rate at different t�⊥

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    aa

    −π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π

    k⊥k⊥

    26.827.227.7

    3032

    0

    0.005

    0.01

    0.015

    aa

    3540

    50

    FIG. 11: Anisotropy of the linear coefficient of the electron-electron scattering rate at different t�⊥

    which moves the maxima in the regions where the super-

    conducting SCd order parameter or the gap is expected

    to take its largest values below Tc.For all k⊥, however, τ

    −1k⊥

    shows the same anomalous

    temperature dependence, which fits pretty well the non

    Fermi liquid polynomial form

    τ−1k⊥ ≈ a(k⊥)T + b(k⊥)T2, (15)

    in the temperature interval Tc t�∗⊥, the k⊥− re-

    solved scattering rate shows strong anisotropy on the

    Fermi surface. The absolute maximum is found in the

    longitudinal direction k⊥ = 0, with secondary maximataking place at k⊥ = ±π, namely where the edges of theopen Fermi surface cross the Brillouin zone in the per-

    pendicular direction. These points markedly differ fromthe expected ‘hot’ spots at k⊥ = ±π/4 and ±3π/4, asdeduced from E(k) at the best nesting conditions forthe antiferromagnetic wave vector q0 = (2kF , π). Theanisotropy that is actually found results from the inter-

    ference of electron-hole with electron-electron scattering,

    FIG. 10: Temperature dependence of the singular part of theelectron-electron scattering rate at different t�⊥

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    aa

    −π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π

    k⊥k⊥

    26.827.227.7

    3032

    0

    0.005

    0.01

    0.015

    aa

    3540

    50

    FIG. 11: Anisotropy of the linear coefficient of the electron-electron scattering rate at different t�⊥

    which moves the maxima in the regions where the super-

    conducting SCd order parameter or the gap is expected

    to take its largest values below Tc.For all k⊥, however, τ

    −1k⊥

    shows the same anomalous

    temperature dependence, which fits pretty well the non

    Fermi liquid polynomial form

    τ−1k⊥ ≈ a(k⊥)T + b(k⊥)T2, (15)

    in the temperature interval Tc

  • On  the  nature  of  the  normal  state  above  Tc  

    15 20 25 30⊥b(K)

    100

    102T(K)

    SDW

    SCd

    t'

    15 20 25 30⊥b(K)

    100

    102T(K)

    Θ

    SDW

    SCd

    t'

    C-W

    |t⊥ EF

    | TTc| 1D:LL

    ∼∼ 1 K ∼ 100 K

    . . .

    ∼ 3000 K

    SDW  

    SCd  

    NFL

    Interfering    e-‐e    &  e-‐h  pairings  :  

    DisCnct  electron  liquid  (NFL)

    Extended    QC  region    

  • Summary

    RG  of  Q-‐1D  electron  gas  at

     

    T � t⊥, t�⊥Interfering  Cooper  pairing  with  SDW:

    -‐     TSDW → Tct�⊥

    -‐  Extended    Curie-‐Weiss  domain

    -‐  Not  a  Fermi  liquid  at  low  T  :   T−11 , τ−1, z, ....

    -‐  Extended  quantum  cri/cality

    Linear  resis/vity  correlated  with  Tc  

    C-‐W  SDW  fluctua/ons  (                    )  vs    Tc  

    SDW  +  SC  dome    under  pressure  

    T−11

    15 20 25 30⊥b(K)

    100

    102T(K)

    SDW

    SCd

    t'

    15 20 25 30⊥b(K)

    100

    102T(K)

    Θ

    SDW

    SCd

    t'

    C-W

  • F.L.  Ning  et  al.,  Phys.  Rev.  Lee.  104,  37001  (2010)    

    Ba(Fe1-‐x  Cox  )2As2

    Y.  Nakai  et  al.,  Phys.  Rev.  Lee.  105,  107003  (2010)    

    BaFe2(As1-‐x  Px  )2

    75As