announcements moment of a force

48
Engr221 Chapter 4 1 Announcements Test observations – Units Significant figures Position vectors Moment of a Force Today’s Objectives Understand and define Moment Determine moments of a force in 2-D and 3-D cases Class Activities • Applications Moments in 2-D Moments in 3-D • Examples Moment of a force

Upload: vuongkhue

Post on 04-Jan-2017

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Announcements Moment of a Force

Engr221 Chapter 4 1

Announcements

• Test observations– Units

– Significant figures

– Position vectors

Moment of a Force

Today’s Objectives• Understand and define Moment

• Determine moments of a force in 2-D and 3-D cases

Class Activities• Applications

• Moments in 2-D

• Moments in 3-D

• Examples

Moment of a force

Page 2: Announcements Moment of a Force

Engr221 Chapter 4 2

Applications

What is the net effect of the two forces on the wheel shaft?

Applications - continued

What is the effect of the 30 N force on the lug nut?

Page 3: Announcements Moment of a Force

Engr221 Chapter 4 3

Moments in 2-D

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called torque).

In the 2-D case, the magnitudeof the moment is: Mo = Fd

As shown, d is the perpendiculardistance from point O to the line of actionof the force F.

In 2-D, the direction of MO is either clockwise or counter-clockwise depending on the tendency for rotation.

Moments in 2-D - continued

Page 4: Announcements Moment of a Force

Engr221 Chapter 4 4

For example, MO = Fd and the direction is counter-clockwise.

Often it is easier to determine MO by using the components of F. Using this approach, MO = (FY a) – (FX b). Note the different signs on the terms. The typical sign convention for a moment in 2-D is that counter-clockwise is considered positive. We can determine the direction of rotation by imagining the body pinned at O and deciding which way the body would rotate due to the force.

Fa

b

dO ab

O

F

F x

F y

Moments in 2-D - continued

3-D Moments and Vector Formulation

Moments in 3-D can be calculated using a scalar (2-D) approach but it can be difficult and time consuming. Thus, it is often easier to use a mathematical approach called the vector cross product.

Using the vector cross product,MO = r ×××× FHere, r is a position vector from point O to any point on the line of action of force F.

Page 5: Announcements Moment of a Force

Engr221 Chapter 4 5

Cross Product

In general, the cross product of two vectors A and B results in another vector C, i.e., C = A×××× B. The magnitude and direction of the resulting vector can be written as

C = A ×××× B = (AB sinθ) uC

Here,uC is the unit vector perpendicular to both the A and Bvectors as shown (or to the plane containing the A and Bvectors).

The right hand rule is useful for determining the direction of the vector resulting from a cross product.

For example: i ×××× j = k

Note that a vector crossed into itself is zero, e.g.,i ×××× i = 0

Cross Product - continued

Page 6: Announcements Moment of a Force

Engr221 Chapter 4 6

Of even more utility, the cross product can be written as

and each component can be determined using 2 × 2 determinants:

Cross Product - continued

So, using the cross product, a moment can be expressed as

By expanding the above equation using the 2 × 2 determinants (see Section 4.2 in your textbook), we get

MO = (ry Fz - rz Fy) i - (rx Fz - rz Fx) j + (rx Fy - ry Fx) k

The physical meaning of the above equation becomes evident by considering the force components separately and using a 2-D formulation. Units of moments are N-m or lb-ft.

Moments in 3-D

Page 7: Announcements Moment of a Force

Engr221 Chapter 4 7

Given: A 400 N force is applied to the frame and θ = 20°

Find: The moment of the force at A

Plan:

1) Resolve the force along the x and y axes

2) Determine MA using scalar analysis

Example A

+ ↑ Fy = -400 sin 20° N

+ → Fx = -400 cos 20° N

+ MA = {(400 cos 20°)(2) + (400 sin 20°)(3)} N·m

= 1162 N·m = 1.16 kN·m

Example A - continued

Page 8: Announcements Moment of a Force

Engr221 Chapter 4 8

Given:a = 3 in, b = 6 in, and c = 2 in

Find: Moment of F about point O

Plan:

1) Find rOA

2) Determine MO = rOA ×××× F

Solution rOA = {3 i + 6 j – 0 k} ini j k3 6 03 2 -1

MO = = [{6(-1) – 0(2)} i – {3(-1) – 0(3)} j + {3(2) – 6(3)} k] lb·in

= {-6 i + 3 j – 12 k} lb·in

o

Example B

Given: a = 3 in, b = 6 in, and c = 2 in

Find: Moment of F about point P

Plan:

1) Find rPA

2) Determine MP = rPA x F

Solution: rPA = { 3 i + 6 j - 2 k } in

i j k3 6 -23 2 -1

MP = = { -2 i - 3 j - 12 k } lb·in

Example C

Page 9: Announcements Moment of a Force

Engr221 Chapter 4 9

Example DGiven: A 40 N force is

applied to the wrench

Find: The moment of the force at O

Plan:1) Resolve the force along the

x and y axes2) Determine MO using scalar

analysis

Solution: + ↑ Fy = - 40 cos 20° N+ → Fx = - 40 sin 20° N

+ MO = {-(40 cos 20°)(200) + (40 sin 20°)(30)}N·mm= -7107 N·mm = - 7.11 N·m

Questions

2. What is the moment of the 10 N force about point A (MA)?

A) 10 Nm B) 30 Nm

C) 13 Nm D) (10/3) Nm

E) 7 Nm

1. The moment of force F about point Ois defined as MO = ___________

A) r x F B) F x r

C) r • F D) r * F

• Ad = 3 m

F = 10 N

Page 10: Announcements Moment of a Force

Engr221 Chapter 4 10

Question

If a force of magnitude F can be applied in four different 2-D configurations (P, Q, R, & S), select the cases resulting in the maximum and minimum torque values on the nut.

A) (Q, P) B) (R, S)

C) (P, R) D) (Q, S)R

P Q

S

Determine the direction θ for 0° ≤ θ ≤ 180° of the force F so that F produces (a) the maximum moment about point A and (b) the minimum moment about point A. Calculate the moment in each case.

Example Problem

Maximumθ= 56.3º MA = 1.44KN-M ccw

Mimimumθ = 146º MA = 0 N-M

Page 11: Announcements Moment of a Force

Engr221 Chapter 4 11

Example Problem

The two boys push on the gate with forces of FA = 30 lb and FB = 50 lb as shown. Determine the moment of each force about point C. Which way will the gate rotate, clockwise or counterclockwise? Neglect the thickness of the gate.

MCA = 162 lb-ft cw

MCB = 260 lb-ft ccw

Strut AB of the 1m diameter hatch door exerts a force of 450 N on point B. Determine the moment of this force about point O.

Example Problem

MO = {373i – 100j +173k} N-M

Page 12: Announcements Moment of a Force

Engr221 Chapter 4 12

The force F = {600i + 300j – 600k} N acts at the end of the beam. Determine the moment of the force about point A.

Textbook Problem 4.40

MO = {-840i + 360j - 660k} N-M

• Understand and define Moment

• Determine moments of a force in 2-D and 3-D cases

Summary

Page 13: Announcements Moment of a Force

Engr221 Chapter 4 13

Announcements

Moment About an Axis

Today’s ObjectivesBe able to determine the moment of a force about an axis using

• Scalar analysis

• Vector analysis

Class Activities• Applications

• Scalar analysis

• Vector analysis

• Examples

Page 14: Announcements Moment of a Force

Engr221 Chapter 4 14

Applications

With the force F, a person is creating the moment MA. What portion of MA is used in turning the socket?

The force F is creating the moment MO. How much of MO acts to unscrew the pipe?

Scalar Analysis

Recall that the moment of a force about any point A is MA = FdA

where dA is the perpendicular distance from the point to the force’s line of action. This concept can be extended to find the moment of a force about an axis.

In the figure above, the moment about the y-axis would be My = 20(0.3) = 6 Nm. This calculation is not always trivial and vector analysis is usually preferable.

Page 15: Announcements Moment of a Force

Engr221 Chapter 4 15

Vector Analysis

Our goal is to find the moment of F (the tendency to rotate the body) about the axis a’a.

First, compute the moment of F about any arbitrary point O that lies on the a’a axis using the cross product:

MO = rOA ×××× F

Now, find the component of MO along the axis a’a using the dot product:

Ma’a = ua • MO

Ma’a can also be obtained as

The above equation is called the triple scalar product.

In this equation,ua represents the unit vector along the a’a axisr is the position vector from any point on the a’a axis to any point on the line of action of the force (A)

F is the force vector

Vector Analysis - continued

Page 16: Announcements Moment of a Force

Engr221 Chapter 4 16

Example AGiven:A force is applied to the

tool to open a gas valve

Find: The magnitude of the moment of this force about the z axis

Plan:

1) Find Mz = u • (r ×××× F)

2) Note that u = 1k

3) The vector r is the position vector from A to B

4) Force F is already given in Cartesian vector form

A

B

u = 1k

rAB = {0.25 sin 30° i + 0.25 cos30° j} m

= {0.125 i + 0.2165 j} m

F = {-60 i + 20 j + 15 k} N

Mz = u • (rAB ×××× F)

0 0 1 0.125 0.2165 0 -60 20 15

Created with the Trial Edition of SmartDraw 5.Mz =

= 1{0.125(20) – 0.2165(-60)} Nm = 15.5 Nm

A

B

Example A - continued

Page 17: Announcements Moment of a Force

Engr221 Chapter 4 17

Example BGiven: A force of 80 lb acts

along the edge DB

Find: The magnitude of the moment of this force about the axis AC

Plan:

1) Find MAC = uAC • (rAB ×××× FDB)

2) Find uAC = rAC /rAC

3) Find FDB = 80(uDB) lb = 80(rDB/rDB) lb

4) Complete the triple scalar product

rAB = { 20 j } ft

rAC = { 13 i + 16 j } ft

rDB = { -5 i + 10 j – 15 k } ft

uAC= (13 i + 16 j) / (13 2 + 16 2) ½ ft

= 0.6306 i + 0.7761 j

FDB = 80 {rDB / (5 2 + 10 2 + 15 2) ½ } lb

= {-21.38 i + 42.76 j – 64.14 k } lb

Example B - continued

Page 18: Announcements Moment of a Force

Engr221 Chapter 4 18

0.6306 0.7706 00 20 0-21.38 42.76 -64.14

MAC =

MAC = 0.6306 {20 (-64.14) – 0 – 0.7706 (0 – 0)} lb·ft

= -809 lb·ft

IMPORTANT: The negative sign indicates that the sense of MAC is oppositeto that of uAC

Now find the triple product, MAC = uAC • ( rAB ×××× FDB )

ft•lb

Example B - continued

Questions

1. For finding the moment of the force F about the x-axis, the position vector in the triple scalar product should be ___

A) rAC B) rBA

C) rAB D) rBC

2. If r = {1i + 2j} m and F = {10i + 20j + 30k} N, then the moment of F about the y-axis is ____ m

A) 10 B) -30

C) -40 D) None of the above

Page 19: Announcements Moment of a Force

Engr221 Chapter 4 19

Questions

1. When determining the moment of a force about a specified axis, the axis must be along _____________

A) the x axis B) the y axis C) the z axis

D) any line in 3-D space E) any line in the x-y plane

2. The triple scalar product u • ( r ×××× F ) results in:

A) a scalar quantity ( + or - ) B) a vector quantity

C) zero D) a unit vector

E) an imaginary number

The force F is acting along DC. Using the triple product to determine the moment of F about the bar BA, you could use any of the following position vectors except ______

A) rBC B) rAD

C) rAC D) rDB

E) rBD

Question

Page 20: Announcements Moment of a Force

Engr221 Chapter 4 20

• Be able to determine the moment of a force about an axis using– Scalar analysis

– Vector analysis

Summary

Announcements

Page 21: Announcements Moment of a Force

Engr221 Chapter 4 21

Moment of a Couple

Today’s Objectives• Define a couple• Determine the moment of a couple

Class activities• Applications• Moment of a Couple• Examples

Applications

A torque or moment of 12 Nm is required to rotate the wheel. Which one of the two grips of the wheel above will require less force to rotate the wheel?

Page 22: Announcements Moment of a Force

Engr221 Chapter 4 22

The crossbar lug wrench is being used to loosen a lug net. What is the effect of changing dimensions a, b, or con the force that must be applied?

Applications - continued

A couple is defined as two parallel forces with the same magnitude but opposite in direction, separated by a perpendicular distance d.

The moment of a couple is defined as:

M = Fd (using a scalar analysis) or as

M = r ×××× F (using a vector analysis).

Here, r is any position vector from the line of action of –Fto the line of action of F.

Moment of a Couple

Page 23: Announcements Moment of a Force

Engr221 Chapter 4 23

The net external effect of a couple is that the net force equals zero and the magnitude of the net moment equals Fd.

Since the moment of a couple depends only on the distance between the forces, the moment of a couple is a free vector. It can be moved anywhere on the body and have the same external effect on the body.

Moments due to couples can be added using the same rules as adding any vectors.

Moment of a Couple - continued

Example A – Scalar Approach

Given: Two couples act on the beam and d = 8 ft

Find: The resultant couple

Plan:

1) Resolve the forces in x and y directions so they can be treated easily as couples

2) Determine the net moment due to the two couples

Page 24: Announcements Moment of a Force

Engr221 Chapter 4 24

Example A - continued

The x and y components of the top 60 lb force are:

(4/5)(60 lb) = 48 lb vertically up(3/5)(60 lb) = 36 lb to the left

Similarly, for the top 40 lb force:

(40 lb) (sin 30°) up

(40 lb) (cos 30°) to the left

The net moment is:

+ ΣM = -(48)(4) + (40)(cos 30º)(8) lb·ft

= -192.0 + 277.1 = 85.1 lb·ft

Given: A force couple acting on the rod

Find: The couple moment acting on the rod in Cartesian vector notation

Plan:

1) Use M = r ×××× F to find the couple moment

2) Set r = rAB andF = {14i – 8j – 6k} N

3) Calculate the cross product to find M

Example B – Vector Approach

A

B

Page 25: Announcements Moment of a Force

Engr221 Chapter 4 25

rAB = {0.8i + 1.5j – 1k} m

F = {14i – 8j – 6k} N

M = rAB ×××× F

= { i (-9 – (8)) –j (-4.8 – (-14)) + k (-6.4 – 14(1.5))} Nm

= {-17 i – 9.2j – 27.4k} Nm

=Nm

i j k 0.8 1.5 -1 14 -8 -6

Created with the Trial Edition of SmartDraw 5.

A

B

Example B - continued

Example C – Scalar ApproachGiven: Two couples act on the beam.

The resultant couple is zero.

Find: The magnitudes of the forces P and F and the distance d.

Plan:

1) Use the definition of a couple to find P and F

2) Resolve the 300N force in x and y directions

3) Determine the net moment

4) Equate the net moment to zero to find d

Page 26: Announcements Moment of a Force

Engr221 Chapter 4 26

From the definition of a couple:

P = 500 N and

F = 300 N

Resolve the 300 N force into vertical and horizontal components. The vertical component is (300 cos 30º) N and the horizontal component is (300 sin 30º) N

Solving this equation for d yieldsd = (1000 + 60 sin 30º) / (300 cos 30º) = 3.96 m

It was given that the net moment equals zero. So+ ΣM = - (500)(2) + (300 cos 30º)(d) - (300 sin 30º)(0.2) = 0

Example C - continued

Given: F = {25 k} N and -F = {-25 k} N

Find: The couple moment acting on the pipe assembly, using Cartesian vector notation.

Plan:

1) Use M = r ×××× F to find the couple moment

2) Set r = rAB andF = {25 k} N

3) Calculate the cross product to find M

Example D – Vector Approach

Page 27: Announcements Moment of a Force

Engr221 Chapter 4 27

rAB = { - 350 i – 200 j } mm

= { - 0.35 i – 0.2 j } m

F = {25 k} N

=

M = rAB ×××× F

= { i (-5 – 0 ) –j (-8.75 – 0) + k (0) } Nm

= { -5 i + 8.75 j } Nm

i j k-0.35 -0.2 0 0 0 25

Nm

Example D - continued

Questions

1. A couple is applied to the beam as shown. Its moment equals _____ Nm

A) 50 B) 60

C) 80 D) 100

2. You can determine the couple moment as M = r ×××× F

If F = {-20k} lb, thenr is

A) rBC B) rAB

C) rCB D) rAC

3

4

51m 2m

50 N

Page 28: Announcements Moment of a Force

Engr221 Chapter 4 28

Questions

1. In statics, a couple is defined as __________ separated by a perpendicular distance.

A) two forces in the same direction

B) two forces of equal magnitude

C) two forces of equal magnitude acting in the same direction

D) two forces of equal magnitude acting in opposite directions

2. The moment of a couple is called a _________ vector.

A) free B) spin

C) romantic D) sliding

Questions

1. F1 and F2 form a couple. The moment of the couple is given by ____

A) r1 ×××× F1 B) r2 ×××× F1

C) F2 ×××× r1 D) r2 ×××× F2

2. If three couples act on a body, the overall result is that A) the net force is not equal to 0B) the net force and net moment are equal to 0C) the net moment equals 0 but the net force is not necessarily

equal to 0D) the net force equals 0 but the net moment is not necessarily

equal to 0

F1

r1

F2

r2

Page 29: Announcements Moment of a Force

Engr221 Chapter 4 29

Textbook Problem 4-79

Express the moment of the couple acting on the pipe assembly in Cartesian vector form. Solve the problem (a) using Eq. 4-13, and (b) summing the moment of each force about point O. Take F = {25k} N.

MC = (-5i + 8.75j) Nm

• Define a couple

• Determine the moment of a couple

Summary

Page 30: Announcements Moment of a Force

Engr221 Chapter 4 30

Announcements

Equivalent Force and Couple Systems

Today’s Objectives• Determine the effect of moving a force

• Find an equivalent force-couple system for a system of forces and couples

Class Activities• Applications

• Equivalent systems

• System reduction

• Examples

Page 31: Announcements Moment of a Force

Engr221 Chapter 4 31

Applications

What is the resultant effect on the person’s hand when the force is applied in four different ways?

Several forces and a couple moment are acting on this vertical section of an I-beam.

Can you replace them with just one force and one couple moment at point O that will have the same external effect? If yes, how will you do that?

| | ??

Applications - continued

Page 32: Announcements Moment of a Force

Engr221 Chapter 4 32

An Equivalent Force System

When a number of forces and couple moments are acting on a body, it is easier to understand their overall effect on the body if they are combined into a single force and couple moment having the same external effect.

The two force and couple systems are called equivalent systemssince they have the same external effect on the body.

=

Moving a Force On its Line of Action

Moving a force from A to O, when both points are on the vectors’ line of action, does not change the external effect. Hence, a force vector is called a sliding vector. (But the internal effect of the force on the body does depend on where the force is applied).

Page 33: Announcements Moment of a Force

Engr221 Chapter 4 33

Moving a Force Off its Line of Action

Moving a force from point A to O (as shown above) requires creating an additional couple moment. Since this new couple moment is a “free” vector , it can be applied at any point P on the body.

Resultant of a Force and Couple System

When several forces and couple moments act on a body, you can move each force and its associated couple moment to a common point O.

Now you can add all the forces and couple moments together and find one resultant force-couple moment pair.

Page 34: Announcements Moment of a Force

Engr221 Chapter 4 34

If the force system lies in the x-y plane (the 2-D case), then the reduced equivalent system can be obtained using the following three scalar equations:

Resultant of a Force and Couple System

Force-Moment Reduction

If FR and MRO are perpendicular to each other, then the system can be further reduced to a single force, FR , by simply moving FR from O to P.

In three special cases, concurrent, coplanar, and parallel systems of forces, the system can always be reduced to a single force.

= =

Page 35: Announcements Moment of a Force

Engr221 Chapter 4 35

Example A

Given: A 2-D force and couple system as shown.

Find: The equivalent resultant force and couple moment acting at A, and then the equivalent single force location along the beam AB.

Plan:

1) Sum all the x and y components of the forces to find FRA

2) Find and sum all the moments resulting from moving each force to A

3) Shift FRA to a distance d such that d = MRA/FRy

+ → ΣFRx = 25 + 35 sin 30° = 42.5 lb

+ ↓ ΣFRy = 20 + 35 cos 30° = 50.31 lb

+ MRA = 35 cos30° (2) + 20(6) – 25(3)

= 105.6 lb·ft

The equivalent single force FR can be located on the beam AB at a distance d measured from point A.

d = MRA/FRy = 105.6/50.31 = 2.10 ft

FR = ( 42.52 + 50.312 )1/2 = 65.9 lbθ = tan-1 (50.31/42.5) = 49.8°

Example A - continued

FR

Page 36: Announcements Moment of a Force

Engr221 Chapter 4 36

Given: The building slab has four columns. F1 and F2 = 0.

Find: The equivalent resultant force and couple moment at the origin O. Also find the location (x,y) of the single equivalent resultant force.

Plan:

1) Find FRO = ∑F i = FRzo k

2) Find MRO = ∑ (r i ×××× F i) = MRxO i + MRyO j

3) The location of the single equivalent resultant force is given as x = MRyO/FRzO and y = MRxO/FRzO

Example B

FRO = {-50 k – 20 k} = {-70 k} kN

MRO = (10 i) × (-20 k) +

(4 i + 3 j) × (-50 k)

= {200 j + 200j – 150 i} kN·m

= {-150 i + 400 j } kN·m

The location of the single equivalent resultant force is given as:

x = MRyo/FRzo = 400/(70) = 5.71 m

y = MRxo/Frzo = (150)/(70) = 2.14 m

Example B - continued

Page 37: Announcements Moment of a Force

Engr221 Chapter 4 37

Given:A 2-D force and couple system as shown

Find: The equivalent resultant force and couple moment acting at A

Plan:

1) Sum all the x and y components of the forces to find FRA

2) Find and sum all the moments resulting from moving each force to A and add them to the 500 lb-ft free moment to find the resultant MRA

Example C

+ → ΣFx = (4/5) 150 lb + 50 lb sin 30° = 145 lb

+ ↑ ΣFy = (3/5) 150 lb + 50 lb cos 30° = 133 lb

Now find the magnitude and direction of the resultant:

FRA = ( 145 2 + 133.3 2 )1/2 = 197 lband θ = tan-1 (133.3/145) = 42.6 °

+ MRA = { (4/5)(150)(2) – 50 cos30° (3) + 50 sin30° (6) + 500 }

= 760 lb·ft

Summing the force components:

Example C - continued

Page 38: Announcements Moment of a Force

Engr221 Chapter 4 38

Given: Handle forces F1 and F2 are applied to the electric drill

Find: An equivalent resultant force and couple moment at point O

Plan:

a) Find FRO = Σ F i

b) Find MRO = Σ ( r i ×××× F i )

F i are the individual forces in Cartesian vector form

r i are the position vectors from the point O to any point on the line of action of F i

Example D

F1 = {6 i – 3 j – 10 k} N

F2 = {0 i + 2 j – 4 k} N

FRO= {6 i – 1 j – 14 k} N

r1 = {0.15 i + 0.3 k} m

r2 = {-0.25 j + 0.3 k} m

MRO = r1 ×××× F1 + r2 ×××× F2

= {0.9 i + 3.3 j – 0.45 k + 0.4 i + 0 j + 0 k} Nm

= {1.3 i + 3.3 j – 0.45k} Nm

i j k0.15 0 0.36 -3 -10

+i j k

0 - 0.25 0.30 2 -4

MRO = { } Nm

Example D - continued

Page 39: Announcements Moment of a Force

Engr221 Chapter 4 39

Questions

1. A general systemof forces and couple moments acting on a rigid body can be reduced to a ___

A) single force

B) single moment

C) single force and two moments

D) single force and a single moment

2. The original force and couple system and an equivalent force-couple system have the same _____ effect on a body.

A) internal B) external

C) internal and external D) microscopic

Questions

1. The forces on the pole can be reduced to a single force and a single moment at point ____

A) P B) Q C) R

D) S E) Any of these points

2. Consider two couplesacting on a body. The simplest possible equivalent system at any arbitrary point on the body will have:

A) one force and one couple moment

B) one force

C) one couple moment

D) two couple moments

R

ZS

Q

P

X

Y•

••

Page 40: Announcements Moment of a Force

Engr221 Chapter 4 40

• Determine the effect of moving a force

• Find an equivalent force-couple system for a system of forces and couples

Summary

Announcements

Page 41: Announcements Moment of a Force

Engr221 Chapter 4 41

Distributed Loading Reduction

Today’s Objective• Determine an equivalent force for a

distributed load

Class Activities• Applications• Equivalent force• Examples

Applications

A distributed load on the beam exists due to the weight of the lumber.

Is it possible to reduce this force system to a single force that will have the same external effect? If yes, how?

Page 42: Announcements Moment of a Force

Engr221 Chapter 4 42

The sandbags on the beam create a distributed load. How can we determine a single equivalent resultant force and its location?

Applications - continued

Distributed LoadingIn many situations a surface area of a body is subjected to a distributed load. Such forces are caused by winds, fluids, or the weight of items on the body’s surface.

We will analyze the most common case of a distributed pressure loading. This is a uniform load along one axis of a flat rectangular body.

In such cases, w is a function of xand has units of force per length.

Page 43: Announcements Moment of a Force

Engr221 Chapter 4 43

Magnitude of Resultant Force

Consider an element of length dx.

The force magnitude dF acting on it is given as

dF = w(x) dx

The net forceon the beam is given by

+ ↓ FR = ∫L dF = ∫L w(x) dx = A

Here, A is the area under the loading curve w(x).

Location of the Resultant Force

The force dF will produce a moment of (x)(dF) about point O.

The total moment about point O is given as

+ MRO = ∫L x dF = ∫L x w(x) dx

Assuming that FR acts at , it will produce the moment about point O as

+ MRO = (FR) = ∫L w(x) dx

x

xx

Page 44: Announcements Moment of a Force

Engr221 Chapter 4 44

Comparing the last two equations, we get

In other words, FR acts through a point “C,” which is called the geometric center or centroid of the area under the loading curve w(x).

Location of the Resultant Force - continued

ExamplesWe will usually consider only rectangular and triangular loading diagrams whose centroids are well defined and shown on the inside back cover of your textbook.

In the rectangular loading, FR = 400 × 10 = 4,000 lb, x = 5 ftIn the triangular loading,FR = (0.5) (600) (6) = 1,800N and x = 6 – (1/3) 6 = 4 m

Note that the centroid in a right triangle is at a distance one third the width of the triangle as measured from its base.

Page 45: Announcements Moment of a Force

Engr221 Chapter 4 45

Example A

Given: The loading on the beam as shown

Find: The equivalent force and its location from point A

Plan:

1) Consider the trapezoidal loading as two separate loads (one rectangular and one triangular)

2) Find FR and for each of these two distributed loads

3) Determine the overall FR and for the three point loadingsx

x

For the rectangular loading of height 0.5 kN/m and width 3m,

FR1 = 0.5 kN/m × 3 m = 1.5 kN

= 1.5m from Ax1

For the triangular loading of height 2 kN/m and width 3m,

FR2 = (0.5) (2 kN/m) (3 m) = 3 kN

and its line of action is at 1m from A

Example A - continued

For the combined loading of the three forces,

FR = 1.5 kN + 3 kN + 1.5 kN = 6 kN

+ MRA = (1.5) (1.5) + 3 (1) + (1.5) 4 = 11.25 kNm

MRA = FR(x)

Hence, x = (11.25) / (6) = 1.88mfrom A

xx

Page 46: Announcements Moment of a Force

Engr221 Chapter 4 46

Questions

1. FR = ____________

A) 12 N B) 100 N

C) 600 N D) 1200 N

2. x = __________

A) 3 m B) 4 m

C) 6 m D) 8 m

FR100 N/m

12 m x

Questions

1. The resultant force (FR) due to a distributed load is equivalent to the _____ under the distributed loading curve, w = w(x).

A) centroid B) arc length

C) area D) volume

2. The line of action of the distributed load’s equivalent force passes through the ______ of the distributed load.

A) centroid B) mid-point

C) left edge D) right edge

x

w

FR

Distributed load curve

Page 47: Announcements Moment of a Force

Engr221 Chapter 4 47

Questions

1. What is the location of FR, i.e., the distance d?

A) 2m B) 3m C) 4m

D) 5m E) 6m

2. If F1 = 1N, x1 = 1m, F2 = 2N and x2 = 2m, what is the location of FR, i.e., the distance x?

A) 1m B) 1.33m C) 1.5m

D) 1.67m E) 2m

FRxF2F1

x1

x2

FR

BAd

BA

3 m 3 m

Textbook Problem 4-156

Simplify the distributed loading to an equivalent resultant force and specify the magnitude and location of the force, measured from A.

FR = 1.25 kNxA = 8.00 m

Page 48: Announcements Moment of a Force

Engr221 Chapter 4 48

• Determine an equivalent force for a distributed load

Summary